linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/pm.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/err.h>
  20#include <linux/amba/bus.h>
  21#include <linux/regulator/consumer.h>
  22
  23#include <plat/ste_dma40.h>
  24
  25#include "dmaengine.h"
  26#include "ste_dma40_ll.h"
  27
  28#define D40_NAME "dma40"
  29
  30#define D40_PHY_CHAN -1
  31
  32/* For masking out/in 2 bit channel positions */
  33#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  34#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  35
  36/* Maximum iterations taken before giving up suspending a channel */
  37#define D40_SUSPEND_MAX_IT 500
  38
  39/* Milliseconds */
  40#define DMA40_AUTOSUSPEND_DELAY 100
  41
  42/* Hardware requirement on LCLA alignment */
  43#define LCLA_ALIGNMENT 0x40000
  44
  45/* Max number of links per event group */
  46#define D40_LCLA_LINK_PER_EVENT_GRP 128
  47#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  48
  49/* Attempts before giving up to trying to get pages that are aligned */
  50#define MAX_LCLA_ALLOC_ATTEMPTS 256
  51
  52/* Bit markings for allocation map */
  53#define D40_ALLOC_FREE          (1 << 31)
  54#define D40_ALLOC_PHY           (1 << 30)
  55#define D40_ALLOC_LOG_FREE      0
  56
  57/**
  58 * enum 40_command - The different commands and/or statuses.
  59 *
  60 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  61 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  62 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  63 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  64 */
  65enum d40_command {
  66        D40_DMA_STOP            = 0,
  67        D40_DMA_RUN             = 1,
  68        D40_DMA_SUSPEND_REQ     = 2,
  69        D40_DMA_SUSPENDED       = 3
  70};
  71
  72/*
  73 * enum d40_events - The different Event Enables for the event lines.
  74 *
  75 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  76 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  77 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  78 * @D40_ROUND_EVENTLINE: Status check for event line.
  79 */
  80
  81enum d40_events {
  82        D40_DEACTIVATE_EVENTLINE        = 0,
  83        D40_ACTIVATE_EVENTLINE          = 1,
  84        D40_SUSPEND_REQ_EVENTLINE       = 2,
  85        D40_ROUND_EVENTLINE             = 3
  86};
  87
  88/*
  89 * These are the registers that has to be saved and later restored
  90 * when the DMA hw is powered off.
  91 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  92 */
  93static u32 d40_backup_regs[] = {
  94        D40_DREG_LCPA,
  95        D40_DREG_LCLA,
  96        D40_DREG_PRMSE,
  97        D40_DREG_PRMSO,
  98        D40_DREG_PRMOE,
  99        D40_DREG_PRMOO,
 100};
 101
 102#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 103
 104/* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
 105static u32 d40_backup_regs_v3[] = {
 106        D40_DREG_PSEG1,
 107        D40_DREG_PSEG2,
 108        D40_DREG_PSEG3,
 109        D40_DREG_PSEG4,
 110        D40_DREG_PCEG1,
 111        D40_DREG_PCEG2,
 112        D40_DREG_PCEG3,
 113        D40_DREG_PCEG4,
 114        D40_DREG_RSEG1,
 115        D40_DREG_RSEG2,
 116        D40_DREG_RSEG3,
 117        D40_DREG_RSEG4,
 118        D40_DREG_RCEG1,
 119        D40_DREG_RCEG2,
 120        D40_DREG_RCEG3,
 121        D40_DREG_RCEG4,
 122};
 123
 124#define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
 125
 126static u32 d40_backup_regs_chan[] = {
 127        D40_CHAN_REG_SSCFG,
 128        D40_CHAN_REG_SSELT,
 129        D40_CHAN_REG_SSPTR,
 130        D40_CHAN_REG_SSLNK,
 131        D40_CHAN_REG_SDCFG,
 132        D40_CHAN_REG_SDELT,
 133        D40_CHAN_REG_SDPTR,
 134        D40_CHAN_REG_SDLNK,
 135};
 136
 137/**
 138 * struct d40_lli_pool - Structure for keeping LLIs in memory
 139 *
 140 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 141 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 142 * pre_alloc_lli is used.
 143 * @dma_addr: DMA address, if mapped
 144 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 145 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 146 * one buffer to one buffer.
 147 */
 148struct d40_lli_pool {
 149        void    *base;
 150        int      size;
 151        dma_addr_t      dma_addr;
 152        /* Space for dst and src, plus an extra for padding */
 153        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 154};
 155
 156/**
 157 * struct d40_desc - A descriptor is one DMA job.
 158 *
 159 * @lli_phy: LLI settings for physical channel. Both src and dst=
 160 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 161 * lli_len equals one.
 162 * @lli_log: Same as above but for logical channels.
 163 * @lli_pool: The pool with two entries pre-allocated.
 164 * @lli_len: Number of llis of current descriptor.
 165 * @lli_current: Number of transferred llis.
 166 * @lcla_alloc: Number of LCLA entries allocated.
 167 * @txd: DMA engine struct. Used for among other things for communication
 168 * during a transfer.
 169 * @node: List entry.
 170 * @is_in_client_list: true if the client owns this descriptor.
 171 * @cyclic: true if this is a cyclic job
 172 *
 173 * This descriptor is used for both logical and physical transfers.
 174 */
 175struct d40_desc {
 176        /* LLI physical */
 177        struct d40_phy_lli_bidir         lli_phy;
 178        /* LLI logical */
 179        struct d40_log_lli_bidir         lli_log;
 180
 181        struct d40_lli_pool              lli_pool;
 182        int                              lli_len;
 183        int                              lli_current;
 184        int                              lcla_alloc;
 185
 186        struct dma_async_tx_descriptor   txd;
 187        struct list_head                 node;
 188
 189        bool                             is_in_client_list;
 190        bool                             cyclic;
 191};
 192
 193/**
 194 * struct d40_lcla_pool - LCLA pool settings and data.
 195 *
 196 * @base: The virtual address of LCLA. 18 bit aligned.
 197 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 198 * This pointer is only there for clean-up on error.
 199 * @pages: The number of pages needed for all physical channels.
 200 * Only used later for clean-up on error
 201 * @lock: Lock to protect the content in this struct.
 202 * @alloc_map: big map over which LCLA entry is own by which job.
 203 */
 204struct d40_lcla_pool {
 205        void            *base;
 206        dma_addr_t      dma_addr;
 207        void            *base_unaligned;
 208        int              pages;
 209        spinlock_t       lock;
 210        struct d40_desc **alloc_map;
 211};
 212
 213/**
 214 * struct d40_phy_res - struct for handling eventlines mapped to physical
 215 * channels.
 216 *
 217 * @lock: A lock protection this entity.
 218 * @reserved: True if used by secure world or otherwise.
 219 * @num: The physical channel number of this entity.
 220 * @allocated_src: Bit mapped to show which src event line's are mapped to
 221 * this physical channel. Can also be free or physically allocated.
 222 * @allocated_dst: Same as for src but is dst.
 223 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 224 * event line number.
 225 */
 226struct d40_phy_res {
 227        spinlock_t lock;
 228        bool       reserved;
 229        int        num;
 230        u32        allocated_src;
 231        u32        allocated_dst;
 232};
 233
 234struct d40_base;
 235
 236/**
 237 * struct d40_chan - Struct that describes a channel.
 238 *
 239 * @lock: A spinlock to protect this struct.
 240 * @log_num: The logical number, if any of this channel.
 241 * @pending_tx: The number of pending transfers. Used between interrupt handler
 242 * and tasklet.
 243 * @busy: Set to true when transfer is ongoing on this channel.
 244 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 245 * point is NULL, then the channel is not allocated.
 246 * @chan: DMA engine handle.
 247 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 248 * transfer and call client callback.
 249 * @client: Cliented owned descriptor list.
 250 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 251 * @active: Active descriptor.
 252 * @queue: Queued jobs.
 253 * @prepare_queue: Prepared jobs.
 254 * @dma_cfg: The client configuration of this dma channel.
 255 * @configured: whether the dma_cfg configuration is valid
 256 * @base: Pointer to the device instance struct.
 257 * @src_def_cfg: Default cfg register setting for src.
 258 * @dst_def_cfg: Default cfg register setting for dst.
 259 * @log_def: Default logical channel settings.
 260 * @lcpa: Pointer to dst and src lcpa settings.
 261 * @runtime_addr: runtime configured address.
 262 * @runtime_direction: runtime configured direction.
 263 *
 264 * This struct can either "be" a logical or a physical channel.
 265 */
 266struct d40_chan {
 267        spinlock_t                       lock;
 268        int                              log_num;
 269        int                              pending_tx;
 270        bool                             busy;
 271        struct d40_phy_res              *phy_chan;
 272        struct dma_chan                  chan;
 273        struct tasklet_struct            tasklet;
 274        struct list_head                 client;
 275        struct list_head                 pending_queue;
 276        struct list_head                 active;
 277        struct list_head                 queue;
 278        struct list_head                 prepare_queue;
 279        struct stedma40_chan_cfg         dma_cfg;
 280        bool                             configured;
 281        struct d40_base                 *base;
 282        /* Default register configurations */
 283        u32                              src_def_cfg;
 284        u32                              dst_def_cfg;
 285        struct d40_def_lcsp              log_def;
 286        struct d40_log_lli_full         *lcpa;
 287        /* Runtime reconfiguration */
 288        dma_addr_t                      runtime_addr;
 289        enum dma_transfer_direction     runtime_direction;
 290};
 291
 292/**
 293 * struct d40_base - The big global struct, one for each probe'd instance.
 294 *
 295 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 296 * @execmd_lock: Lock for execute command usage since several channels share
 297 * the same physical register.
 298 * @dev: The device structure.
 299 * @virtbase: The virtual base address of the DMA's register.
 300 * @rev: silicon revision detected.
 301 * @clk: Pointer to the DMA clock structure.
 302 * @phy_start: Physical memory start of the DMA registers.
 303 * @phy_size: Size of the DMA register map.
 304 * @irq: The IRQ number.
 305 * @num_phy_chans: The number of physical channels. Read from HW. This
 306 * is the number of available channels for this driver, not counting "Secure
 307 * mode" allocated physical channels.
 308 * @num_log_chans: The number of logical channels. Calculated from
 309 * num_phy_chans.
 310 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 311 * @dma_slave: dma_device channels that can do only do slave transfers.
 312 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 313 * @phy_chans: Room for all possible physical channels in system.
 314 * @log_chans: Room for all possible logical channels in system.
 315 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 316 * to log_chans entries.
 317 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 318 * to phy_chans entries.
 319 * @plat_data: Pointer to provided platform_data which is the driver
 320 * configuration.
 321 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 322 * @phy_res: Vector containing all physical channels.
 323 * @lcla_pool: lcla pool settings and data.
 324 * @lcpa_base: The virtual mapped address of LCPA.
 325 * @phy_lcpa: The physical address of the LCPA.
 326 * @lcpa_size: The size of the LCPA area.
 327 * @desc_slab: cache for descriptors.
 328 * @reg_val_backup: Here the values of some hardware registers are stored
 329 * before the DMA is powered off. They are restored when the power is back on.
 330 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
 331 * later.
 332 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 333 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 334 * @initialized: true if the dma has been initialized
 335 */
 336struct d40_base {
 337        spinlock_t                       interrupt_lock;
 338        spinlock_t                       execmd_lock;
 339        struct device                    *dev;
 340        void __iomem                     *virtbase;
 341        u8                                rev:4;
 342        struct clk                       *clk;
 343        phys_addr_t                       phy_start;
 344        resource_size_t                   phy_size;
 345        int                               irq;
 346        int                               num_phy_chans;
 347        int                               num_log_chans;
 348        struct dma_device                 dma_both;
 349        struct dma_device                 dma_slave;
 350        struct dma_device                 dma_memcpy;
 351        struct d40_chan                  *phy_chans;
 352        struct d40_chan                  *log_chans;
 353        struct d40_chan                 **lookup_log_chans;
 354        struct d40_chan                 **lookup_phy_chans;
 355        struct stedma40_platform_data    *plat_data;
 356        struct regulator                 *lcpa_regulator;
 357        /* Physical half channels */
 358        struct d40_phy_res               *phy_res;
 359        struct d40_lcla_pool              lcla_pool;
 360        void                             *lcpa_base;
 361        dma_addr_t                        phy_lcpa;
 362        resource_size_t                   lcpa_size;
 363        struct kmem_cache                *desc_slab;
 364        u32                               reg_val_backup[BACKUP_REGS_SZ];
 365        u32                               reg_val_backup_v3[BACKUP_REGS_SZ_V3];
 366        u32                              *reg_val_backup_chan;
 367        u16                               gcc_pwr_off_mask;
 368        bool                              initialized;
 369};
 370
 371/**
 372 * struct d40_interrupt_lookup - lookup table for interrupt handler
 373 *
 374 * @src: Interrupt mask register.
