linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80        .prereset               = ata_std_prereset,
  81        .postreset              = ata_std_postreset,
  82        .error_handler          = ata_std_error_handler,
  83        .sched_eh               = ata_std_sched_eh,
  84        .end_eh                 = ata_std_end_eh,
  85};
  86
  87const struct ata_port_operations sata_port_ops = {
  88        .inherits               = &ata_base_port_ops,
  89
  90        .qc_defer               = ata_std_qc_defer,
  91        .hardreset              = sata_std_hardreset,
  92};
  93
  94static unsigned int ata_dev_init_params(struct ata_device *dev,
  95                                        u16 heads, u16 sectors);
  96static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  97static void ata_dev_xfermask(struct ata_device *dev);
  98static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  99
 100atomic_t ata_print_id = ATOMIC_INIT(0);
 101
 102struct ata_force_param {
 103        const char      *name;
 104        unsigned int    cbl;
 105        int             spd_limit;
 106        unsigned long   xfer_mask;
 107        unsigned int    horkage_on;
 108        unsigned int    horkage_off;
 109        unsigned int    lflags;
 110};
 111
 112struct ata_force_ent {
 113        int                     port;
 114        int                     device;
 115        struct ata_force_param  param;
 116};
 117
 118static struct ata_force_ent *ata_force_tbl;
 119static int ata_force_tbl_size;
 120
 121static char ata_force_param_buf[PAGE_SIZE] __initdata;
 122/* param_buf is thrown away after initialization, disallow read */
 123module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 124MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 125
 126static int atapi_enabled = 1;
 127module_param(atapi_enabled, int, 0444);
 128MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 129
 130static int atapi_dmadir = 0;
 131module_param(atapi_dmadir, int, 0444);
 132MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 133
 134int atapi_passthru16 = 1;
 135module_param(atapi_passthru16, int, 0444);
 136MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 137
 138int libata_fua = 0;
 139module_param_named(fua, libata_fua, int, 0444);
 140MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 141
 142static int ata_ignore_hpa;
 143module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 144MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 145
 146static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 147module_param_named(dma, libata_dma_mask, int, 0444);
 148MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 149
 150static int ata_probe_timeout;
 151module_param(ata_probe_timeout, int, 0444);
 152MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 153
 154int libata_noacpi = 0;
 155module_param_named(noacpi, libata_noacpi, int, 0444);
 156MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 157
 158int libata_allow_tpm = 0;
 159module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 160MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 161
 162static int atapi_an;
 163module_param(atapi_an, int, 0444);
 164MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 165
 166MODULE_AUTHOR("Jeff Garzik");
 167MODULE_DESCRIPTION("Library module for ATA devices");
 168MODULE_LICENSE("GPL");
 169MODULE_VERSION(DRV_VERSION);
 170
 171
 172static bool ata_sstatus_online(u32 sstatus)
 173{
 174        return (sstatus & 0xf) == 0x3;
 175}
 176
 177/**
 178 *      ata_link_next - link iteration helper
 179 *      @link: the previous link, NULL to start
 180 *      @ap: ATA port containing links to iterate
 181 *      @mode: iteration mode, one of ATA_LITER_*
 182 *
 183 *      LOCKING:
 184 *      Host lock or EH context.
 185 *
 186 *      RETURNS:
 187 *      Pointer to the next link.
 188 */
 189struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 190                               enum ata_link_iter_mode mode)
 191{
 192        BUG_ON(mode != ATA_LITER_EDGE &&
 193               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 194
 195        /* NULL link indicates start of iteration */
 196        if (!link)
 197                switch (mode) {
 198                case ATA_LITER_EDGE:
 199                case ATA_LITER_PMP_FIRST:
 200                        if (sata_pmp_attached(ap))
 201                                return ap->pmp_link;
 202                        /* fall through */
 203                case ATA_LITER_HOST_FIRST:
 204                        return &ap->link;
 205                }
 206
 207        /* we just iterated over the host link, what's next? */
 208        if (link == &ap->link)
 209                switch (mode) {
 210                case ATA_LITER_HOST_FIRST:
 211                        if (sata_pmp_attached(ap))
 212                                return ap->pmp_link;
 213                        /* fall through */
 214                case ATA_LITER_PMP_FIRST:
 215                        if (unlikely(ap->slave_link))
 216                                return ap->slave_link;
 217                        /* fall through */
 218                case ATA_LITER_EDGE:
 219                        return NULL;
 220                }
 221
 222        /* slave_link excludes PMP */
 223        if (unlikely(link == ap->slave_link))
 224                return NULL;
 225
 226        /* we were over a PMP link */
 227        if (++link < ap->pmp_link + ap->nr_pmp_links)
 228                return link;
 229
 230        if (mode == ATA_LITER_PMP_FIRST)
 231                return &ap->link;
 232
 233        return NULL;
 234}
 235
 236/**
 237 *      ata_dev_next - device iteration helper
 238 *      @dev: the previous device, NULL to start
 239 *      @link: ATA link containing devices to iterate
 240 *      @mode: iteration mode, one of ATA_DITER_*
 241 *
 242 *      LOCKING:
 243 *      Host lock or EH context.
 244 *
 245 *      RETURNS:
 246 *      Pointer to the next device.
 247 */
 248struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 249                                enum ata_dev_iter_mode mode)
 250{
 251        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 252               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 253
 254        /* NULL dev indicates start of iteration */
 255        if (!dev)
 256                switch (mode) {
 257                case ATA_DITER_ENABLED:
 258                case ATA_DITER_ALL:
 259                        dev = link->device;
 260                        goto check;
 261                case ATA_DITER_ENABLED_REVERSE:
 262                case ATA_DITER_ALL_REVERSE:
 263                        dev = link->device + ata_link_max_devices(link) - 1;
 264                        goto check;
 265                }
 266
 267 next:
 268        /* move to the next one */
 269        switch (mode) {
 270        case ATA_DITER_ENABLED:
 271        case ATA_DITER_ALL:
 272                if (++dev < link->device + ata_link_max_devices(link))
 273                        goto check;
 274                return NULL;
 275        case ATA_DITER_ENABLED_REVERSE:
 276        case ATA_DITER_ALL_REVERSE:
 277                if (--dev >= link->device)
 278                        goto check;
 279                return NULL;
 280        }
 281
 282 check:
 283        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 284            !ata_dev_enabled(dev))
 285                goto next;
 286        return dev;
 287}
 288
 289/**
 290 *      ata_dev_phys_link - find physical link for a device
 291 *      @dev: ATA device to look up physical link for
 292 *
 293 *      Look up physical link which @dev is attached to.  Note that
 294 *      this is different from @dev->link only when @dev is on slave
 295 *      link.  For all other cases, it's the same as @dev->link.
 296 *
 297 *      LOCKING:
 298 *      Don't care.
 299 *
 300 *      RETURNS:
 301 *      Pointer to the found physical link.
 302 */
 303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 304{
 305        struct ata_port *ap = dev->link->ap;
 306
 307        if (!ap->slave_link)
 308                return dev->link;
 309        if (!dev->devno)
 310                return &ap->link;
 311        return ap->slave_link;
 312}
 313
 314/**
 315 *      ata_force_cbl - force cable type according to libata.force
 316 *      @ap: ATA port of interest
 317 *
 318 *      Force cable type according to libata.force and whine about it.
 319 *      The last entry which has matching port number is used, so it
 320 *      can be specified as part of device force parameters.  For
 321 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 322 *      same effect.
 323 *
 324 *      LOCKING:
 325 *      EH context.
 326 */
 327void ata_force_cbl(struct ata_port *ap)
 328{
 329        int i;
 330
 331        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 332                const struct ata_force_ent *fe = &ata_force_tbl[i];
 333
 334                if (fe->port != -1 && fe->port != ap->print_id)
 335                        continue;
 336
 337                if (fe->param.cbl == ATA_CBL_NONE)
 338                        continue;
 339
 340                ap->cbl = fe->param.cbl;
 341                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 342                return;
 343        }
 344}
 345
 346/**
 347 *      ata_force_link_limits - force link limits according to libata.force
 348 *      @link: ATA link of interest
 349 *
 350 *      Force link flags and SATA spd limit according to libata.force
 351 *      and whine about it.  When only the port part is specified
 352 *      (e.g. 1:), the limit applies to all links connected to both
 353 *      the host link and all fan-out ports connected via PMP.  If the
 354 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 355 *      first fan-out link not the host link.  Device number 15 always
 356 *      points to the host link whether PMP is attached or not.  If the
 357 *      controller has slave link, device number 16 points to it.
 358 *
 359 *      LOCKING:
 360 *      EH context.
 361 */
 362static void ata_force_link_limits(struct ata_link *link)
 363{
 364        bool did_spd = false;
 365        int linkno = link->pmp;
 366        int i;
 367
 368        if (ata_is_host_link(link))
 369                linkno += 15;
 370
 371        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 372                const struct ata_force_ent *fe = &ata_force_tbl[i];
 373
 374                if (fe->port != -1 && fe->port != link->ap->print_id)
 375                        continue;
 376
 377                if (fe->device != -1 && fe->device != linkno)
 378                        continue;
 379
 380                /* only honor the first spd limit */
 381                if (!did_spd && fe->param.spd_limit) {
 382                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 383                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 384                                        fe->param.name);
 385                        did_spd = true;
 386                }
 387
 388                /* let lflags stack */
 389                if (fe->param.lflags) {
 390                        link->flags |= fe->param.lflags;
 391                        ata_link_notice(link,
 392                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 393                                        fe->param.lflags, link->flags);
 394                }
 395        }
 396}
 397
 398/**
 399 *      ata_force_xfermask - force xfermask according to libata.force
 400 *      @dev: ATA device of interest
 401 *
 402 *      Force xfer_mask according to libata.force and whine about it.
 403 *      For consistency with link selection, device number 15 selects
 404 *      the first device connected to the host link.
 405 *
 406 *      LOCKING:
 407 *      EH context.
 408 */
 409static void ata_force_xfermask(struct ata_device *dev)
 410{
 411        int devno = dev->link->pmp + dev->devno;
 412        int alt_devno = devno;
 413        int i;
 414
 415        /* allow n.15/16 for devices attached to host port */
 416        if (ata_is_host_link(dev->link))
 417                alt_devno += 15;
 418
 419        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 420                const struct ata_force_ent *fe = &ata_force_tbl[i];
 421                unsigned long pio_mask, mwdma_mask, udma_mask;
 422
 423                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 424                        continue;
 425
 426                if (fe->device != -1 && fe->device != devno &&
 427                    fe->device != alt_devno)
 428                        continue;
 429
 430                if (!fe->param.xfer_mask)
 431                        continue;
 432
 433                ata_unpack_xfermask(fe->param.xfer_mask,
 434                                    &pio_mask, &mwdma_mask, &udma_mask);
 435                if (udma_mask)
 436                        dev->udma_mask = udma_mask;
 437                else if (mwdma_mask) {
 438                        dev->udma_mask = 0;
 439                        dev->mwdma_mask = mwdma_mask;
 440                } else {
 441                        dev->udma_mask = 0;
 442                        dev->mwdma_mask = 0;
 443                        dev->pio_mask = pio_mask;
 444                }
 445
 446                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 447                               fe->param.name);
 448                return;
 449        }
 450}
 451
 452/**
 453 *      ata_force_horkage - force horkage according to libata.force
 454 *      @dev: ATA device of interest
 455 *
 456 *      Force horkage according to libata.force and whine about it.
 457 *      For consistency with link selection, device number 15 selects
 458 *      the first device connected to the host link.
 459 *
 460 *      LOCKING:
 461 *      EH context.
 462 */
 463static void ata_force_horkage(struct ata_device *dev)
 464{
 465        int devno = dev->link->pmp + dev->devno;
 466        int alt_devno = devno;
 467        int i;
 468
 469        /* allow n.15/16 for devices attached to host port */
 470        if (ata_is_host_link(dev->link))
 471                alt_devno += 15;
 472
 473        for (i = 0; i < ata_force_tbl_size; i++) {
 474                const struct ata_force_ent *fe = &ata_force_tbl[i];
 475
 476                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 477                        continue;
 478
 479                if (fe->device != -1 && fe->device != devno &&
 480                    fe->device != alt_devno)
 481                        continue;
 482
 483                if (!(~dev->horkage & fe->param.horkage_on) &&
 484                    !(dev->horkage & fe->param.horkage_off))
 485                        continue;
 486
 487                dev->horkage |= fe->param.horkage_on;
 488                dev->horkage &= ~fe->param.horkage_off;
 489
 490                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 491                               fe->param.name);
 492        }
 493}
 494
 495/**
 496 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 497 *      @opcode: SCSI opcode
 498 *
 499 *      Determine ATAPI command type from @opcode.
 500 *
 501 *      LOCKING:
 502 *      None.
 503 *
 504 *      RETURNS:
 505 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 506 */
 507int atapi_cmd_type(u8 opcode)
 508{
 509        switch (opcode) {
 510        case GPCMD_READ_10:
 511        case GPCMD_READ_12:
 512                return ATAPI_READ;
 513
 514        case GPCMD_WRITE_10:
 515        case GPCMD_WRITE_12:
 516        case GPCMD_WRITE_AND_VERIFY_10:
 517                return ATAPI_WRITE;
 518
 519        case GPCMD_READ_CD:
 520        case GPCMD_READ_CD_MSF:
 521                return ATAPI_READ_CD;
 522
 523        case ATA_16:
 524        case ATA_12:
 525                if (atapi_passthru16)
 526                        return ATAPI_PASS_THRU;
 527                /* fall thru */
 528        default:
 529                return ATAPI_MISC;
 530        }
 531}
 532
 533/**
 534 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 535 *      @tf: Taskfile to convert
 536 *      @pmp: Port multiplier port
 537 *      @is_cmd: This FIS is for command
 538 *      @fis: Buffer into which data will output
 539 *
 540 *      Converts a standard ATA taskfile to a Serial ATA
 541 *      FIS structure (Register - Host to Device).
 542 *
 543 *      LOCKING:
 544 *      Inherited from caller.
 545 */
 546void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 547{
 548        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 549        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 550        if (is_cmd)
 551                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 552
 553        fis[2] = tf->command;
 554        fis[3] = tf->feature;
 555
 556        fis[4] = tf->lbal;
 557        fis[5] = tf->lbam;
 558        fis[6] = tf->lbah;
 559        fis[7] = tf->device;
 560
 561        fis[8] = tf->hob_lbal;
 562        fis[9] = tf->hob_lbam;
 563        fis[10] = tf->hob_lbah;
 564        fis[11] = tf->hob_feature;
 565
 566        fis[12] = tf->nsect;
 567        fis[13] = tf->hob_nsect;
 568        fis[14] = 0;
 569        fis[15] = tf->ctl;
 570
 571        fis[16] = 0;
 572        fis[17] = 0;
 573        fis[18] = 0;
 574        fis[19] = 0;
 575}
 576
 577/**
 578 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 579 *      @fis: Buffer from which data will be input
 580 *      @tf: Taskfile to output
 581 *
 582 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 583 *
 584 *      LOCKING:
 585 *      Inherited from caller.
 586 */
 587
 588void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 589{
 590        tf->command     = fis[2];       /* status */
 591        tf->feature     = fis[3];       /* error */
 592
 593        tf->lbal        = fis[4];
 594        tf->lbam        = fis[5];
 595        tf->lbah        = fis[6];
 596        tf->device      = fis[7];
 597
 598        tf->hob_lbal    = fis[8];
 599        tf->hob_lbam    = fis[9];
 600        tf->hob_lbah    = fis[10];
 601
 602        tf->nsect       = fis[12];
 603        tf->hob_nsect   = fis[13];
 604}
 605
 606static const u8 ata_rw_cmds[] = {
 607        /* pio multi */
 608        ATA_CMD_READ_MULTI,
 609        ATA_CMD_WRITE_MULTI,
 610        ATA_CMD_READ_MULTI_EXT,
 611        ATA_CMD_WRITE_MULTI_EXT,
 612        0,
 613        0,
 614        0,
 615        ATA_CMD_WRITE_MULTI_FUA_EXT,
 616        /* pio */
 617        ATA_CMD_PIO_READ,
 618        ATA_CMD_PIO_WRITE,
 619        ATA_CMD_PIO_READ_EXT,
 620        ATA_CMD_PIO_WRITE_EXT,
 621        0,
 622        0,
 623        0,
 624        0,
 625        /* dma */
 626        ATA_CMD_READ,
 627        ATA_CMD_WRITE,
 628        ATA_CMD_READ_EXT,
 629        ATA_CMD_WRITE_EXT,
 630        0,
 631        0,
 632        0,
 633        ATA_CMD_WRITE_FUA_EXT
 634};
 635
 636/**
 637 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 638 *      @tf: command to examine and configure
 639 *      @dev: device tf belongs to
 640 *
 641 *      Examine the device configuration and tf->flags to calculate
 642 *      the proper read/write commands and protocol to use.
 643 *
 644 *      LOCKING:
 645 *      caller.
 646 */
 647static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 648{
 649        u8 cmd;
 650
 651        int index, fua, lba48, write;
 652
 653        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 654        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 655        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 656
 657        if (dev->flags & ATA_DFLAG_PIO) {
 658                tf->protocol = ATA_PROT_PIO;
 659                index = dev->multi_count ? 0 : 8;
 660        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 661                /* Unable to use DMA due to host limitation */
 662                tf->protocol = ATA_PROT_PIO;
 663                index = dev->multi_count ? 0 : 8;
 664        } else {
 665                tf->protocol = ATA_PROT_DMA;
 666                index = 16;
 667        }
 668
 669        cmd = ata_rw_cmds[index + fua + lba48 + write];
 670        if (cmd) {
 671                tf->command = cmd;
 672                return 0;
 673        }
 674        return -1;
 675}
 676
 677/**
 678 *      ata_tf_read_block - Read block address from ATA taskfile
 679 *      @tf: ATA taskfile of interest
 680 *      @dev: ATA device @tf belongs to
 681 *
 682 *      LOCKING:
 683 *      None.
 684 *
 685 *      Read block address from @tf.  This function can handle all
 686 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 687 *      flags select the address format to use.
 688 *
 689 *      RETURNS:
 690 *      Block address read from @tf.
 691 */
 692u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 693{
 694        u64 block = 0;
 695
 696        if (tf->flags & ATA_TFLAG_LBA) {
 697                if (tf->flags & ATA_TFLAG_LBA48) {
 698                        block |= (u64)tf->hob_lbah << 40;
 699                        block |= (u64)tf->hob_lbam << 32;
 700                        block |= (u64)tf->hob_lbal << 24;
 701                } else
 702                        block |= (tf->device & 0xf) << 24;
 703
 704                block |= tf->lbah << 16;
 705                block |= tf->lbam << 8;
 706                block |= tf->lbal;
 707        } else {
 708                u32 cyl, head, sect;
 709
 710                cyl = tf->lbam | (tf->lbah << 8);
 711                head = tf->device & 0xf;
 712                sect = tf->lbal;
 713
 714                if (!sect) {
 715                        ata_dev_warn(dev,
 716                                     "device reported invalid CHS sector 0\n");
 717                        sect = 1; /* oh well */
 718                }
 719
 720                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 721        }
 722
 723        return block;
 724}
 725
 726/**
 727 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 728 *      @tf: Target ATA taskfile
 729 *      @dev: ATA device @tf belongs to
 730 *      @block: Block address
 731 *      @n_block: Number of blocks
 732 *      @tf_flags: RW/FUA etc...
 733 *      @tag: tag
 734 *
 735 *      LOCKING:
 736 *      None.
 737 *
 738 *      Build ATA taskfile @tf for read/write request described by
 739 *      @block, @n_block, @tf_flags and @tag on @dev.
 740 *
 741 *      RETURNS:
 742 *
 743 *      0 on success, -ERANGE if the request is too large for @dev,
 744 *      -EINVAL if the request is invalid.