 375 * @clr: Interrupt clear register.
 376 * @is_error: true if this is an error interrupt.
 377 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 378 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 379 */
 380struct d40_interrupt_lookup {
 381        u32 src;
 382        u32 clr;
 383        bool is_error;
 384        int offset;
 385};
 386
 387/**
 388 * struct d40_reg_val - simple lookup struct
 389 *
 390 * @reg: The register.
 391 * @val: The value that belongs to the register in reg.
 392 */
 393struct d40_reg_val {
 394        unsigned int reg;
 395        unsigned int val;
 396};
 397
 398static struct device *chan2dev(struct d40_chan *d40c)
 399{
 400        return &d40c->chan.dev->device;
 401}
 402
 403static bool chan_is_physical(struct d40_chan *chan)
 404{
 405        return chan->log_num == D40_PHY_CHAN;
 406}
 407
 408static bool chan_is_logical(struct d40_chan *chan)
 409{
 410        return !chan_is_physical(chan);
 411}
 412
 413static void __iomem *chan_base(struct d40_chan *chan)
 414{
 415        return chan->base->virtbase + D40_DREG_PCBASE +
 416               chan->phy_chan->num * D40_DREG_PCDELTA;
 417}
 418
 419#define d40_err(dev, format, arg...)            \
 420        dev_err(dev, "[%s] " format, __func__, ## arg)
 421
 422#define chan_err(d40c, format, arg...)          \
 423        d40_err(chan2dev(d40c), format, ## arg)
 424
 425static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 426                              int lli_len)
 427{
 428        bool is_log = chan_is_logical(d40c);
 429        u32 align;
 430        void *base;
 431
 432        if (is_log)
 433                align = sizeof(struct d40_log_lli);
 434        else
 435                align = sizeof(struct d40_phy_lli);
 436
 437        if (lli_len == 1) {
 438                base = d40d->lli_pool.pre_alloc_lli;
 439                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 440                d40d->lli_pool.base = NULL;
 441        } else {
 442                d40d->lli_pool.size = lli_len * 2 * align;
 443
 444                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 445                d40d->lli_pool.base = base;
 446
 447                if (d40d->lli_pool.base == NULL)
 448                        return -ENOMEM;
 449        }
 450
 451        if (is_log) {
 452                d40d->lli_log.src = PTR_ALIGN(base, align);
 453                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 454
 455                d40d->lli_pool.dma_addr = 0;
 456        } else {
 457                d40d->lli_phy.src = PTR_ALIGN(base, align);
 458                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 459
 460                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 461                                                         d40d->lli_phy.src,
 462                                                         d40d->lli_pool.size,
 463                                                         DMA_TO_DEVICE);
 464
 465                if (dma_mapping_error(d40c->base->dev,
 466                                      d40d->lli_pool.dma_addr)) {
 467                        kfree(d40d->lli_pool.base);
 468                        d40d->lli_pool.base = NULL;
 469                        d40d->lli_pool.dma_addr = 0;
 470                        return -ENOMEM;
 471                }
 472        }
 473
 474        return 0;
 475}
 476
 477static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 478{
 479        if (d40d->lli_pool.dma_addr)
 480                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 481                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 482
 483        kfree(d40d->lli_pool.base);
 484        d40d->lli_pool.base = NULL;
 485        d40d->lli_pool.size = 0;
 486        d40d->lli_log.src = NULL;
 487        d40d->lli_log.dst = NULL;
 488        d40d->lli_phy.src = NULL;
 489        d40d->lli_phy.dst = NULL;
 490}
 491
 492static int d40_lcla_alloc_one(struct d40_chan *d40c,
 493                              struct d40_desc *d40d)
 494{
 495        unsigned long flags;
 496        int i;
 497        int ret = -EINVAL;
 498        int p;
 499
 500        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 501
 502        p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
 503
 504        /*
 505         * Allocate both src and dst at the same time, therefore the half
 506         * start on 1 since 0 can't be used since zero is used as end marker.
 507         */
 508        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 509                if (!d40c->base->lcla_pool.alloc_map[p + i]) {
 510                        d40c->base->lcla_pool.alloc_map[p + i] = d40d;
 511                        d40d->lcla_alloc++;
 512                        ret = i;
 513                        break;
 514                }
 515        }
 516
 517        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 518
 519        return ret;
 520}
 521
 522static int d40_lcla_free_all(struct d40_chan *d40c,
 523                             struct d40_desc *d40d)
 524{
 525        unsigned long flags;
 526        int i;
 527        int ret = -EINVAL;
 528
 529        if (chan_is_physical(d40c))
 530                return 0;
 531
 532        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 533
 534        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 535                if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 536                                                    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
 537                        d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 538                                                        D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
 539                        d40d->lcla_alloc--;
 540                        if (d40d->lcla_alloc == 0) {
 541                                ret = 0;
 542                                break;
 543                        }
 544                }
 545        }
 546
 547        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 548
 549        return ret;
 550
 551}
 552
 553static void d40_desc_remove(struct d40_desc *d40d)
 554{
 555        list_del(&d40d->node);
 556}
 557
 558static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 559{
 560        struct d40_desc *desc = NULL;
 561
 562        if (!list_empty(&d40c->client)) {
 563                struct d40_desc *d;
 564                struct d40_desc *_d;
 565
 566                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 567                        if (async_tx_test_ack(&d->txd)) {
 568                                d40_desc_remove(d);
 569                                desc = d;
 570                                memset(desc, 0, sizeof(*desc));
 571                                break;
 572                        }
 573                }
 574        }
 575
 576        if (!desc)
 577                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 578
 579        if (desc)
 580                INIT_LIST_HEAD(&desc->node);
 581
 582        return desc;
 583}
 584
 585static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 586{
 587
 588        d40_pool_lli_free(d40c, d40d);
 589        d40_lcla_free_all(d40c, d40d);
 590        kmem_cache_free(d40c->base->desc_slab, d40d);
 591}
 592
 593static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 594{
 595        list_add_tail(&desc->node, &d40c->active);
 596}
 597
 598static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 599{
 600        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 601        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 602        void __iomem *base = chan_base(chan);
 603
 604        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 605        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 606        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 607        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 608
 609        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 610        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 611        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 612        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 613}
 614
 615static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 616{
 617        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 618        struct d40_log_lli_bidir *lli = &desc->lli_log;
 619        int lli_current = desc->lli_current;
 620        int lli_len = desc->lli_len;
 621        bool cyclic = desc->cyclic;
 622        int curr_lcla = -EINVAL;
 623        int first_lcla = 0;
 624        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 625        bool linkback;
 626
 627        /*
 628         * We may have partially running cyclic transfers, in case we did't get
 629         * enough LCLA entries.
 630         */
 631        linkback = cyclic && lli_current == 0;
 632
 633        /*
 634         * For linkback, we need one LCLA even with only one link, because we
 635         * can't link back to the one in LCPA space
 636         */
 637        if (linkback || (lli_len - lli_current > 1)) {
 638                curr_lcla = d40_lcla_alloc_one(chan, desc);
 639                first_lcla = curr_lcla;
 640        }
 641
 642        /*
 643         * For linkback, we normally load the LCPA in the loop since we need to
 644         * link it to the second LCLA and not the first.  However, if we
 645         * couldn't even get a first LCLA, then we have to run in LCPA and
 646         * reload manually.
 647         */
 648        if (!linkback || curr_lcla == -EINVAL) {
 649                unsigned int flags = 0;
 650
 651                if (curr_lcla == -EINVAL)
 652                        flags |= LLI_TERM_INT;
 653
 654                d40_log_lli_lcpa_write(chan->lcpa,
 655                                       &lli->dst[lli_current],
 656                                       &lli->src[lli_current],
 657                                       curr_lcla,
 658                                       flags);
 659                lli_current++;
 660        }
 661
 662        if (curr_lcla < 0)
 663                goto out;
 664
 665        for (; lli_current < lli_len; lli_current++) {
 666                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 667                                           8 * curr_lcla * 2;
 668                struct d40_log_lli *lcla = pool->base + lcla_offset;
 669                unsigned int flags = 0;
 670                int next_lcla;
 671
 672                if (lli_current + 1 < lli_len)
 673                        next_lcla = d40_lcla_alloc_one(chan, desc);
 674                else
 675                        next_lcla = linkback ? first_lcla : -EINVAL;
 676
 677                if (cyclic || next_lcla == -EINVAL)
 678                        flags |= LLI_TERM_INT;
 679
 680                if (linkback && curr_lcla == first_lcla) {
 681                        /* First link goes in both LCPA and LCLA */
 682                        d40_log_lli_lcpa_write(chan->lcpa,
 683                                               &lli->dst[lli_current],
 684                                               &lli->src[lli_current],
 685                                               next_lcla, flags);
 686                }
 687
 688                /*
 689                 * One unused LCLA in the cyclic case if the very first
 690                 * next_lcla fails...
 691                 */
 692                d40_log_lli_lcla_write(lcla,
 693                                       &lli->dst[lli_current],
 694                                       &lli->src[lli_current],
 695                                       next_lcla, flags);
 696
 697                /*
 698                 * Cache maintenance is not needed if lcla is
 699                 * mapped in esram
 700                 */
 701                if (!use_esram_lcla) {
 702                        dma_sync_single_range_for_device(chan->base->dev,
 703                                                pool->dma_addr, lcla_offset,
 704                                                2 * sizeof(struct d40_log_lli),
 705                                                DMA_TO_DEVICE);
 706                }
 707                curr_lcla = next_lcla;
 708
 709                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 710                        lli_current++;
 711                        break;
 712                }
 713        }
 714
 715out:
 716        desc->lli_current = lli_current;
 717}
 718
 719static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 720{
 721        if (chan_is_physical(d40c)) {
 722                d40_phy_lli_load(d40c, d40d);
 723                d40d->lli_current = d40d->lli_len;
 724        } else
 725                d40_log_lli_to_lcxa(d40c, d40d);
 726}
 727
 728static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 729{
 730        struct d40_desc *d;
 731
 732        if (list_empty(&d40c->active))
 733                return NULL;
 734
 735        d = list_first_entry(&d40c->active,
 736                             struct d40_desc,
 737                             node);
 738        return d;
 739}
 740
 741/* remove desc from current queue and add it to the pending_queue */
 742static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 743{
 744        d40_desc_remove(desc);
 745        desc->is_in_client_list = false;
 746        list_add_tail(&desc->node, &d40c->pending_queue);
 747}
 748
 749static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 750{
 751        struct d40_desc *d;
 752
 753        if (list_empty(&d40c->pending_queue))
 754                return NULL;
 755
 756        d = list_first_entry(&d40c->pending_queue,
 757                             struct d40_desc,
 758                             node);
 759        return d;
 760}
 761
 762static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 763{
 764        struct d40_desc *d;
 765
 766        if (list_empty(&d40c->queue))
 767                return NULL;
 768
 769        d = list_first_entry(&d40c->queue,
 770                             struct d40_desc,
 771                             node);
 772        return d;
 773}
 774
 775static int d40_psize_2_burst_size(bool is_log, int psize)
 776{
 777        if (is_log) {
 778                if (psize == STEDMA40_PSIZE_LOG_1)
 779                        return 1;
 780        } else {
 781                if (psize == STEDMA40_PSIZE_PHY_1)
 782                        return 1;
 783        }
 784
 785        return 2 << psize;
 786}
 787
 788/*
 789 * The dma only supports transmitting packages up to
 790 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 791 * dma elements required to send the entire sg list
 792 */
 793static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 794{
 795        int dmalen;
 796        u32 max_w = max(data_width1, data_width2);
 797        u32 min_w = min(data_width1, data_width2);
 798        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
 799
 800        if (seg_max > STEDMA40_MAX_SEG_SIZE)
 801                seg_max -= (1 << max_w);
 802
 803        if (!IS_ALIGNED(size, 1 << max_w))
 804                return -EINVAL;
 805
 806        if (size <= seg_max)
 807                dmalen = 1;
 808        else {
 809                dmalen = size / seg_max;
 810                if (dmalen * seg_max < size)
 811                        dmalen++;
 812        }
 813        return dmalen;
 814}
 815
 816static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
 817                           u32 data_width1, u32 data_width2)
 818{
 819        struct scatterlist *sg;
 820        int i;
 821        int len = 0;
 822        int ret;
 823
 824        for_each_sg(sgl, sg, sg_len, i) {
 825                ret = d40_size_2_dmalen(sg_dma_len(sg),
 826                                        data_width1, data_width2);
 827                if (ret < 0)
 828                        return ret;
 829                len += ret;
 830        }
 831        return len;
 832}
 833
 834
 835#ifdef CONFIG_PM
 836static void dma40_backup(void __iomem *baseaddr, u32 *backup,
 837                         u32 *regaddr, int num, bool save)
 838{
 839        int i;
 840
 841        for (i = 0; i < num; i++) {
 842                void __iomem *addr = baseaddr + regaddr[i];
 843
 844                if (save)
 845                        backup[i] = readl_relaxed(addr);
 846                else
 847                        writel_relaxed(backup[i], addr);
 848        }
 849}
 850
 851static void d40_save_restore_registers(struct d40_base *base, bool save)
 852{
 853        int i;
 854
 855        /* Save/Restore channel specific registers */
 856        for (i = 0; i < base->num_phy_chans; i++) {
 857                void __iomem *addr;
 858                int idx;
 859
 860                if (base->phy_res[i].reserved)
 861                        continue;
 862
 863                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
 864                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
 865
 866                dma40_backup(addr, &base->reg_val_backup_chan[idx],
 867                             d40_backup_regs_chan,
 868                             ARRAY_SIZE(d40_backup_regs_chan),
 869                             save);
 870        }
 871
 872        /* Save/Restore global registers */
 873        dma40_backup(base->virtbase, base->reg_val_backup,
 874                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
 875                     save);
 876
 877        /* Save/Restore registers only existing on dma40 v3 and later */
 878        if (base->rev >= 3)
 879                dma40_backup(base->virtbase, base->reg_val_backup_v3,
 880                             d40_backup_regs_v3,
 881                             ARRAY_SIZE(d40_backup_regs_v3),
 882                             save);
 883}
 884#else
 885static void d40_save_restore_registers(struct d40_base *base, bool save)
 886{
 887}
 888#endif
 889
 890static int __d40_execute_command_phy(struct d40_chan *d40c,
 891                                     enum d40_command command)
 892{
 893        u32 status;
 894        int i;
 895        void __iomem *active_reg;
 896        int ret = 0;
 897        unsigned long flags;
 898        u32 wmask;
 899
 900        if (command == D40_DMA_STOP) {
 901                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
 902                if (ret)
 903                        return ret;
 904        }
 905
 906        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
 907
 908        if (d40c->phy_chan->num % 2 == 0)
 909                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
 910        else
 911                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
 912
 913        if (command == D40_DMA_SUSPEND_REQ) {
 914                status = (readl(active_reg) &
 915                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 916                        D40_CHAN_POS(d40c->phy_chan->num);
 917
 918                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
 919                        goto done;
 920        }
 921
 922        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
 923        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
 924               active_reg);
 925
 926        if (command == D40_DMA_SUSPEND_REQ) {
 927
 928                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
 929                        status = (readl(active_reg) &
 930                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 931                                D40_CHAN_POS(d40c->phy_chan->num);
 932
 933                        cpu_relax();
 934                        /*
 935                         * Reduce the number of bus accesses while
 936                         * waiting for the DMA to suspend.
 937                         */
 938                        udelay(3);
 939
 940                        if (status == D40_DMA_STOP ||
 941                            status == D40_DMA_SUSPENDED)
 942                                break;
 943                }
 944
 945                if (i == D40_SUSPEND_MAX_IT) {
 946                        chan_err(d40c,
 947                                "unable to suspend the chl %d (log: %d) status %x\n",
 948                                d40c->phy_chan->num, d40c->log_num,
 949                                status);
 950                        dump_stack();
 951                        ret = -EBUSY;
 952                }
 953
 954        }
 955done:
 956        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
 957        return ret;
 958}
 959
 960static void d40_term_all(struct d40_chan *d40c)
 961{
 962        struct d40_desc *d40d;
 963        struct d40_desc *_d;
 964
 965        /* Release active descriptors */
 966        while ((d40d = d40_first_active_get(d40c))) {
 967                d40_desc_remove(d40d);
 968                d40_desc_free(d40c, d40d);
 969        }
 970
 971        /* Release queued descriptors waiting for transfer */
 972        while ((d40d = d40_first_queued(d40c))) {
 973                d40_desc_remove(d40d);
 974                d40_desc_free(d40c, d40d);
 975        }
 976
 977        /* Release pending descriptors */
 978        while ((d40d = d40_first_pending(d40c))) {
 979                d40_desc_remove(d40d);
 980                d40_desc_free(d40c, d40d);
 981        }
 982
 983        /* Release client owned descriptors */
 984        if (!list_empty(&d40c->client))
 985                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
 986                        d40_desc_remove(d40d);
 987                        d40_desc_free(d40c, d40d);
 988                }
 989
 990        /* Release descriptors in prepare queue */
 991        if (!list_empty(&d40c->prepare_queue))
 992                list_for_each_entry_safe(d40d, _d,
 993                                         &d40c->prepare_queue, node) {
 994                        d40_desc_remove(d40d);
 995                        d40_desc_free(d40c, d40d);
 996                }
 997
 998        d40c->pending_tx = 0;
 999}
1000
1001static void __d40_config_set_event(struct d40_chan *d40c,
1002                                   enum d40_events event_type, u32 event,
1003                                   int reg)
1004{
1005        void __iomem *addr = chan_base(d40c) + reg;
1006        int tries;
1007        u32 status;
1008
1009        switch (event_type) {
1010
1011        case D40_DEACTIVATE_EVENTLINE:
1012
1013                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1014                       | ~D40_EVENTLINE_MASK(event), addr);
1015                break;
1016
1017        case D40_SUSPEND_REQ_EVENTLINE:
1018                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1019                          D40_EVENTLINE_POS(event);
1020
1021                if (status == D40_DEACTIVATE_EVENTLINE ||
1022                    status == D40_SUSPEND_REQ_EVENTLINE)
1023                        break;
1024
1025                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1026                       | ~D40_EVENTLINE_MASK(event), addr);
1027
1028                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1029
1030                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1031                                  D40_EVENTLINE_POS(event);
1032
1033                        cpu_relax();
1034                        /*
1035                         * Reduce the number of bus accesses while
1036                         * waiting for the DMA to suspend.
1037                         */
1038                        udelay(3);
1039
1040                        if (status == D40_DEACTIVATE_EVENTLINE)
1041                                break;
1042                }
1043
1044                if (tries == D40_SUSPEND_MAX_IT) {
1045                        chan_err(d40c,
1046                                "unable to stop the event_line chl %d (log: %d)"
1047                                "status %x\n", d40c->phy_chan->num,
1048                                 d40c->log_num, status);
1049                }
1050                break;
1051
1052        case D40_ACTIVATE_EVENTLINE:
1053        /*
1054         * The hardware sometimes doesn't register the enable when src and dst
1055         * event lines are active on the same logical channel.  Retry to ensure
1056         * it does.  Usually only one retry is sufficient.
1057         */
1058                tries = 100;
1059                while (--tries) {
1060                        writel((D40_ACTIVATE_EVENTLINE <<
1061                                D40_EVENTLINE_POS(event)) |
1062                                ~D40_EVENTLINE_MASK(event), addr);
1063
1064                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1065                                break;
1066                }
1067
1068                if (tries != 99)
1069                        dev_dbg(chan2dev(d40c),
1070                                "[%s] workaround enable S%cLNK (%d tries)\n",
1071                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1072                                100 - tries);
1073
1074                WARN_ON(!tries);
1075                break;
1076
1077        case D40_ROUND_EVENTLINE:
1078                BUG();
1079                break;
1080
1081        }
1082}
1083
1084static void d40_config_set_event(struct d40_chan *d40c,
1085                                 enum d40_events event_type)
1086{
1087        /* Enable event line connected to device (or memcpy) */
1088        if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1089            (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1090                u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1091
1092                __d40_config_set_event(d40c, event_type, event,
1093                                       D40_CHAN_REG_SSLNK);
1094        }
1095
1096        if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1097                u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1098
1099                __d40_config_set_event(d40c, event_type, event,
1100                                       D40_CHAN_REG_SDLNK);
1101        }
1102}
1103
1104static u32 d40_chan_has_events(struct d40_chan *d40c)
1105{
1106        void __iomem *chanbase = chan_base(d40c);
1107        u32 val;
1108
1109        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1110        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1111
1112        return val;
1113}
1114
1115static int
1116__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1117{
1118        unsigned long flags;
1119        int ret = 0;
1120        u32 active_status;
1121        void __iomem *active_reg;
1122
1123        if (d40c->phy_chan->num % 2 == 0)
1124                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1125        else
1126                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1127
1128
1129        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1130
1131        switch (command) {
1132        case D40_DMA_STOP:
1133        case D40_DMA_SUSPEND_REQ:
1134
1135                active_status = (readl(active_reg) &
1136                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1137                                 D40_CHAN_POS(d40c->phy_chan->num);
1138
1139                if (active_status == D40_DMA_RUN)
1140                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1141                else
1142                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1143
1144                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1145                        ret = __d40_execute_command_phy(d40c, command);
1146
1147                break;
1148
1149        case D40_DMA_RUN:
1150
1151                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1152                ret = __d40_execute_command_phy(d40c, command);
1153                break;
1154
1155        case D40_DMA_SUSPENDED:
1156                BUG();
1157                break;
1158        }
1159
1160        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1161        return ret;
1162}
1163
1164static int d40_channel_execute_command(struct d40_chan *d40c,
1165                                       enum d40_command command)
1166{
1167        if (chan_is_logical(d40c))
1168                return __d40_execute_command_log(d40c, command);
1169        else
1170                return __d40_execute_command_phy(d40c, command);
1171}
1172
1173static u32 d40_get_prmo(struct d40_chan *d40c)
1174{
1175        static const unsigned int phy_map[] = {
1176                [STEDMA40_PCHAN_BASIC_MODE]
1177                        = D40_DREG_PRMO_PCHAN_BASIC,
1178                [STEDMA40_PCHAN_MODULO_MODE]
1179                        = D40_DREG_PRMO_PCHAN_MODULO,
1180                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1181                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1182        };
1183        static const unsigned int log_map[] = {
1184                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1185                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1186                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1187                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1188                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1189                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1190        };
1191
1192        if (chan_is_physical(d40c))
1193                return phy_map[d40c->dma_cfg.mode_opt];
1194        else
1195                return log_map[d40c->dma_cfg.mode_opt];
1196}
1197
1198static void d40_config_write(struct d40_chan *d40c)
1199{
1200        u32 addr_base;
1201        u32 var;
1202
1203        /* Odd addresses are even addresses + 4 */
1204        addr_base = (d40c->phy_chan->num % 2) * 4;
1205        /* Setup channel mode to logical or physical */
1206        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1207                D40_CHAN_POS(d40c->phy_chan->num);
1208        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1209
1210        /* Setup operational mode option register */
1211        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1212
1213        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1214
1215        if (chan_is_logical(d40c)) {
1216                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1217                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1218                void __iomem *chanbase = chan_base(d40c);
1219
1220                /* Set default config for CFG reg */
1221                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1222                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1223
1224                /* Set LIDX for lcla */
1225                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1226                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1227
1228                /* Clear LNK which will be used by d40_chan_has_events() */
1229                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1230                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1231        }
1232}
1233
1234static u32 d40_residue(struct d40_chan *d40c)
1235{
1236        u32 num_elt;
1237
1238        if (chan_is_logical(d40c))
1239                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1240                        >> D40_MEM_LCSP2_ECNT_POS;
1241        else {
1242                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1243                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1244                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1245        }
1246
1247        return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1248}
1249
1250static bool d40_tx_is_linked(struct d40_chan *d40c)
1251{
1252        bool is_link;
1253
1254        if (chan_is_logical(d40c))
1255                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1256        else
1257                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1258                          & D40_SREG_LNK_PHYS_LNK_MASK;
1259
1260        return is_link;
1261}
1262
1263static int d40_pause(struct d40_chan *d40c)
1264{
1265        int res = 0;
1266        unsigned long flags;
1267
1268        if (!d40c->busy)
1269                return 0;
1270
1271        pm_runtime_get_sync(d40c->base->dev);
1272        spin_lock_irqsave(&d40c->lock, flags);
1273
1274        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1275
1276        pm_runtime_mark_last_busy(d40c->base->dev);
1277        pm_runtime_put_autosuspend(d40c->base->dev);
1278        spin_unlock_irqrestore(&d40c->lock, flags);
1279        return res;
1280}
1281
1282static int d40_resume(struct d40_chan *d40c)
1283{
1284        int res = 0;
1285        unsigned long flags;
1286
1287        if (!d40c->busy)
1288                return 0;
1289
1290        spin_lock_irqsave(&d40c->lock, flags);
1291        pm_runtime_get_sync(d40c->base->dev);
1292
1293        /* If bytes left to transfer or linked tx resume job */
1294        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1295                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1296
1297        pm_runtime_mark_last_busy(d40c->base->dev);
1298        pm_runtime_put_autosuspend(d40c->base->dev);
1299        spin_unlock_irqrestore(&d40c->lock, flags);
1300        return res;
1301}
1302
1303static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1304{
1305        struct d40_chan *d40c = container_of(tx->chan,
1306                                             struct d40_chan,
1307                                             chan);
1308        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1309        unsigned long flags;
1310        dma_cookie_t cookie;
1311
1312        spin_lock_irqsave(&d40c->lock, flags);
1313        cookie = dma_cookie_assign(tx);
1314        d40_desc_queue(d40c, d40d);
1315        spin_unlock_irqrestore(&d40c->lock, flags);
1316
1317        return cookie;
1318}
1319
1320static int d40_start(struct d40_chan *d40c)
1321{
1322        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1323}
1324
1325static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1326{
1327        struct d40_desc *d40d;
1328        int err;
1329
1330        /* Start queued jobs, if any */
1331        d40d = d40_first_queued(d40c);
1332
1333        if (d40d != NULL) {
1334                if (!d40c->busy) {
1335                        d40c->busy = true;
1336                        pm_runtime_get_sync(d40c->base->dev);
1337                }
1338
1339                /* Remove from queue */
1340                d40_desc_remove(d40d);
1341
1342                /* Add to active queue */
1343                d40_desc_submit(d40c, d40d);
1344
1345                /* Initiate DMA job */
1346                d40_desc_load(d40c, d40d);
1347
1348                /* Start dma job */
1349                err = d40_start(d40c);
1350
1351                if (err)
1352                        return NULL;
1353        }
1354
1355        return d40d;
1356}
1357
1358/* called from interrupt context */
1359static void dma_tc_handle(struct d40_chan *d40c)
1360{
1361        struct d40_desc *d40d;
1362
1363        /* Get first active entry from list */
1364        d40d = d40_first_active_get(d40c);
1365
1366        if (d40d == NULL)
1367                return;
1368
1369        if (d40d->cyclic) {
1370                /*
1371                 * If this was a paritially loaded list, we need to reloaded
1372                 * it, and only when the list is completed.  We need to check
1373                 * for done because the interrupt will hit for every link, and
1374                 * not just the last one.