 745 */
 746int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 747                    u64 block, u32 n_block, unsigned int tf_flags,
 748                    unsigned int tag)
 749{
 750        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 751        tf->flags |= tf_flags;
 752
 753        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 754                /* yay, NCQ */
 755                if (!lba_48_ok(block, n_block))
 756                        return -ERANGE;
 757
 758                tf->protocol = ATA_PROT_NCQ;
 759                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 760
 761                if (tf->flags & ATA_TFLAG_WRITE)
 762                        tf->command = ATA_CMD_FPDMA_WRITE;
 763                else
 764                        tf->command = ATA_CMD_FPDMA_READ;
 765
 766                tf->nsect = tag << 3;
 767                tf->hob_feature = (n_block >> 8) & 0xff;
 768                tf->feature = n_block & 0xff;
 769
 770                tf->hob_lbah = (block >> 40) & 0xff;
 771                tf->hob_lbam = (block >> 32) & 0xff;
 772                tf->hob_lbal = (block >> 24) & 0xff;
 773                tf->lbah = (block >> 16) & 0xff;
 774                tf->lbam = (block >> 8) & 0xff;
 775                tf->lbal = block & 0xff;
 776
 777                tf->device = ATA_LBA;
 778                if (tf->flags & ATA_TFLAG_FUA)
 779                        tf->device |= 1 << 7;
 780        } else if (dev->flags & ATA_DFLAG_LBA) {
 781                tf->flags |= ATA_TFLAG_LBA;
 782
 783                if (lba_28_ok(block, n_block)) {
 784                        /* use LBA28 */
 785                        tf->device |= (block >> 24) & 0xf;
 786                } else if (lba_48_ok(block, n_block)) {
 787                        if (!(dev->flags & ATA_DFLAG_LBA48))
 788                                return -ERANGE;
 789
 790                        /* use LBA48 */
 791                        tf->flags |= ATA_TFLAG_LBA48;
 792
 793                        tf->hob_nsect = (n_block >> 8) & 0xff;
 794
 795                        tf->hob_lbah = (block >> 40) & 0xff;
 796                        tf->hob_lbam = (block >> 32) & 0xff;
 797                        tf->hob_lbal = (block >> 24) & 0xff;
 798                } else
 799                        /* request too large even for LBA48 */
 800                        return -ERANGE;
 801
 802                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 803                        return -EINVAL;
 804
 805                tf->nsect = n_block & 0xff;
 806
 807                tf->lbah = (block >> 16) & 0xff;
 808                tf->lbam = (block >> 8) & 0xff;
 809                tf->lbal = block & 0xff;
 810
 811                tf->device |= ATA_LBA;
 812        } else {
 813                /* CHS */
 814                u32 sect, head, cyl, track;
 815
 816                /* The request -may- be too large for CHS addressing. */
 817                if (!lba_28_ok(block, n_block))
 818                        return -ERANGE;
 819
 820                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 821                        return -EINVAL;
 822
 823                /* Convert LBA to CHS */
 824                track = (u32)block / dev->sectors;
 825                cyl   = track / dev->heads;
 826                head  = track % dev->heads;
 827                sect  = (u32)block % dev->sectors + 1;
 828
 829                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 830                        (u32)block, track, cyl, head, sect);
 831
 832                /* Check whether the converted CHS can fit.
 833                   Cylinder: 0-65535
 834                   Head: 0-15
 835                   Sector: 1-255*/
 836                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 837                        return -ERANGE;
 838
 839                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 840                tf->lbal = sect;
 841                tf->lbam = cyl;
 842                tf->lbah = cyl >> 8;
 843                tf->device |= head;
 844        }
 845
 846        return 0;
 847}
 848
 849/**
 850 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 851 *      @pio_mask: pio_mask
 852 *      @mwdma_mask: mwdma_mask
 853 *      @udma_mask: udma_mask
 854 *
 855 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 856 *      unsigned int xfer_mask.
 857 *
 858 *      LOCKING:
 859 *      None.
 860 *
 861 *      RETURNS:
 862 *      Packed xfer_mask.
 863 */
 864unsigned long ata_pack_xfermask(unsigned long pio_mask,
 865                                unsigned long mwdma_mask,
 866                                unsigned long udma_mask)
 867{
 868        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 869                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 870                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 871}
 872
 873/**
 874 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 875 *      @xfer_mask: xfer_mask to unpack
 876 *      @pio_mask: resulting pio_mask
 877 *      @mwdma_mask: resulting mwdma_mask
 878 *      @udma_mask: resulting udma_mask
 879 *
 880 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 881 *      Any NULL distination masks will be ignored.
 882 */
 883void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 884                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 885{
 886        if (pio_mask)
 887                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 888        if (mwdma_mask)
 889                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 890        if (udma_mask)
 891                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 892}
 893
 894static const struct ata_xfer_ent {
 895        int shift, bits;
 896        u8 base;
 897} ata_xfer_tbl[] = {
 898        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 899        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 900        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 901        { -1, },
 902};
 903
 904/**
 905 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 906 *      @xfer_mask: xfer_mask of interest
 907 *
 908 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 909 *      bit of @xfer_mask is considered.
 910 *
 911 *      LOCKING:
 912 *      None.
 913 *
 914 *      RETURNS:
 915 *      Matching XFER_* value, 0xff if no match found.
 916 */
 917u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 918{
 919        int highbit = fls(xfer_mask) - 1;
 920        const struct ata_xfer_ent *ent;
 921
 922        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 923                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 924                        return ent->base + highbit - ent->shift;
 925        return 0xff;
 926}
 927
 928/**
 929 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 930 *      @xfer_mode: XFER_* of interest
 931 *
 932 *      Return matching xfer_mask for @xfer_mode.
 933 *
 934 *      LOCKING:
 935 *      None.
 936 *
 937 *      RETURNS:
 938 *      Matching xfer_mask, 0 if no match found.
 939 */
 940unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 941{
 942        const struct ata_xfer_ent *ent;
 943
 944        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 945                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 946                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 947                                & ~((1 << ent->shift) - 1);
 948        return 0;
 949}
 950
 951/**
 952 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 953 *      @xfer_mode: XFER_* of interest
 954 *
 955 *      Return matching xfer_shift for @xfer_mode.
 956 *
 957 *      LOCKING:
 958 *      None.
 959 *
 960 *      RETURNS:
 961 *      Matching xfer_shift, -1 if no match found.
 962 */
 963int ata_xfer_mode2shift(unsigned long xfer_mode)
 964{
 965        const struct ata_xfer_ent *ent;
 966
 967        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 968                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 969                        return ent->shift;
 970        return -1;
 971}
 972
 973/**
 974 *      ata_mode_string - convert xfer_mask to string
 975 *      @xfer_mask: mask of bits supported; only highest bit counts.
 976 *
 977 *      Determine string which represents the highest speed
 978 *      (highest bit in @modemask).
 979 *
 980 *      LOCKING:
 981 *      None.
 982 *
 983 *      RETURNS:
 984 *      Constant C string representing highest speed listed in
 985 *      @mode_mask, or the constant C string "<n/a>".
 986 */
 987const char *ata_mode_string(unsigned long xfer_mask)
 988{
 989        static const char * const xfer_mode_str[] = {
 990                "PIO0",
 991                "PIO1",
 992                "PIO2",
 993                "PIO3",
 994                "PIO4",
 995                "PIO5",
 996                "PIO6",
 997                "MWDMA0",
 998                "MWDMA1",
 999                "MWDMA2",
1000                "MWDMA3",
1001                "MWDMA4",
1002                "UDMA/16",
1003                "UDMA/25",
1004                "UDMA/33",
1005                "UDMA/44",
1006                "UDMA/66",
1007                "UDMA/100",
1008                "UDMA/133",
1009                "UDMA7",
1010        };
1011        int highbit;
1012
1013        highbit = fls(xfer_mask) - 1;
1014        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015                return xfer_mode_str[highbit];
1016        return "<n/a>";
1017}
1018
1019const char *sata_spd_string(unsigned int spd)
1020{
1021        static const char * const spd_str[] = {
1022                "1.5 Gbps",
1023                "3.0 Gbps",
1024                "6.0 Gbps",
1025        };
1026
1027        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028                return "<unknown>";
1029        return spd_str[spd - 1];
1030}
1031
1032/**
1033 *      ata_dev_classify - determine device type based on ATA-spec signature
1034 *      @tf: ATA taskfile register set for device to be identified
1035 *
1036 *      Determine from taskfile register contents whether a device is
1037 *      ATA or ATAPI, as per "Signature and persistence" section
1038 *      of ATA/PI spec (volume 1, sect 5.14).
1039 *
1040 *      LOCKING:
1041 *      None.
1042 *
1043 *      RETURNS:
1044 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045 *      %ATA_DEV_UNKNOWN the event of failure.
1046 */
1047unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048{
1049        /* Apple's open source Darwin code hints that some devices only
1050         * put a proper signature into the LBA mid/high registers,
1051         * So, we only check those.  It's sufficient for uniqueness.
1052         *
1053         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054         * signatures for ATA and ATAPI devices attached on SerialATA,
1055         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1056         * spec has never mentioned about using different signatures
1057         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1058         * Multiplier specification began to use 0x69/0x96 to identify
1059         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061         * 0x69/0x96 shortly and described them as reserved for
1062         * SerialATA.
1063         *
1064         * We follow the current spec and consider that 0x69/0x96
1065         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067         * SEMB signature.  This is worked around in
1068         * ata_dev_read_id().
1069         */
1070        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071                DPRINTK("found ATA device by sig\n");
1072                return ATA_DEV_ATA;
1073        }
1074
1075        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076                DPRINTK("found ATAPI device by sig\n");
1077                return ATA_DEV_ATAPI;
1078        }
1079
1080        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081                DPRINTK("found PMP device by sig\n");
1082                return ATA_DEV_PMP;
1083        }
1084
1085        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087                return ATA_DEV_SEMB;
1088        }
1089
1090        DPRINTK("unknown device\n");
1091        return ATA_DEV_UNKNOWN;
1092}
1093
1094/**
1095 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1096 *      @id: IDENTIFY DEVICE results we will examine
1097 *      @s: string into which data is output
1098 *      @ofs: offset into identify device page
1099 *      @len: length of string to return. must be an even number.
1100 *
1101 *      The strings in the IDENTIFY DEVICE page are broken up into
1102 *      16-bit chunks.  Run through the string, and output each
1103 *      8-bit chunk linearly, regardless of platform.
1104 *
1105 *      LOCKING:
1106 *      caller.
1107 */
1108
1109void ata_id_string(const u16 *id, unsigned char *s,
1110                   unsigned int ofs, unsigned int len)
1111{
1112        unsigned int c;
1113
1114        BUG_ON(len & 1);
1115
1116        while (len > 0) {
1117                c = id[ofs] >> 8;
1118                *s = c;
1119                s++;
1120
1121                c = id[ofs] & 0xff;
1122                *s = c;
1123                s++;
1124
1125                ofs++;
1126                len -= 2;
1127        }
1128}
1129
1130/**
1131 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132 *      @id: IDENTIFY DEVICE results we will examine
1133 *      @s: string into which data is output
1134 *      @ofs: offset into identify device page
1135 *      @len: length of string to return. must be an odd number.
1136 *
1137 *      This function is identical to ata_id_string except that it
1138 *      trims trailing spaces and terminates the resulting string with
1139 *      null.  @len must be actual maximum length (even number) + 1.
1140 *
1141 *      LOCKING:
1142 *      caller.
1143 */
1144void ata_id_c_string(const u16 *id, unsigned char *s,
1145                     unsigned int ofs, unsigned int len)
1146{
1147        unsigned char *p;
1148
1149        ata_id_string(id, s, ofs, len - 1);
1150
1151        p = s + strnlen(s, len - 1);
1152        while (p > s && p[-1] == ' ')
1153                p--;
1154        *p = '\0';
1155}
1156
1157static u64 ata_id_n_sectors(const u16 *id)
1158{
1159        if (ata_id_has_lba(id)) {
1160                if (ata_id_has_lba48(id))
1161                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162                else
1163                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164        } else {
1165                if (ata_id_current_chs_valid(id))
1166                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167                               id[ATA_ID_CUR_SECTORS];
1168                else
1169                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170                               id[ATA_ID_SECTORS];
1171        }
1172}
1173
1174u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175{
1176        u64 sectors = 0;
1177
1178        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181        sectors |= (tf->lbah & 0xff) << 16;
1182        sectors |= (tf->lbam & 0xff) << 8;
1183        sectors |= (tf->lbal & 0xff);
1184
1185        return sectors;
1186}
1187
1188u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189{
1190        u64 sectors = 0;
1191
1192        sectors |= (tf->device & 0x0f) << 24;
1193        sectors |= (tf->lbah & 0xff) << 16;
1194        sectors |= (tf->lbam & 0xff) << 8;
1195        sectors |= (tf->lbal & 0xff);
1196
1197        return sectors;
1198}
1199
1200/**
1201 *      ata_read_native_max_address - Read native max address
1202 *      @dev: target device
1203 *      @max_sectors: out parameter for the result native max address
1204 *
1205 *      Perform an LBA48 or LBA28 native size query upon the device in
1206 *      question.
1207 *
1208 *      RETURNS:
1209 *      0 on success, -EACCES if command is aborted by the drive.
1210 *      -EIO on other errors.
1211 */
1212static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213{
1214        unsigned int err_mask;
1215        struct ata_taskfile tf;
1216        int lba48 = ata_id_has_lba48(dev->id);
1217
1218        ata_tf_init(dev, &tf);
1219
1220        /* always clear all address registers */
1221        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223        if (lba48) {
1224                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225                tf.flags |= ATA_TFLAG_LBA48;
1226        } else
1227                tf.command = ATA_CMD_READ_NATIVE_MAX;
1228
1229        tf.protocol |= ATA_PROT_NODATA;
1230        tf.device |= ATA_LBA;
1231
1232        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233        if (err_mask) {
1234                ata_dev_warn(dev,
1235                             "failed to read native max address (err_mask=0x%x)\n",
1236                             err_mask);
1237                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238                        return -EACCES;
1239                return -EIO;
1240        }
1241
1242        if (lba48)
1243                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1244        else
1245                *max_sectors = ata_tf_to_lba(&tf) + 1;
1246        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247                (*max_sectors)--;
1248        return 0;
1249}
1250
1251/**
1252 *      ata_set_max_sectors - Set max sectors
1253 *      @dev: target device
1254 *      @new_sectors: new max sectors value to set for the device
1255 *
1256 *      Set max sectors of @dev to @new_sectors.
1257 *
1258 *      RETURNS:
1259 *      0 on success, -EACCES if command is aborted or denied (due to
1260 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1261 *      errors.
1262 */
1263static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264{
1265        unsigned int err_mask;
1266        struct ata_taskfile tf;
1267        int lba48 = ata_id_has_lba48(dev->id);
1268
1269        new_sectors--;
1270
1271        ata_tf_init(dev, &tf);
1272
1273        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274
1275        if (lba48) {
1276                tf.command = ATA_CMD_SET_MAX_EXT;
1277                tf.flags |= ATA_TFLAG_LBA48;
1278
1279                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282        } else {
1283                tf.command = ATA_CMD_SET_MAX;
1284
1285                tf.device |= (new_sectors >> 24) & 0xf;
1286        }
1287
1288        tf.protocol |= ATA_PROT_NODATA;
1289        tf.device |= ATA_LBA;
1290
1291        tf.lbal = (new_sectors >> 0) & 0xff;
1292        tf.lbam = (new_sectors >> 8) & 0xff;
1293        tf.lbah = (new_sectors >> 16) & 0xff;
1294
1295        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296        if (err_mask) {
1297                ata_dev_warn(dev,
1298                             "failed to set max address (err_mask=0x%x)\n",
1299                             err_mask);
1300                if (err_mask == AC_ERR_DEV &&
1301                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302                        return -EACCES;
1303                return -EIO;
1304        }
1305
1306        return 0;
1307}
1308
1309/**
1310 *      ata_hpa_resize          -       Resize a device with an HPA set
1311 *      @dev: Device to resize
1312 *
1313 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314 *      it if required to the full size of the media. The caller must check
1315 *      the drive has the HPA feature set enabled.
1316 *
1317 *      RETURNS:
1318 *      0 on success, -errno on failure.
1319 */
1320static int ata_hpa_resize(struct ata_device *dev)
1321{
1322        struct ata_eh_context *ehc = &dev->link->eh_context;
1323        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325        u64 sectors = ata_id_n_sectors(dev->id);
1326        u64 native_sectors;
1327        int rc;
1328
1329        /* do we need to do it? */
1330        if (dev->class != ATA_DEV_ATA ||
1331            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333                return 0;
1334
1335        /* read native max address */
1336        rc = ata_read_native_max_address(dev, &native_sectors);
1337        if (rc) {
1338                /* If device aborted the command or HPA isn't going to
1339                 * be unlocked, skip HPA resizing.
1340                 */
1341                if (rc == -EACCES || !unlock_hpa) {
1342                        ata_dev_warn(dev,
1343                                     "HPA support seems broken, skipping HPA handling\n");
1344                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345
1346                        /* we can continue if device aborted the command */
1347                        if (rc == -EACCES)
1348                                rc = 0;
1349                }
1350
1351                return rc;
1352        }
1353        dev->n_native_sectors = native_sectors;
1354
1355        /* nothing to do? */
1356        if (native_sectors <= sectors || !unlock_hpa) {
1357                if (!print_info || native_sectors == sectors)
1358                        return 0;
1359
1360                if (native_sectors > sectors)
1361                        ata_dev_info(dev,
1362                                "HPA detected: current %llu, native %llu\n",
1363                                (unsigned long long)sectors,
1364                                (unsigned long long)native_sectors);
1365                else if (native_sectors < sectors)
1366                        ata_dev_warn(dev,
1367                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1368                                (unsigned long long)native_sectors,
1369                                (unsigned long long)sectors);
1370                return 0;
1371        }
1372
1373        /* let's unlock HPA */
1374        rc = ata_set_max_sectors(dev, native_sectors);
1375        if (rc == -EACCES) {
1376                /* if device aborted the command, skip HPA resizing */
1377                ata_dev_warn(dev,
1378                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379                             (unsigned long long)sectors,
1380                             (unsigned long long)native_sectors);
1381                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382                return 0;
1383        } else if (rc)
1384                return rc;
1385
1386        /* re-read IDENTIFY data */
1387        rc = ata_dev_reread_id(dev, 0);
1388        if (rc) {
1389                ata_dev_err(dev,
1390                            "failed to re-read IDENTIFY data after HPA resizing\n");
1391                return rc;
1392        }
1393
1394        if (print_info) {
1395                u64 new_sectors = ata_id_n_sectors(dev->id);
1396                ata_dev_info(dev,
1397                        "HPA unlocked: %llu -> %llu, native %llu\n",
1398                        (unsigned long long)sectors,
1399                        (unsigned long long)new_sectors,
1400                        (unsigned long long)native_sectors);
1401        }
1402
1403        return 0;
1404}
1405
1406/**
1407 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1408 *      @id: IDENTIFY DEVICE page to dump
1409 *
1410 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1411 *      page.
1412 *
1413 *      LOCKING:
1414 *      caller.
1415 */
1416
1417static inline void ata_dump_id(const u16 *id)
1418{
1419        DPRINTK("49==0x%04x  "
1420                "53==0x%04x  "
1421                "63==0x%04x  "
1422                "64==0x%04x  "
1423                "75==0x%04x  \n",
1424                id[49],
1425                id[53],
1426                id[63],
1427                id[64],
1428                id[75]);
1429        DPRINTK("80==0x%04x  "
1430                "81==0x%04x  "
1431                "82==0x%04x  "
1432                "83==0x%04x  "
1433                "84==0x%04x  \n",
1434                id[80],
1435                id[81],
1436                id[82],
1437                id[83],
1438                id[84]);
1439        DPRINTK("88==0x%04x  "
1440                "93==0x%04x\n",
1441                id[88],
1442                id[93]);
1443}
1444
1445/**
1446 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447 *      @id: IDENTIFY data to compute xfer mask from
1448 *
1449 *      Compute the xfermask for this device. This is not as trivial
1450 *      as it seems if we must consider early devices correctly.
1451 *
1452 *      FIXME: pre IDE drive timing (do we care ?).
1453 *
1454 *      LOCKING:
1455 *      None.
1456 *
1457 *      RETURNS:
1458 *      Computed xfermask
1459 */
1460unsigned long ata_id_xfermask(const u16 *id)
1461{
1462        unsigned long pio_mask, mwdma_mask, udma_mask;
1463
1464        /* Usual case. Word 53 indicates word 64 is valid */
1465        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467                pio_mask <<= 3;
1468                pio_mask |= 0x7;
1469        } else {
1470                /* If word 64 isn't valid then Word 51 high byte holds
1471                 * the PIO timing number for the maximum. Turn it into
1472                 * a mask.
1473                 */
1474                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475                if (mode < 5)   /* Valid PIO range */
1476                        pio_mask = (2 << mode) - 1;
1477                else
1478                        pio_mask = 1;
1479
1480                /* But wait.. there's more. Design your standards by
1481                 * committee and you too can get a free iordy field to
1482                 * process. However its the speeds not the modes that
1483                 * are supported... Note drivers using the timing API
1484                 * will get this right anyway
1485                 */
1486        }
1487
1488        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489
1490        if (ata_id_is_cfa(id)) {
1491                /*
1492                 *      Process compact flash extended modes
1493                 */
1494                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496
1497                if (pio)
1498                        pio_mask |= (1 << 5);
1499                if (pio > 1)
1500                        pio_mask |= (1 << 6);
1501                if (dma)
1502                        mwdma_mask |= (1 << 3);
1503                if (dma > 1)
1504                        mwdma_mask |= (1 << 4);
1505        }
1506
1507        udma_mask = 0;
1508        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510
1511        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512}
1513
1514static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515{
1516        struct completion *waiting = qc->private_data;
1517
1518        complete(waiting);
1519}
1520
1521/**
1522 *      ata_exec_internal_sg - execute libata internal command
1523 *      @dev: Device to which the command is sent
1524 *      @tf: Taskfile registers for the command and the result
1525 *      @cdb: CDB for packet command
1526 *      @dma_dir: Data tranfer direction of the command
1527 *      @sgl: sg list for the data buffer of the command
1528 *      @n_elem: Number of sg entries
1529 *      @timeout: Timeout in msecs (0 for default)
1530 *
1531 *      Executes libata internal command with timeout.  @tf contains
1532 *      command on entry and result on return.  Timeout and error
1533 *      conditions are reported via return value.  No recovery action
1534 *      is taken after a command times out.  It's caller's duty to
1535 *      clean up after timeout.
1536 *
1537 *      LOCKING:
1538 *      None.  Should be called with kernel context, might sleep.
1539 *
1540 *      RETURNS:
1541 *      Zero on success, AC_ERR_* mask on failure
1542 */
1543unsigned ata_exec_internal_sg(struct ata_device *dev,
1544                              struct ata_taskfile *tf, const u8 *cdb,
1545                              int dma_dir, struct scatterlist *sgl,
1546                              unsigned int n_elem, unsigned long timeout)
1547{
1548        struct ata_link *link = dev->link;
1549        struct ata_port *ap = link->ap;
1550        u8 command = tf->command;
1551        int auto_timeout = 0;
1552        struct ata_queued_cmd *qc;
1553        unsigned int tag, preempted_tag;
1554        u32 preempted_sactive, preempted_qc_active;
1555        int preempted_nr_active_links;
1556        DECLARE_COMPLETION_ONSTACK(wait);
1557        unsigned long flags;
1558        unsigned int err_mask;
1559        int rc;
1560
1561        spin_lock_irqsave(ap->lock, flags);
1562
1563        /* no internal command while frozen */
1564        if (ap->pflags & ATA_PFLAG_FROZEN) {
1565                spin_unlock_irqrestore(ap->lock, flags);
1566                return AC_ERR_SYSTEM;
1567        }
1568
1569        /* initialize internal qc */
1570
1571        /* XXX: Tag 0 is used for drivers with legacy EH as some
1572         * drivers choke if any other tag is given.  This breaks
1573         * ata_tag_internal() test for those drivers.  Don't use new
1574         * EH stuff without converting to it.
1575         */
1576        if (ap->ops->error_handler)
1577                tag = ATA_TAG_INTERNAL;
1578        else
1579                tag = 0;
1580
1581        if (test_and_set_bit(tag, &ap->qc_allocated))
1582                BUG();
1583        qc = __ata_qc_from_tag(ap, tag);
1584
1585        qc->tag = tag;
1586        qc->scsicmd = NULL;
1587        qc->ap = ap;
1588        qc->dev = dev;
1589        ata_qc_reinit(qc);
1590
1591        preempted_tag = link->active_tag;
1592        preempted_sactive = link->sactive;
1593        preempted_qc_active = ap->qc_active;
1594        preempted_nr_active_links = ap->nr_active_links;
1595        link->active_tag = ATA_TAG_POISON;
1596        link->sactive = 0;
1597        ap->qc_active = 0;
1598        ap->nr_active_links = 0;
1599
1600        /* prepare & issue qc */
1601        qc->tf = *tf;
1602        if (cdb)
1603                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604        qc->flags |= ATA_QCFLAG_RESULT_TF;
1605        qc->dma_dir = dma_dir;
1606        if (dma_dir != DMA_NONE) {
1607                unsigned int i, buflen = 0;
1608                struct scatterlist *sg;
1609
1610                for_each_sg(sgl, sg, n_elem, i)
1611                        buflen += sg->length;
1612
1613                ata_sg_init(qc, sgl, n_elem);
1614                qc->nbytes = buflen;
1615        }
1616
1617        qc->private_data = &wait;
1618        qc->complete_fn = ata_qc_complete_internal;
1619
1620        ata_qc_issue(qc);
1621
1622        spin_unlock_irqrestore(ap->lock, flags);
1623
1624        if (!timeout) {
1625                if (ata_probe_timeout)
1626                        timeout = ata_probe_timeout * 1000;
1627                else {
1628                        timeout = ata_internal_cmd_timeout(dev, command);
1629                        auto_timeout = 1;
1630                }
1631        }
1632
1633        if (ap->ops->error_handler)
1634                ata_eh_release(ap);
1635
1636        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637
1638        if (ap->ops->error_handler)
1639                ata_eh_acquire(ap);
1640
1641        ata_sff_flush_pio_task(ap);
1642
1643        if (!rc) {
1644                spin_lock_irqsave(ap->lock, flags);
1645
1646                /* We're racing with irq here.  If we lose, the
1647                 * following test prevents us from completing the qc
1648                 * twice.  If we win, the port is frozen and will be
1649                 * cleaned up by ->post_internal_cmd().
1650                 */
1651                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652                        qc->err_mask |= AC_ERR_TIMEOUT;
1653
1654                        if (ap->ops->error_handler)
1655                                ata_port_freeze(ap);
1656                        else
1657                                ata_qc_complete(qc);
1658
1659                        if (ata_msg_warn(ap))
1660                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661                                             command);
1662                }
1663
1664                spin_unlock_irqrestore(ap->lock, flags);
1665        }
1666
1667        /* do post_internal_cmd */
1668        if (ap->ops->post_internal_cmd)
1669                ap->ops->post_internal_cmd(qc);
1670
1671        /* perform minimal error analysis */
1672        if (qc->flags & ATA_QCFLAG_FAILED) {
1673                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674                        qc->err_mask |= AC_ERR_DEV;
1675
1676                if (!qc->err_mask)
1677                        qc->err_mask |= AC_ERR_OTHER;
1678
1679                if (qc->err_mask & ~AC_ERR_OTHER)
1680                        qc->err_mask &= ~AC_ERR_OTHER;
1681        }
1682
1683        /* finish up */
1684        spin_lock_irqsave(ap->lock, flags);
1685
1686        *tf = qc->result_tf;
1687        err_mask = qc->err_mask;
1688
1689        ata_qc_free(qc);
1690        link->active_tag = preempted_tag;
1691        link->sactive = preempted_sactive;
1692        ap->qc_active = preempted_qc_active;
1693        ap->nr_active_links = preempted_nr_active_links;
1694
1695        spin_unlock_irqrestore(ap->lock, flags);
1696
1697        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698                ata_internal_cmd_timed_out(dev, command);
1699
1700        return err_mask;
1701}
1702
1703/**
1704 *      ata_exec_internal - execute libata internal command
1705 *      @dev: Device to which the command is sent
1706 *      @tf: Taskfile registers for the command and the result
1707 *      @cdb: CDB for packet command
1708 *      @dma_dir: Data tranfer direction of the command
1709 *      @buf: Data buffer of the command
1710 *      @buflen: Length of data buffer
1711 *      @timeout: Timeout in msecs (0 for default)
1712 *
1713 *      Wrapper around ata_exec_internal_sg() which takes simple
1714 *      buffer instead of sg list.
1715 *
1716 *      LOCKING:
1717 *      None.  Should be called with kernel context, might sleep.
1718 *
1719 *      RETURNS:
1720 *      Zero on success, AC_ERR_* mask on failure
1721 */
1722unsigned ata_exec_internal(struct ata_device *dev,
1723                           struct ata_taskfile *tf, const u8 *cdb,
1724                           int dma_dir, void *buf, unsigned int buflen,
1725                           unsigned long timeout)
1726{
1727        struct scatterlist *psg = NULL, sg;
1728        unsigned int n_elem = 0;
1729
1730        if (dma_dir != DMA_NONE) {
1731                WARN_ON(!buf);
1732                sg_init_one(&sg, buf, buflen);
1733                psg = &sg;
1734                n_elem++;
1735        }
1736
1737        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738                                    timeout);
1739}
1740
1741/**
1742 *      ata_do_simple_cmd - execute simple internal command
1743 *      @dev: Device to which the command is sent
1744 *      @cmd: Opcode to execute
1745 *
1746 *      Execute a 'simple' command, that only consists of the opcode
1747 *      'cmd' itself, without filling any other registers
1748 *
1749 *      LOCKING:
1750 *      Kernel thread context (may sleep).
1751 *
1752 *      RETURNS:
1753 *      Zero on success, AC_ERR_* mask on failure
1754 */
1755unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756{
1757        struct ata_taskfile tf;
1758
1759        ata_tf_init(dev, &tf);
1760
1761        tf.command = cmd;
1762        tf.flags |= ATA_TFLAG_DEVICE;
1763        tf.protocol = ATA_PROT_NODATA;
1764
1765        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766}
1767
1768/**
1769 *      ata_pio_need_iordy      -       check if iordy needed
1770 *      @adev: ATA device
1771 *
1772 *      Check if the current speed of the device requires IORDY. Used
1773 *      by various controllers for chip configuration.
1774 */
1775unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776{
1777        /* Don't set IORDY if we're preparing for reset.  IORDY may
1778         * lead to controller lock up on certain controllers if the
1779         * port is not occupied.  See bko#11703 for details.
1780         */
1781        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782                return 0;
1783        /* Controller doesn't support IORDY.  Probably a pointless
1784         * check as the caller should know this.
1785         */
1786        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787                return 0;
1788        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1789        if (ata_id_is_cfa(adev->id)
1790            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791                return 0;
1792        /* PIO3 and higher it is mandatory */
1793        if (adev->pio_mode > XFER_PIO_2)
1794                return 1;
1795        /* We turn it on when possible */
1796        if (ata_id_has_iordy(adev->id))
1797                return 1;
1798        return 0;
1799}
1800
1801/**
1802 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1803 *      @adev: ATA device
1804 *
1805 *      Compute the highest mode possible if we are not using iordy. Return
1806 *      -1 if no iordy mode is available.
1807 */
1808static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809{
1810        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1811        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1812                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813                /* Is the speed faster than the drive allows non IORDY ? */
1814                if (pio) {
1815                        /* This is cycle times not frequency - watch the logic! */
1816                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1817                                return 3 << ATA_SHIFT_PIO;
1818                        return 7 << ATA_SHIFT_PIO;
1819                }
1820        }
1821        return 3 << ATA_SHIFT_PIO;
1822}
1823
1824/**
1825 *      ata_do_dev_read_id              -       default ID read method
1826 *      @dev: device
1827 *      @tf: proposed taskfile
1828 *      @id: data buffer
1829 *
1830 *      Issue the identify taskfile and hand back the buffer containing
1831 *      identify data. For some RAID controllers and for pre ATA devices
1832 *      this function is wrapped or replaced by the driver
1833 */
1834unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835                                        struct ata_taskfile *tf, u16 *id)
1836{
1837        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839}
1840
1841/**
1842 *      ata_dev_read_id - Read ID data from the specified device
1843 *      @dev: target device
1844 *      @p_class: pointer to class of the target device (may be changed)
1845 *      @flags: ATA_READID_* flags
1846 *      @id: buffer to read IDENTIFY data into
1847 *
1848 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1849 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1851 *      for pre-ATA4 drives.
1852 *
1853 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854 *      now we abort if we hit that case.
1855 *
1856 *      LOCKING:
1857 *      Kernel thread context (may sleep)
1858 *
1859 *      RETURNS:
1860 *      0 on success, -errno otherwise.
1861 */
1862int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863                    unsigned int flags, u16 *id)
1864{
1865        struct ata_port *ap = dev->link->ap;
1866        unsigned int class = *p_class;
1867        struct ata_taskfile tf;
1868        unsigned int err_mask = 0;
1869        const char *reason;
1870        bool is_semb = class == ATA_DEV_SEMB;
1871        int may_fallback = 1, tried_spinup = 0;
1872        int rc;
1873
1874        if (ata_msg_ctl(ap))
1875                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876
1877retry:
1878        ata_tf_init(dev, &tf);
1879
1880        switch (class) {
1881        case ATA_DEV_SEMB:
1882                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1883        case ATA_DEV_ATA:
1884                tf.command = ATA_CMD_ID_ATA;
1885                break;
1886        case ATA_DEV_ATAPI:
1887                tf.command = ATA_CMD_ID_ATAPI;
1888                break;
1889        default:
1890                rc = -ENODEV;
1891                reason = "unsupported class";
1892                goto err_out;
1893        }
1894
1895        tf.protocol = ATA_PROT_PIO;
1896
1897        /* Some devices choke if TF registers contain garbage.  Make
1898         * sure those are properly initialized.
1899         */
1900        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902        /* Device presence detection is unreliable on some
1903         * controllers.  Always poll IDENTIFY if available.
1904         */
1905        tf.flags |= ATA_TFLAG_POLLING;
1906
1907        if (ap->ops->read_id)
1908                err_mask = ap->ops->read_id(dev, &tf, id);
1909        else
1910                err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912        if (err_mask) {
1913                if (err_mask & AC_ERR_NODEV_HINT) {
1914                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1915                        return -ENOENT;
1916                }
1917
1918                if (is_semb) {
1919                        ata_dev_info(dev,
1920                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921                        /* SEMB is not supported yet */
1922                        *p_class = ATA_DEV_SEMB_UNSUP;
1923                        return 0;
1924                }
1925
1926                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927                        /* Device or controller might have reported
1928                         * the wrong device class.  Give a shot at the
1929                         * other IDENTIFY if the current one is
1930                         * aborted by the device.
1931                         */
1932                        if (may_fallback) {
1933                                may_fallback = 0;
1934
1935                                if (class == ATA_DEV_ATA)
1936                                        class = ATA_DEV_ATAPI;
1937                                else
1938                                        class = ATA_DEV_ATA;
1939                                goto retry;
1940                        }
1941
1942                        /* Control reaches here iff the device aborted
1943                         * both flavors of IDENTIFYs which happens
1944                         * sometimes with phantom devices.
1945                         */
1946                        ata_dev_dbg(dev,
1947                                    "both IDENTIFYs aborted, assuming NODEV\n");
1948                        return -ENOENT;
1949                }
1950
1951                rc = -EIO;
1952                reason = "I/O error";
1953                goto err_out;
1954        }
1955
1956        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958                            "class=%d may_fallback=%d tried_spinup=%d\n",
1959                            class, may_fallback, tried_spinup);
1960                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962        }
1963
1964        /* Falling back doesn't make sense if ID data was read
1965         * successfully at least once.
1966         */
1967        may_fallback = 0;
1968
1969        swap_buf_le16(id, ATA_ID_WORDS);
1970
1971        /* sanity check */
1972        rc = -EINVAL;
1973        reason = "device reports invalid type";
1974
1975        if (class == ATA_DEV_ATA) {
1976                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977                        goto err_out;
1978                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979                                                        ata_id_is_ata(id)) {
1980                        ata_dev_dbg(dev,
1981                                "host indicates ignore ATA devices, ignored\n");
1982                        return -ENOENT;
1983                }
1984        } else {
1985                if (ata_id_is_ata(id))
1986                        goto err_out;
1987        }
1988
1989        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990                tried_spinup = 1;
1991                /*
1992                 * Drive powered-up in standby mode, and requires a specific
1993                 * SET_FEATURES spin-up subcommand before it will accept
1994                 * anything other than the original IDENTIFY command.
1995                 */
1996                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997                if (err_mask && id[2] != 0x738c) {
1998                        rc = -EIO;
1999                        reason = "SPINUP failed";
2000                        goto err_out;
2001                }
2002                /*
2003                 * If the drive initially returned incomplete IDENTIFY info,
2004                 * we now must reissue the IDENTIFY command.
2005                 */
2006                if (id[2] == 0x37c8)
2007                        goto retry;
2008        }
2009
2010        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011                /*
2012                 * The exact sequence expected by certain pre-ATA4 drives is:
2013                 * SRST RESET
2014                 * IDENTIFY (optional in early ATA)
2015                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016                 * anything else..
2017                 * Some drives were very specific about that exact sequence.
2018                 *
2019                 * Note that ATA4 says lba is mandatory so the second check
2020                 * should never trigger.
2021                 */
2022                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024                        if (err_mask) {
2025                                rc = -EIO;
2026                                reason = "INIT_DEV_PARAMS failed";
2027                                goto err_out;
2028                        }
2029
2030                        /* current CHS translation info (id[53-58]) might be
2031                         * changed. reread the identify device info.
2032                         */
2033                        flags &= ~ATA_READID_POSTRESET;
2034                        goto retry;
2035                }
2036        }
2037
2038        *p_class = class;
2039
2040        return 0;
2041
2042 err_out:
2043        if (ata_msg_warn(ap))
2044                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045                             reason, err_mask);
2046        return rc;
2047}
2048
2049static int ata_do_link_spd_horkage(struct ata_device *dev)
2050{
2051        struct ata_link *plink = ata_dev_phys_link(dev);
2052        u32 target, target_limit;
2053
2054        if (!sata_scr_valid(plink))
2055                return 0;
2056
2057        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058                target = 1;
2059        else
2060                return 0;
2061
2062        target_limit = (1 << target) - 1;
2063
2064        /* if already on stricter limit, no need to push further */
2065        if (plink->sata_spd_limit <= target_limit)
2066                return 0;
2067
2068        plink->sata_spd_limit = target_limit;
2069
2070        /* Request another EH round by returning -EAGAIN if link is
2071         * going faster than the target speed.  Forward progress is
2072         * guaranteed by setting sata_spd_limit to target_limit above.
2073         */
2074        if (plink->sata_spd > target) {
2075                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076                             sata_spd_string(target));
2077                return -EAGAIN;
2078        }
2079        return 0;
2080}
2081
2082static inline u8 ata_dev_knobble(struct ata_device *dev)
2083{
2084        struct ata_port *ap = dev->link->ap;
2085
2086        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087                return 0;
2088
2089        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090}
2091
2092static int ata_dev_config_ncq(struct ata_device *dev,
2093                               char *desc, size_t desc_sz)
2094{
2095        struct ata_port *ap = dev->link->ap;
2096        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097        unsigned int err_mask;
2098        char *aa_desc = "";
2099
2100        if (!ata_id_has_ncq(dev->id)) {
2101                desc[0] = '\0';
2102                return 0;
2103        }
2104        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105                snprintf(desc, desc_sz, "NCQ (not used)");
2106                return 0;
2107        }
2108        if (ap->flags & ATA_FLAG_NCQ) {
2109                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110                dev->flags |= ATA_DFLAG_NCQ;
2111        }
2112
2113        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2115                ata_id_has_fpdma_aa(dev->id)) {
2116                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117                        SATA_FPDMA_AA);
2118                if (err_mask) {
2119                        ata_dev_err(dev,
2120                                    "failed to enable AA (error_mask=0x%x)\n",
2121                                    err_mask);
2122                        if (err_mask != AC_ERR_DEV) {
2123                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124                                return -EIO;
2125                        }
2126                } else
2127                        aa_desc = ", AA";
2128        }
2129
2130        if (hdepth >= ddepth)
2131                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132        else
2133                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134                        ddepth, aa_desc);
2135        return 0;
2136}
2137
2138/**
2139 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2140 *      @dev: Target device to configure
2141 *
2142 *      Configure @dev according to @dev->id.  Generic and low-level
2143 *      driver specific fixups are also applied.