1375                 */
1376                if (d40d->lli_current < d40d->lli_len
1377                    && !d40_tx_is_linked(d40c)
1378                    && !d40_residue(d40c)) {
1379                        d40_lcla_free_all(d40c, d40d);
1380                        d40_desc_load(d40c, d40d);
1381                        (void) d40_start(d40c);
1382
1383                        if (d40d->lli_current == d40d->lli_len)
1384                                d40d->lli_current = 0;
1385                }
1386        } else {
1387                d40_lcla_free_all(d40c, d40d);
1388
1389                if (d40d->lli_current < d40d->lli_len) {
1390                        d40_desc_load(d40c, d40d);
1391                        /* Start dma job */
1392                        (void) d40_start(d40c);
1393                        return;
1394                }
1395
1396                if (d40_queue_start(d40c) == NULL)
1397                        d40c->busy = false;
1398                pm_runtime_mark_last_busy(d40c->base->dev);
1399                pm_runtime_put_autosuspend(d40c->base->dev);
1400        }
1401
1402        d40c->pending_tx++;
1403        tasklet_schedule(&d40c->tasklet);
1404
1405}
1406
1407static void dma_tasklet(unsigned long data)
1408{
1409        struct d40_chan *d40c = (struct d40_chan *) data;
1410        struct d40_desc *d40d;
1411        unsigned long flags;
1412        dma_async_tx_callback callback;
1413        void *callback_param;
1414
1415        spin_lock_irqsave(&d40c->lock, flags);
1416
1417        /* Get first active entry from list */
1418        d40d = d40_first_active_get(d40c);
1419        if (d40d == NULL)
1420                goto err;
1421
1422        if (!d40d->cyclic)
1423                dma_cookie_complete(&d40d->txd);
1424
1425        /*
1426         * If terminating a channel pending_tx is set to zero.
1427         * This prevents any finished active jobs to return to the client.
1428         */
1429        if (d40c->pending_tx == 0) {
1430                spin_unlock_irqrestore(&d40c->lock, flags);
1431                return;
1432        }
1433
1434        /* Callback to client */
1435        callback = d40d->txd.callback;
1436        callback_param = d40d->txd.callback_param;
1437
1438        if (!d40d->cyclic) {
1439                if (async_tx_test_ack(&d40d->txd)) {
1440                        d40_desc_remove(d40d);
1441                        d40_desc_free(d40c, d40d);
1442                } else {
1443                        if (!d40d->is_in_client_list) {
1444                                d40_desc_remove(d40d);
1445                                d40_lcla_free_all(d40c, d40d);
1446                                list_add_tail(&d40d->node, &d40c->client);
1447                                d40d->is_in_client_list = true;
1448                        }
1449                }
1450        }
1451
1452        d40c->pending_tx--;
1453
1454        if (d40c->pending_tx)
1455                tasklet_schedule(&d40c->tasklet);
1456
1457        spin_unlock_irqrestore(&d40c->lock, flags);
1458
1459        if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1460                callback(callback_param);
1461
1462        return;
1463
1464err:
1465        /* Rescue manouver if receiving double interrupts */
1466        if (d40c->pending_tx > 0)
1467                d40c->pending_tx--;
1468        spin_unlock_irqrestore(&d40c->lock, flags);
1469}
1470
1471static irqreturn_t d40_handle_interrupt(int irq, void *data)
1472{
1473        static const struct d40_interrupt_lookup il[] = {
1474                {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1475                {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1476                {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1477                {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1478                {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1479                {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1480                {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1481                {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1482                {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1483                {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1484        };
1485
1486        int i;
1487        u32 regs[ARRAY_SIZE(il)];
1488        u32 idx;
1489        u32 row;
1490        long chan = -1;
1491        struct d40_chan *d40c;
1492        unsigned long flags;
1493        struct d40_base *base = data;
1494
1495        spin_lock_irqsave(&base->interrupt_lock, flags);
1496
1497        /* Read interrupt status of both logical and physical channels */
1498        for (i = 0; i < ARRAY_SIZE(il); i++)
1499                regs[i] = readl(base->virtbase + il[i].src);
1500
1501        for (;;) {
1502
1503                chan = find_next_bit((unsigned long *)regs,
1504                                     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1505
1506                /* No more set bits found? */
1507                if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1508                        break;
1509
1510                row = chan / BITS_PER_LONG;
1511                idx = chan & (BITS_PER_LONG - 1);
1512
1513                /* ACK interrupt */
1514                writel(1 << idx, base->virtbase + il[row].clr);
1515
1516                if (il[row].offset == D40_PHY_CHAN)
1517                        d40c = base->lookup_phy_chans[idx];
1518                else
1519                        d40c = base->lookup_log_chans[il[row].offset + idx];
1520                spin_lock(&d40c->lock);
1521
1522                if (!il[row].is_error)
1523                        dma_tc_handle(d40c);
1524                else
1525                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1526                                chan, il[row].offset, idx);
1527
1528                spin_unlock(&d40c->lock);
1529        }
1530
1531        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1532
1533        return IRQ_HANDLED;
1534}
1535
1536static int d40_validate_conf(struct d40_chan *d40c,
1537                             struct stedma40_chan_cfg *conf)
1538{
1539        int res = 0;
1540        u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1541        u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1542        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1543
1544        if (!conf->dir) {
1545                chan_err(d40c, "Invalid direction.\n");
1546                res = -EINVAL;
1547        }
1548
1549        if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1550            d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1551            d40c->runtime_addr == 0) {
1552
1553                chan_err(d40c, "Invalid TX channel address (%d)\n",
1554                         conf->dst_dev_type);
1555                res = -EINVAL;
1556        }
1557
1558        if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1559            d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1560            d40c->runtime_addr == 0) {
1561                chan_err(d40c, "Invalid RX channel address (%d)\n",
1562                        conf->src_dev_type);
1563                res = -EINVAL;
1564        }
1565
1566        if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1567            dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1568                chan_err(d40c, "Invalid dst\n");
1569                res = -EINVAL;
1570        }
1571
1572        if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1573            src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1574                chan_err(d40c, "Invalid src\n");
1575                res = -EINVAL;
1576        }
1577
1578        if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1579            dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1580                chan_err(d40c, "No event line\n");
1581                res = -EINVAL;
1582        }
1583
1584        if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1585            (src_event_group != dst_event_group)) {
1586                chan_err(d40c, "Invalid event group\n");
1587                res = -EINVAL;
1588        }
1589
1590        if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1591                /*
1592                 * DMAC HW supports it. Will be added to this driver,
1593                 * in case any dma client requires it.
1594                 */
1595                chan_err(d40c, "periph to periph not supported\n");
1596                res = -EINVAL;
1597        }
1598
1599        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1600            (1 << conf->src_info.data_width) !=
1601            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1602            (1 << conf->dst_info.data_width)) {
1603                /*
1604                 * The DMAC hardware only supports
1605                 * src (burst x width) == dst (burst x width)
1606                 */
1607
1608                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1609                res = -EINVAL;
1610        }
1611
1612        return res;
1613}
1614
1615static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1616                               bool is_src, int log_event_line, bool is_log,
1617                               bool *first_user)
1618{
1619        unsigned long flags;
1620        spin_lock_irqsave(&phy->lock, flags);
1621
1622        *first_user = ((phy->allocated_src | phy->allocated_dst)
1623                        == D40_ALLOC_FREE);
1624
1625        if (!is_log) {
1626                /* Physical interrupts are masked per physical full channel */
1627                if (phy->allocated_src == D40_ALLOC_FREE &&
1628                    phy->allocated_dst == D40_ALLOC_FREE) {
1629                        phy->allocated_dst = D40_ALLOC_PHY;
1630                        phy->allocated_src = D40_ALLOC_PHY;
1631                        goto found;
1632                } else
1633                        goto not_found;
1634        }
1635
1636        /* Logical channel */
1637        if (is_src) {
1638                if (phy->allocated_src == D40_ALLOC_PHY)
1639                        goto not_found;
1640
1641                if (phy->allocated_src == D40_ALLOC_FREE)
1642                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1643
1644                if (!(phy->allocated_src & (1 << log_event_line))) {
1645                        phy->allocated_src |= 1 << log_event_line;
1646                        goto found;
1647                } else
1648                        goto not_found;
1649        } else {
1650                if (phy->allocated_dst == D40_ALLOC_PHY)
1651                        goto not_found;
1652
1653                if (phy->allocated_dst == D40_ALLOC_FREE)
1654                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1655
1656                if (!(phy->allocated_dst & (1 << log_event_line))) {
1657                        phy->allocated_dst |= 1 << log_event_line;
1658                        goto found;
1659                } else
1660                        goto not_found;
1661        }
1662
1663not_found:
1664        spin_unlock_irqrestore(&phy->lock, flags);
1665        return false;
1666found:
1667        spin_unlock_irqrestore(&phy->lock, flags);
1668        return true;
1669}
1670
1671static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1672                               int log_event_line)
1673{
1674        unsigned long flags;
1675        bool is_free = false;
1676
1677        spin_lock_irqsave(&phy->lock, flags);
1678        if (!log_event_line) {
1679                phy->allocated_dst = D40_ALLOC_FREE;
1680                phy->allocated_src = D40_ALLOC_FREE;
1681                is_free = true;
1682                goto out;
1683        }
1684
1685        /* Logical channel */
1686        if (is_src) {
1687                phy->allocated_src &= ~(1 << log_event_line);
1688                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1689                        phy->allocated_src = D40_ALLOC_FREE;
1690        } else {
1691                phy->allocated_dst &= ~(1 << log_event_line);
1692                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1693                        phy->allocated_dst = D40_ALLOC_FREE;
1694        }
1695
1696        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1697                   D40_ALLOC_FREE);
1698
1699out:
1700        spin_unlock_irqrestore(&phy->lock, flags);
1701
1702        return is_free;
1703}
1704
1705static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1706{
1707        int dev_type;
1708        int event_group;
1709        int event_line;
1710        struct d40_phy_res *phys;
1711        int i;
1712        int j;
1713        int log_num;
1714        bool is_src;
1715        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1716
1717        phys = d40c->base->phy_res;
1718
1719        if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1720                dev_type = d40c->dma_cfg.src_dev_type;
1721                log_num = 2 * dev_type;
1722                is_src = true;
1723        } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1724                   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1725                /* dst event lines are used for logical memcpy */
1726                dev_type = d40c->dma_cfg.dst_dev_type;
1727                log_num = 2 * dev_type + 1;
1728                is_src = false;
1729        } else
1730                return -EINVAL;
1731
1732        event_group = D40_TYPE_TO_GROUP(dev_type);
1733        event_line = D40_TYPE_TO_EVENT(dev_type);
1734
1735        if (!is_log) {
1736                if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1737                        /* Find physical half channel */
1738                        for (i = 0; i < d40c->base->num_phy_chans; i++) {
1739
1740                                if (d40_alloc_mask_set(&phys[i], is_src,
1741                                                       0, is_log,
1742                                                       first_phy_user))
1743                                        goto found_phy;
1744                        }
1745                } else
1746                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1747                                int phy_num = j  + event_group * 2;
1748                                for (i = phy_num; i < phy_num + 2; i++) {
1749                                        if (d40_alloc_mask_set(&phys[i],
1750                                                               is_src,
1751                                                               0,
1752                                                               is_log,
1753                                                               first_phy_user))
1754                                                goto found_phy;
1755                                }
1756                        }
1757                return -EINVAL;
1758found_phy:
1759                d40c->phy_chan = &phys[i];
1760                d40c->log_num = D40_PHY_CHAN;
1761                goto out;
1762        }
1763        if (dev_type == -1)
1764                return -EINVAL;
1765
1766        /* Find logical channel */
1767        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1768                int phy_num = j + event_group * 2;
1769
1770                if (d40c->dma_cfg.use_fixed_channel) {
1771                        i = d40c->dma_cfg.phy_channel;
1772
1773                        if ((i != phy_num) && (i != phy_num + 1)) {
1774                                dev_err(chan2dev(d40c),
1775                                        "invalid fixed phy channel %d\n", i);
1776                                return -EINVAL;
1777                        }
1778
1779                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1780                                               is_log, first_phy_user))
1781                                goto found_log;
1782
1783                        dev_err(chan2dev(d40c),
1784                                "could not allocate fixed phy channel %d\n", i);
1785                        return -EINVAL;
1786                }
1787
1788                /*
1789                 * Spread logical channels across all available physical rather
1790                 * than pack every logical channel at the first available phy
1791                 * channels.
1792                 */
1793                if (is_src) {
1794                        for (i = phy_num; i < phy_num + 2; i++) {
1795                                if (d40_alloc_mask_set(&phys[i], is_src,
1796                                                       event_line, is_log,
1797                                                       first_phy_user))
1798                                        goto found_log;
1799                        }
1800                } else {
1801                        for (i = phy_num + 1; i >= phy_num; i--) {
1802                                if (d40_alloc_mask_set(&phys[i], is_src,
1803                                                       event_line, is_log,
1804                                                       first_phy_user))
1805                                        goto found_log;
1806                        }
1807                }
1808        }
1809        return -EINVAL;
1810
1811found_log:
1812        d40c->phy_chan = &phys[i];
1813        d40c->log_num = log_num;
1814out:
1815
1816        if (is_log)
1817                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1818        else
1819                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1820
1821        return 0;
1822
1823}
1824
1825static int d40_config_memcpy(struct d40_chan *d40c)
1826{
1827        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1828
1829        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1830                d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1831                d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1832                d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1833                        memcpy[d40c->chan.chan_id];
1834
1835        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1836                   dma_has_cap(DMA_SLAVE, cap)) {
1837                d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1838        } else {
1839                chan_err(d40c, "No memcpy\n");
1840                return -EINVAL;
1841        }
1842
1843        return 0;
1844}
1845
1846static int d40_free_dma(struct d40_chan *d40c)
1847{
1848
1849        int res = 0;
1850        u32 event;
1851        struct d40_phy_res *phy = d40c->phy_chan;
1852        bool is_src;
1853
1854        /* Terminate all queued and active transfers */
1855        d40_term_all(d40c);
1856
1857        if (phy == NULL) {
1858                chan_err(d40c, "phy == null\n");
1859                return -EINVAL;
1860        }
1861
1862        if (phy->allocated_src == D40_ALLOC_FREE &&
1863            phy->allocated_dst == D40_ALLOC_FREE) {
1864                chan_err(d40c, "channel already free\n");
1865                return -EINVAL;
1866        }
1867
1868        if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1869            d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1870                event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1871                is_src = false;
1872        } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1873                event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1874                is_src = true;
1875        } else {
1876                chan_err(d40c, "Unknown direction\n");
1877                return -EINVAL;
1878        }
1879
1880        pm_runtime_get_sync(d40c->base->dev);
1881        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1882        if (res) {
1883                chan_err(d40c, "stop failed\n");
1884                goto out;
1885        }
1886
1887        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
1888
1889        if (chan_is_logical(d40c))
1890                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1891        else
1892                d40c->base->lookup_phy_chans[phy->num] = NULL;
1893
1894        if (d40c->busy) {
1895                pm_runtime_mark_last_busy(d40c->base->dev);
1896                pm_runtime_put_autosuspend(d40c->base->dev);
1897        }
1898
1899        d40c->busy = false;
1900        d40c->phy_chan = NULL;
1901        d40c->configured = false;
1902out:
1903
1904        pm_runtime_mark_last_busy(d40c->base->dev);
1905        pm_runtime_put_autosuspend(d40c->base->dev);
1906        return res;
1907}
1908
1909static bool d40_is_paused(struct d40_chan *d40c)
1910{
1911        void __iomem *chanbase = chan_base(d40c);
1912        bool is_paused = false;
1913        unsigned long flags;
1914        void __iomem *active_reg;
1915        u32 status;
1916        u32 event;
1917
1918        spin_lock_irqsave(&d40c->lock, flags);
1919
1920        if (chan_is_physical(d40c)) {
1921                if (d40c->phy_chan->num % 2 == 0)
1922                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1923                else
1924                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1925
1926                status = (readl(active_reg) &
1927                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1928                        D40_CHAN_POS(d40c->phy_chan->num);
1929                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1930                        is_paused = true;
1931
1932                goto _exit;
1933        }
1934
1935        if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1936            d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1937                event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1938                status = readl(chanbase + D40_CHAN_REG_SDLNK);
1939        } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1940                event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1941                status = readl(chanbase + D40_CHAN_REG_SSLNK);
1942        } else {
1943                chan_err(d40c, "Unknown direction\n");
1944                goto _exit;
1945        }
1946
1947        status = (status & D40_EVENTLINE_MASK(event)) >>
1948                D40_EVENTLINE_POS(event);
1949
1950        if (status != D40_DMA_RUN)
1951                is_paused = true;
1952_exit:
1953        spin_unlock_irqrestore(&d40c->lock, flags);
1954        return is_paused;
1955
1956}
1957
1958
1959static u32 stedma40_residue(struct dma_chan *chan)
1960{
1961        struct d40_chan *d40c =
1962                container_of(chan, struct d40_chan, chan);
1963        u32 bytes_left;
1964        unsigned long flags;
1965
1966        spin_lock_irqsave(&d40c->lock, flags);
1967        bytes_left = d40_residue(d40c);
1968        spin_unlock_irqrestore(&d40c->lock, flags);
1969
1970        return bytes_left;
1971}
1972
1973static int
1974d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1975                struct scatterlist *sg_src, struct scatterlist *sg_dst,
1976                unsigned int sg_len, dma_addr_t src_dev_addr,
1977                dma_addr_t dst_dev_addr)
1978{
1979        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1980        struct stedma40_half_channel_info *src_info = &cfg->src_info;
1981        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1982        int ret;
1983
1984        ret = d40_log_sg_to_lli(sg_src, sg_len,
1985                                src_dev_addr,
1986                                desc->lli_log.src,
1987                                chan->log_def.lcsp1,
1988                                src_info->data_width,
1989                                dst_info->data_width);
1990
1991        ret = d40_log_sg_to_lli(sg_dst, sg_len,
1992                                dst_dev_addr,
1993                                desc->lli_log.dst,
1994                                chan->log_def.lcsp3,
1995                                dst_info->data_width,
1996                                src_info->data_width);
1997
1998        return ret < 0 ? ret : 0;
1999}
2000
2001static int
2002d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2003                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2004                unsigned int sg_len, dma_addr_t src_dev_addr,
2005                dma_addr_t dst_dev_addr)
2006{
2007        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2008        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2009        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2010        unsigned long flags = 0;
2011        int ret;
2012
2013        if (desc->cyclic)
2014                flags |= LLI_CYCLIC | LLI_TERM_INT;
2015
2016        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2017                                desc->lli_phy.src,
2018                                virt_to_phys(desc->lli_phy.src),
2019                                chan->src_def_cfg,
2020                                src_info, dst_info, flags);
2021
2022        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2023                                desc->lli_phy.dst,
2024                                virt_to_phys(desc->lli_phy.dst),
2025                                chan->dst_def_cfg,
2026                                dst_info, src_info, flags);
2027
2028        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2029                                   desc->lli_pool.size, DMA_TO_DEVICE);
2030
2031        return ret < 0 ? ret : 0;
2032}
2033
2034
2035static struct d40_desc *
2036d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2037              unsigned int sg_len, unsigned long dma_flags)
2038{
2039        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2040        struct d40_desc *desc;
2041        int ret;
2042
2043        desc = d40_desc_get(chan);
2044        if (!desc)
2045                return NULL;
2046
2047        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2048                                        cfg->dst_info.data_width);
2049        if (desc->lli_len < 0) {
2050                chan_err(chan, "Unaligned size\n");
2051                goto err;
2052        }
2053
2054        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2055        if (ret < 0) {
2056                chan_err(chan, "Could not allocate lli\n");
2057                goto err;
2058        }
2059
2060
2061        desc->lli_current = 0;
2062        desc->txd.flags = dma_flags;
2063        desc->txd.tx_submit = d40_tx_submit;
2064
2065        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2066
2067        return desc;
2068
2069err:
2070        d40_desc_free(chan, desc);
2071        return NULL;
2072}
2073
2074static dma_addr_t
2075d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2076{
2077        struct stedma40_platform_data *plat = chan->base->plat_data;
2078        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2079        dma_addr_t addr = 0;
2080
2081        if (chan->runtime_addr)
2082                return chan->runtime_addr;
2083
2084        if (direction == DMA_DEV_TO_MEM)
2085                addr = plat->dev_rx[cfg->src_dev_type];
2086        else if (direction == DMA_MEM_TO_DEV)
2087                addr = plat->dev_tx[cfg->dst_dev_type];
2088
2089        return addr;
2090}
2091
2092static struct dma_async_tx_descriptor *
2093d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2094            struct scatterlist *sg_dst, unsigned int sg_len,
2095            enum dma_transfer_direction direction, unsigned long dma_flags)
2096{
2097        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2098        dma_addr_t src_dev_addr = 0;
2099        dma_addr_t dst_dev_addr = 0;
2100        struct d40_desc *desc;
2101        unsigned long flags;
2102        int ret;
2103
2104        if (!chan->phy_chan) {
2105                chan_err(chan, "Cannot prepare unallocated channel\n");
2106                return NULL;
2107        }
2108
2109
2110        spin_lock_irqsave(&chan->lock, flags);
2111
2112        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2113        if (desc == NULL)
2114                goto err;
2115
2116        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2117                desc->cyclic = true;
2118
2119        if (direction != DMA_TRANS_NONE) {
2120                dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2121
2122                if (direction == DMA_DEV_TO_MEM)
2123                        src_dev_addr = dev_addr;
2124                else if (direction == DMA_MEM_TO_DEV)
2125                        dst_dev_addr = dev_addr;
2126        }
2127
2128        if (chan_is_logical(chan))
2129                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2130                                      sg_len, src_dev_addr, dst_dev_addr);
2131        else
2132                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2133                                      sg_len, src_dev_addr, dst_dev_addr);
2134
2135        if (ret) {
2136                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2137                         chan_is_logical(chan) ? "log" : "phy", ret);
2138                goto err;
2139        }
2140
2141        /*
2142         * add descriptor to the prepare queue in order to be able
2143         * to free them later in terminate_all
2144         */
2145        list_add_tail(&desc->node, &chan->prepare_queue);
2146
2147        spin_unlock_irqrestore(&chan->lock, flags);
2148
2149        return &desc->txd;
2150
2151err:
2152        if (desc)
2153                d40_desc_free(chan, desc);
2154        spin_unlock_irqrestore(&chan->lock, flags);
2155        return NULL;
2156}
2157
2158bool stedma40_filter(struct dma_chan *chan, void *data)
2159{
2160        struct stedma40_chan_cfg *info = data;
2161        struct d40_chan *d40c =
2162                container_of(chan, struct d40_chan, chan);
2163        int err;
2164
2165        if (data) {
2166                err = d40_validate_conf(d40c, info);
2167                if (!err)
2168                        d40c->dma_cfg = *info;
2169        } else
2170                err = d40_config_memcpy(d40c);
2171
2172        if (!err)
2173                d40c->configured = true;
2174
2175        return err == 0;
2176}
2177EXPORT_SYMBOL(stedma40_filter);
2178
2179static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2180{
2181        bool realtime = d40c->dma_cfg.realtime;
2182        bool highprio = d40c->dma_cfg.high_priority;
2183        u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2184        u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2185        u32 event = D40_TYPE_TO_EVENT(dev_type);
2186        u32 group = D40_TYPE_TO_GROUP(dev_type);
2187        u32 bit = 1 << event;
2188
2189        /* Destination event lines are stored in the upper halfword */
2190        if (!src)
2191                bit <<= 16;
2192
2193        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2194        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2195}
2196
2197static void d40_set_prio_realtime(struct d40_chan *d40c)
2198{
2199        if (d40c->base->rev < 3)
2200                return;
2201
2202        if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2203            (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2204                __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2205
2206        if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2207            (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2208                __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2209}
2210
2211/* DMA ENGINE functions */
2212static int d40_alloc_chan_resources(struct dma_chan *chan)
2213{
2214        int err;
2215        unsigned long flags;
2216        struct d40_chan *d40c =
2217                container_of(chan, struct d40_chan, chan);
2218        bool is_free_phy;
2219        spin_lock_irqsave(&d40c->lock, flags);
2220
2221        dma_cookie_init(chan);
2222
2223        /* If no dma configuration is set use default configuration (memcpy) */
2224        if (!d40c->configured) {
2225                err = d40_config_memcpy(d40c);
2226                if (err) {
2227                        chan_err(d40c, "Failed to configure memcpy channel\n");
2228                        goto fail;
2229                }
2230        }
2231
2232        err = d40_allocate_channel(d40c, &is_free_phy);
2233        if (err) {
2234                chan_err(d40c, "Failed to allocate channel\n");
2235                d40c->configured = false;
2236                goto fail;
2237        }
2238
2239        pm_runtime_get_sync(d40c->base->dev);
2240        /* Fill in basic CFG register values */
2241        d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2242                    &d40c->dst_def_cfg, chan_is_logical(d40c));
2243
2244        d40_set_prio_realtime(d40c);
2245
2246        if (chan_is_logical(d40c)) {
2247                d40_log_cfg(&d40c->dma_cfg,
2248                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2249
2250                if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2251                        d40c->lcpa = d40c->base->lcpa_base +
2252                          d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2253                else
2254                        d40c->lcpa = d40c->base->lcpa_base +
2255                          d40c->dma_cfg.dst_dev_type *
2256                          D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2257        }
2258
2259        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2260                 chan_is_logical(d40c) ? "logical" : "physical",
2261                 d40c->phy_chan->num,
2262                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2263
2264
2265        /*
2266         * Only write channel configuration to the DMA if the physical
2267         * resource is free. In case of multiple logical channels
2268         * on the same physical resource, only the first write is necessary.