2144 *
2145 *      LOCKING:
2146 *      Kernel thread context (may sleep)
2147 *
2148 *      RETURNS:
2149 *      0 on success, -errno otherwise
2150 */
2151int ata_dev_configure(struct ata_device *dev)
2152{
2153        struct ata_port *ap = dev->link->ap;
2154        struct ata_eh_context *ehc = &dev->link->eh_context;
2155        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156        const u16 *id = dev->id;
2157        unsigned long xfer_mask;
2158        unsigned int err_mask;
2159        char revbuf[7];         /* XYZ-99\0 */
2160        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2161        char modelbuf[ATA_ID_PROD_LEN+1];
2162        int rc;
2163
2164        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2165                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2166                return 0;
2167        }
2168
2169        if (ata_msg_probe(ap))
2170                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2171
2172        /* set horkage */
2173        dev->horkage |= ata_dev_blacklisted(dev);
2174        ata_force_horkage(dev);
2175
2176        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2177                ata_dev_info(dev, "unsupported device, disabling\n");
2178                ata_dev_disable(dev);
2179                return 0;
2180        }
2181
2182        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2183            dev->class == ATA_DEV_ATAPI) {
2184                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2185                             atapi_enabled ? "not supported with this driver"
2186                             : "disabled");
2187                ata_dev_disable(dev);
2188                return 0;
2189        }
2190
2191        rc = ata_do_link_spd_horkage(dev);
2192        if (rc)
2193                return rc;
2194
2195        /* let ACPI work its magic */
2196        rc = ata_acpi_on_devcfg(dev);
2197        if (rc)
2198                return rc;
2199
2200        /* massage HPA, do it early as it might change IDENTIFY data */
2201        rc = ata_hpa_resize(dev);
2202        if (rc)
2203                return rc;
2204
2205        /* print device capabilities */
2206        if (ata_msg_probe(ap))
2207                ata_dev_dbg(dev,
2208                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2209                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2210                            __func__,
2211                            id[49], id[82], id[83], id[84],
2212                            id[85], id[86], id[87], id[88]);
2213
2214        /* initialize to-be-configured parameters */
2215        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2216        dev->max_sectors = 0;
2217        dev->cdb_len = 0;
2218        dev->n_sectors = 0;
2219        dev->cylinders = 0;
2220        dev->heads = 0;
2221        dev->sectors = 0;
2222        dev->multi_count = 0;
2223
2224        /*
2225         * common ATA, ATAPI feature tests
2226         */
2227
2228        /* find max transfer mode; for printk only */
2229        xfer_mask = ata_id_xfermask(id);
2230
2231        if (ata_msg_probe(ap))
2232                ata_dump_id(id);
2233
2234        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2235        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2236                        sizeof(fwrevbuf));
2237
2238        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2239                        sizeof(modelbuf));
2240
2241        /* ATA-specific feature tests */
2242        if (dev->class == ATA_DEV_ATA) {
2243                if (ata_id_is_cfa(id)) {
2244                        /* CPRM may make this media unusable */
2245                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2246                                ata_dev_warn(dev,
2247        "supports DRM functions and may not be fully accessible\n");
2248                        snprintf(revbuf, 7, "CFA");
2249                } else {
2250                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2251                        /* Warn the user if the device has TPM extensions */
2252                        if (ata_id_has_tpm(id))
2253                                ata_dev_warn(dev,
2254        "supports DRM functions and may not be fully accessible\n");
2255                }
2256
2257                dev->n_sectors = ata_id_n_sectors(id);
2258
2259                /* get current R/W Multiple count setting */
2260                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2261                        unsigned int max = dev->id[47] & 0xff;
2262                        unsigned int cnt = dev->id[59] & 0xff;
2263                        /* only recognize/allow powers of two here */
2264                        if (is_power_of_2(max) && is_power_of_2(cnt))
2265                                if (cnt <= max)
2266                                        dev->multi_count = cnt;
2267                }
2268
2269                if (ata_id_has_lba(id)) {
2270                        const char *lba_desc;
2271                        char ncq_desc[24];
2272
2273                        lba_desc = "LBA";
2274                        dev->flags |= ATA_DFLAG_LBA;
2275                        if (ata_id_has_lba48(id)) {
2276                                dev->flags |= ATA_DFLAG_LBA48;
2277                                lba_desc = "LBA48";
2278
2279                                if (dev->n_sectors >= (1UL << 28) &&
2280                                    ata_id_has_flush_ext(id))
2281                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2282                        }
2283
2284                        /* config NCQ */
2285                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2286                        if (rc)
2287                                return rc;
2288
2289                        /* print device info to dmesg */
2290                        if (ata_msg_drv(ap) && print_info) {
2291                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2292                                             revbuf, modelbuf, fwrevbuf,
2293                                             ata_mode_string(xfer_mask));
2294                                ata_dev_info(dev,
2295                                             "%llu sectors, multi %u: %s %s\n",
2296                                        (unsigned long long)dev->n_sectors,
2297                                        dev->multi_count, lba_desc, ncq_desc);
2298                        }
2299                } else {
2300                        /* CHS */
2301
2302                        /* Default translation */
2303                        dev->cylinders  = id[1];
2304                        dev->heads      = id[3];
2305                        dev->sectors    = id[6];
2306
2307                        if (ata_id_current_chs_valid(id)) {
2308                                /* Current CHS translation is valid. */
2309                                dev->cylinders = id[54];
2310                                dev->heads     = id[55];
2311                                dev->sectors   = id[56];
2312                        }
2313
2314                        /* print device info to dmesg */
2315                        if (ata_msg_drv(ap) && print_info) {
2316                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2317                                             revbuf,    modelbuf, fwrevbuf,
2318                                             ata_mode_string(xfer_mask));
2319                                ata_dev_info(dev,
2320                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2321                                             (unsigned long long)dev->n_sectors,
2322                                             dev->multi_count, dev->cylinders,
2323                                             dev->heads, dev->sectors);
2324                        }
2325                }
2326
2327                /* Check and mark DevSlp capability. Get DevSlp timing variables
2328                 * from SATA Settings page of Identify Device Data Log.
2329                 */
2330                if (ata_id_has_devslp(dev->id)) {
2331                        u8 sata_setting[ATA_SECT_SIZE];
2332                        int i, j;
2333
2334                        dev->flags |= ATA_DFLAG_DEVSLP;
2335                        err_mask = ata_read_log_page(dev,
2336                                                     ATA_LOG_SATA_ID_DEV_DATA,
2337                                                     ATA_LOG_SATA_SETTINGS,
2338                                                     sata_setting,
2339                                                     1);
2340                        if (err_mask)
2341                                ata_dev_dbg(dev,
2342                                            "failed to get Identify Device Data, Emask 0x%x\n",
2343                                            err_mask);
2344                        else
2345                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2346                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2347                                        dev->devslp_timing[i] = sata_setting[j];
2348                                }
2349                }
2350
2351                dev->cdb_len = 16;
2352        }
2353
2354        /* ATAPI-specific feature tests */
2355        else if (dev->class == ATA_DEV_ATAPI) {
2356                const char *cdb_intr_string = "";
2357                const char *atapi_an_string = "";
2358                const char *dma_dir_string = "";
2359                u32 sntf;
2360
2361                rc = atapi_cdb_len(id);
2362                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2363                        if (ata_msg_warn(ap))
2364                                ata_dev_warn(dev, "unsupported CDB len\n");
2365                        rc = -EINVAL;
2366                        goto err_out_nosup;
2367                }
2368                dev->cdb_len = (unsigned int) rc;
2369
2370                /* Enable ATAPI AN if both the host and device have
2371                 * the support.  If PMP is attached, SNTF is required
2372                 * to enable ATAPI AN to discern between PHY status
2373                 * changed notifications and ATAPI ANs.
2374                 */
2375                if (atapi_an &&
2376                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2377                    (!sata_pmp_attached(ap) ||
2378                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2379                        /* issue SET feature command to turn this on */
2380                        err_mask = ata_dev_set_feature(dev,
2381                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2382                        if (err_mask)
2383                                ata_dev_err(dev,
2384                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2385                                            err_mask);
2386                        else {
2387                                dev->flags |= ATA_DFLAG_AN;
2388                                atapi_an_string = ", ATAPI AN";
2389                        }
2390                }
2391
2392                if (ata_id_cdb_intr(dev->id)) {
2393                        dev->flags |= ATA_DFLAG_CDB_INTR;
2394                        cdb_intr_string = ", CDB intr";
2395                }
2396
2397                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2398                        dev->flags |= ATA_DFLAG_DMADIR;
2399                        dma_dir_string = ", DMADIR";
2400                }
2401
2402                if (ata_id_has_da(dev->id))
2403                        dev->flags |= ATA_DFLAG_DA;
2404
2405                /* print device info to dmesg */
2406                if (ata_msg_drv(ap) && print_info)
2407                        ata_dev_info(dev,
2408                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2409                                     modelbuf, fwrevbuf,
2410                                     ata_mode_string(xfer_mask),
2411                                     cdb_intr_string, atapi_an_string,
2412                                     dma_dir_string);
2413        }
2414
2415        /* determine max_sectors */
2416        dev->max_sectors = ATA_MAX_SECTORS;
2417        if (dev->flags & ATA_DFLAG_LBA48)
2418                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2419
2420        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2421           200 sectors */
2422        if (ata_dev_knobble(dev)) {
2423                if (ata_msg_drv(ap) && print_info)
2424                        ata_dev_info(dev, "applying bridge limits\n");
2425                dev->udma_mask &= ATA_UDMA5;
2426                dev->max_sectors = ATA_MAX_SECTORS;
2427        }
2428
2429        if ((dev->class == ATA_DEV_ATAPI) &&
2430            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2431                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2432                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2433        }
2434
2435        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2436                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2437                                         dev->max_sectors);
2438
2439        if (ap->ops->dev_config)
2440                ap->ops->dev_config(dev);
2441
2442        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2443                /* Let the user know. We don't want to disallow opens for
2444                   rescue purposes, or in case the vendor is just a blithering
2445                   idiot. Do this after the dev_config call as some controllers
2446                   with buggy firmware may want to avoid reporting false device
2447                   bugs */
2448
2449                if (print_info) {
2450                        ata_dev_warn(dev,
2451"Drive reports diagnostics failure. This may indicate a drive\n");
2452                        ata_dev_warn(dev,
2453"fault or invalid emulation. Contact drive vendor for information.\n");
2454                }
2455        }
2456
2457        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2458                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2459                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2460        }
2461
2462        return 0;
2463
2464err_out_nosup:
2465        if (ata_msg_probe(ap))
2466                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2467        return rc;
2468}
2469
2470/**
2471 *      ata_cable_40wire        -       return 40 wire cable type
2472 *      @ap: port
2473 *
2474 *      Helper method for drivers which want to hardwire 40 wire cable
2475 *      detection.
2476 */
2477
2478int ata_cable_40wire(struct ata_port *ap)
2479{
2480        return ATA_CBL_PATA40;
2481}
2482
2483/**
2484 *      ata_cable_80wire        -       return 80 wire cable type
2485 *      @ap: port
2486 *
2487 *      Helper method for drivers which want to hardwire 80 wire cable
2488 *      detection.
2489 */
2490
2491int ata_cable_80wire(struct ata_port *ap)
2492{
2493        return ATA_CBL_PATA80;
2494}
2495
2496/**
2497 *      ata_cable_unknown       -       return unknown PATA cable.
2498 *      @ap: port
2499 *
2500 *      Helper method for drivers which have no PATA cable detection.
2501 */
2502
2503int ata_cable_unknown(struct ata_port *ap)
2504{
2505        return ATA_CBL_PATA_UNK;
2506}
2507
2508/**
2509 *      ata_cable_ignore        -       return ignored PATA cable.
2510 *      @ap: port
2511 *
2512 *      Helper method for drivers which don't use cable type to limit
2513 *      transfer mode.
2514 */
2515int ata_cable_ignore(struct ata_port *ap)
2516{
2517        return ATA_CBL_PATA_IGN;
2518}
2519
2520/**
2521 *      ata_cable_sata  -       return SATA cable type
2522 *      @ap: port
2523 *
2524 *      Helper method for drivers which have SATA cables
2525 */
2526
2527int ata_cable_sata(struct ata_port *ap)
2528{
2529        return ATA_CBL_SATA;
2530}
2531
2532/**
2533 *      ata_bus_probe - Reset and probe ATA bus
2534 *      @ap: Bus to probe
2535 *
2536 *      Master ATA bus probing function.  Initiates a hardware-dependent
2537 *      bus reset, then attempts to identify any devices found on
2538 *      the bus.
2539 *
2540 *      LOCKING:
2541 *      PCI/etc. bus probe sem.
2542 *
2543 *      RETURNS:
2544 *      Zero on success, negative errno otherwise.
2545 */
2546
2547int ata_bus_probe(struct ata_port *ap)
2548{
2549        unsigned int classes[ATA_MAX_DEVICES];
2550        int tries[ATA_MAX_DEVICES];
2551        int rc;
2552        struct ata_device *dev;
2553
2554        ata_for_each_dev(dev, &ap->link, ALL)
2555                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2556
2557 retry:
2558        ata_for_each_dev(dev, &ap->link, ALL) {
2559                /* If we issue an SRST then an ATA drive (not ATAPI)
2560                 * may change configuration and be in PIO0 timing. If
2561                 * we do a hard reset (or are coming from power on)
2562                 * this is true for ATA or ATAPI. Until we've set a
2563                 * suitable controller mode we should not touch the
2564                 * bus as we may be talking too fast.
2565                 */
2566                dev->pio_mode = XFER_PIO_0;
2567                dev->dma_mode = 0xff;
2568
2569                /* If the controller has a pio mode setup function
2570                 * then use it to set the chipset to rights. Don't
2571                 * touch the DMA setup as that will be dealt with when
2572                 * configuring devices.
2573                 */
2574                if (ap->ops->set_piomode)
2575                        ap->ops->set_piomode(ap, dev);
2576        }
2577
2578        /* reset and determine device classes */
2579        ap->ops->phy_reset(ap);
2580
2581        ata_for_each_dev(dev, &ap->link, ALL) {
2582                if (dev->class != ATA_DEV_UNKNOWN)
2583                        classes[dev->devno] = dev->class;
2584                else
2585                        classes[dev->devno] = ATA_DEV_NONE;
2586
2587                dev->class = ATA_DEV_UNKNOWN;
2588        }
2589
2590        /* read IDENTIFY page and configure devices. We have to do the identify
2591           specific sequence bass-ackwards so that PDIAG- is released by
2592           the slave device */
2593
2594        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2595                if (tries[dev->devno])
2596                        dev->class = classes[dev->devno];
2597
2598                if (!ata_dev_enabled(dev))
2599                        continue;
2600
2601                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2602                                     dev->id);
2603                if (rc)
2604                        goto fail;
2605        }
2606
2607        /* Now ask for the cable type as PDIAG- should have been released */
2608        if (ap->ops->cable_detect)
2609                ap->cbl = ap->ops->cable_detect(ap);
2610
2611        /* We may have SATA bridge glue hiding here irrespective of
2612         * the reported cable types and sensed types.  When SATA
2613         * drives indicate we have a bridge, we don't know which end
2614         * of the link the bridge is which is a problem.
2615         */
2616        ata_for_each_dev(dev, &ap->link, ENABLED)
2617                if (ata_id_is_sata(dev->id))
2618                        ap->cbl = ATA_CBL_SATA;
2619
2620        /* After the identify sequence we can now set up the devices. We do
2621           this in the normal order so that the user doesn't get confused */
2622
2623        ata_for_each_dev(dev, &ap->link, ENABLED) {
2624                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2625                rc = ata_dev_configure(dev);
2626                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2627                if (rc)
2628                        goto fail;
2629        }
2630
2631        /* configure transfer mode */
2632        rc = ata_set_mode(&ap->link, &dev);
2633        if (rc)
2634                goto fail;
2635
2636        ata_for_each_dev(dev, &ap->link, ENABLED)
2637                return 0;
2638
2639        return -ENODEV;
2640
2641 fail:
2642        tries[dev->devno]--;
2643
2644        switch (rc) {
2645        case -EINVAL:
2646                /* eeek, something went very wrong, give up */
2647                tries[dev->devno] = 0;
2648                break;
2649
2650        case -ENODEV:
2651                /* give it just one more chance */
2652                tries[dev->devno] = min(tries[dev->devno], 1);
2653        case -EIO:
2654                if (tries[dev->devno] == 1) {
2655                        /* This is the last chance, better to slow
2656                         * down than lose it.
2657                         */
2658                        sata_down_spd_limit(&ap->link, 0);
2659                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2660                }
2661        }
2662
2663        if (!tries[dev->devno])
2664                ata_dev_disable(dev);
2665
2666        goto retry;
2667}
2668
2669/**
2670 *      sata_print_link_status - Print SATA link status
2671 *      @link: SATA link to printk link status about
2672 *
2673 *      This function prints link speed and status of a SATA link.
2674 *
2675 *      LOCKING:
2676 *      None.
2677 */
2678static void sata_print_link_status(struct ata_link *link)
2679{
2680        u32 sstatus, scontrol, tmp;
2681
2682        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2683                return;
2684        sata_scr_read(link, SCR_CONTROL, &scontrol);
2685
2686        if (ata_phys_link_online(link)) {
2687                tmp = (sstatus >> 4) & 0xf;
2688                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2689                              sata_spd_string(tmp), sstatus, scontrol);
2690        } else {
2691                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2692                              sstatus, scontrol);
2693        }
2694}
2695
2696/**
2697 *      ata_dev_pair            -       return other device on cable
2698 *      @adev: device
2699 *
2700 *      Obtain the other device on the same cable, or if none is
2701 *      present NULL is returned
2702 */
2703
2704struct ata_device *ata_dev_pair(struct ata_device *adev)
2705{
2706        struct ata_link *link = adev->link;
2707        struct ata_device *pair = &link->device[1 - adev->devno];
2708        if (!ata_dev_enabled(pair))
2709                return NULL;
2710        return pair;
2711}
2712
2713/**
2714 *      sata_down_spd_limit - adjust SATA spd limit downward
2715 *      @link: Link to adjust SATA spd limit for
2716 *      @spd_limit: Additional limit
2717 *
2718 *      Adjust SATA spd limit of @link downward.  Note that this
2719 *      function only adjusts the limit.  The change must be applied
2720 *      using sata_set_spd().
2721 *
2722 *      If @spd_limit is non-zero, the speed is limited to equal to or
2723 *      lower than @spd_limit if such speed is supported.  If
2724 *      @spd_limit is slower than any supported speed, only the lowest
2725 *      supported speed is allowed.
2726 *
2727 *      LOCKING:
2728 *      Inherited from caller.
2729 *
2730 *      RETURNS:
2731 *      0 on success, negative errno on failure
2732 */
2733int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2734{
2735        u32 sstatus, spd, mask;
2736        int rc, bit;
2737
2738        if (!sata_scr_valid(link))
2739                return -EOPNOTSUPP;
2740
2741        /* If SCR can be read, use it to determine the current SPD.
2742         * If not, use cached value in link->sata_spd.
2743         */
2744        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2745        if (rc == 0 && ata_sstatus_online(sstatus))
2746                spd = (sstatus >> 4) & 0xf;
2747        else
2748                spd = link->sata_spd;
2749
2750        mask = link->sata_spd_limit;
2751        if (mask <= 1)
2752                return -EINVAL;
2753
2754        /* unconditionally mask off the highest bit */
2755        bit = fls(mask) - 1;
2756        mask &= ~(1 << bit);
2757
2758        /* Mask off all speeds higher than or equal to the current
2759         * one.  Force 1.5Gbps if current SPD is not available.