2269         */
2270        if (is_free_phy)
2271                d40_config_write(d40c);
2272fail:
2273        pm_runtime_mark_last_busy(d40c->base->dev);
2274        pm_runtime_put_autosuspend(d40c->base->dev);
2275        spin_unlock_irqrestore(&d40c->lock, flags);
2276        return err;
2277}
2278
2279static void d40_free_chan_resources(struct dma_chan *chan)
2280{
2281        struct d40_chan *d40c =
2282                container_of(chan, struct d40_chan, chan);
2283        int err;
2284        unsigned long flags;
2285
2286        if (d40c->phy_chan == NULL) {
2287                chan_err(d40c, "Cannot free unallocated channel\n");
2288                return;
2289        }
2290
2291
2292        spin_lock_irqsave(&d40c->lock, flags);
2293
2294        err = d40_free_dma(d40c);
2295
2296        if (err)
2297                chan_err(d40c, "Failed to free channel\n");
2298        spin_unlock_irqrestore(&d40c->lock, flags);
2299}
2300
2301static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2302                                                       dma_addr_t dst,
2303                                                       dma_addr_t src,
2304                                                       size_t size,
2305                                                       unsigned long dma_flags)
2306{
2307        struct scatterlist dst_sg;
2308        struct scatterlist src_sg;
2309
2310        sg_init_table(&dst_sg, 1);
2311        sg_init_table(&src_sg, 1);
2312
2313        sg_dma_address(&dst_sg) = dst;
2314        sg_dma_address(&src_sg) = src;
2315
2316        sg_dma_len(&dst_sg) = size;
2317        sg_dma_len(&src_sg) = size;
2318
2319        return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2320}
2321
2322static struct dma_async_tx_descriptor *
2323d40_prep_memcpy_sg(struct dma_chan *chan,
2324                   struct scatterlist *dst_sg, unsigned int dst_nents,
2325                   struct scatterlist *src_sg, unsigned int src_nents,
2326                   unsigned long dma_flags)
2327{
2328        if (dst_nents != src_nents)
2329                return NULL;
2330
2331        return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2332}
2333
2334static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2335                                                         struct scatterlist *sgl,
2336                                                         unsigned int sg_len,
2337                                                         enum dma_transfer_direction direction,
2338                                                         unsigned long dma_flags,
2339                                                         void *context)
2340{
2341        if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2342                return NULL;
2343
2344        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2345}
2346
2347static struct dma_async_tx_descriptor *
2348dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2349                     size_t buf_len, size_t period_len,
2350                     enum dma_transfer_direction direction, unsigned long flags,
2351                     void *context)
2352{
2353        unsigned int periods = buf_len / period_len;
2354        struct dma_async_tx_descriptor *txd;
2355        struct scatterlist *sg;
2356        int i;
2357
2358        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2359        for (i = 0; i < periods; i++) {
2360                sg_dma_address(&sg[i]) = dma_addr;
2361                sg_dma_len(&sg[i]) = period_len;
2362                dma_addr += period_len;
2363        }
2364
2365        sg[periods].offset = 0;
2366        sg_dma_len(&sg[periods]) = 0;
2367        sg[periods].page_link =
2368                ((unsigned long)sg | 0x01) & ~0x02;
2369
2370        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2371                          DMA_PREP_INTERRUPT);
2372
2373        kfree(sg);
2374
2375        return txd;
2376}
2377
2378static enum dma_status d40_tx_status(struct dma_chan *chan,
2379                                     dma_cookie_t cookie,
2380                                     struct dma_tx_state *txstate)
2381{
2382        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2383        enum dma_status ret;
2384
2385        if (d40c->phy_chan == NULL) {
2386                chan_err(d40c, "Cannot read status of unallocated channel\n");
2387                return -EINVAL;
2388        }
2389
2390        ret = dma_cookie_status(chan, cookie, txstate);
2391        if (ret != DMA_SUCCESS)
2392                dma_set_residue(txstate, stedma40_residue(chan));
2393
2394        if (d40_is_paused(d40c))
2395                ret = DMA_PAUSED;
2396
2397        return ret;
2398}
2399
2400static void d40_issue_pending(struct dma_chan *chan)
2401{
2402        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2403        unsigned long flags;
2404
2405        if (d40c->phy_chan == NULL) {
2406                chan_err(d40c, "Channel is not allocated!\n");
2407                return;
2408        }
2409
2410        spin_lock_irqsave(&d40c->lock, flags);
2411
2412        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2413
2414        /* Busy means that queued jobs are already being processed */
2415        if (!d40c->busy)
2416                (void) d40_queue_start(d40c);
2417
2418        spin_unlock_irqrestore(&d40c->lock, flags);
2419}
2420
2421static void d40_terminate_all(struct dma_chan *chan)
2422{
2423        unsigned long flags;
2424        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2425        int ret;
2426
2427        spin_lock_irqsave(&d40c->lock, flags);
2428
2429        pm_runtime_get_sync(d40c->base->dev);
2430        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2431        if (ret)
2432                chan_err(d40c, "Failed to stop channel\n");
2433
2434        d40_term_all(d40c);
2435        pm_runtime_mark_last_busy(d40c->base->dev);
2436        pm_runtime_put_autosuspend(d40c->base->dev);
2437        if (d40c->busy) {
2438                pm_runtime_mark_last_busy(d40c->base->dev);
2439                pm_runtime_put_autosuspend(d40c->base->dev);
2440        }
2441        d40c->busy = false;
2442
2443        spin_unlock_irqrestore(&d40c->lock, flags);
2444}
2445
2446static int
2447dma40_config_to_halfchannel(struct d40_chan *d40c,
2448                            struct stedma40_half_channel_info *info,
2449                            enum dma_slave_buswidth width,
2450                            u32 maxburst)
2451{
2452        enum stedma40_periph_data_width addr_width;
2453        int psize;
2454
2455        switch (width) {
2456        case DMA_SLAVE_BUSWIDTH_1_BYTE:
2457                addr_width = STEDMA40_BYTE_WIDTH;
2458                break;
2459        case DMA_SLAVE_BUSWIDTH_2_BYTES:
2460                addr_width = STEDMA40_HALFWORD_WIDTH;
2461                break;
2462        case DMA_SLAVE_BUSWIDTH_4_BYTES:
2463                addr_width = STEDMA40_WORD_WIDTH;
2464                break;
2465        case DMA_SLAVE_BUSWIDTH_8_BYTES:
2466                addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2467                break;
2468        default:
2469                dev_err(d40c->base->dev,
2470                        "illegal peripheral address width "
2471                        "requested (%d)\n",
2472                        width);
2473                return -EINVAL;
2474        }
2475
2476        if (chan_is_logical(d40c)) {
2477                if (maxburst >= 16)
2478                        psize = STEDMA40_PSIZE_LOG_16;
2479                else if (maxburst >= 8)
2480                        psize = STEDMA40_PSIZE_LOG_8;
2481                else if (maxburst >= 4)
2482                        psize = STEDMA40_PSIZE_LOG_4;
2483                else
2484                        psize = STEDMA40_PSIZE_LOG_1;
2485        } else {
2486                if (maxburst >= 16)
2487                        psize = STEDMA40_PSIZE_PHY_16;
2488                else if (maxburst >= 8)
2489                        psize = STEDMA40_PSIZE_PHY_8;
2490                else if (maxburst >= 4)
2491                        psize = STEDMA40_PSIZE_PHY_4;
2492                else
2493                        psize = STEDMA40_PSIZE_PHY_1;
2494        }
2495
2496        info->data_width = addr_width;
2497        info->psize = psize;
2498        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2499
2500        return 0;
2501}
2502
2503/* Runtime reconfiguration extension */
2504static int d40_set_runtime_config(struct dma_chan *chan,
2505                                  struct dma_slave_config *config)
2506{
2507        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2508        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2509        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2510        dma_addr_t config_addr;
2511        u32 src_maxburst, dst_maxburst;
2512        int ret;
2513
2514        src_addr_width = config->src_addr_width;
2515        src_maxburst = config->src_maxburst;
2516        dst_addr_width = config->dst_addr_width;
2517        dst_maxburst = config->dst_maxburst;
2518
2519        if (config->direction == DMA_DEV_TO_MEM) {
2520                dma_addr_t dev_addr_rx =
2521                        d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2522
2523                config_addr = config->src_addr;
2524                if (dev_addr_rx)
2525                        dev_dbg(d40c->base->dev,
2526                                "channel has a pre-wired RX address %08x "
2527                                "overriding with %08x\n",
2528                                dev_addr_rx, config_addr);
2529                if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2530                        dev_dbg(d40c->base->dev,
2531                                "channel was not configured for peripheral "
2532                                "to memory transfer (%d) overriding\n",
2533                                cfg->dir);
2534                cfg->dir = STEDMA40_PERIPH_TO_MEM;
2535
2536                /* Configure the memory side */
2537                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2538                        dst_addr_width = src_addr_width;
2539                if (dst_maxburst == 0)
2540                        dst_maxburst = src_maxburst;
2541
2542        } else if (config->direction == DMA_MEM_TO_DEV) {
2543                dma_addr_t dev_addr_tx =
2544                        d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2545
2546                config_addr = config->dst_addr;
2547                if (dev_addr_tx)
2548                        dev_dbg(d40c->base->dev,
2549                                "channel has a pre-wired TX address %08x "
2550                                "overriding with %08x\n",
2551                                dev_addr_tx, config_addr);
2552                if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2553                        dev_dbg(d40c->base->dev,
2554                                "channel was not configured for memory "
2555                                "to peripheral transfer (%d) overriding\n",
2556                                cfg->dir);
2557                cfg->dir = STEDMA40_MEM_TO_PERIPH;
2558
2559                /* Configure the memory side */
2560                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2561                        src_addr_width = dst_addr_width;
2562                if (src_maxburst == 0)
2563                        src_maxburst = dst_maxburst;
2564        } else {
2565                dev_err(d40c->base->dev,
2566                        "unrecognized channel direction %d\n",
2567                        config->direction);
2568                return -EINVAL;
2569        }
2570
2571        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2572                dev_err(d40c->base->dev,
2573                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2574                        src_maxburst,
2575                        src_addr_width,
2576                        dst_maxburst,
2577                        dst_addr_width);
2578                return -EINVAL;
2579        }
2580
2581        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2582                                          src_addr_width,
2583                                          src_maxburst);