2760         */
2761        if (spd > 1)
2762                mask &= (1 << (spd - 1)) - 1;
2763        else
2764                mask &= 1;
2765
2766        /* were we already at the bottom? */
2767        if (!mask)
2768                return -EINVAL;
2769
2770        if (spd_limit) {
2771                if (mask & ((1 << spd_limit) - 1))
2772                        mask &= (1 << spd_limit) - 1;
2773                else {
2774                        bit = ffs(mask) - 1;
2775                        mask = 1 << bit;
2776                }
2777        }
2778
2779        link->sata_spd_limit = mask;
2780
2781        ata_link_warn(link, "limiting SATA link speed to %s\n",
2782                      sata_spd_string(fls(mask)));
2783
2784        return 0;
2785}
2786
2787static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2788{
2789        struct ata_link *host_link = &link->ap->link;
2790        u32 limit, target, spd;
2791
2792        limit = link->sata_spd_limit;
2793
2794        /* Don't configure downstream link faster than upstream link.
2795         * It doesn't speed up anything and some PMPs choke on such
2796         * configuration.
2797         */
2798        if (!ata_is_host_link(link) && host_link->sata_spd)
2799                limit &= (1 << host_link->sata_spd) - 1;
2800
2801        if (limit == UINT_MAX)
2802                target = 0;
2803        else
2804                target = fls(limit);
2805
2806        spd = (*scontrol >> 4) & 0xf;
2807        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2808
2809        return spd != target;
2810}
2811
2812/**
2813 *      sata_set_spd_needed - is SATA spd configuration needed
2814 *      @link: Link in question
2815 *
2816 *      Test whether the spd limit in SControl matches
2817 *      @link->sata_spd_limit.  This function is used to determine
2818 *      whether hardreset is necessary to apply SATA spd
2819 *      configuration.
2820 *
2821 *      LOCKING:
2822 *      Inherited from caller.
2823 *
2824 *      RETURNS:
2825 *      1 if SATA spd configuration is needed, 0 otherwise.
2826 */
2827static int sata_set_spd_needed(struct ata_link *link)
2828{
2829        u32 scontrol;
2830
2831        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2832                return 1;
2833
2834        return __sata_set_spd_needed(link, &scontrol);
2835}
2836
2837/**
2838 *      sata_set_spd - set SATA spd according to spd limit
2839 *      @link: Link to set SATA spd for
2840 *
2841 *      Set SATA spd of @link according to sata_spd_limit.
2842 *
2843 *      LOCKING:
2844 *      Inherited from caller.
2845 *
2846 *      RETURNS:
2847 *      0 if spd doesn't need to be changed, 1 if spd has been
2848 *      changed.  Negative errno if SCR registers are inaccessible.
2849 */
2850int sata_set_spd(struct ata_link *link)
2851{
2852        u32 scontrol;
2853        int rc;
2854
2855        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2856                return rc;
2857
2858        if (!__sata_set_spd_needed(link, &scontrol))
2859                return 0;
2860
2861        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2862                return rc;
2863
2864        return 1;
2865}
2866
2867/*
2868 * This mode timing computation functionality is ported over from
2869 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2870 */
2871/*
2872 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2873 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2874 * for UDMA6, which is currently supported only by Maxtor drives.
2875 *
2876 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2877 */
2878
2879static const struct ata_timing ata_timing[] = {
2880/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2881        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2882        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2883        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2884        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2885        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2886        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2887        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2888
2889        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2890        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2891        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2892
2893        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2894        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2895        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2896        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2897        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2898
2899/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2900        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2901        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2902        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2903        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2904        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2905        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2906        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2907
2908        { 0xFF }
2909};
2910
2911#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2912#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2913
2914static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2915{
2916        q->setup        = EZ(t->setup      * 1000,  T);
2917        q->act8b        = EZ(t->act8b      * 1000,  T);
2918        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2919        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2920        q->active       = EZ(t->active     * 1000,  T);
2921        q->recover      = EZ(t->recover    * 1000,  T);
2922        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2923        q->cycle        = EZ(t->cycle      * 1000,  T);
2924        q->udma         = EZ(t->udma       * 1000, UT);
2925}
2926
2927void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2928                      struct ata_timing *m, unsigned int what)
2929{
2930        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2931        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2932        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2933        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2934        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2935        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2936        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2937        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2938        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2939}
2940
2941const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2942{
2943        const struct ata_timing *t = ata_timing;
2944
2945        while (xfer_mode > t->mode)
2946                t++;
2947
2948        if (xfer_mode == t->mode)
2949                return t;
2950
2951        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2952                        __func__, xfer_mode);
2953
2954        return NULL;
2955}
2956
2957int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2958                       struct ata_timing *t, int T, int UT)
2959{
2960        const u16 *id = adev->id;
2961        const struct ata_timing *s;
2962        struct ata_timing p;
2963
2964        /*
2965         * Find the mode.
2966         */
2967
2968        if (!(s = ata_timing_find_mode(speed)))
2969                return -EINVAL;
2970
2971        memcpy(t, s, sizeof(*s));
2972
2973        /*
2974         * If the drive is an EIDE drive, it can tell us it needs extended
2975         * PIO/MW_DMA cycle timing.
2976         */
2977
2978        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2979                memset(&p, 0, sizeof(p));
2980
2981                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2982                        if (speed <= XFER_PIO_2)
2983                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2984                        else if ((speed <= XFER_PIO_4) ||
2985                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2986                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2987                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2988                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2989
2990                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2991        }
2992
2993        /*
2994         * Convert the timing to bus clock counts.
2995         */
2996
2997        ata_timing_quantize(t, t, T, UT);
2998
2999        /*
3000         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3001         * S.M.A.R.T * and some other commands. We have to ensure that the
3002         * DMA cycle timing is slower/equal than the fastest PIO timing.
3003         */
3004
3005        if (speed > XFER_PIO_6) {
3006                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3007                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3008        }
3009
3010        /*
3011         * Lengthen active & recovery time so that cycle time is correct.
3012         */
3013
3014        if (t->act8b + t->rec8b < t->cyc8b) {
3015                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3016                t->rec8b = t->cyc8b - t->act8b;
3017        }
3018
3019        if (t->active + t->recover < t->cycle) {
3020                t->active += (t->cycle - (t->active + t->recover)) / 2;
3021                t->recover = t->cycle - t->active;
3022        }
3023
3024        /* In a few cases quantisation may produce enough errors to
3025           leave t->cycle too low for the sum of active and recovery
3026           if so we must correct this */
3027        if (t->active + t->recover > t->cycle)
3028                t->cycle = t->active + t->recover;
3029
3030        return 0;
3031}
3032
3033/**
3034 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3035 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3036 *      @cycle: cycle duration in ns
3037 *
3038 *      Return matching xfer mode for @cycle.  The returned mode is of
3039 *      the transfer type specified by @xfer_shift.  If @cycle is too
3040 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3041 *      than the fastest known mode, the fasted mode is returned.
3042 *
3043 *      LOCKING:
3044 *      None.
3045 *
3046 *      RETURNS:
3047 *      Matching xfer_mode, 0xff if no match found.
3048 */
3049u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3050{
3051        u8 base_mode = 0xff, last_mode = 0xff;
3052        const struct ata_xfer_ent *ent;
3053        const struct ata_timing *t;
3054
3055        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3056                if (ent->shift == xfer_shift)
3057                        base_mode = ent->base;
3058
3059        for (t = ata_timing_find_mode(base_mode);
3060             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3061                unsigned short this_cycle;
3062
3063                switch (xfer_shift) {
3064                case ATA_SHIFT_PIO:
3065                case ATA_SHIFT_MWDMA:
3066                        this_cycle = t->cycle;
3067                        break;
3068                case ATA_SHIFT_UDMA:
3069                        this_cycle = t->udma;
3070                        break;
3071                default:
3072                        return 0xff;
3073                }
3074
3075                if (cycle > this_cycle)
3076                        break;
3077
3078                last_mode = t->mode;
3079        }
3080
3081        return last_mode;
3082}
3083
3084/**
3085 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3086 *      @dev: Device to adjust xfer masks
3087 *      @sel: ATA_DNXFER_* selector
3088 *
3089 *      Adjust xfer masks of @dev downward.  Note that this function
3090 *      does not apply the change.  Invoking ata_set_mode() afterwards
3091 *      will apply the limit.
3092 *
3093 *      LOCKING:
3094 *      Inherited from caller.
3095 *
3096 *      RETURNS:
3097 *      0 on success, negative errno on failure
3098 */
3099int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3100{
3101        char buf[32];
3102        unsigned long orig_mask, xfer_mask;
3103        unsigned long pio_mask, mwdma_mask, udma_mask;
3104        int quiet, highbit;
3105
3106        quiet = !!(sel & ATA_DNXFER_QUIET);
3107        sel &= ~ATA_DNXFER_QUIET;
3108
3109        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3110                                                  dev->mwdma_mask,
3111                                                  dev->udma_mask);
3112        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3113
3114        switch (sel) {
3115        case ATA_DNXFER_PIO:
3116                highbit = fls(pio_mask) - 1;
3117                pio_mask &= ~(1 << highbit);
3118                break;
3119
3120        case ATA_DNXFER_DMA:
3121                if (udma_mask) {
3122                        highbit = fls(udma_mask) - 1;
3123                        udma_mask &= ~(1 << highbit);
3124                        if (!udma_mask)
3125                                return -ENOENT;
3126                } else if (mwdma_mask) {
3127                        highbit = fls(mwdma_mask) - 1;
3128                        mwdma_mask &= ~(1 << highbit);
3129                        if (!mwdma_mask)
3130                                return -ENOENT;
3131                }
3132                break;
3133
3134        case ATA_DNXFER_40C:
3135                udma_mask &= ATA_UDMA_MASK_40C;
3136                break;
3137
3138        case ATA_DNXFER_FORCE_PIO0:
3139                pio_mask &= 1;
3140        case ATA_DNXFER_FORCE_PIO:
3141                mwdma_mask = 0;
3142                udma_mask = 0;
3143                break;
3144
3145        default:
3146                BUG();
3147        }
3148
3149        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3150
3151        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3152                return -ENOENT;
3153
3154        if (!quiet) {
3155                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3156                        snprintf(buf, sizeof(buf), "%s:%s",
3157                                 ata_mode_string(xfer_mask),
3158                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3159                else
3160                        snprintf(buf, sizeof(buf), "%s",
3161                                 ata_mode_string(xfer_mask));
3162
3163                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3164        }
3165
3166        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3167                            &dev->udma_mask);
3168
3169        return 0;
3170}
3171
3172static int ata_dev_set_mode(struct ata_device *dev)
3173{
3174        struct ata_port *ap = dev->link->ap;
3175        struct ata_eh_context *ehc = &dev->link->eh_context;
3176        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3177        const char *dev_err_whine = "";
3178        int ign_dev_err = 0;
3179        unsigned int err_mask = 0;
3180        int rc;
3181
3182        dev->flags &= ~ATA_DFLAG_PIO;
3183        if (dev->xfer_shift == ATA_SHIFT_PIO)
3184                dev->flags |= ATA_DFLAG_PIO;
3185
3186        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3187                dev_err_whine = " (SET_XFERMODE skipped)";
3188        else {
3189                if (nosetxfer)
3190                        ata_dev_warn(dev,
3191                                     "NOSETXFER but PATA detected - can't "
3192                                     "skip SETXFER, might malfunction\n");
3193                err_mask = ata_dev_set_xfermode(dev);
3194        }
3195
3196        if (err_mask & ~AC_ERR_DEV)
3197                goto fail;
3198
3199        /* revalidate */
3200        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3201        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3202        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3203        if (rc)
3204                return rc;
3205
3206        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3207                /* Old CFA may refuse this command, which is just fine */
3208                if (ata_id_is_cfa(dev->id))
3209                        ign_dev_err = 1;
3210                /* Catch several broken garbage emulations plus some pre
3211                   ATA devices */
3212                if (ata_id_major_version(dev->id) == 0 &&
3213                                        dev->pio_mode <= XFER_PIO_2)
3214                        ign_dev_err = 1;
3215                /* Some very old devices and some bad newer ones fail
3216                   any kind of SET_XFERMODE request but support PIO0-2
3217                   timings and no IORDY */
3218                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3219                        ign_dev_err = 1;
3220        }
3221        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3222           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3223        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3224            dev->dma_mode == XFER_MW_DMA_0 &&
3225            (dev->id[63] >> 8) & 1)
3226                ign_dev_err = 1;
3227
3228        /* if the device is actually configured correctly, ignore dev err */
3229        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3230                ign_dev_err = 1;
3231
3232        if (err_mask & AC_ERR_DEV) {
3233                if (!ign_dev_err)
3234                        goto fail;
3235                else
3236                        dev_err_whine = " (device error ignored)";
3237        }
3238
3239        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3240                dev->xfer_shift, (int)dev->xfer_mode);
3241
3242        ata_dev_info(dev, "configured for %s%s\n",
3243                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3244                     dev_err_whine);
3245
3246        return 0;
3247
3248 fail:
3249        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3250        return -EIO;
3251}
3252
3253/**
3254 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3255 *      @link: link on which timings will be programmed
3256 *      @r_failed_dev: out parameter for failed device
3257 *
3258 *      Standard implementation of the function used to tune and set
3259 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3260 *      ata_dev_set_mode() fails, pointer to the failing device is
3261 *      returned in @r_failed_dev.
3262 *
3263 *      LOCKING:
3264 *      PCI/etc. bus probe sem.
3265 *
3266 *      RETURNS:
3267 *      0 on success, negative errno otherwise
3268 */
3269
3270int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3271{
3272        struct ata_port *ap = link->ap;
3273        struct ata_device *dev;
3274        int rc = 0, used_dma = 0, found = 0;
3275
3276        /* step 1: calculate xfer_mask */
3277        ata_for_each_dev(dev, link, ENABLED) {
3278                unsigned long pio_mask, dma_mask;
3279                unsigned int mode_mask;
3280
3281                mode_mask = ATA_DMA_MASK_ATA;
3282                if (dev->class == ATA_DEV_ATAPI)
3283                        mode_mask = ATA_DMA_MASK_ATAPI;
3284                else if (ata_id_is_cfa(dev->id))
3285                        mode_mask = ATA_DMA_MASK_CFA;
3286
3287                ata_dev_xfermask(dev);
3288                ata_force_xfermask(dev);
3289
3290                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3291
3292                if (libata_dma_mask & mode_mask)
3293                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3294                                                     dev->udma_mask);
3295                else
3296                        dma_mask = 0;
3297
3298                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3299                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3300
3301                found = 1;
3302                if (ata_dma_enabled(dev))
3303                        used_dma = 1;
3304        }
3305        if (!found)
3306                goto out;
3307
3308        /* step 2: always set host PIO timings */
3309        ata_for_each_dev(dev, link, ENABLED) {
3310                if (dev->pio_mode == 0xff) {
3311                        ata_dev_warn(dev, "no PIO support\n");
3312                        rc = -EINVAL;
3313                        goto out;
3314                }
3315
3316                dev->xfer_mode = dev->pio_mode;
3317                dev->xfer_shift = ATA_SHIFT_PIO;
3318                if (ap->ops->set_piomode)
3319                        ap->ops->set_piomode(ap, dev);
3320        }
3321
3322        /* step 3: set host DMA timings */
3323        ata_for_each_dev(dev, link, ENABLED) {
3324                if (!ata_dma_enabled(dev))
3325                        continue;
3326
3327                dev->xfer_mode = dev->dma_mode;
3328                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3329                if (ap->ops->set_dmamode)
3330                        ap->ops->set_dmamode(ap, dev);
3331        }
3332
3333        /* step 4: update devices' xfer mode */
3334        ata_for_each_dev(dev, link, ENABLED) {
3335                rc = ata_dev_set_mode(dev);
3336                if (rc)
3337                        goto out;
3338        }
3339
3340        /* Record simplex status. If we selected DMA then the other
3341         * host channels are not permitted to do so.
3342         */
3343        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3344                ap->host->simplex_claimed = ap;
3345
3346 out:
3347        if (rc)
3348                *r_failed_dev = dev;
3349        return rc;
3350}
3351
3352/**
3353 *      ata_wait_ready - wait for link to become ready
3354 *      @link: link to be waited on
3355 *      @deadline: deadline jiffies for the operation
3356 *      @check_ready: callback to check link readiness
3357 *
3358 *      Wait for @link to become ready.  @check_ready should return
3359 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3360 *      link doesn't seem to be occupied, other errno for other error
3361 *      conditions.
3362 *
3363 *      Transient -ENODEV conditions are allowed for
3364 *      ATA_TMOUT_FF_WAIT.
3365 *
3366 *      LOCKING:
3367 *      EH context.
3368 *
3369 *      RETURNS:
3370 *      0 if @linke is ready before @deadline; otherwise, -errno.
3371 */
3372int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3373                   int (*check_ready)(struct ata_link *link))
3374{
3375        unsigned long start = jiffies;
3376        unsigned long nodev_deadline;
3377        int warned = 0;
3378
3379        /* choose which 0xff timeout to use, read comment in libata.h */
3380        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3381                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3382        else
3383                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3384
3385        /* Slave readiness can't be tested separately from master.  On
3386         * M/S emulation configuration, this function should be called
3387         * only on the master and it will handle both master and slave.
3388         */
3389        WARN_ON(link == link->ap->slave_link);
3390
3391        if (time_after(nodev_deadline, deadline))
3392                nodev_deadline = deadline;
3393
3394        while (1) {
3395                unsigned long now = jiffies;
3396                int ready, tmp;
3397
3398                ready = tmp = check_ready(link);
3399                if (ready > 0)
3400                        return 0;
3401
3402                /*
3403                 * -ENODEV could be transient.  Ignore -ENODEV if link
3404                 * is online.  Also, some SATA devices take a long
3405                 * time to clear 0xff after reset.  Wait for
3406                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3407                 * offline.
3408                 *
3409                 * Note that some PATA controllers (pata_ali) explode
3410                 * if status register is read more than once when
3411                 * there's no device attached.
3412                 */
3413                if (ready == -ENODEV) {
3414                        if (ata_link_online(link))
3415                                ready = 0;
3416                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3417                                 !ata_link_offline(link) &&
3418                                 time_before(now, nodev_deadline))
3419                                ready = 0;
3420                }
3421
3422                if (ready)
3423                        return ready;
3424                if (time_after(now, deadline))
3425                        return -EBUSY;
3426
3427                if (!warned && time_after(now, start + 5 * HZ) &&
3428                    (deadline - now > 3 * HZ)) {
3429                        ata_link_warn(link,
3430                                "link is slow to respond, please be patient "
3431                                "(ready=%d)\n", tmp);
3432                        warned = 1;
3433                }
3434
3435                ata_msleep(link->ap, 50);
3436        }
3437}
3438
3439/**
3440 *      ata_wait_after_reset - wait for link to become ready after reset
3441 *      @link: link to be waited on
3442 *      @deadline: deadline jiffies for the operation
3443 *      @check_ready: callback to check link readiness
3444 *
3445 *      Wait for @link to become ready after reset.
3446 *
3447 *      LOCKING:
3448 *      EH context.
3449 *
3450 *      RETURNS:
3451 *      0 if @linke is ready before @deadline; otherwise, -errno.
3452 */
3453int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3454                                int (*check_ready)(struct ata_link *link))
3455{
3456        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3457
3458        return ata_wait_ready(link, deadline, check_ready);
3459}
3460
3461/**
3462 *      sata_link_debounce - debounce SATA phy status
3463 *      @link: ATA link to debounce SATA phy status for
3464 *      @params: timing parameters { interval, duratinon, timeout } in msec
3465 *      @deadline: deadline jiffies for the operation
3466 *
3467 *      Make sure SStatus of @link reaches stable state, determined by
3468 *      holding the same value where DET is not 1 for @duration polled
3469 *      every @interval, before @timeout.  Timeout constraints the
3470 *      beginning of the stable state.  Because DET gets stuck at 1 on
3471 *      some controllers after hot unplugging, this functions waits
3472 *      until timeout then returns 0 if DET is stable at 1.
3473 *
3474 *      @timeout is further limited by @deadline.  The sooner of the
3475 *      two is used.
3476 *
3477 *      LOCKING:
3478 *      Kernel thread context (may sleep)
3479 *
3480 *      RETURNS:
3481 *      0 on success, -errno on failure.
3482 */
3483int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3484                       unsigned long deadline)
3485{
3486        unsigned long interval = params[0];
3487        unsigned long duration = params[1];
3488        unsigned long last_jiffies, t;
3489        u32 last, cur;
3490        int rc;
3491
3492        t = ata_deadline(jiffies, params[2]);
3493        if (time_before(t, deadline))
3494                deadline = t;
3495
3496        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3497                return rc;
3498        cur &= 0xf;
3499
3500        last = cur;
3501        last_jiffies = jiffies;
3502
3503        while (1) {
3504                ata_msleep(link->ap, interval);
3505                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3506                        return rc;
3507                cur &= 0xf;
3508
3509                /* DET stable? */
3510                if (cur == last) {
3511                        if (cur == 1 && time_before(jiffies, deadline))
3512                                continue;
3513                        if (time_after(jiffies,
3514                                       ata_deadline(last_jiffies, duration)))
3515                                return 0;
3516                        continue;
3517                }
3518
3519                /* unstable, start over */
3520                last = cur;
3521                last_jiffies = jiffies;
3522
3523                /* Check deadline.  If debouncing failed, return
3524                 * -EPIPE to tell upper layer to lower link speed.
3525                 */
3526                if (time_after(jiffies, deadline))
3527                        return -EPIPE;
3528        }
3529}
3530
3531/**
3532 *      sata_link_resume - resume SATA link
3533 *      @link: ATA link to resume SATA
3534 *      @params: timing parameters { interval, duratinon, timeout } in msec
3535 *      @deadline: deadline jiffies for the operation
3536 *
3537 *      Resume SATA phy @link and debounce it.
3538 *
3539 *      LOCKING:
3540 *      Kernel thread context (may sleep)
3541 *
3542 *      RETURNS:
3543 *      0 on success, -errno on failure.
3544 */
3545int sata_link_resume(struct ata_link *link, const unsigned long *params,
3546                     unsigned long deadline)
3547{
3548        int tries = ATA_LINK_RESUME_TRIES;
3549        u32 scontrol, serror;
3550        int rc;
3551
3552        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3553                return rc;
3554
3555        /*
3556         * Writes to SControl sometimes get ignored under certain
3557         * controllers (ata_piix SIDPR).  Make sure DET actually is
3558         * cleared.
3559         */
3560        do {
3561                scontrol = (scontrol & 0x0f0) | 0x300;
3562                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3563                        return rc;
3564                /*
3565                 * Some PHYs react badly if SStatus is pounded
3566                 * immediately after resuming.  Delay 200ms before
3567                 * debouncing.
3568                 */
3569                ata_msleep(link->ap, 200);
3570
3571                /* is SControl restored correctly? */
3572                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3573                        return rc;
3574        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3575
3576        if ((scontrol & 0xf0f) != 0x300) {
3577                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3578                             scontrol);
3579                return 0;
3580        }
3581
3582        if (tries < ATA_LINK_RESUME_TRIES)
3583                ata_link_warn(link, "link resume succeeded after %d retries\n",
3584                              ATA_LINK_RESUME_TRIES - tries);
3585
3586        if ((rc = sata_link_debounce(link, params, deadline)))
3587                return rc;
3588
3589        /* clear SError, some PHYs require this even for SRST to work */
3590        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3591                rc = sata_scr_write(link, SCR_ERROR, serror);
3592
3593        return rc != -EINVAL ? rc : 0;
3594}
3595
3596/**
3597 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3598 *      @link: ATA link to manipulate SControl for
3599 *      @policy: LPM policy to configure
3600 *      @spm_wakeup: initiate LPM transition to active state
3601 *
3602 *      Manipulate the IPM field of the SControl register of @link
3603 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3604 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3605 *      the link.  This function also clears PHYRDY_CHG before
3606 *      returning.
3607 *
3608 *      LOCKING:
3609 *      EH context.
3610 *
3611 *      RETURNS:
3612 *      0 on succes, -errno otherwise.
3613 */
3614int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3615                      bool spm_wakeup)
3616{
3617        struct ata_eh_context *ehc = &link->eh_context;
3618        bool woken_up = false;
3619        u32 scontrol;
3620        int rc;
3621
3622        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3623        if (rc)
3624                return rc;
3625
3626        switch (policy) {
3627        case ATA_LPM_MAX_POWER:
3628                /* disable all LPM transitions */
3629                scontrol |= (0x7 << 8);
3630                /* initiate transition to active state */
3631                if (spm_wakeup) {
3632                        scontrol |= (0x4 << 12);
3633                        woken_up = true;
3634                }
3635                break;
3636        case ATA_LPM_MED_POWER:
3637                /* allow LPM to PARTIAL */
3638                scontrol &= ~(0x1 << 8);
3639                scontrol |= (0x6 << 8);
3640                break;
3641        case ATA_LPM_MIN_POWER:
3642                if (ata_link_nr_enabled(link) > 0)
3643                        /* no restrictions on LPM transitions */
3644                        scontrol &= ~(0x7 << 8);
3645                else {
3646                        /* empty port, power off */
3647                        scontrol &= ~0xf;
3648                        scontrol |= (0x1 << 2);
3649                }
3650                break;
3651        default:
3652                WARN_ON(1);
3653        }
3654
3655        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3656        if (rc)
3657                return rc;
3658
3659        /* give the link time to transit out of LPM state */
3660        if (woken_up)
3661                msleep(10);
3662
3663        /* clear PHYRDY_CHG from SError */
3664        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3665        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3666}
3667
3668/**
3669 *      ata_std_prereset - prepare for reset
3670 *      @link: ATA link to be reset
3671 *      @deadline: deadline jiffies for the operation
3672 *
3673 *      @link is about to be reset.  Initialize it.  Failure from
3674 *      prereset makes libata abort whole reset sequence and give up
3675 *      that port, so prereset should be best-effort.  It does its
3676 *      best to prepare for reset sequence but if things go wrong, it
3677 *      should just whine, not fail.
3678 *
3679 *      LOCKING:
3680 *      Kernel thread context (may sleep)
3681 *
3682 *      RETURNS:
3683 *      0 on success, -errno otherwise.
3684 */
3685int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3686{
3687        struct ata_port *ap = link->ap;
3688        struct ata_eh_context *ehc = &link->eh_context;
3689        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3690        int rc;
3691
3692        /* if we're about to do hardreset, nothing more to do */
3693        if (ehc->i.action & ATA_EH_HARDRESET)
3694                return 0;
3695
3696        /* if SATA, resume link */
3697        if (ap->flags & ATA_FLAG_SATA) {
3698                rc = sata_link_resume(link, timing, deadline);
3699                /* whine about phy resume failure but proceed */
3700                if (rc && rc != -EOPNOTSUPP)
3701                        ata_link_warn(link,
3702                                      "failed to resume link for reset (errno=%d)\n",
3703                                      rc);
3704        }
3705
3706        /* no point in trying softreset on offline link */
3707        if (ata_phys_link_offline(link))
3708                ehc->i.action &= ~ATA_EH_SOFTRESET;
3709
3710        return 0;
3711}
3712
3713/**
3714 *      sata_link_hardreset - reset link via SATA phy reset
3715 *      @link: link to reset
3716 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3717 *      @deadline: deadline jiffies for the operation
3718 *      @online: optional out parameter indicating link onlineness
3719 *      @check_ready: optional callback to check link readiness
3720 *
3721 *      SATA phy-reset @link using DET bits of SControl register.
3722 *      After hardreset, link readiness is waited upon using
3723 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3724 *      allowed to not specify @check_ready and wait itself after this
3725 *      function returns.  Device classification is LLD's
3726 *      responsibility.
3727 *
3728 *      *@online is set to one iff reset succeeded and @link is online
3729 *      after reset.
3730 *
3731 *      LOCKING:
3732 *      Kernel thread context (may sleep)
3733 *
3734 *      RETURNS:
3735 *      0 on success, -errno otherwise.
3736 */
3737int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3738                        unsigned long deadline,
3739                        bool *online, int (*check_ready)(struct ata_link *))
3740{
3741        u32 scontrol;
3742        int rc;
3743
3744        DPRINTK("ENTER\n");
3745
3746        if (online)
3747                *online = false;
3748
3749        if (sata_set_spd_needed(link)) {
3750                /* SATA spec says nothing about how to reconfigure
3751                 * spd.  To be on the safe side, turn off phy during
3752                 * reconfiguration.  This works for at least ICH7 AHCI
3753                 * and Sil3124.
3754                 */
3755                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3756                        goto out;
3757
3758                scontrol = (scontrol & 0x0f0) | 0x304;
3759
3760                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3761                        goto out;
3762
3763                sata_set_spd(link);
3764        }
3765
3766        /* issue phy wake/reset */
3767        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768                goto out;
3769
3770        scontrol = (scontrol & 0x0f0) | 0x301;
3771
3772        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3773                goto out;
3774
3775        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3776         * 10.4.2 says at least 1 ms.
3777         */
3778        ata_msleep(link->ap, 1);
3779
3780        /* bring link back */
3781        rc = sata_link_resume(link, timing, deadline);
3782        if (rc)
3783                goto out;
3784        /* if link is offline nothing more to do */
3785        if (ata_phys_link_offline(link))
3786                goto out;
3787
3788        /* Link is online.  From this point, -ENODEV too is an error. */
3789        if (online)
3790                *online = true;
3791
3792        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3793                /* If PMP is supported, we have to do follow-up SRST.
3794                 * Some PMPs don't send D2H Reg FIS after hardreset if
3795                 * the first port is empty.  Wait only for
3796                 * ATA_TMOUT_PMP_SRST_WAIT.
3797                 */
3798                if (check_ready) {
3799                        unsigned long pmp_deadline;
3800
3801                        pmp_deadline = ata_deadline(jiffies,
3802                                                    ATA_TMOUT_PMP_SRST_WAIT);
3803                        if (time_after(pmp_deadline, deadline))
3804                                pmp_deadline = deadline;
3805                        ata_wait_ready(link, pmp_deadline, check_ready);
3806                }
3807                rc = -EAGAIN;
3808                goto out;
3809        }
3810
3811        rc = 0;
3812        if (check_ready)
3813                rc = ata_wait_ready(link, deadline, check_ready);
3814 out:
3815        if (rc && rc != -EAGAIN) {
3816                /* online is set iff link is online && reset succeeded */
3817                if (online)
3818                        *online = false;
3819                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3820        }
3821        DPRINTK("EXIT, rc=%d\n", rc);
3822        return rc;
3823}
3824
3825/**
3826 *      sata_std_hardreset - COMRESET w/o waiting or classification
3827 *      @link: link to reset
3828 *      @class: resulting class of attached device
3829 *      @deadline: deadline jiffies for the operation
3830 *
3831 *      Standard SATA COMRESET w/o waiting or classification.
3832 *
3833 *      LOCKING:
3834 *      Kernel thread context (may sleep)
3835 *
3836 *      RETURNS:
3837 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3838 */
3839int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3840                       unsigned long deadline)
3841{
3842        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3843        bool online;
3844        int rc;
3845
3846        /* do hardreset */
3847        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3848        return online ? -EAGAIN : rc;
3849}
3850
3851/**
3852 *      ata_std_postreset - standard postreset callback
3853 *      @link: the target ata_link
3854 *      @classes: classes of attached devices
3855 *
3856 *      This function is invoked after a successful reset.  Note that
3857 *      the device might have been reset more than once using
3858 *      different reset methods before postreset is invoked.
3859 *
3860 *      LOCKING:
3861 *      Kernel thread context (may sleep)
3862 */
3863void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3864{
3865        u32 serror;
3866
3867        DPRINTK("ENTER\n");
3868
3869        /* reset complete, clear SError */
3870        if (!sata_scr_read(link, SCR_ERROR, &serror))
3871                sata_scr_write(link, SCR_ERROR, serror);
3872
3873        /* print link status */
3874        sata_print_link_status(link);
3875
3876        DPRINTK("EXIT\n");
3877}
3878
3879/**
3880 *      ata_dev_same_device - Determine whether new ID matches configured device
3881 *      @dev: device to compare against
3882 *      @new_class: class of the new device
3883 *      @new_id: IDENTIFY page of the new device
3884 *
3885 *      Compare @new_class and @new_id against @dev and determine
3886 *      whether @dev is the device indicated by @new_class and
3887 *      @new_id.
3888 *
3889 *      LOCKING:
3890 *      None.
3891 *
3892 *      RETURNS:
3893 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3894 */
3895static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3896                               const u16 *new_id)
3897{
3898        const u16 *old_id = dev->id;
3899        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3900        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3901
3902        if (dev->class != new_class) {
3903                ata_dev_info(dev, "class mismatch %d != %d\n",
3904                             dev->class, new_class);
3905                return 0;
3906        }
3907
3908        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3909        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3910        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3911        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3912
3913        if (strcmp(model[0], model[1])) {
3914                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3915                             model[0], model[1]);
3916                return 0;
3917        }
3918
3919        if (strcmp(serial[0], serial[1])) {
3920                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3921                             serial[0], serial[1]);
3922                return 0;
3923        }
3924
3925        return 1;
3926}
3927
3928/**
3929 *      ata_dev_reread_id - Re-read IDENTIFY data
3930 *      @dev: target ATA device
3931 *      @readid_flags: read ID flags
3932 *
3933 *      Re-read IDENTIFY page and make sure @dev is still attached to
3934 *      the port.
3935 *
3936 *      LOCKING:
3937 *      Kernel thread context (may sleep)
3938 *
3939 *      RETURNS:
3940 *      0 on success, negative errno otherwise
3941 */
3942int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3943{
3944        unsigned int class = dev->class;
3945        u16 *id = (void *)dev->link->ap->sector_buf;
3946        int rc;
3947
3948        /* read ID data */
3949        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3950        if (rc)
3951                return rc;
3952
3953        /* is the device still there? */
3954        if (!ata_dev_same_device(dev, class, id))
3955                return -ENODEV;
3956
3957        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3958        return 0;
3959}
3960
3961/**
3962 *      ata_dev_revalidate - Revalidate ATA device
3963 *      @dev: device to revalidate
3964 *      @new_class: new class code
3965 *      @readid_flags: read ID flags
3966 *
3967 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3968 *      port and reconfigure it according to the new IDENTIFY page.
3969 *
3970 *      LOCKING:
3971 *      Kernel thread context (may sleep)
3972 *
3973 *      RETURNS:
3974 *      0 on success, negative errno otherwise
3975 */
3976int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3977                       unsigned int readid_flags)
3978{
3979        u64 n_sectors = dev->n_sectors;
3980        u64 n_native_sectors = dev->n_native_sectors;
3981        int rc;
3982
3983        if (!ata_dev_enabled(dev))
3984                return -ENODEV;
3985
3986        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3987        if (ata_class_enabled(new_class) &&
3988            new_class != ATA_DEV_ATA &&
3989            new_class != ATA_DEV_ATAPI &&
3990            new_class != ATA_DEV_SEMB) {
3991                ata_dev_info(dev, "class mismatch %u != %u\n",
3992                             dev->class, new_class);
3993                rc = -ENODEV;
3994                goto fail;
3995        }
3996
3997        /* re-read ID */
3998        rc = ata_dev_reread_id(dev, readid_flags);
3999        if (rc)
4000                goto fail;
4001
4002        /* configure device according to the new ID */
4003        rc = ata_dev_configure(dev);
4004        if (rc)
4005                goto fail;
4006
4007        /* verify n_sectors hasn't changed */
4008        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4009            dev->n_sectors == n_sectors)
4010                return 0;
4011
4012        /* n_sectors has changed */
4013        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4014                     (unsigned long long)n_sectors,
4015                     (unsigned long long)dev->n_sectors);
4016
4017        /*
4018         * Something could have caused HPA to be unlocked
4019         * involuntarily.  If n_native_sectors hasn't changed and the
4020         * new size matches it, keep the device.
4021         */
4022        if (dev->n_native_sectors == n_native_sectors &&
4023            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4024                ata_dev_warn(dev,
4025                             "new n_sectors matches native, probably "
4026                             "late HPA unlock, n_sectors updated\n");
4027                /* use the larger n_sectors */
4028                return 0;
4029        }
4030
4031        /*
4032         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4033         * unlocking HPA in those cases.
4034         *
4035         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4036         */
4037        if (dev->n_native_sectors == n_native_sectors &&
4038            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4039            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4040                ata_dev_warn(dev,
4041                             "old n_sectors matches native, probably "
4042                             "late HPA lock, will try to unlock HPA\n");
4043                /* try unlocking HPA */
4044                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4045                rc = -EIO;
4046        } else
4047                rc = -ENODEV;
4048
4049        /* restore original n_[native_]sectors and fail */
4050        dev->n_native_sectors = n_native_sectors;
4051        dev->n_sectors = n_sectors;
4052 fail:
4053        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4054        return rc;
4055}
4056
4057struct ata_blacklist_entry {
4058        const char *model_num;
4059        const char *model_rev;
4060        unsigned long horkage;
4061};
4062
4063static const struct ata_blacklist_entry ata_device_blacklist [] = {
4064        /* Devices with DMA related problems under Linux */
4065        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4066        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4067        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4068        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4069        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4070        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4071        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4072        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4073        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4074        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4075        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4076        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4077        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4078        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4079        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4080        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4081        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4082        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4083        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4084        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4085        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4086        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4087        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4088        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4089        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4090        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4091        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4092        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4093        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4094        /* Odd clown on sil3726/4726 PMPs */
4095        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4096
4097        /* Weird ATAPI devices */
4098        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4099        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4100
4101        /* Devices we expect to fail diagnostics */
4102
4103        /* Devices where NCQ should be avoided */
4104        /* NCQ is slow */
4105        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4106        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4107        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4108        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4109        /* NCQ is broken */
4110        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4111        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4112        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4113        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4114        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4115
4116        /* Seagate NCQ + FLUSH CACHE firmware bug */
4117        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4118                                                ATA_HORKAGE_FIRMWARE_WARN },
4119
4120        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4121                                                ATA_HORKAGE_FIRMWARE_WARN },
4122
4123        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4124                                                ATA_HORKAGE_FIRMWARE_WARN },
4125
4126        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4127                                                ATA_HORKAGE_FIRMWARE_WARN },
4128
4129        /* Blacklist entries taken from Silicon Image 3124/3132
4130           Windows driver .inf file - also several Linux problem reports */
4131        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4132        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4133        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4134
4135        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4136        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4137
4138        /* devices which puke on READ_NATIVE_MAX */
4139        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4140        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4141        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4142        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4143
4144        /* this one allows HPA unlocking but fails IOs on the area */
4145        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4146
4147        /* Devices which report 1 sector over size HPA */
4148        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4149        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4150        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4151
4152        /* Devices which get the IVB wrong */
4153        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4154        /* Maybe we should just blacklist TSSTcorp... */
4155        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4156
4157        /* Devices that do not need bridging limits applied */
4158        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4159        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4160
4161        /* Devices which aren't very happy with higher link speeds */
4162        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4163        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4164
4165        /*
4166         * Devices which choke on SETXFER.  Applies only if both the
4167         * device and controller are SATA.
4168         */
4169        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4170        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4171        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4172        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4173        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4174
4175        /* End Marker */
4176        { }
4177};
4178
4179/**
4180 *      glob_match - match a text string against a glob-style pattern
4181 *      @text: the string to be examined
4182 *      @pattern: the glob-style pattern to be matched against
4183 *
4184 *      Either/both of text and pattern can be empty strings.
4185 *
4186 *      Match text against a glob-style pattern, with wildcards and simple sets:
4187 *
4188 *              ?       matches any single character.
4189 *              *       matches any run of characters.
4190 *              [xyz]   matches a single character from the set: x, y, or z.
4191 *              [a-d]   matches a single character from the range: a, b, c, or d.
4192 *              [a-d0-9] matches a single character from either range.
4193 *
4194 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4195 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4196 *
4197 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4198 *
4199 *      This function uses one level of recursion per '*' in pattern.
4200 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4201 *      this will not cause stack problems for any reasonable use here.
4202 *
4203 *      RETURNS:
4204 *      0 on match, 1 otherwise.