2584        if (ret)
2585                return ret;
2586
2587        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2588                                          dst_addr_width,
2589                                          dst_maxburst);
2590        if (ret)
2591                return ret;
2592
2593        /* Fill in register values */
2594        if (chan_is_logical(d40c))
2595                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2596        else
2597                d40_phy_cfg(cfg, &d40c->src_def_cfg,
2598                            &d40c->dst_def_cfg, false);
2599
2600        /* These settings will take precedence later */
2601        d40c->runtime_addr = config_addr;
2602        d40c->runtime_direction = config->direction;
2603        dev_dbg(d40c->base->dev,
2604                "configured channel %s for %s, data width %d/%d, "
2605                "maxburst %d/%d elements, LE, no flow control\n",
2606                dma_chan_name(chan),
2607                (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2608                src_addr_width, dst_addr_width,
2609                src_maxburst, dst_maxburst);
2610
2611        return 0;
2612}
2613
2614static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2615                       unsigned long arg)
2616{
2617        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2618
2619        if (d40c->phy_chan == NULL) {
2620                chan_err(d40c, "Channel is not allocated!\n");
2621                return -EINVAL;
2622        }
2623
2624        switch (cmd) {
2625        case DMA_TERMINATE_ALL:
2626                d40_terminate_all(chan);
2627                return 0;
2628        case DMA_PAUSE:
2629                return d40_pause(d40c);
2630        case DMA_RESUME:
2631                return d40_resume(d40c);
2632        case DMA_SLAVE_CONFIG:
2633                return d40_set_runtime_config(chan,
2634                        (struct dma_slave_config *) arg);
2635        default:
2636                break;
2637        }
2638
2639        /* Other commands are unimplemented */
2640        return -ENXIO;
2641}
2642
2643/* Initialization functions */
2644
2645static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2646                                 struct d40_chan *chans, int offset,
2647                                 int num_chans)
2648{
2649        int i = 0;
2650        struct d40_chan *d40c;
2651
2652        INIT_LIST_HEAD(&dma->channels);
2653
2654        for (i = offset; i < offset + num_chans; i++) {
2655                d40c = &chans[i];
2656                d40c->base = base;
2657                d40c->chan.device = dma;
2658
2659                spin_lock_init(&d40c->lock);
2660
2661                d40c->log_num = D40_PHY_CHAN;
2662
2663                INIT_LIST_HEAD(&d40c->active);
2664                INIT_LIST_HEAD(&d40c->queue);
2665                INIT_LIST_HEAD(&d40c->pending_queue);
2666                INIT_LIST_HEAD(&d40c->client);
2667                INIT_LIST_HEAD(&d40c->prepare_queue);
2668
2669                tasklet_init(&d40c->tasklet, dma_tasklet,
2670                             (unsigned long) d40c);
2671
2672                list_add_tail(&d40c->chan.device_node,
2673                              &dma->channels);
2674        }
2675}
2676
2677static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2678{
2679        if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2680                dev->device_prep_slave_sg = d40_prep_slave_sg;
2681
2682        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2683                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2684
2685                /*
2686                 * This controller can only access address at even
2687                 * 32bit boundaries, i.e. 2^2
2688                 */
2689                dev->copy_align = 2;
2690        }
2691
2692        if (dma_has_cap(DMA_SG, dev->cap_mask))
2693                dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2694
2695        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2696                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2697
2698        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2699        dev->device_free_chan_resources = d40_free_chan_resources;
2700        dev->device_issue_pending = d40_issue_pending;
2701        dev->device_tx_status = d40_tx_status;
2702        dev->device_control = d40_control;
2703        dev->dev = base->dev;
2704}
2705
2706static int __init d40_dmaengine_init(struct d40_base *base,
2707                                     int num_reserved_chans)
2708{
2709        int err ;
2710
2711        d40_chan_init(base, &base->dma_slave, base->log_chans,
2712                      0, base->num_log_chans);
2713
2714        dma_cap_zero(base->dma_slave.cap_mask);
2715        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2716        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2717
2718        d40_ops_init(base, &base->dma_slave);
2719
2720        err = dma_async_device_register(&base->dma_slave);
2721
2722        if (err) {
2723                d40_err(base->dev, "Failed to register slave channels\n");
2724                goto failure1;
2725        }
2726
2727        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2728                      base->num_log_chans, base->plat_data->memcpy_len);
2729
2730        dma_cap_zero(base->dma_memcpy.cap_mask);
2731        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2732        dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2733
2734        d40_ops_init(base, &base->dma_memcpy);
2735
2736        err = dma_async_device_register(&base->dma_memcpy);
2737
2738        if (err) {
2739                d40_err(base->dev,
2740                        "Failed to regsiter memcpy only channels\n");
2741                goto failure2;
2742        }
2743
2744        d40_chan_init(base, &base->dma_both, base->phy_chans,
2745                      0, num_reserved_chans);
2746
2747        dma_cap_zero(base->dma_both.cap_mask);
2748        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2749        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2750        dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2751        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2752
2753        d40_ops_init(base, &base->dma_both);
2754        err = dma_async_device_register(&base->dma_both);
2755
2756        if (err) {
2757                d40_err(base->dev,
2758                        "Failed to register logical and physical capable channels\n");
2759                goto failure3;
2760        }
2761        return 0;
2762failure3:
2763        dma_async_device_unregister(&base->dma_memcpy);
2764failure2:
2765        dma_async_device_unregister(&base->dma_slave);
2766failure1:
2767        return err;
2768}
2769
2770/* Suspend resume functionality */
2771#ifdef CONFIG_PM
2772static int dma40_pm_suspend(struct device *dev)
2773{
2774        struct platform_device *pdev = to_platform_device(dev);
2775        struct d40_base *base = platform_get_drvdata(pdev);
2776        int ret = 0;
2777        if (!pm_runtime_suspended(dev))
2778                return -EBUSY;
2779
2780        if (base->lcpa_regulator)
2781                ret = regulator_disable(base->lcpa_regulator);
2782        return ret;
2783}
2784
2785static int dma40_runtime_suspend(struct device *dev)
2786{
2787        struct platform_device *pdev = to_platform_device(dev);
2788        struct d40_base *base = platform_get_drvdata(pdev);
2789
2790        d40_save_restore_registers(base, true);
2791
2792        /* Don't disable/enable clocks for v1 due to HW bugs */
2793        if (base->rev != 1)
2794                writel_relaxed(base->gcc_pwr_off_mask,
2795                               base->virtbase + D40_DREG_GCC);
2796
2797        return 0;
2798}
2799
2800static int dma40_runtime_resume(struct device *dev)
2801{
2802        struct platform_device *pdev = to_platform_device(dev);
2803        struct d40_base *base = platform_get_drvdata(pdev);
2804
2805        if (base->initialized)
2806                d40_save_restore_registers(base, false);
2807
2808        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2809                       base->virtbase + D40_DREG_GCC);
2810        return 0;
2811}
2812
2813static int dma40_resume(struct device *dev)
2814{
2815        struct platform_device *pdev = to_platform_device(dev);
2816        struct d40_base *base = platform_get_drvdata(pdev);
2817        int ret = 0;
2818
2819        if (base->lcpa_regulator)
2820                ret = regulator_enable(base->lcpa_regulator);
2821
2822        return ret;
2823}
2824
2825static const struct dev_pm_ops dma40_pm_ops = {
2826        .suspend                = dma40_pm_suspend,
2827        .runtime_suspend        = dma40_runtime_suspend,
2828        .runtime_resume         = dma40_runtime_resume,
2829        .resume                 = dma40_resume,
2830};
2831#define DMA40_PM_OPS    (&dma40_pm_ops)
2832#else
2833#define DMA40_PM_OPS    NULL
2834#endif
2835
2836/* Initialization functions. */
2837
2838static int __init d40_phy_res_init(struct d40_base *base)
2839{
2840        int i;
2841        int num_phy_chans_avail = 0;
2842        u32 val[2];
2843        int odd_even_bit = -2;
2844        int gcc = D40_DREG_GCC_ENA;
2845
2846        val[0] = readl(base->virtbase + D40_DREG_PRSME);
2847        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2848
2849        for (i = 0; i < base->num_phy_chans; i++) {
2850                base->phy_res[i].num = i;
2851                odd_even_bit += 2 * ((i % 2) == 0);
2852                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2853                        /* Mark security only channels as occupied */
2854                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2855                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2856                        base->phy_res[i].reserved = true;
2857                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2858                                                       D40_DREG_GCC_SRC);
2859                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2860                                                       D40_DREG_GCC_DST);
2861
2862
2863                } else {
2864                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2865                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2866                        base->phy_res[i].reserved = false;
2867                        num_phy_chans_avail++;
2868                }
2869                spin_lock_init(&base->phy_res[i].lock);
2870        }
2871
2872        /* Mark disabled channels as occupied */
2873        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2874                int chan = base->plat_data->disabled_channels[i];
2875
2876                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2877                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2878                base->phy_res[chan].reserved = true;
2879                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2880                                               D40_DREG_GCC_SRC);
2881                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2882                                               D40_DREG_GCC_DST);
2883                num_phy_chans_avail--;
2884        }
2885
2886        dev_info(base->dev, "%d of %d physical DMA channels available\n",
2887                 num_phy_chans_avail, base->num_phy_chans);
2888
2889        /* Verify settings extended vs standard */
2890        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2891
2892        for (i = 0; i < base->num_phy_chans; i++) {
2893
2894                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2895                    (val[0] & 0x3) != 1)
2896                        dev_info(base->dev,
2897                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
2898                                 __func__, i, val[0] & 0x3);
2899
2900                val[0] = val[0] >> 2;
2901        }
2902
2903        /*
2904         * To keep things simple, Enable all clocks initially.
2905         * The clocks will get managed later post channel allocation.
2906         * The clocks for the event lines on which reserved channels exists
2907         * are not managed here.
2908         */
2909        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2910        base->gcc_pwr_off_mask = gcc;
2911
2912        return num_phy_chans_avail;
2913}
2914
2915static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2916{
2917        struct stedma40_platform_data *plat_data;
2918        struct clk *clk = NULL;
2919        void __iomem *virtbase = NULL;
2920        struct resource *res = NULL;
2921        struct d40_base *base = NULL;
2922        int num_log_chans = 0;
2923        int num_phy_chans;
2924        int clk_ret = -EINVAL;
2925        int i;
2926        u32 pid;
2927        u32 cid;
2928        u8 rev;
2929
2930        clk = clk_get(&pdev->dev, NULL);
2931        if (IS_ERR(clk)) {
2932                d40_err(&pdev->dev, "No matching clock found\n");
2933                goto failure;
2934        }
2935
2936        clk_ret = clk_prepare_enable(clk);
2937        if (clk_ret) {
2938                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
2939                goto failure;
2940        }
2941
2942        /* Get IO for DMAC base address */
2943        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2944        if (!res)
2945                goto failure;
2946
2947        if (request_mem_region(res->start, resource_size(res),
2948                               D40_NAME " I/O base") == NULL)
2949                goto failure;
2950
2951        virtbase = ioremap(res->start, resource_size(res));
2952        if (!virtbase)
2953                goto failure;
2954
2955        /* This is just a regular AMBA PrimeCell ID actually */
2956        for (pid = 0, i = 0; i < 4; i++)
2957                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2958                        & 255) << (i * 8);
2959        for (cid = 0, i = 0; i < 4; i++)
2960                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2961                        & 255) << (i * 8);
2962
2963        if (cid != AMBA_CID) {
2964                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2965                goto failure;
2966        }
2967        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2968                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2969                        AMBA_MANF_BITS(pid),
2970                        AMBA_VENDOR_ST);
2971                goto failure;
2972        }
2973        /*
2974         * HW revision:
2975         * DB8500ed has revision 0
2976         * ? has revision 1
2977         * DB8500v1 has revision 2
2978         * DB8500v2 has revision 3
2979         */
2980        rev = AMBA_REV_BITS(pid);
2981
2982        /* The number of physical channels on this HW */
2983        num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2984
2985        dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2986                 rev, res->start);
2987
2988        if (rev < 2) {
2989                d40_err(&pdev->dev, "hardware revision: %d is not supported",
2990                        rev);
2991                goto failure;
2992        }
2993
2994        plat_data = pdev->dev.platform_data;
2995
2996        /* Count the number of logical channels in use */
2997        for (i = 0; i < plat_data->dev_len; i++)
2998                if (plat_data->dev_rx[i] != 0)
2999                        num_log_chans++;
3000
3001        for (i = 0; i < plat_data->dev_len; i++)
3002                if (plat_data->dev_tx[i] != 0)
3003                        num_log_chans++;
3004
3005        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3006                       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3007                       sizeof(struct d40_chan), GFP_KERNEL);
3008
3009        if (base == NULL) {
3010                d40_err(&pdev->dev, "Out of memory\n");
3011                goto failure;
3012        }
3013
3014        base->rev = rev;
3015        base->clk = clk;
3016        base->num_phy_chans = num_phy_chans;
3017        base->num_log_chans = num_log_chans;
3018        base->phy_start = res->start;
3019        base->phy_size = resource_size(res);
3020        base->virtbase = virtbase;
3021        base->plat_data = plat_data;
3022        base->dev = &pdev->dev;
3023        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3024        base->log_chans = &base->phy_chans[num_phy_chans];
3025
3026        base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3027                                GFP_KERNEL);
3028        if (!base->phy_res)
3029                goto failure;
3030
3031        base->lookup_phy_chans = kzalloc(num_phy_chans *
3032                                         sizeof(struct d40_chan *),
3033                                         GFP_KERNEL);
3034        if (!base->lookup_phy_chans)
3035                goto failure;
3036
3037        if (num_log_chans + plat_data->memcpy_len) {
3038                /*
3039                 * The max number of logical channels are event lines for all
3040                 * src devices and dst devices
3041                 */
3042                base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3043                                                 sizeof(struct d40_chan *),
3044                                                 GFP_KERNEL);
3045                if (!base->lookup_log_chans)
3046                        goto failure;
3047        }
3048
3049        base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3050                                            sizeof(d40_backup_regs_chan),
3051                                            GFP_KERNEL);
3052        if (!base->reg_val_backup_chan)
3053                goto failure;
3054
3055        base->lcla_pool.alloc_map =
3056                kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3057                        * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3058        if (!base->lcla_pool.alloc_map)
3059                goto failure;
3060
3061        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3062                                            0, SLAB_HWCACHE_ALIGN,
3063                                            NULL);
3064        if (base->desc_slab == NULL)
3065                goto failure;
3066
3067        return base;
3068
3069failure:
3070        if (!clk_ret)
3071                clk_disable_unprepare(clk);
3072        if (!IS_ERR(clk))
3073                clk_put(clk);
3074        if (virtbase)
3075                iounmap(virtbase);
3076        if (res)
3077                release_mem_region(res->start,
3078                                   resource_size(res));
3079        if (virtbase)
3080                iounmap(virtbase);
3081
3082        if (base) {
3083                kfree(base->lcla_pool.alloc_map);
3084                kfree(base->reg_val_backup_chan);
3085                kfree(base->lookup_log_chans);
3086                kfree(base->lookup_phy_chans);
3087                kfree(base->phy_res);
3088                kfree(base);
3089        }
3090
3091        return NULL;
3092}
3093
3094static void __init d40_hw_init(struct d40_base *base)
3095{
3096
3097        static struct d40_reg_val dma_init_reg[] = {
3098                /* Clock every part of the DMA block from start */
3099                { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3100
3101                /* Interrupts on all logical channels */
3102                { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3103                { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3104                { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3105                { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3106                { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3107                { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3108                { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3109                { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3110                { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3111                { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3112                { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3113                { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3114        };
3115        int i;
3116        u32 prmseo[2] = {0, 0};
3117        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3118        u32 pcmis = 0;
3119        u32 pcicr = 0;
3120
3121        for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3122                writel(dma_init_reg[i].val,
3123                       base->virtbase + dma_init_reg[i].reg);
3124
3125        /* Configure all our dma channels to default settings */
3126        for (i = 0; i < base->num_phy_chans; i++) {
3127
3128                activeo[i % 2] = activeo[i % 2] << 2;
3129
3130                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3131                    == D40_ALLOC_PHY) {
3132                        activeo[i % 2] |= 3;
3133                        continue;
3134                }
3135
3136                /* Enable interrupt # */
3137                pcmis = (pcmis << 1) | 1;
3138
3139                /* Clear interrupt # */
3140                pcicr = (pcicr << 1) | 1;
3141
3142                /* Set channel to physical mode */
3143                prmseo[i % 2] = prmseo[i % 2] << 2;
3144                prmseo[i % 2] |= 1;
3145
3146        }
3147
3148        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3149        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3150        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3151        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3152
3153        /* Write which interrupt to enable */
3154        writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3155
3156        /* Write which interrupt to clear */
3157        writel(pcicr, base->virtbase + D40_DREG_PCICR);
3158
3159}
3160
3161static int __init d40_lcla_allocate(struct d40_base *base)
3162{
3163        struct d40_lcla_pool *pool = &base->lcla_pool;
3164        unsigned long *page_list;
3165        int i, j;
3166        int ret = 0;
3167
3168        /*
3169         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3170         * To full fill this hardware requirement without wasting 256 kb
3171         * we allocate pages until we get an aligned one.
3172         */
3173        page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3174                            GFP_KERNEL);
3175
3176        if (!page_list) {
3177                ret = -ENOMEM;
3178                goto failure;
3179        }
3180
3181        /* Calculating how many pages that are required */
3182        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3183
3184        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3185                page_list[i] = __get_free_pages(GFP_KERNEL,
3186                                                base->lcla_pool.pages);
3187                if (!page_list[i]) {
3188
3189                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3190                                base->lcla_pool.pages);
3191
3192                        for (j = 0; j < i; j++)
3193                                free_pages(page_list[j], base->lcla_pool.pages);
3194                        goto failure;
3195                }
3196
3197                if ((virt_to_phys((void *)page_list[i]) &
3198                     (LCLA_ALIGNMENT - 1)) == 0)
3199                        break;
3200        }
3201
3202        for (j = 0; j < i; j++)
3203                free_pages(page_list[j], base->lcla_pool.pages);
3204
3205        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3206                base->lcla_pool.base = (void *)page_list[i];
3207        } else {
3208                /*
3209                 * After many attempts and no succees with finding the correct
3210                 * alignment, try with allocating a big buffer.
3211                 */
3212                dev_warn(base->dev,
3213                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3214                         __func__, base->lcla_pool.pages);
3215                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3216                                                         base->num_phy_chans +
3217                                                         LCLA_ALIGNMENT,
3218                                                         GFP_KERNEL);
3219                if (!base->lcla_pool.base_unaligned) {
3220                        ret = -ENOMEM;
3221                        goto failure;
3222                }
3223
3224                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3225                                                 LCLA_ALIGNMENT);
3226        }
3227
3228        pool->dma_addr = dma_map_single(base->dev, pool->base,
3229                                        SZ_1K * base->num_phy_chans,
3230                                        DMA_TO_DEVICE);
3231        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3232                pool->dma_addr = 0;
3233                ret = -ENOMEM;
3234                goto failure;
3235        }
3236
3237        writel(virt_to_phys(base->lcla_pool.base),
3238               base->virtbase + D40_DREG_LCLA);
3239failure:
3240        kfree(page_list);
3241        return ret;
3242}
3243
3244static int __init d40_probe(struct platform_device *pdev)
3245{
3246        int err;
3247        int ret = -ENOENT;
3248        struct d40_base *base;
3249        struct resource *res = NULL;
3250        int num_reserved_chans;
3251        u32 val;
3252
3253        base = d40_hw_detect_init(pdev);
3254
3255        if (!base)
3256                goto failure;
3257
3258        num_reserved_chans = d40_phy_res_init(base);
3259
3260        platform_set_drvdata(pdev, base);
3261
3262        spin_lock_init(&base->interrupt_lock);
3263        spin_lock_init(&base->execmd_lock);
3264
3265        /* Get IO for logical channel parameter address */
3266        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3267        if (!res) {
3268                ret = -ENOENT;
3269                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3270                goto failure;
3271        }
3272        base->lcpa_size = resource_size(res);
3273        base->phy_lcpa = res->start;
3274
3275        if (request_mem_region(res->start, resource_size(res),
3276                               D40_NAME " I/O lcpa") == NULL) {
3277                ret = -EBUSY;
3278                d40_err(&pdev->dev,
3279                        "Failed to request LCPA region 0x%x-0x%x\n",
3280                        res->start, res->end);
3281                goto failure;
3282        }
3283
3284        /* We make use of ESRAM memory for this. */
3285        val = readl(base->virtbase + D40_DREG_LCPA);
3286        if (res->start != val && val != 0) {
3287                dev_warn(&pdev->dev,
3288                         "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3289                         __func__, val, res->start);
3290        } else
3291                writel(res->start, base->virtbase + D40_DREG_LCPA);
3292
3293        base->lcpa_base = ioremap(res->start, resource_size(res));
3294        if (!base->lcpa_base) {
3295                ret = -ENOMEM;
3296                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3297                goto failure;
3298        }
3299        /* If lcla has to be located in ESRAM we don't need to allocate */
3300        if (base->plat_data->use_esram_lcla) {
3301                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3302                                                        "lcla_esram");
3303                if (!res) {
3304                        ret = -ENOENT;
3305                        d40_err(&pdev->dev,
3306                                "No \"lcla_esram\" memory resource\n");
3307                        goto failure;
3308                }
3309                base->lcla_pool.base = ioremap(res->start,
3310                                                resource_size(res));
3311                if (!base->lcla_pool.base) {
3312                        ret = -ENOMEM;
3313                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3314                        goto failure;
3315                }
3316                writel(res->start, base->virtbase + D40_DREG_LCLA);
3317
3318        } else {
3319                ret = d40_lcla_allocate(base);
3320                if (ret) {
3321                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3322                        goto failure;
3323                }
3324        }
3325
3326        spin_lock_init(&base->lcla_pool.lock);
3327
3328        base->irq = platform_get_irq(pdev, 0);
3329
3330        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3331        if (ret) {
3332                d40_err(&pdev->dev, "No IRQ defined\n");
3333                goto failure;
3334        }
3335
3336        pm_runtime_irq_safe(base->dev);
3337        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3338        pm_runtime_use_autosuspend(base->dev);
3339        pm_runtime_enable(base->dev);
3340        pm_runtime_resume(base->dev);
3341
3342        if (base->plat_data->use_esram_lcla) {
3343
3344                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3345                if (IS_ERR(base->lcpa_regulator)) {
3346                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3347                        base->lcpa_regulator = NULL;
3348                        goto failure;
3349                }
3350
3351                ret = regulator_enable(base->lcpa_regulator);
3352                if (ret) {
3353                        d40_err(&pdev->dev,
3354                                "Failed to enable lcpa_regulator\n");
3355                        regulator_put(base->lcpa_regulator);
3356                        base->lcpa_regulator = NULL;
3357                        goto failure;
3358                }
3359        }
3360
3361        base->initialized = true;
3362        err = d40_dmaengine_init(base, num_reserved_chans);
3363        if (err)
3364                goto failure;
3365
3366        d40_hw_init(base);
3367
3368        dev_info(base->dev, "initialized\n");
3369        return 0;
3370
3371failure:
3372        if (base) {
3373                if (base->desc_slab)
3374                        kmem_cache_destroy(base->desc_slab);
3375                if (base->virtbase)
3376                        iounmap(base->virtbase);
3377
3378                if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3379                        iounmap(base->lcla_pool.base);
3380                        base->lcla_pool.base = NULL;
3381                }
3382
3383                if (base->lcla_pool.dma_addr)
3384                        dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3385                                         SZ_1K * base->num_phy_chans,
3386                                         DMA_TO_DEVICE);
3387
3388                if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3389                        free_pages((unsigned long)base->lcla_pool.base,
3390                                   base->lcla_pool.pages);
3391
3392                kfree(base->lcla_pool.base_unaligned);
3393
3394                if (base->phy_lcpa)
3395                        release_mem_region(base->phy_lcpa,
3396                                           base->lcpa_size);
3397                if (base->phy_start)
3398                        release_mem_region(base->phy_start,
3399                                           base->phy_size);
3400                if (base->clk) {
3401                        clk_disable(base->clk);
3402                        clk_put(base->clk);
3403                }
3404
3405                if (base->lcpa_regulator) {
3406                        regulator_disable(base->lcpa_regulator);
3407                        regulator_put(base->lcpa_regulator);
3408                }
3409
3410                kfree(base->lcla_pool.alloc_map);
3411                kfree(base->lookup_log_chans);
3412                kfree(base->lookup_phy_chans);
3413                kfree(base->phy_res);
3414                kfree(base);
3415        }
3416
3417        d40_err(&pdev->dev, "probe failed\n");
3418        return ret;
3419}
3420
3421static struct platform_driver d40_driver = {
3422        .driver = {
3423                .owner = THIS_MODULE,
3424                .name  = D40_NAME,
3425                .pm = DMA40_PM_OPS,
3426        },
3427};
3428
3429static int __init stedma40_init(void)
3430{
3431        return platform_driver_probe(&d40_driver, d40_probe);
3432}
3433subsys_initcall(stedma40_init);
3434
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.