4205 */
4206static int glob_match (const char *text, const char *pattern)
4207{
4208        do {
4209                /* Match single character or a '?' wildcard */
4210                if (*text == *pattern || *pattern == '?') {
4211                        if (!*pattern++)
4212                                return 0;  /* End of both strings: match */
4213                } else {
4214                        /* Match single char against a '[' bracketed ']' pattern set */
4215                        if (!*text || *pattern != '[')
4216                                break;  /* Not a pattern set */
4217                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4218                                if (*pattern == '-' && *(pattern - 1) != '[')
4219                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4220                                                ++pattern;
4221                                                break;
4222                                        }
4223                        }
4224                        if (!*pattern || *pattern == ']')
4225                                return 1;  /* No match */
4226                        while (*pattern && *pattern++ != ']');
4227                }
4228        } while (*++text && *pattern);
4229
4230        /* Match any run of chars against a '*' wildcard */
4231        if (*pattern == '*') {
4232                if (!*++pattern)
4233                        return 0;  /* Match: avoid recursion at end of pattern */
4234                /* Loop to handle additional pattern chars after the wildcard */
4235                while (*text) {
4236                        if (glob_match(text, pattern) == 0)
4237                                return 0;  /* Remainder matched */
4238                        ++text;  /* Absorb (match) this char and try again */
4239                }
4240        }
4241        if (!*text && !*pattern)
4242                return 0;  /* End of both strings: match */
4243        return 1;  /* No match */
4244}
4245
4246static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4247{
4248        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4249        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4250        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4251
4252        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4253        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4254
4255        while (ad->model_num) {
4256                if (!glob_match(model_num, ad->model_num)) {
4257                        if (ad->model_rev == NULL)
4258                                return ad->horkage;
4259                        if (!glob_match(model_rev, ad->model_rev))
4260                                return ad->horkage;
4261                }
4262                ad++;
4263        }
4264        return 0;
4265}
4266
4267static int ata_dma_blacklisted(const struct ata_device *dev)
4268{
4269        /* We don't support polling DMA.
4270         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4271         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4272         */
4273        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4274            (dev->flags & ATA_DFLAG_CDB_INTR))
4275                return 1;
4276        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4277}
4278
4279/**
4280 *      ata_is_40wire           -       check drive side detection
4281 *      @dev: device
4282 *
4283 *      Perform drive side detection decoding, allowing for device vendors
4284 *      who can't follow the documentation.
4285 */
4286
4287static int ata_is_40wire(struct ata_device *dev)
4288{
4289        if (dev->horkage & ATA_HORKAGE_IVB)
4290                return ata_drive_40wire_relaxed(dev->id);
4291        return ata_drive_40wire(dev->id);
4292}
4293
4294/**
4295 *      cable_is_40wire         -       40/80/SATA decider
4296 *      @ap: port to consider
4297 *
4298 *      This function encapsulates the policy for speed management
4299 *      in one place. At the moment we don't cache the result but
4300 *      there is a good case for setting ap->cbl to the result when
4301 *      we are called with unknown cables (and figuring out if it
4302 *      impacts hotplug at all).
4303 *
4304 *      Return 1 if the cable appears to be 40 wire.
4305 */
4306
4307static int cable_is_40wire(struct ata_port *ap)
4308{
4309        struct ata_link *link;
4310        struct ata_device *dev;
4311
4312        /* If the controller thinks we are 40 wire, we are. */
4313        if (ap->cbl == ATA_CBL_PATA40)
4314                return 1;
4315
4316        /* If the controller thinks we are 80 wire, we are. */
4317        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4318                return 0;
4319
4320        /* If the system is known to be 40 wire short cable (eg
4321         * laptop), then we allow 80 wire modes even if the drive
4322         * isn't sure.
4323         */
4324        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4325                return 0;
4326
4327        /* If the controller doesn't know, we scan.
4328         *
4329         * Note: We look for all 40 wire detects at this point.  Any
4330         *       80 wire detect is taken to be 80 wire cable because
4331         * - in many setups only the one drive (slave if present) will
4332         *   give a valid detect
4333         * - if you have a non detect capable drive you don't want it
4334         *   to colour the choice
4335         */
4336        ata_for_each_link(link, ap, EDGE) {
4337                ata_for_each_dev(dev, link, ENABLED) {
4338                        if (!ata_is_40wire(dev))
4339                                return 0;
4340                }
4341        }
4342        return 1;
4343}
4344
4345/**
4346 *      ata_dev_xfermask - Compute supported xfermask of the given device
4347 *      @dev: Device to compute xfermask for
4348 *
4349 *      Compute supported xfermask of @dev and store it in
4350 *      dev->*_mask.  This function is responsible for applying all
4351 *      known limits including host controller limits, device
4352 *      blacklist, etc...
4353 *
4354 *      LOCKING:
4355 *      None.
4356 */
4357static void ata_dev_xfermask(struct ata_device *dev)
4358{
4359        struct ata_link *link = dev->link;
4360        struct ata_port *ap = link->ap;
4361        struct ata_host *host = ap->host;
4362        unsigned long xfer_mask;
4363
4364        /* controller modes available */
4365        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4366                                      ap->mwdma_mask, ap->udma_mask);
4367
4368        /* drive modes available */
4369        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4370                                       dev->mwdma_mask, dev->udma_mask);
4371        xfer_mask &= ata_id_xfermask(dev->id);
4372
4373        /*
4374         *      CFA Advanced TrueIDE timings are not allowed on a shared
4375         *      cable
4376         */
4377        if (ata_dev_pair(dev)) {
4378                /* No PIO5 or PIO6 */
4379                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4380                /* No MWDMA3 or MWDMA 4 */
4381                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4382        }
4383
4384        if (ata_dma_blacklisted(dev)) {
4385                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4386                ata_dev_warn(dev,
4387                             "device is on DMA blacklist, disabling DMA\n");
4388        }
4389
4390        if ((host->flags & ATA_HOST_SIMPLEX) &&
4391            host->simplex_claimed && host->simplex_claimed != ap) {
4392                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4393                ata_dev_warn(dev,
4394                             "simplex DMA is claimed by other device, disabling DMA\n");
4395        }
4396
4397        if (ap->flags & ATA_FLAG_NO_IORDY)
4398                xfer_mask &= ata_pio_mask_no_iordy(dev);
4399
4400        if (ap->ops->mode_filter)
4401                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4402
4403        /* Apply cable rule here.  Don't apply it early because when
4404         * we handle hot plug the cable type can itself change.
4405         * Check this last so that we know if the transfer rate was
4406         * solely limited by the cable.
4407         * Unknown or 80 wire cables reported host side are checked
4408         * drive side as well. Cases where we know a 40wire cable
4409         * is used safely for 80 are not checked here.
4410         */
4411        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4412                /* UDMA/44 or higher would be available */
4413                if (cable_is_40wire(ap)) {
4414                        ata_dev_warn(dev,
4415                                     "limited to UDMA/33 due to 40-wire cable\n");
4416                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4417                }
4418
4419        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4420                            &dev->mwdma_mask, &dev->udma_mask);
4421}
4422
4423/**
4424 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4425 *      @dev: Device to which command will be sent
4426 *
4427 *      Issue SET FEATURES - XFER MODE command to device @dev
4428 *      on port @ap.
4429 *
4430 *      LOCKING:
4431 *      PCI/etc. bus probe sem.
4432 *
4433 *      RETURNS:
4434 *      0 on success, AC_ERR_* mask otherwise.
4435 */
4436
4437static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4438{
4439        struct ata_taskfile tf;
4440        unsigned int err_mask;
4441
4442        /* set up set-features taskfile */
4443        DPRINTK("set features - xfer mode\n");
4444
4445        /* Some controllers and ATAPI devices show flaky interrupt
4446         * behavior after setting xfer mode.  Use polling instead.
4447         */
4448        ata_tf_init(dev, &tf);
4449        tf.command = ATA_CMD_SET_FEATURES;
4450        tf.feature = SETFEATURES_XFER;
4451        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4452        tf.protocol = ATA_PROT_NODATA;
4453        /* If we are using IORDY we must send the mode setting command */
4454        if (ata_pio_need_iordy(dev))
4455                tf.nsect = dev->xfer_mode;
4456        /* If the device has IORDY and the controller does not - turn it off */
4457        else if (ata_id_has_iordy(dev->id))
4458                tf.nsect = 0x01;
4459        else /* In the ancient relic department - skip all of this */
4460                return 0;
4461
4462        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4463
4464        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4465        return err_mask;
4466}
4467
4468/**
4469 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4470 *      @dev: Device to which command will be sent
4471 *      @enable: Whether to enable or disable the feature
4472 *      @feature: The sector count represents the feature to set
4473 *
4474 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4475 *      on port @ap with sector count
4476 *
4477 *      LOCKING:
4478 *      PCI/etc. bus probe sem.
4479 *
4480 *      RETURNS:
4481 *      0 on success, AC_ERR_* mask otherwise.
4482 */
4483unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4484{
4485        struct ata_taskfile tf;
4486        unsigned int err_mask;
4487
4488        /* set up set-features taskfile */
4489        DPRINTK("set features - SATA features\n");
4490
4491        ata_tf_init(dev, &tf);
4492        tf.command = ATA_CMD_SET_FEATURES;
4493        tf.feature = enable;
4494        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4495        tf.protocol = ATA_PROT_NODATA;
4496        tf.nsect = feature;
4497
4498        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4499
4500        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4501        return err_mask;
4502}
4503EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4504
4505/**
4506 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4507 *      @dev: Device to which command will be sent
4508 *      @heads: Number of heads (taskfile parameter)
4509 *      @sectors: Number of sectors (taskfile parameter)
4510 *
4511 *      LOCKING:
4512 *      Kernel thread context (may sleep)
4513 *
4514 *      RETURNS:
4515 *      0 on success, AC_ERR_* mask otherwise.
4516 */
4517static unsigned int ata_dev_init_params(struct ata_device *dev,
4518                                        u16 heads, u16 sectors)
4519{
4520        struct ata_taskfile tf;
4521        unsigned int err_mask;
4522
4523        /* Number of sectors per track 1-255. Number of heads 1-16 */
4524        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4525                return AC_ERR_INVALID;
4526
4527        /* set up init dev params taskfile */
4528        DPRINTK("init dev params \n");
4529
4530        ata_tf_init(dev, &tf);
4531        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4532        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4533        tf.protocol = ATA_PROT_NODATA;
4534        tf.nsect = sectors;
4535        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4536
4537        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4538        /* A clean abort indicates an original or just out of spec drive
4539           and we should continue as we issue the setup based on the
4540           drive reported working geometry */
4541        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4542                err_mask = 0;
4543
4544        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4545        return err_mask;
4546}
4547
4548/**
4549 *      ata_sg_clean - Unmap DMA memory associated with command
4550 *      @qc: Command containing DMA memory to be released
4551 *
4552 *      Unmap all mapped DMA memory associated with this command.
4553 *
4554 *      LOCKING:
4555 *      spin_lock_irqsave(host lock)
4556 */
4557void ata_sg_clean(struct ata_queued_cmd *qc)
4558{
4559        struct ata_port *ap = qc->ap;
4560        struct scatterlist *sg = qc->sg;
4561        int dir = qc->dma_dir;
4562
4563        WARN_ON_ONCE(sg == NULL);
4564
4565        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4566
4567        if (qc->n_elem)
4568                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4569
4570        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4571        qc->sg = NULL;
4572}
4573
4574/**
4575 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4576 *      @qc: Metadata associated with taskfile to check
4577 *
4578 *      Allow low-level driver to filter ATA PACKET commands, returning
4579 *      a status indicating whether or not it is OK to use DMA for the
4580 *      supplied PACKET command.
4581 *
4582 *      LOCKING:
4583 *      spin_lock_irqsave(host lock)
4584 *
4585 *      RETURNS: 0 when ATAPI DMA can be used
4586 *               nonzero otherwise
4587 */
4588int atapi_check_dma(struct ata_queued_cmd *qc)
4589{
4590        struct ata_port *ap = qc->ap;
4591
4592        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4593         * few ATAPI devices choke on such DMA requests.
4594         */
4595        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4596            unlikely(qc->nbytes & 15))
4597                return 1;
4598
4599        if (ap->ops->check_atapi_dma)
4600                return ap->ops->check_atapi_dma(qc);
4601
4602        return 0;
4603}
4604
4605/**
4606 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4607 *      @qc: ATA command in question
4608 *
4609 *      Non-NCQ commands cannot run with any other command, NCQ or
4610 *      not.  As upper layer only knows the queue depth, we are
4611 *      responsible for maintaining exclusion.  This function checks
4612 *      whether a new command @qc can be issued.
4613 *
4614 *      LOCKING:
4615 *      spin_lock_irqsave(host lock)
4616 *
4617 *      RETURNS:
4618 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4619 */
4620int ata_std_qc_defer(struct ata_queued_cmd *qc)
4621{
4622        struct ata_link *link = qc->dev->link;
4623
4624        if (qc->tf.protocol == ATA_PROT_NCQ) {
4625                if (!ata_tag_valid(link->active_tag))
4626                        return 0;
4627        } else {
4628                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4629                        return 0;
4630        }
4631
4632        return ATA_DEFER_LINK;
4633}
4634
4635void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4636
4637/**
4638 *      ata_sg_init - Associate command with scatter-gather table.
4639 *      @qc: Command to be associated
4640 *      @sg: Scatter-gather table.
4641 *      @n_elem: Number of elements in s/g table.
4642 *
4643 *      Initialize the data-related elements of queued_cmd @qc
4644 *      to point to a scatter-gather table @sg, containing @n_elem
4645 *      elements.
4646 *
4647 *      LOCKING:
4648 *      spin_lock_irqsave(host lock)
4649 */
4650void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4651                 unsigned int n_elem)
4652{
4653        qc->sg = sg;
4654        qc->n_elem = n_elem;
4655        qc->cursg = qc->sg;
4656}
4657
4658/**
4659 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4660 *      @qc: Command with scatter-gather table to be mapped.
4661 *
4662 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4663 *
4664 *      LOCKING:
4665 *      spin_lock_irqsave(host lock)
4666 *
4667 *      RETURNS:
4668 *      Zero on success, negative on error.
4669 *
4670 */
4671static int ata_sg_setup(struct ata_queued_cmd *qc)
4672{
4673        struct ata_port *ap = qc->ap;
4674        unsigned int n_elem;
4675
4676        VPRINTK("ENTER, ata%u\n", ap->print_id);
4677
4678        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4679        if (n_elem < 1)
4680                return -1;
4681
4682        DPRINTK("%d sg elements mapped\n", n_elem);
4683        qc->orig_n_elem = qc->n_elem;
4684        qc->n_elem = n_elem;
4685        qc->flags |= ATA_QCFLAG_DMAMAP;
4686
4687        return 0;
4688}
4689
4690/**
4691 *      swap_buf_le16 - swap halves of 16-bit words in place
4692 *      @buf:  Buffer to swap
4693 *      @buf_words:  Number of 16-bit words in buffer.
4694 *
4695 *      Swap halves of 16-bit words if needed to convert from
4696 *      little-endian byte order to native cpu byte order, or
4697 *      vice-versa.
4698 *
4699 *      LOCKING:
4700 *      Inherited from caller.
4701 */
4702void swap_buf_le16(u16 *buf, unsigned int buf_words)
4703{
4704#ifdef __BIG_ENDIAN
4705        unsigned int i;
4706
4707        for (i = 0; i < buf_words; i++)
4708                buf[i] = le16_to_cpu(buf[i]);
4709#endif /* __BIG_ENDIAN */
4710}
4711
4712/**
4713 *      ata_qc_new - Request an available ATA command, for queueing
4714 *      @ap: target port
4715 *
4716 *      LOCKING:
4717 *      None.
4718 */
4719
4720static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4721{
4722        struct ata_queued_cmd *qc = NULL;
4723        unsigned int i;
4724
4725        /* no command while frozen */
4726        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4727                return NULL;
4728
4729        /* the last tag is reserved for internal command. */
4730        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4731                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4732                        qc = __ata_qc_from_tag(ap, i);
4733                        break;
4734                }
4735
4736        if (qc)
4737                qc->tag = i;
4738
4739        return qc;
4740}
4741
4742/**
4743 *      ata_qc_new_init - Request an available ATA command, and initialize it
4744 *      @dev: Device from whom we request an available command structure
4745 *
4746 *      LOCKING:
4747 *      None.
4748 */
4749
4750struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4751{
4752        struct ata_port *ap = dev->link->ap;
4753        struct ata_queued_cmd *qc;
4754
4755        qc = ata_qc_new(ap);
4756        if (qc) {
4757                qc->scsicmd = NULL;
4758                qc->ap = ap;
4759                qc->dev = dev;
4760
4761                ata_qc_reinit(qc);
4762        }
4763
4764        return qc;
4765}
4766
4767/**
4768 *      ata_qc_free - free unused ata_queued_cmd
4769 *      @qc: Command to complete
4770 *
4771 *      Designed to free unused ata_queued_cmd object
4772 *      in case something prevents using it.
4773 *
4774 *      LOCKING:
4775 *      spin_lock_irqsave(host lock)
4776 */
4777void ata_qc_free(struct ata_queued_cmd *qc)
4778{
4779        struct ata_port *ap;
4780        unsigned int tag;
4781
4782        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4783        ap = qc->ap;
4784
4785        qc->flags = 0;
4786        tag = qc->tag;
4787        if (likely(ata_tag_valid(tag))) {
4788                qc->tag = ATA_TAG_POISON;
4789                clear_bit(tag, &ap->qc_allocated);
4790        }
4791}
4792
4793void __ata_qc_complete(struct ata_queued_cmd *qc)
4794{
4795        struct ata_port *ap;
4796        struct ata_link *link;
4797
4798        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4799        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4800        ap = qc->ap;
4801        link = qc->dev->link;
4802
4803        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4804                ata_sg_clean(qc);
4805
4806        /* command should be marked inactive atomically with qc completion */
4807        if (qc->tf.protocol == ATA_PROT_NCQ) {
4808                link->sactive &= ~(1 << qc->tag);
4809                if (!link->sactive)
4810                        ap->nr_active_links--;
4811        } else {
4812                link->active_tag = ATA_TAG_POISON;
4813                ap->nr_active_links--;
4814        }
4815
4816        /* clear exclusive status */
4817        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4818                     ap->excl_link == link))
4819                ap->excl_link = NULL;
4820
4821        /* atapi: mark qc as inactive to prevent the interrupt handler
4822         * from completing the command twice later, before the error handler
4823         * is called. (when rc != 0 and atapi request sense is needed)
4824         */
4825        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4826        ap->qc_active &= ~(1 << qc->tag);
4827
4828        /* call completion callback */
4829        qc->complete_fn(qc);
4830}
4831
4832static void fill_result_tf(struct ata_queued_cmd *qc)
4833{
4834        struct ata_port *ap = qc->ap;
4835
4836        qc->result_tf.flags = qc->tf.flags;
4837        ap->ops->qc_fill_rtf(qc);
4838}
4839
4840static void ata_verify_xfer(struct ata_queued_cmd *qc)
4841{
4842        struct ata_device *dev = qc->dev;
4843
4844        if (ata_is_nodata(qc->tf.protocol))
4845                return;
4846
4847        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4848                return;
4849
4850        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4851}
4852
4853/**
4854 *      ata_qc_complete - Complete an active ATA command
4855 *      @qc: Command to complete
4856 *
4857 *      Indicate to the mid and upper layers that an ATA command has
4858 *      completed, with either an ok or not-ok status.
4859 *
4860 *      Refrain from calling this function multiple times when
4861 *      successfully completing multiple NCQ commands.
4862 *      ata_qc_complete_multiple() should be used instead, which will
4863 *      properly update IRQ expect state.
4864 *
4865 *      LOCKING:
4866 *      spin_lock_irqsave(host lock)
4867 */
4868void ata_qc_complete(struct ata_queued_cmd *qc)
4869{
4870        struct ata_port *ap = qc->ap;
4871
4872        /* XXX: New EH and old EH use different mechanisms to
4873         * synchronize EH with regular execution path.
4874         *
4875         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4876         * Normal execution path is responsible for not accessing a
4877         * failed qc.  libata core enforces the rule by returning NULL
4878         * from ata_qc_from_tag() for failed qcs.
4879         *
4880         * Old EH depends on ata_qc_complete() nullifying completion
4881         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4882         * not synchronize with interrupt handler.  Only PIO task is
4883         * taken care of.
4884         */
4885        if (ap->ops->error_handler) {
4886                struct ata_device *dev = qc->dev;
4887                struct ata_eh_info *ehi = &dev->link->eh_info;
4888
4889                if (unlikely(qc->err_mask))
4890                        qc->flags |= ATA_QCFLAG_FAILED;
4891
4892                /*
4893                 * Finish internal commands without any further processing
4894                 * and always with the result TF filled.
4895                 */
4896                if (unlikely(ata_tag_internal(qc->tag))) {
4897                        fill_result_tf(qc);
4898                        __ata_qc_complete(qc);
4899                        return;
4900                }
4901
4902                /*
4903                 * Non-internal qc has failed.  Fill the result TF and
4904                 * summon EH.
4905                 */
4906                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4907                        fill_result_tf(qc);
4908                        ata_qc_schedule_eh(qc);
4909                        return;
4910                }
4911
4912                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4913
4914                /* read result TF if requested */
4915                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4916                        fill_result_tf(qc);
4917
4918                /* Some commands need post-processing after successful
4919                 * completion.
4920                 */
4921                switch (qc->tf.command) {
4922                case ATA_CMD_SET_FEATURES:
4923                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4924                            qc->tf.feature != SETFEATURES_WC_OFF)
4925                                break;
4926                        /* fall through */
4927                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4928                case ATA_CMD_SET_MULTI: /* multi_count changed */
4929                        /* revalidate device */
4930                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4931                        ata_port_schedule_eh(ap);
4932                        break;
4933
4934                case ATA_CMD_SLEEP:
4935                        dev->flags |= ATA_DFLAG_SLEEPING;
4936                        break;
4937                }
4938
4939                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4940                        ata_verify_xfer(qc);
4941
4942                __ata_qc_complete(qc);
4943        } else {
4944                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4945                        return;
4946
4947                /* read result TF if failed or requested */
4948                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4949                        fill_result_tf(qc);
4950
4951                __ata_qc_complete(qc);
4952        }
4953}
4954
4955/**
4956 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4957 *      @ap: port in question
4958 *      @qc_active: new qc_active mask
4959 *
4960 *      Complete in-flight commands.  This functions is meant to be
4961 *      called from low-level driver's interrupt routine to complete
4962 *      requests normally.  ap->qc_active and @qc_active is compared
4963 *      and commands are completed accordingly.
4964 *
4965 *      Always use this function when completing multiple NCQ commands
4966 *      from IRQ handlers instead of calling ata_qc_complete()
4967 *      multiple times to keep IRQ expect status properly in sync.
4968 *
4969 *      LOCKING:
4970 *      spin_lock_irqsave(host lock)
4971 *
4972 *      RETURNS:
4973 *      Number of completed commands on success, -errno otherwise.
4974 */
4975int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4976{
4977        int nr_done = 0;
4978        u32 done_mask;
4979
4980        done_mask = ap->qc_active ^ qc_active;
4981
4982        if (unlikely(done_mask & qc_active)) {
4983                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4984                             ap->qc_active, qc_active);
4985                return -EINVAL;
4986        }
4987
4988        while (done_mask) {
4989                struct ata_queued_cmd *qc;
4990                unsigned int tag = __ffs(done_mask);
4991
4992                qc = ata_qc_from_tag(ap, tag);
4993                if (qc) {
4994                        ata_qc_complete(qc);
4995                        nr_done++;
4996                }
4997                done_mask &= ~(1 << tag);
4998        }
4999
5000        return nr_done;
5001}
5002
5003/**
5004 *      ata_qc_issue - issue taskfile to device
5005 *      @qc: command to issue to device
5006 *
5007 *      Prepare an ATA command to submission to device.
5008 *      This includes mapping the data into a DMA-able
5009 *      area, filling in the S/G table, and finally
5010 *      writing the taskfile to hardware, starting the command.
5011 *
5012 *      LOCKING:
5013 *      spin_lock_irqsave(host lock)
5014 */
5015void ata_qc_issue(struct ata_queued_cmd *qc)
5016{
5017        struct ata_port *ap = qc->ap;
5018        struct ata_link *link = qc->dev->link;
5019        u8 prot = qc->tf.protocol;
5020
5021        /* Make sure only one non-NCQ command is outstanding.  The
5022         * check is skipped for old EH because it reuses active qc to
5023         * request ATAPI sense.
5024         */
5025        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5026
5027        if (ata_is_ncq(prot)) {
5028                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5029
5030                if (!link->sactive)
5031                        ap->nr_active_links++;
5032                link->sactive |= 1 << qc->tag;
5033        } else {
5034                WARN_ON_ONCE(link->sactive);
5035
5036                ap->nr_active_links++;
5037                link->active_tag = qc->tag;
5038        }
5039
5040        qc->flags |= ATA_QCFLAG_ACTIVE;
5041        ap->qc_active |= 1 << qc->tag;
5042
5043        /*
5044         * We guarantee to LLDs that they will have at least one
5045         * non-zero sg if the command is a data command.
5046         */
5047        if (WARN_ON_ONCE(ata_is_data(prot) &&
5048                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5049                goto sys_err;
5050
5051        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5052                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5053                if (ata_sg_setup(qc))
5054                        goto sys_err;
5055
5056        /* if device is sleeping, schedule reset and abort the link */
5057        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5058                link->eh_info.action |= ATA_EH_RESET;
5059                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5060                ata_link_abort(link);
5061                return;
5062        }
5063
5064        ap->ops->qc_prep(qc);
5065
5066        qc->err_mask |= ap->ops->qc_issue(qc);
5067        if (unlikely(qc->err_mask))
5068                goto err;
5069        return;
5070
5071sys_err:
5072        qc->err_mask |= AC_ERR_SYSTEM;
5073err:
5074        ata_qc_complete(qc);
5075}
5076
5077/**
5078 *      sata_scr_valid - test whether SCRs are accessible
5079 *      @link: ATA link to test SCR accessibility for
5080 *
5081 *      Test whether SCRs are accessible for @link.
5082 *
5083 *      LOCKING:
5084 *      None.
5085 *
5086 *      RETURNS:
5087 *      1 if SCRs are accessible, 0 otherwise.
5088 */
5089int sata_scr_valid(struct ata_link *link)
5090{
5091        struct ata_port *ap = link->ap;
5092
5093        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5094}
5095
5096/**
5097 *      sata_scr_read - read SCR register of the specified port
5098 *      @link: ATA link to read SCR for
5099 *      @reg: SCR to read
5100 *      @val: Place to store read value
5101 *
5102 *      Read SCR register @reg of @link into *@val.  This function is
5103 *      guaranteed to succeed if @link is ap->link, the cable type of
5104 *      the port is SATA and the port implements ->scr_read.
5105 *
5106 *      LOCKING:
5107 *      None if @link is ap->link.  Kernel thread context otherwise.
5108 *
5109 *      RETURNS:
5110 *      0 on success, negative errno on failure.
5111 */
5112int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5113{
5114        if (ata_is_host_link(link)) {
5115                if (sata_scr_valid(link))
5116                        return link->ap->ops->scr_read(link, reg, val);
5117                return -EOPNOTSUPP;
5118        }
5119
5120        return sata_pmp_scr_read(link, reg, val);
5121}
5122
5123/**
5124 *      sata_scr_write - write SCR register of the specified port
5125 *      @link: ATA link to write SCR for
5126 *      @reg: SCR to write
5127 *      @val: value to write
5128 *
5129 *      Write @val to SCR register @reg of @link.  This function is
5130 *      guaranteed to succeed if @link is ap->link, the cable type of
5131 *      the port is SATA and the port implements ->scr_read.
5132 *
5133 *      LOCKING:
5134 *      None if @link is ap->link.  Kernel thread context otherwise.
5135 *
5136 *      RETURNS:
5137 *      0 on success, negative errno on failure.
5138 */
5139int sata_scr_write(struct ata_link *link, int reg, u32 val)
5140{
5141        if (ata_is_host_link(link)) {
5142                if (sata_scr_valid(link))
5143                        return link->ap->ops->scr_write(link, reg, val);
5144                return -EOPNOTSUPP;
5145        }
5146
5147        return sata_pmp_scr_write(link, reg, val);
5148}
5149
5150/**
5151 *      sata_scr_write_flush - write SCR register of the specified port and flush
5152 *      @link: ATA link to write SCR for
5153 *      @reg: SCR to write
5154 *      @val: value to write
5155 *
5156 *      This function is identical to sata_scr_write() except that this
5157 *      function performs flush after writing to the register.
5158 *
5159 *      LOCKING:
5160 *      None if @link is ap->link.  Kernel thread context otherwise.
5161 *
5162 *      RETURNS:
5163 *      0 on success, negative errno on failure.
5164 */
5165int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5166{
5167        if (ata_is_host_link(link)) {
5168                int rc;
5169
5170                if (sata_scr_valid(link)) {
5171                        rc = link->ap->ops->scr_write(link, reg, val);
5172                        if (rc == 0)
5173                                rc = link->ap->ops->scr_read(link, reg, &val);
5174                        return rc;
5175                }
5176                return -EOPNOTSUPP;
5177        }
5178
5179        return sata_pmp_scr_write(link, reg, val);
5180}
5181
5182/**
5183 *      ata_phys_link_online - test whether the given link is online
5184 *      @link: ATA link to test
5185 *
5186 *      Test whether @link is online.  Note that this function returns
5187 *      0 if online status of @link cannot be obtained, so
5188 *      ata_link_online(link) != !ata_link_offline(link).
5189 *
5190 *      LOCKING:
5191 *      None.
5192 *
5193 *      RETURNS:
5194 *      True if the port online status is available and online.
5195 */
5196bool ata_phys_link_online(struct ata_link *link)
5197{
5198        u32 sstatus;
5199
5200        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5201            ata_sstatus_online(sstatus))
5202                return true;
5203        return false;
5204}
5205
5206/**
5207 *      ata_phys_link_offline - test whether the given link is offline
5208 *      @link: ATA link to test
5209 *
5210 *      Test whether @link is offline.  Note that this function
5211 *      returns 0 if offline status of @link cannot be obtained, so
5212 *      ata_link_online(link) != !ata_link_offline(link).
5213 *
5214 *      LOCKING:
5215 *      None.
5216 *
5217 *      RETURNS:
5218 *      True if the port offline status is available and offline.
5219 */
5220bool ata_phys_link_offline(struct ata_link *link)
5221{
5222        u32 sstatus;
5223
5224        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5225            !ata_sstatus_online(sstatus))
5226                return true;
5227        return false;
5228}
5229
5230/**
5231 *      ata_link_online - test whether the given link is online
5232 *      @link: ATA link to test
5233 *
5234 *      Test whether @link is online.  This is identical to
5235 *      ata_phys_link_online() when there's no slave link.  When
5236 *      there's a slave link, this function should only be called on
5237 *      the master link and will return true if any of M/S links is
5238 *      online.
5239 *
5240 *      LOCKING:
5241 *      None.
5242 *
5243 *      RETURNS:
5244 *      True if the port online status is available and online.
5245 */
5246bool ata_link_online(struct ata_link *link)
5247{
5248        struct ata_link *slave = link->ap->slave_link;
5249
5250        WARN_ON(link == slave); /* shouldn't be called on slave link */
5251
5252        return ata_phys_link_online(link) ||
5253                (slave && ata_phys_link_online(slave));
5254}
5255
5256/**
5257 *      ata_link_offline - test whether the given link is offline
5258 *      @link: ATA link to test
5259 *
5260 *      Test whether @link is offline.  This is identical to
5261 *      ata_phys_link_offline() when there's no slave link.  When
5262 *      there's a slave link, this function should only be called on
5263 *      the master link and will return true if both M/S links are
5264 *      offline.
5265 *
5266 *      LOCKING:
5267 *      None.
5268 *
5269 *      RETURNS:
5270 *      True if the port offline status is available and offline.
5271 */
5272bool ata_link_offline(struct ata_link *link)
5273{
5274        struct ata_link *slave = link->ap->slave_link;
5275
5276        WARN_ON(link == slave); /* shouldn't be called on slave link */
5277
5278        return ata_phys_link_offline(link) &&
5279                (!slave || ata_phys_link_offline(slave));
5280}
5281
5282#ifdef CONFIG_PM
5283static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5284                               unsigned int action, unsigned int ehi_flags,
5285                               int *async)
5286{
5287        struct ata_link *link;
5288        unsigned long flags;
5289        int rc = 0;
5290
5291        /* Previous resume operation might still be in
5292         * progress.  Wait for PM_PENDING to clear.
5293         */
5294        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5295                if (async) {
5296                        *async = -EAGAIN;
5297                        return 0;
5298                }
5299                ata_port_wait_eh(ap);
5300                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5301        }
5302
5303        /* request PM ops to EH */
5304        spin_lock_irqsave(ap->lock, flags);
5305
5306        ap->pm_mesg = mesg;
5307        if (async)
5308                ap->pm_result = async;
5309        else
5310                ap->pm_result = &rc;
5311
5312        ap->pflags |= ATA_PFLAG_PM_PENDING;
5313        ata_for_each_link(link, ap, HOST_FIRST) {
5314                link->eh_info.action |= action;
5315                link->eh_info.flags |= ehi_flags;
5316        }
5317
5318        ata_port_schedule_eh(ap);
5319
5320        spin_unlock_irqrestore(ap->lock, flags);
5321
5322        /* wait and check result */
5323        if (!async) {
5324                ata_port_wait_eh(ap);
5325                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5326        }
5327
5328        return rc;
5329}
5330
5331static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5332{
5333        unsigned int ehi_flags = ATA_EHI_QUIET;
5334        int rc;
5335
5336        /*
5337         * On some hardware, device fails to respond after spun down
5338         * for suspend.  As the device won't be used before being
5339         * resumed, we don't need to touch the device.  Ask EH to skip
5340         * the usual stuff and proceed directly to suspend.
5341         *
5342         * http://thread.gmane.org/gmane.linux.ide/46764
5343         */
5344        if (mesg.event == PM_EVENT_SUSPEND)
5345                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5346
5347        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5348        return rc;
5349}
5350
5351static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5352{
5353        struct ata_port *ap = to_ata_port(dev);
5354
5355        return __ata_port_suspend_common(ap, mesg, NULL);
5356}
5357
5358static int ata_port_suspend(struct device *dev)
5359{
5360        if (pm_runtime_suspended(dev))
5361                return 0;
5362
5363        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5364}
5365
5366static int ata_port_do_freeze(struct device *dev)
5367{
5368        if (pm_runtime_suspended(dev))
5369                pm_runtime_resume(dev);
5370
5371        return ata_port_suspend_common(dev, PMSG_FREEZE);
5372}
5373
5374static int ata_port_poweroff(struct device *dev)
5375{
5376        if (pm_runtime_suspended(dev))
5377                return 0;
5378
5379        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5380}
5381
5382static int __ata_port_resume_common(struct ata_port *ap, int *async)
5383{
5384        int rc;
5385
5386        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5387                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5388        return rc;
5389}
5390
5391static int ata_port_resume_common(struct device *dev)
5392{
5393        struct ata_port *ap = to_ata_port(dev);
5394
5395        return __ata_port_resume_common(ap, NULL);
5396}
5397
5398static int ata_port_resume(struct device *dev)
5399{
5400        int rc;
5401
5402        rc = ata_port_resume_common(dev);
5403        if (!rc) {
5404                pm_runtime_disable(dev);
5405                pm_runtime_set_active(dev);
5406                pm_runtime_enable(dev);
5407        }
5408
5409        return rc;
5410}
5411
5412static int ata_port_runtime_idle(struct device *dev)
5413{
5414        return pm_runtime_suspend(dev);
5415}
5416
5417static const struct dev_pm_ops ata_port_pm_ops = {
5418        .suspend = ata_port_suspend,
5419        .resume = ata_port_resume,
5420        .freeze = ata_port_do_freeze,
5421        .thaw = ata_port_resume,
5422        .poweroff = ata_port_poweroff,
5423        .restore = ata_port_resume,
5424
5425        .runtime_suspend = ata_port_suspend,
5426        .runtime_resume = ata_port_resume_common,
5427        .runtime_idle = ata_port_runtime_idle,
5428};
5429
5430/* sas ports don't participate in pm runtime management of ata_ports,
5431 * and need to resume ata devices at the domain level, not the per-port
5432 * level. sas suspend/resume is async to allow parallel port recovery
5433 * since sas has multiple ata_port instances per Scsi_Host.
5434 */
5435int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5436{
5437        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5438}
5439EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5440
5441int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5442{
5443        return __ata_port_resume_common(ap, async);
5444}
5445EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5446
5447
5448/**
5449 *      ata_host_suspend - suspend host
5450 *      @host: host to suspend
5451 *      @mesg: PM message
5452 *
5453 *      Suspend @host.  Actual operation is performed by port suspend.
5454 */
5455int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5456{
5457        host->dev->power.power_state = mesg;
5458        return 0;
5459}
5460
5461/**
5462 *      ata_host_resume - resume host
5463 *      @host: host to resume
5464 *
5465 *      Resume @host.  Actual operation is performed by port resume.
5466 */
5467void ata_host_resume(struct ata_host *host)
5468{
5469        host->dev->power.power_state = PMSG_ON;
5470}
5471#endif
5472
5473struct device_type ata_port_type = {
5474        .name = "ata_port",
5475#ifdef CONFIG_PM
5476        .pm = &ata_port_pm_ops,
5477#endif
5478};
5479
5480/**
5481 *      ata_dev_init - Initialize an ata_device structure
5482 *      @dev: Device structure to initialize
5483 *
5484 *      Initialize @dev in preparation for probing.
5485 *
5486 *      LOCKING:
5487 *      Inherited from caller.
5488 */
5489void ata_dev_init(struct ata_device *dev)
5490{
5491        struct ata_link *link = ata_dev_phys_link(dev);
5492        struct ata_port *ap = link->ap;
5493        unsigned long flags;
5494
5495        /* SATA spd limit is bound to the attached device, reset together */
5496        link->sata_spd_limit = link->hw_sata_spd_limit;
5497        link->sata_spd = 0;
5498
5499        /* High bits of dev->flags are used to record warm plug
5500         * requests which occur asynchronously.  Synchronize using
5501         * host lock.
5502         */
5503        spin_lock_irqsave(ap->lock, flags);
5504        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5505        dev->horkage = 0;
5506        spin_unlock_irqrestore(ap->lock, flags);
5507
5508        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5509               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5510        dev->pio_mask = UINT_MAX;
5511        dev->mwdma_mask = UINT_MAX;
5512        dev->udma_mask = UINT_MAX;
5513}
5514
5515/**
5516 *      ata_link_init - Initialize an ata_link structure
5517 *      @ap: ATA port link is attached to
5518 *      @link: Link structure to initialize
5519 *      @pmp: Port multiplier port number
5520 *
5521 *      Initialize @link.
5522 *
5523 *      LOCKING:
5524 *      Kernel thread context (may sleep)
5525 */
5526void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5527{
5528        int i;
5529
5530        /* clear everything except for devices */
5531        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5532               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5533
5534        link->ap = ap;
5535        link->pmp = pmp;
5536        link->active_tag = ATA_TAG_POISON;
5537        link->hw_sata_spd_limit = UINT_MAX;
5538
5539        /* can't use iterator, ap isn't initialized yet */
5540        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5541                struct ata_device *dev = &link->device[i];
5542
5543                dev->link = link;
5544                dev->devno = dev - link->device;
5545#ifdef CONFIG_ATA_ACPI
5546                dev->gtf_filter = ata_acpi_gtf_filter;
5547#endif
5548                ata_dev_init(dev);
5549        }
5550}
5551
5552/**
5553 *      sata_link_init_spd - Initialize link->sata_spd_limit
5554 *      @link: Link to configure sata_spd_limit for
5555 *
5556 *      Initialize @link->[hw_]sata_spd_limit to the currently
5557 *      configured value.
5558 *
5559 *      LOCKING:
5560 *      Kernel thread context (may sleep).
5561 *
5562 *      RETURNS: