linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108
 109static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 110static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 111                         unsigned long nr_segs, loff_t pos);
 112static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 113                          unsigned long nr_segs, loff_t pos);
 114static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 115
 116static int sock_close(struct inode *inode, struct file *file);
 117static unsigned int sock_poll(struct file *file,
 118                              struct poll_table_struct *wait);
 119static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 120#ifdef CONFIG_COMPAT
 121static long compat_sock_ioctl(struct file *file,
 122                              unsigned int cmd, unsigned long arg);
 123#endif
 124static int sock_fasync(int fd, struct file *filp, int on);
 125static ssize_t sock_sendpage(struct file *file, struct page *page,
 126                             int offset, size_t size, loff_t *ppos, int more);
 127static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 128                                struct pipe_inode_info *pipe, size_t len,
 129                                unsigned int flags);
 130
 131/*
 132 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 133 *      in the operation structures but are done directly via the socketcall() multiplexor.
 134 */
 135
 136static const struct file_operations socket_file_ops = {
 137        .owner =        THIS_MODULE,
 138        .llseek =       no_llseek,
 139        .aio_read =     sock_aio_read,
 140        .aio_write =    sock_aio_write,
 141        .poll =         sock_poll,
 142        .unlocked_ioctl = sock_ioctl,
 143#ifdef CONFIG_COMPAT
 144        .compat_ioctl = compat_sock_ioctl,
 145#endif
 146        .mmap =         sock_mmap,
 147        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 148        .release =      sock_close,
 149        .fasync =       sock_fasync,
 150        .sendpage =     sock_sendpage,
 151        .splice_write = generic_splice_sendpage,
 152        .splice_read =  sock_splice_read,
 153};
 154
 155/*
 156 *      The protocol list. Each protocol is registered in here.
 157 */
 158
 159static DEFINE_SPINLOCK(net_family_lock);
 160static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 161
 162/*
 163 *      Statistics counters of the socket lists
 164 */
 165
 166static DEFINE_PER_CPU(int, sockets_in_use);
 167
 168/*
 169 * Support routines.
 170 * Move socket addresses back and forth across the kernel/user
 171 * divide and look after the messy bits.
 172 */
 173
 174/**
 175 *      move_addr_to_kernel     -       copy a socket address into kernel space
 176 *      @uaddr: Address in user space
 177 *      @kaddr: Address in kernel space
 178 *      @ulen: Length in user space
 179 *
 180 *      The address is copied into kernel space. If the provided address is
 181 *      too long an error code of -EINVAL is returned. If the copy gives
 182 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 183 */
 184
 185int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 186{
 187        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 188                return -EINVAL;
 189        if (ulen == 0)
 190                return 0;
 191        if (copy_from_user(kaddr, uaddr, ulen))
 192                return -EFAULT;
 193        return audit_sockaddr(ulen, kaddr);
 194}
 195
 196/**
 197 *      move_addr_to_user       -       copy an address to user space
 198 *      @kaddr: kernel space address
 199 *      @klen: length of address in kernel
 200 *      @uaddr: user space address
 201 *      @ulen: pointer to user length field
 202 *
 203 *      The value pointed to by ulen on entry is the buffer length available.
 204 *      This is overwritten with the buffer space used. -EINVAL is returned
 205 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 206 *      is returned if either the buffer or the length field are not
 207 *      accessible.
 208 *      After copying the data up to the limit the user specifies, the true
 209 *      length of the data is written over the length limit the user
 210 *      specified. Zero is returned for a success.
 211 */
 212
 213static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 214                             void __user *uaddr, int __user *ulen)
 215{
 216        int err;
 217        int len;
 218
 219        err = get_user(len, ulen);
 220        if (err)
 221                return err;
 222        if (len > klen)
 223                len = klen;
 224        if (len < 0 || len > sizeof(struct sockaddr_storage))
 225                return -EINVAL;
 226        if (len) {
 227                if (audit_sockaddr(klen, kaddr))
 228                        return -ENOMEM;
 229                if (copy_to_user(uaddr, kaddr, len))
 230                        return -EFAULT;
 231        }
 232        /*
 233         *      "fromlen shall refer to the value before truncation.."
 234         *                      1003.1g
 235         */
 236        return __put_user(klen, ulen);
 237}
 238
 239static struct kmem_cache *sock_inode_cachep __read_mostly;
 240
 241static struct inode *sock_alloc_inode(struct super_block *sb)
 242{
 243        struct socket_alloc *ei;
 244        struct socket_wq *wq;
 245
 246        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 247        if (!ei)
 248                return NULL;
 249        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 250        if (!wq) {
 251                kmem_cache_free(sock_inode_cachep, ei);
 252                return NULL;
 253        }
 254        init_waitqueue_head(&wq->wait);
 255        wq->fasync_list = NULL;
 256        RCU_INIT_POINTER(ei->socket.wq, wq);
 257
 258        ei->socket.state = SS_UNCONNECTED;
 259        ei->socket.flags = 0;
 260        ei->socket.ops = NULL;
 261        ei->socket.sk = NULL;
 262        ei->socket.file = NULL;
 263
 264        return &ei->vfs_inode;
 265}
 266
 267static void sock_destroy_inode(struct inode *inode)
 268{
 269        struct socket_alloc *ei;
 270        struct socket_wq *wq;
 271
 272        ei = container_of(inode, struct socket_alloc, vfs_inode);
 273        wq = rcu_dereference_protected(ei->socket.wq, 1);
 274        kfree_rcu(wq, rcu);
 275        kmem_cache_free(sock_inode_cachep, ei);
 276}
 277
 278static void init_once(void *foo)
 279{
 280        struct socket_alloc *ei = (struct socket_alloc *)foo;
 281
 282        inode_init_once(&ei->vfs_inode);
 283}
 284
 285static int init_inodecache(void)
 286{
 287        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 288                                              sizeof(struct socket_alloc),
 289                                              0,
 290                                              (SLAB_HWCACHE_ALIGN |
 291                                               SLAB_RECLAIM_ACCOUNT |
 292                                               SLAB_MEM_SPREAD),
 293                                              init_once);
 294        if (sock_inode_cachep == NULL)
 295                return -ENOMEM;
 296        return 0;
 297}
 298
 299static const struct super_operations sockfs_ops = {
 300        .alloc_inode    = sock_alloc_inode,
 301        .destroy_inode  = sock_destroy_inode,
 302        .statfs         = simple_statfs,
 303};
 304
 305/*
 306 * sockfs_dname() is called from d_path().
 307 */
 308static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 309{
 310        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 311                                dentry->d_inode->i_ino);
 312}
 313
 314static const struct dentry_operations sockfs_dentry_operations = {
 315        .d_dname  = sockfs_dname,
 316};
 317
 318static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 319                         int flags, const char *dev_name, void *data)
 320{
 321        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 322                &sockfs_dentry_operations, SOCKFS_MAGIC);
 323}
 324
 325static struct vfsmount *sock_mnt __read_mostly;
 326
 327static struct file_system_type sock_fs_type = {
 328        .name =         "sockfs",
 329        .mount =        sockfs_mount,
 330        .kill_sb =      kill_anon_super,
 331};
 332
 333/*
 334 *      Obtains the first available file descriptor and sets it up for use.
 335 *
 336 *      These functions create file structures and maps them to fd space
 337 *      of the current process. On success it returns file descriptor
 338 *      and file struct implicitly stored in sock->file.
 339 *      Note that another thread may close file descriptor before we return
 340 *      from this function. We use the fact that now we do not refer
 341 *      to socket after mapping. If one day we will need it, this
 342 *      function will increment ref. count on file by 1.
 343 *
 344 *      In any case returned fd MAY BE not valid!
 345 *      This race condition is unavoidable
 346 *      with shared fd spaces, we cannot solve it inside kernel,
 347 *      but we take care of internal coherence yet.
 348 */
 349
 350struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 351{
 352        struct qstr name = { .name = "" };
 353        struct path path;
 354        struct file *file;
 355
 356        if (dname) {
 357                name.name = dname;
 358                name.len = strlen(name.name);
 359        } else if (sock->sk) {
 360                name.name = sock->sk->sk_prot_creator->name;
 361                name.len = strlen(name.name);
 362        }
 363        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 364        if (unlikely(!path.dentry))
 365                return ERR_PTR(-ENOMEM);
 366        path.mnt = mntget(sock_mnt);
 367
 368        d_instantiate(path.dentry, SOCK_INODE(sock));
 369        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 370
 371        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 372                  &socket_file_ops);
 373        if (unlikely(!file)) {
 374                /* drop dentry, keep inode */
 375                ihold(path.dentry->d_inode);
 376                path_put(&path);
 377                return ERR_PTR(-ENFILE);
 378        }
 379
 380        sock->file = file;
 381        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382        file->f_pos = 0;
 383        file->private_data = sock;
 384        return file;
 385}
 386EXPORT_SYMBOL(sock_alloc_file);
 387
 388static int sock_map_fd(struct socket *sock, int flags)
 389{
 390        struct file *newfile;
 391        int fd = get_unused_fd_flags(flags);
 392        if (unlikely(fd < 0))
 393                return fd;
 394
 395        newfile = sock_alloc_file(sock, flags, NULL);
 396        if (likely(!IS_ERR(newfile))) {
 397                fd_install(fd, newfile);
 398                return fd;
 399        }
 400
 401        put_unused_fd(fd);
 402        return PTR_ERR(newfile);
 403}
 404
 405struct socket *sock_from_file(struct file *file, int *err)
 406{
 407        if (file->f_op == &socket_file_ops)
 408                return file->private_data;      /* set in sock_map_fd */
 409
 410        *err = -ENOTSOCK;
 411        return NULL;
 412}
 413EXPORT_SYMBOL(sock_from_file);
 414
 415/**
 416 *      sockfd_lookup - Go from a file number to its socket slot
 417 *      @fd: file handle
 418 *      @err: pointer to an error code return
 419 *
 420 *      The file handle passed in is locked and the socket it is bound
 421 *      too is returned. If an error occurs the err pointer is overwritten
 422 *      with a negative errno code and NULL is returned. The function checks
 423 *      for both invalid handles and passing a handle which is not a socket.
 424 *
 425 *      On a success the socket object pointer is returned.
 426 */
 427
 428struct socket *sockfd_lookup(int fd, int *err)
 429{
 430        struct file *file;
 431        struct socket *sock;
 432
 433        file = fget(fd);
 434        if (!file) {
 435                *err = -EBADF;
 436                return NULL;
 437        }
 438
 439        sock = sock_from_file(file, err);
 440        if (!sock)
 441                fput(file);
 442        return sock;
 443}
 444EXPORT_SYMBOL(sockfd_lookup);
 445
 446static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 447{
 448        struct file *file;
 449        struct socket *sock;
 450
 451        *err = -EBADF;
 452        file = fget_light(fd, fput_needed);
 453        if (file) {
 454                sock = sock_from_file(file, err);
 455                if (sock)
 456                        return sock;
 457                fput_light(file, *fput_needed);
 458        }
 459        return NULL;
 460}
 461
 462#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 463#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 464#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 465static ssize_t sockfs_getxattr(struct dentry *dentry,
 466                               const char *name, void *value, size_t size)
 467{
 468        const char *proto_name;
 469        size_t proto_size;
 470        int error;
 471
 472        error = -ENODATA;
 473        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 474                proto_name = dentry->d_name.name;
 475                proto_size = strlen(proto_name);
 476
 477                if (value) {
 478                        error = -ERANGE;
 479                        if (proto_size + 1 > size)
 480                                goto out;
 481
 482                        strncpy(value, proto_name, proto_size + 1);
 483                }
 484                error = proto_size + 1;
 485        }
 486
 487out:
 488        return error;
 489}
 490
 491static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 492                                size_t size)
 493{
 494        ssize_t len;
 495        ssize_t used = 0;
 496
 497        len = security_inode_listsecurity(dentry->d_inode, buffer, size);
 498        if (len < 0)
 499                return len;
 500        used += len;
 501        if (buffer) {
 502                if (size < used)
 503                        return -ERANGE;
 504                buffer += len;
 505        }
 506
 507        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 508        used += len;
 509        if (buffer) {
 510                if (size < used)
 511                        return -ERANGE;
 512                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 513                buffer += len;
 514        }
 515
 516        return used;
 517}
 518
 519static const struct inode_operations sockfs_inode_ops = {
 520        .getxattr = sockfs_getxattr,
 521        .listxattr = sockfs_listxattr,
 522};
 523
 524/**
 525 *      sock_alloc      -       allocate a socket
 526 *
 527 *      Allocate a new inode and socket object. The two are bound together
 528 *      and initialised. The socket is then returned. If we are out of inodes
 529 *      NULL is returned.
 530 */
 531
 532static struct socket *sock_alloc(void)
 533{
 534        struct inode *inode;
 535        struct socket *sock;
 536
 537        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 538        if (!inode)
 539                return NULL;
 540
 541        sock = SOCKET_I(inode);
 542
 543        kmemcheck_annotate_bitfield(sock, type);
 544        inode->i_ino = get_next_ino();
 545        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 546        inode->i_uid = current_fsuid();
 547        inode->i_gid = current_fsgid();
 548        inode->i_op = &sockfs_inode_ops;
 549
 550        this_cpu_add(sockets_in_use, 1);
 551        return sock;
 552}
 553
 554/*
 555 *      In theory you can't get an open on this inode, but /proc provides
 556 *      a back door. Remember to keep it shut otherwise you'll let the
 557 *      creepy crawlies in.
 558 */
 559
 560static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 561{
 562        return -ENXIO;
 563}
 564
 565const struct file_operations bad_sock_fops = {
 566        .owner = THIS_MODULE,
 567        .open = sock_no_open,
 568        .llseek = noop_llseek,
 569};
 570
 571/**
 572 *      sock_release    -       close a socket
 573 *      @sock: socket to close
 574 *
 575 *      The socket is released from the protocol stack if it has a release
 576 *      callback, and the inode is then released if the socket is bound to
 577 *      an inode not a file.
 578 */
 579
 580void sock_release(struct socket *sock)
 581{
 582        if (sock->ops) {
 583                struct module *owner = sock->ops->owner;
 584
 585                sock->ops->release(sock);
 586                sock->ops = NULL;
 587                module_put(owner);
 588        }
 589
 590        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 591                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 592
 593        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 594                return;
 595
 596        this_cpu_sub(sockets_in_use, 1);
 597        if (!sock->file) {
 598                iput(SOCK_INODE(sock));
 599                return;
 600        }
 601        sock->file = NULL;
 602}
 603EXPORT_SYMBOL(sock_release);
 604
 605int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 606{
 607        *tx_flags = 0;
 608        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 609                *tx_flags |= SKBTX_HW_TSTAMP;
 610        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 611                *tx_flags |= SKBTX_SW_TSTAMP;
 612        if (sock_flag(sk, SOCK_WIFI_STATUS))
 613                *tx_flags |= SKBTX_WIFI_STATUS;
 614        return 0;
 615}
 616EXPORT_SYMBOL(sock_tx_timestamp);
 617
 618static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 619                                       struct msghdr *msg, size_t size)
 620{
 621        struct sock_iocb *si = kiocb_to_siocb(iocb);
 622
 623        sock_update_classid(sock->sk);
 624
 625        si->sock = sock;
 626        si->scm = NULL;
 627        si->msg = msg;
 628        si->size = size;
 629
 630        return sock->ops->sendmsg(iocb, sock, msg, size);
 631}
 632
 633static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 634                                 struct msghdr *msg, size_t size)
 635{
 636        int err = security_socket_sendmsg(sock, msg, size);
 637
 638        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 639}
 640
 641int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 642{
 643        struct kiocb iocb;
 644        struct sock_iocb siocb;
 645        int ret;
 646
 647        init_sync_kiocb(&iocb, NULL);
 648        iocb.private = &siocb;
 649        ret = __sock_sendmsg(&iocb, sock, msg, size);
 650        if (-EIOCBQUEUED == ret)
 651                ret = wait_on_sync_kiocb(&iocb);
 652        return ret;
 653}
 654EXPORT_SYMBOL(sock_sendmsg);
 655
 656static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 657{
 658        struct kiocb iocb;
 659        struct sock_iocb siocb;
 660        int ret;
 661
 662        init_sync_kiocb(&iocb, NULL);
 663        iocb.private = &siocb;
 664        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 665        if (-EIOCBQUEUED == ret)
 666                ret = wait_on_sync_kiocb(&iocb);
 667        return ret;
 668}
 669
 670int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 671                   struct kvec *vec, size_t num, size_t size)
 672{
 673        mm_segment_t oldfs = get_fs();
 674        int result;
 675
 676        set_fs(KERNEL_DS);
 677        /*
 678         * the following is safe, since for compiler definitions of kvec and
 679         * iovec are identical, yielding the same in-core layout and alignment
 680         */
 681        msg->msg_iov = (struct iovec *)vec;
 682        msg->msg_iovlen = num;
 683        result = sock_sendmsg(sock, msg, size);
 684        set_fs(oldfs);
 685        return result;
 686}
 687EXPORT_SYMBOL(kernel_sendmsg);
 688
 689static int ktime2ts(ktime_t kt, struct timespec *ts)
 690{
 691        if (kt.tv64) {
 692                *ts = ktime_to_timespec(kt);
 693                return 1;
 694        } else {
 695                return 0;
 696        }
 697}
 698
 699/*
 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 701 */
 702void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 703        struct sk_buff *skb)
 704{
 705        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 706        struct timespec ts[3];
 707        int empty = 1;
 708        struct skb_shared_hwtstamps *shhwtstamps =
 709                skb_hwtstamps(skb);
 710
 711        /* Race occurred between timestamp enabling and packet
 712           receiving.  Fill in the current time for now. */
 713        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 714                __net_timestamp(skb);
 715
 716        if (need_software_tstamp) {
 717                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 718                        struct timeval tv;
 719                        skb_get_timestamp(skb, &tv);
 720                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 721                                 sizeof(tv), &tv);
 722                } else {
 723                        skb_get_timestampns(skb, &ts[0]);
 724                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 725                                 sizeof(ts[0]), &ts[0]);
 726                }
 727        }
 728
 729
 730        memset(ts, 0, sizeof(ts));
 731        if (skb->tstamp.tv64 &&
 732            sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 733                skb_get_timestampns(skb, ts + 0);
 734                empty = 0;
 735        }
 736        if (shhwtstamps) {
 737                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 738                    ktime2ts(shhwtstamps->syststamp, ts + 1))
 739                        empty = 0;
 740                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 741                    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 742                        empty = 0;
 743        }
 744        if (!empty)
 745                put_cmsg(msg, SOL_SOCKET,
 746                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 747}
 748EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 749
 750void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 751        struct sk_buff *skb)
 752{
 753        int ack;
 754
 755        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 756                return;
 757        if (!skb->wifi_acked_valid)
 758                return;
 759
 760        ack = skb->wifi_acked;
 761
 762        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 763}
 764EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 765
 766static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 767                                   struct sk_buff *skb)
 768{
 769        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 770                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 771                        sizeof(__u32), &skb->dropcount);
 772}
 773
 774void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 775        struct sk_buff *skb)
 776{
 777        sock_recv_timestamp(msg, sk, skb);
 778        sock_recv_drops(msg, sk, skb);
 779}
 780EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 781
 782static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 783                                       struct msghdr *msg, size_t size, int flags)
 784{
 785        struct sock_iocb *si = kiocb_to_siocb(iocb);
 786
 787        sock_update_classid(sock->sk);
 788
 789        si->sock = sock;
 790        si->scm = NULL;
 791        si->msg = msg;
 792        si->size = size;
 793        si->flags = flags;
 794
 795        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 796}
 797
 798static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 799                                 struct msghdr *msg, size_t size, int flags)
 800{
 801        int err = security_socket_recvmsg(sock, msg, size, flags);
 802
 803        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 804}
 805
 806int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 807                 size_t size, int flags)
 808{
 809        struct kiocb iocb;
 810        struct sock_iocb siocb;
 811        int ret;
 812
 813        init_sync_kiocb(&iocb, NULL);
 814        iocb.private = &siocb;
 815        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 816        if (-EIOCBQUEUED == ret)
 817                ret = wait_on_sync_kiocb(&iocb);
 818        return ret;
 819}
 820EXPORT_SYMBOL(sock_recvmsg);
 821
 822static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 823                              size_t size, int flags)
 824{
 825        struct kiocb iocb;
 826        struct sock_iocb siocb;
 827        int ret;
 828
 829        init_sync_kiocb(&iocb, NULL);
 830        iocb.private = &siocb;
 831        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 832        if (-EIOCBQUEUED == ret)
 833                ret = wait_on_sync_kiocb(&iocb);
 834        return ret;
 835}
 836
 837/**
 838 * kernel_recvmsg - Receive a message from a socket (kernel space)
 839 * @sock:       The socket to receive the message from
 840 * @msg:        Received message
 841 * @vec:        Input s/g array for message data
 842 * @num:        Size of input s/g array
 843 * @size:       Number of bytes to read
 844 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 845 *
 846 * On return the msg structure contains the scatter/gather array passed in the
 847 * vec argument. The array is modified so that it consists of the unfilled
 848 * portion of the original array.
 849 *
 850 * The returned value is the total number of bytes received, or an error.
 851 */
 852int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 853                   struct kvec *vec, size_t num, size_t size, int flags)
 854{
 855        mm_segment_t oldfs = get_fs();
 856        int result;
 857
 858        set_fs(KERNEL_DS);
 859        /*
 860         * the following is safe, since for compiler definitions of kvec and
 861         * iovec are identical, yielding the same in-core layout and alignment
 862         */
 863        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 864        result = sock_recvmsg(sock, msg, size, flags);
 865        set_fs(oldfs);
 866        return result;
 867}
 868EXPORT_SYMBOL(kernel_recvmsg);
 869
 870static void sock_aio_dtor(struct kiocb *iocb)
 871{
 872        kfree(iocb->private);
 873}
 874
 875static ssize_t sock_sendpage(struct file *file, struct page *page,
 876                             int offset, size_t size, loff_t *ppos, int more)
 877{
 878        struct socket *sock;
 879        int flags;
 880
 881        sock = file->private_data;
 882
 883        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 884        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 885        flags |= more;
 886
 887        return kernel_sendpage(sock, page, offset, size, flags);
 888}
 889
 890static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 891                                struct pipe_inode_info *pipe, size_t len,
 892                                unsigned int flags)
 893{
 894        struct socket *sock = file->private_data;
 895
 896        if (unlikely(!sock->ops->splice_read))
 897                return -EINVAL;
 898
 899        sock_update_classid(sock->sk);
 900
 901        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 902}
 903
 904static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 905                                         struct sock_iocb *siocb)
 906{
 907        if (!is_sync_kiocb(iocb)) {
 908                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 909                if (!siocb)
 910                        return NULL;
 911                iocb->ki_dtor = sock_aio_dtor;
 912        }
 913
 914        siocb->kiocb = iocb;
 915        iocb->private = siocb;
 916        return siocb;
 917}
 918
 919static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 920                struct file *file, const struct iovec *iov,
 921                unsigned long nr_segs)
 922{
 923        struct socket *sock = file->private_data;
 924        size_t size = 0;
 925        int i;
 926
 927        for (i = 0; i < nr_segs; i++)
 928                size += iov[i].iov_len;
 929
 930        msg->msg_name = NULL;
 931        msg->msg_namelen = 0;
 932        msg->msg_control = NULL;
 933        msg->msg_controllen = 0;
 934        msg->msg_iov = (struct iovec *)iov;
 935        msg->msg_iovlen = nr_segs;
 936        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 937
 938        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 939}
 940
 941static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 942                                unsigned long nr_segs, loff_t pos)
 943{
 944        struct sock_iocb siocb, *x;
 945
 946        if (pos != 0)
 947                return -ESPIPE;
 948
 949        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 950                return 0;
 951
 952
 953        x = alloc_sock_iocb(iocb, &siocb);
 954        if (!x)
 955                return -ENOMEM;
 956        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 957}
 958
 959static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 960                        struct file *file, const struct iovec *iov,
 961                        unsigned long nr_segs)
 962{
 963        struct socket *sock = file->private_data;
 964        size_t size = 0;
 965        int i;
 966
 967        for (i = 0; i < nr_segs; i++)
 968                size += iov[i].iov_len;
 969
 970        msg->msg_name = NULL;
 971        msg->msg_namelen = 0;
 972        msg->msg_control = NULL;
 973        msg->msg_controllen = 0;
 974        msg->msg_iov = (struct iovec *)iov;
 975        msg->msg_iovlen = nr_segs;
 976        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 977        if (sock->type == SOCK_SEQPACKET)
 978                msg->msg_flags |= MSG_EOR;
 979
 980        return __sock_sendmsg(iocb, sock, msg, size);
 981}
 982
 983static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 984                          unsigned long nr_segs, loff_t pos)
 985{
 986        struct sock_iocb siocb, *x;
 987
 988        if (pos != 0)
 989                return -ESPIPE;
 990
 991        x = alloc_sock_iocb(iocb, &siocb);
 992        if (!x)
 993                return -ENOMEM;
 994
 995        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 996}
 997
 998/*
 999 * Atomic setting of ioctl hooks to avoid race
1000 * with module unload.
1001 */
1002
1003static DEFINE_MUTEX(br_ioctl_mutex);
1004static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1005
1006void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1007{
1008        mutex_lock(&br_ioctl_mutex);
1009        br_ioctl_hook = hook;
1010        mutex_unlock(&br_ioctl_mutex);
1011}
1012EXPORT_SYMBOL(brioctl_set);
1013
1014static DEFINE_MUTEX(vlan_ioctl_mutex);
1015static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1016
1017void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1018{
1019        mutex_lock(&vlan_ioctl_mutex);
1020        vlan_ioctl_hook = hook;
1021        mutex_unlock(&vlan_ioctl_mutex);
1022}
1023EXPORT_SYMBOL(vlan_ioctl_set);
1024
1025static DEFINE_MUTEX(dlci_ioctl_mutex);
1026static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1027
1028void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1029{
1030        mutex_lock(&dlci_ioctl_mutex);
1031        dlci_ioctl_hook = hook;
1032        mutex_unlock(&dlci_ioctl_mutex);
1033}
1034EXPORT_SYMBOL(dlci_ioctl_set);
1035
1036static long sock_do_ioctl(struct net *net, struct socket *sock,
1037                                 unsigned int cmd, unsigned long arg)
1038{
1039        int err;
1040        void __user *argp = (void __user *)arg;
1041
1042        err = sock->ops->ioctl(sock, cmd, arg);
1043
1044        /*
1045         * If this ioctl is unknown try to hand it down
1046         * to the NIC driver.
1047         */
1048        if (err == -ENOIOCTLCMD)
1049                err = dev_ioctl(net, cmd, argp);
1050
1051        return err;
1052}
1053
1054/*
1055 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1056 *      what to do with it - that's up to the protocol still.
1057 */
1058
1059static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1060{
1061        struct socket *sock;
1062        struct sock *sk;
1063        void __user *argp = (void __user *)arg;
1064        int pid, err;
1065        struct net *net;
1066
1067        sock = file->private_data;
1068        sk = sock->sk;
1069        net = sock_net(sk);
1070        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1071                err = dev_ioctl(net, cmd, argp);
1072        } else
1073#ifdef CONFIG_WEXT_CORE
1074        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1075                err = dev_ioctl(net, cmd, argp);
1076        } else
1077#endif
1078                switch (cmd) {
1079                case FIOSETOWN:
1080                case SIOCSPGRP:
1081                        err = -EFAULT;
1082                        if (get_user(pid, (int __user *)argp))
1083                                break;
1084                        err = f_setown(sock->file, pid, 1);
1085                        break;
1086                case FIOGETOWN:
1087                case SIOCGPGRP:
1088                        err = put_user(f_getown(sock->file),
1089                                       (int __user *)argp);
1090                        break;
1091                case SIOCGIFBR:
1092                case SIOCSIFBR:
1093                case SIOCBRADDBR:
1094                case SIOCBRDELBR:
1095                        err = -ENOPKG;
1096                        if (!br_ioctl_hook)
1097                                request_module("bridge");
1098
1099                        mutex_lock(&br_ioctl_mutex);
1100                        if (br_ioctl_hook)
1101                                err = br_ioctl_hook(net, cmd, argp);
1102                        mutex_unlock(&br_ioctl_mutex);
1103                        break;
1104                case SIOCGIFVLAN:
1105                case SIOCSIFVLAN:
1106                        err = -ENOPKG;
1107                        if (!vlan_ioctl_hook)
1108                                request_module("8021q");
1109
1110                        mutex_lock(&vlan_ioctl_mutex);
1111                        if (vlan_ioctl_hook)
1112                                err = vlan_ioctl_hook(net, argp);
1113                        mutex_unlock(&vlan_ioctl_mutex);
1114                        break;
1115                case SIOCADDDLCI:
1116                case SIOCDELDLCI:
1117                        err = -ENOPKG;
1118                        if (!dlci_ioctl_hook)
1119                                request_module("dlci");
1120
1121                        mutex_lock(&dlci_ioctl_mutex);
1122                        if (dlci_ioctl_hook)
1123                                err = dlci_ioctl_hook(cmd, argp);
1124                        mutex_unlock(&dlci_ioctl_mutex);
1125                        break;
1126                default:
1127                        err = sock_do_ioctl(net, sock, cmd, arg);
1128                        break;
1129                }
1130        return err;
1131}
1132
1133int sock_create_lite(int family, int type, int protocol, struct socket **res)
1134{
1135        int err;
1136        struct socket *sock = NULL;
1137
1138        err = security_socket_create(family, type, protocol, 1);
1139        if (err)
1140                goto out;
1141
1142        sock = sock_alloc();
1143        if (!sock) {
1144                err = -ENOMEM;
1145                goto out;
1146        }
1147
1148        sock->type = type;
1149        err = security_socket_post_create(sock, family, type, protocol, 1);
1150        if (err)
1151                goto out_release;
1152
1153out:
1154        *res = sock;
1155        return err;
1156out_release:
1157        sock_release(sock);
1158        sock = NULL;
1159        goto out;
1160}
1161EXPORT_SYMBOL(sock_create_lite);
1162
1163/* No kernel lock held - perfect */
1164static unsigned int sock_poll(struct file *file, poll_table *wait)
1165{
1166        struct socket *sock;
1167
1168        /*
1169         *      We can't return errors to poll, so it's either yes or no.
1170         */
1171        sock = file->private_data;
1172        return sock->ops->poll(file, sock, wait);
1173}
1174
1175static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1176{
1177        struct socket *sock = file->private_data;
1178
1179        return sock->ops->mmap(file, sock, vma);
1180}
1181
1182static int sock_close(struct inode *inode, struct file *filp)
1183{
1184        /*
1185         *      It was possible the inode is NULL we were
1186         *      closing an unfinished socket.
1187         */
1188
1189        if (!inode) {
1190                printk(KERN_DEBUG "sock_close: NULL inode\n");
1191                return 0;
1192        }
1193        sock_release(SOCKET_I(inode));
1194        return 0;
1195}
1196
1197/*
1198 *      Update the socket async list
1199 *
1200 *      Fasync_list locking strategy.
1201 *
1202 *      1. fasync_list is modified only under process context socket lock
1203 *         i.e. under semaphore.
1204 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1205 *         or under socket lock
1206 */
1207
1208static int sock_fasync(int fd, struct file *filp, int on)
1209{
1210        struct socket *sock = filp->private_data;
1211        struct sock *sk = sock->sk;
1212        struct socket_wq *wq;
1213
1214        if (sk == NULL)
1215                return -EINVAL;
1216
1217        lock_sock(sk);
1218        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1219        fasync_helper(fd, filp, on, &wq->fasync_list);
1220
1221        if (!wq->fasync_list)
1222                sock_reset_flag(sk, SOCK_FASYNC);
1223        else
1224                sock_set_flag(sk, SOCK_FASYNC);
1225
1226        release_sock(sk);
1227        return 0;
1228}
1229
1230/* This function may be called only under socket lock or callback_lock or rcu_lock */
1231
1232int sock_wake_async(struct socket *sock, int how, int band)
1233{
1234        struct socket_wq *wq;
1235
1236        if (!sock)
1237                return -1;
1238        rcu_read_lock();
1239        wq = rcu_dereference(sock->wq);
1240        if (!wq || !wq->fasync_list) {
1241                rcu_read_unlock();
1242                return -1;
1243        }
1244        switch (how) {
1245        case SOCK_WAKE_WAITD:
1246                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1247                        break;
1248                goto call_kill;
1249        case SOCK_WAKE_SPACE:
1250                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1251                        break;
1252                /* fall through */
1253        case SOCK_WAKE_IO:
1254call_kill:
1255                kill_fasync(&wq->fasync_list, SIGIO, band);
1256                break;
1257        case SOCK_WAKE_URG:
1258                kill_fasync(&wq->fasync_list, SIGURG, band);
1259        }
1260        rcu_read_unlock();
1261        return 0;
1262}
1263EXPORT_SYMBOL(sock_wake_async);
1264
1265int __sock_create(struct net *net, int family, int type, int protocol,
1266                         struct socket **res, int kern)
1267{
1268        int err;
1269        struct socket *sock;
1270        const struct net_proto_family *pf;
1271
1272        /*
1273         *      Check protocol is in range
1274         */
1275        if (family < 0 || family >= NPROTO)
1276                return -EAFNOSUPPORT;
1277        if (type < 0 || type >= SOCK_MAX)
1278                return -EINVAL;
1279
1280        /* Compatibility.
1281
1282           This uglymoron is moved from INET layer to here to avoid
1283           deadlock in module load.
1284         */
1285        if (family == PF_INET && type == SOCK_PACKET) {
1286                static int warned;
1287                if (!warned) {
1288                        warned = 1;
1289                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1290                               current->comm);
1291                }
1292                family = PF_PACKET;
1293        }
1294
1295        err = security_socket_create(family, type, protocol, kern);
1296        if (err)
1297                return err;
1298
1299        /*
1300         *      Allocate the socket and allow the family to set things up. if
1301         *      the protocol is 0, the family is instructed to select an appropriate
1302         *      default.
1303         */
1304        sock = sock_alloc();
1305        if (!sock) {
1306                net_warn_ratelimited("socket: no more sockets\n");
1307                return -ENFILE; /* Not exactly a match, but its the
1308                                   closest posix thing */
1309        }
1310
1311        sock->type = type;
1312
1313#ifdef CONFIG_MODULES
1314        /* Attempt to load a protocol module if the find failed.
1315         *
1316         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1317         * requested real, full-featured networking support upon configuration.
1318         * Otherwise module support will break!
1319         */
1320        if (rcu_access_pointer(net_families[family]) == NULL)
1321                request_module("net-pf-%d", family);
1322#endif
1323
1324        rcu_read_lock();
1325        pf = rcu_dereference(net_families[family]);
1326        err = -EAFNOSUPPORT;
1327        if (!pf)
1328                goto out_release;
1329
1330        /*
1331         * We will call the ->create function, that possibly is in a loadable
1332         * module, so we have to bump that loadable module refcnt first.
1333         */
1334        if (!try_module_get(pf->owner))
1335                goto out_release;
1336
1337        /* Now protected by module ref count */
1338        rcu_read_unlock();
1339
1340        err = pf->create(net, sock, protocol, kern);
1341        if (err < 0)
1342                goto out_module_put;
1343
1344        /*
1345         * Now to bump the refcnt of the [loadable] module that owns this
1346         * socket at sock_release time we decrement its refcnt.
1347         */
1348        if (!try_module_get(sock->ops->owner))
1349                goto out_module_busy;
1350
1351        /*
1352         * Now that we're done with the ->create function, the [loadable]
1353         * module can have its refcnt decremented
1354         */
1355        module_put(pf->owner);
1356        err = security_socket_post_create(sock, family, type, protocol, kern);
1357        if (err)
1358                goto out_sock_release;
1359        *res = sock;
1360
1361        return 0;
1362
1363out_module_busy:
1364        err = -EAFNOSUPPORT;
1365out_module_put:
1366        sock->ops = NULL;
1367        module_put(pf->owner);
1368out_sock_release:
1369        sock_release(sock);
1370        return err;
1371
1372out_release:
1373        rcu_read_unlock();
1374        goto out_sock_release;
1375}
1376EXPORT_SYMBOL(__sock_create);
1377
1378int sock_create(int family, int type, int protocol, struct socket **res)
1379{
1380        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1381}
1382EXPORT_SYMBOL(sock_create);
1383
1384int sock_create_kern(int family, int type, int protocol, struct socket **res)
1385{
1386        return __sock_create(&init_net, family, type, protocol, res, 1);
1387}
1388EXPORT_SYMBOL(sock_create_kern);
1389
1390SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1391{
1392        int retval;
1393        struct socket *sock;
1394        int flags;
1395
1396        /* Check the SOCK_* constants for consistency.  */
1397        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1398        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1399        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1400        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1401
1402        flags = type & ~SOCK_TYPE_MASK;
1403        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1404                return -EINVAL;
1405        type &= SOCK_TYPE_MASK;
1406
1407        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1408                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1409
1410        retval = sock_create(family, type, protocol, &sock);
1411        if (retval < 0)
1412                goto out;
1413
1414        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1415        if (retval < 0)
1416                goto out_release;
1417
1418out:
1419        /* It may be already another descriptor 8) Not kernel problem. */
1420        return retval;
1421
1422out_release:
1423        sock_release(sock);
1424        return retval;
1425}
1426
1427/*
1428 *      Create a pair of connected sockets.
1429 */
1430
1431SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1432                int __user *, usockvec)
1433{
1434        struct socket *sock1, *sock2;
1435        int fd1, fd2, err;
1436        struct file *newfile1, *newfile2;
1437        int flags;
1438
1439        flags = type & ~SOCK_TYPE_MASK;
1440        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1441                return -EINVAL;
1442        type &= SOCK_TYPE_MASK;
1443
1444        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1445                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1446
1447        /*
1448         * Obtain the first socket and check if the underlying protocol
1449         * supports the socketpair call.
1450         */
1451
1452        err = sock_create(family, type, protocol, &sock1);
1453        if (err < 0)
1454                goto out;
1455
1456        err = sock_create(family, type, protocol, &sock2);
1457        if (err < 0)
1458                goto out_release_1;
1459
1460        err = sock1->ops->socketpair(sock1, sock2);
1461        if (err < 0)
1462                goto out_release_both;
1463
1464        fd1 = get_unused_fd_flags(flags);
1465        if (unlikely(fd1 < 0)) {
1466                err = fd1;
1467                goto out_release_both;
1468        }
1469        fd2 = get_unused_fd_flags(flags);
1470        if (unlikely(fd2 < 0)) {
1471                err = fd2;
1472                put_unused_fd(fd1);
1473                goto out_release_both;
1474        }
1475
1476        newfile1 = sock_alloc_file(sock1, flags, NULL);
1477        if (unlikely(IS_ERR(newfile1))) {
1478                err = PTR_ERR(newfile1);
1479                put_unused_fd(fd1);
1480                put_unused_fd(fd2);
1481                goto out_release_both;
1482        }
1483
1484        newfile2 = sock_alloc_file(sock2, flags, NULL);
1485        if (IS_ERR(newfile2)) {
1486                err = PTR_ERR(newfile2);
1487                fput(newfile1);
1488                put_unused_fd(fd1);
1489                put_unused_fd(fd2);
1490                sock_release(sock2);
1491                goto out;
1492        }
1493
1494        audit_fd_pair(fd1, fd2);
1495        fd_install(fd1, newfile1);
1496        fd_install(fd2, newfile2);
1497        /* fd1 and fd2 may be already another descriptors.
1498         * Not kernel problem.
1499         */
1500
1501        err = put_user(fd1, &usockvec[0]);
1502        if (!err)
1503                err = put_user(fd2, &usockvec[1]);
1504        if (!err)
1505                return 0;
1506
1507        sys_close(fd2);
1508        sys_close(fd1);
1509        return err;
1510
1511out_release_both:
1512        sock_release(sock2);
1513out_release_1:
1514        sock_release(sock1);
1515out:
1516        return err;
1517}
1518
1519/*
1520 *      Bind a name to a socket. Nothing much to do here since it's
1521 *      the protocol's responsibility to handle the local address.
1522 *
1523 *      We move the socket address to kernel space before we call
1524 *      the protocol layer (having also checked the address is ok).
1525 */
1526
1527SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528{
1529        struct socket *sock;
1530        struct sockaddr_storage address;
1531        int err, fput_needed;
1532
1533        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534        if (sock) {
1535                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536                if (err >= 0) {
1537                        err = security_socket_bind(sock,
1538                                                   (struct sockaddr *)&address,
1539                                                   addrlen);
1540                        if (!err)
1541                                err = sock->ops->bind(sock,
1542                                                      (struct sockaddr *)
1543                                                      &address, addrlen);
1544                }
1545                fput_light(sock->file, fput_needed);
1546        }
1547        return err;
1548}
1549
1550/*
1551 *      Perform a listen. Basically, we allow the protocol to do anything
1552 *      necessary for a listen, and if that works, we mark the socket as
1553 *      ready for listening.
1554 */
1555
1556SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557{
1558        struct socket *sock;
1559        int err, fput_needed;
1560        int somaxconn;
1561
1562        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563        if (sock) {
1564                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565                if ((unsigned int)backlog > somaxconn)
1566                        backlog = somaxconn;
1567
1568                err = security_socket_listen(sock, backlog);
1569                if (!err)
1570                        err = sock->ops->listen(sock, backlog);
1571
1572                fput_light(sock->file, fput_needed);
1573        }
1574        return err;
1575}
1576
1577/*
1578 *      For accept, we attempt to create a new socket, set up the link
1579 *      with the client, wake up the client, then return the new
1580 *      connected fd. We collect the address of the connector in kernel
1581 *      space and move it to user at the very end. This is unclean because
1582 *      we open the socket then return an error.
1583 *
1584 *      1003.1g adds the ability to recvmsg() to query connection pending
1585 *      status to recvmsg. We need to add that support in a way thats
1586 *      clean when we restucture accept also.
1587 */
1588
1589SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590                int __user *, upeer_addrlen, int, flags)
1591{
1592        struct socket *sock, *newsock;
1593        struct file *newfile;
1594        int err, len, newfd, fput_needed;
1595        struct sockaddr_storage address;
1596
1597        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598                return -EINVAL;
1599
1600        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602
1603        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604        if (!sock)
1605                goto out;
1606
1607        err = -ENFILE;
1608        newsock = sock_alloc();
1609        if (!newsock)
1610                goto out_put;
1611
1612        newsock->type = sock->type;
1613        newsock->ops = sock->ops;
1614
1615        /*
1616         * We don't need try_module_get here, as the listening socket (sock)
1617         * has the protocol module (sock->ops->owner) held.
1618         */
1619        __module_get(newsock->ops->owner);
1620
1621        newfd = get_unused_fd_flags(flags);
1622        if (unlikely(newfd < 0)) {
1623                err = newfd;
1624                sock_release(newsock);
1625                goto out_put;
1626        }
1627        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628        if (unlikely(IS_ERR(newfile))) {
1629                err = PTR_ERR(newfile);
1630                put_unused_fd(newfd);
1631                sock_release(newsock);
1632                goto out_put;
1633        }
1634
1635        err = security_socket_accept(sock, newsock);
1636        if (err)
1637                goto out_fd;
1638
1639        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640        if (err < 0)
1641                goto out_fd;
1642
1643        if (upeer_sockaddr) {
1644                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645                                          &len, 2) < 0) {
1646                        err = -ECONNABORTED;
1647                        goto out_fd;
1648                }
1649                err = move_addr_to_user(&address,
1650                                        len, upeer_sockaddr, upeer_addrlen);
1651                if (err < 0)
1652                        goto out_fd;
1653        }
1654
1655        /* File flags are not inherited via accept() unlike another OSes. */
1656
1657        fd_install(newfd, newfile);
1658        err = newfd;
1659
1660out_put:
1661        fput_light(sock->file, fput_needed);
1662out:
1663        return err;
1664out_fd:
1665        fput(newfile);
1666        put_unused_fd(newfd);
1667        goto out_put;
1668}
1669
1670SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671                int __user *, upeer_addrlen)
1672{
1673        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674}
1675
1676/*
1677 *      Attempt to connect to a socket with the server address.  The address
1678 *      is in user space so we verify it is OK and move it to kernel space.
1679 *
1680 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681 *      break bindings
1682 *
1683 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684 *      other SEQPACKET protocols that take time to connect() as it doesn't
1685 *      include the -EINPROGRESS status for such sockets.
1686 */
1687
1688SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689                int, addrlen)
1690{
1691        struct socket *sock;
1692        struct sockaddr_storage address;
1693        int err, fput_needed;
1694
1695        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696        if (!sock)
1697                goto out;
1698        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699        if (err < 0)
1700                goto out_put;
1701
1702        err =
1703            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704        if (err)
1705                goto out_put;
1706
1707        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708                                 sock->file->f_flags);
1709out_put:
1710        fput_light(sock->file, fput_needed);
1711out:
1712        return err;
1713}
1714
1715/*
1716 *      Get the local address ('name') of a socket object. Move the obtained
1717 *      name to user space.
1718 */
1719
1720SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721                int __user *, usockaddr_len)
1722{
1723        struct socket *sock;
1724        struct sockaddr_storage address;
1725        int len, err, fput_needed;
1726
1727        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728        if (!sock)
1729                goto out;
1730
1731        err = security_socket_getsockname(sock);
1732        if (err)
1733                goto out_put;
1734
1735        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736        if (err)
1737                goto out_put;
1738        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739
1740out_put:
1741        fput_light(sock->file, fput_needed);
1742out:
1743        return err;
1744}
1745
1746/*
1747 *      Get the remote address ('name') of a socket object. Move the obtained
1748 *      name to user space.
1749 */
1750
1751SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752                int __user *, usockaddr_len)
1753{
1754        struct socket *sock;
1755        struct sockaddr_storage address;
1756        int len, err, fput_needed;
1757
1758        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759        if (sock != NULL) {
1760                err = security_socket_getpeername(sock);
1761                if (err) {
1762                        fput_light(sock->file, fput_needed);
1763                        return err;
1764                }
1765
1766                err =
1767                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768                                       1);
1769                if (!err)
1770                        err = move_addr_to_user(&address, len, usockaddr,
1771                                                usockaddr_len);
1772                fput_light(sock->file, fput_needed);
1773        }
1774        return err;
1775}
1776
1777/*
1778 *      Send a datagram to a given address. We move the address into kernel
1779 *      space and check the user space data area is readable before invoking
1780 *      the protocol.
1781 */
1782
1783SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784                unsigned int, flags, struct sockaddr __user *, addr,
1785                int, addr_len)
1786{
1787        struct socket *sock;
1788        struct sockaddr_storage address;
1789        int err;
1790        struct msghdr msg;
1791        struct iovec iov;
1792        int fput_needed;
1793
1794        if (len > INT_MAX)
1795                len = INT_MAX;
1796        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797        if (!sock)
1798                goto out;
1799
1800        iov.iov_base = buff;
1801        iov.iov_len = len;
1802        msg.msg_name = NULL;
1803        msg.msg_iov = &iov;
1804        msg.msg_iovlen = 1;
1805        msg.msg_control = NULL;
1806        msg.msg_controllen = 0;
1807        msg.msg_namelen = 0;
1808        if (addr) {
1809                err = move_addr_to_kernel(addr, addr_len, &address);
1810                if (err < 0)
1811                        goto out_put;
1812                msg.msg_name = (struct sockaddr *)&address;
1813                msg.msg_namelen = addr_len;
1814        }
1815        if (sock->file->f_flags & O_NONBLOCK)
1816                flags |= MSG_DONTWAIT;
1817        msg.msg_flags = flags;
1818        err = sock_sendmsg(sock, &msg, len);
1819
1820out_put:
1821        fput_light(sock->file, fput_needed);
1822out:
1823        return err;
1824}
1825
1826/*
1827 *      Send a datagram down a socket.
1828 */
1829
1830SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831                unsigned int, flags)
1832{
1833        return sys_sendto(fd, buff, len, flags, NULL, 0);
1834}
1835
1836/*
1837 *      Receive a frame from the socket and optionally record the address of the
1838 *      sender. We verify the buffers are writable and if needed move the
1839 *      sender address from kernel to user space.
1840 */
1841
1842SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843                unsigned int, flags, struct sockaddr __user *, addr,
1844                int __user *, addr_len)
1845{
1846        struct socket *sock;
1847        struct iovec iov;
1848        struct msghdr msg;
1849        struct sockaddr_storage address;
1850        int err, err2;
1851        int fput_needed;
1852
1853        if (size > INT_MAX)
1854                size = INT_MAX;
1855        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856        if (!sock)
1857                goto out;
1858
1859        msg.msg_control = NULL;
1860        msg.msg_controllen = 0;
1861        msg.msg_iovlen = 1;
1862        msg.msg_iov = &iov;
1863        iov.iov_len = size;
1864        iov.iov_base = ubuf;
1865        msg.msg_name = (struct sockaddr *)&address;
1866        msg.msg_namelen = sizeof(address);
1867        if (sock->file->f_flags & O_NONBLOCK)
1868                flags |= MSG_DONTWAIT;
1869        err = sock_recvmsg(sock, &msg, size, flags);
1870
1871        if (err >= 0 && addr != NULL) {
1872                err2 = move_addr_to_user(&address,
1873                                         msg.msg_namelen, addr, addr_len);
1874                if (err2 < 0)
1875                        err = err2;
1876        }
1877
1878        fput_light(sock->file, fput_needed);
1879out:
1880        return err;
1881}
1882
1883/*
1884 *      Receive a datagram from a socket.
1885 */
1886
1887asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1888                         unsigned int flags)
1889{
1890        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1891}
1892
1893/*
1894 *      Set a socket option. Because we don't know the option lengths we have
1895 *      to pass the user mode parameter for the protocols to sort out.
1896 */
1897
1898SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1899                char __user *, optval, int, optlen)
1900{
1901        int err, fput_needed;
1902        struct socket *sock;
1903
1904        if (optlen < 0)
1905                return -EINVAL;
1906
1907        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908        if (sock != NULL) {
1909                err = security_socket_setsockopt(sock, level, optname);
1910                if (err)
1911                        goto out_put;
1912
1913                if (level == SOL_SOCKET)
1914                        err =
1915                            sock_setsockopt(sock, level, optname, optval,
1916                                            optlen);
1917                else
1918                        err =
1919                            sock->ops->setsockopt(sock, level, optname, optval,
1920                                                  optlen);
1921out_put:
1922                fput_light(sock->file, fput_needed);
1923        }
1924        return err;
1925}
1926
1927/*
1928 *      Get a socket option. Because we don't know the option lengths we have
1929 *      to pass a user mode parameter for the protocols to sort out.
1930 */
1931
1932SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1933                char __user *, optval, int __user *, optlen)
1934{
1935        int err, fput_needed;
1936        struct socket *sock;
1937
1938        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939        if (sock != NULL) {
1940                err = security_socket_getsockopt(sock, level, optname);
1941                if (err)
1942                        goto out_put;
1943
1944                if (level == SOL_SOCKET)
1945                        err =
1946                            sock_getsockopt(sock, level, optname, optval,
1947                                            optlen);
1948                else
1949                        err =
1950                            sock->ops->getsockopt(sock, level, optname, optval,
1951                                                  optlen);
1952out_put:
1953                fput_light(sock->file, fput_needed);
1954        }
1955        return err;
1956}
1957
1958/*
1959 *      Shutdown a socket.
1960 */
1961
1962SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1963{
1964        int err, fput_needed;
1965        struct socket *sock;
1966
1967        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1968        if (sock != NULL) {
1969                err = security_socket_shutdown(sock, how);
1970                if (!err)
1971                        err = sock->ops->shutdown(sock, how);
1972                fput_light(sock->file, fput_needed);
1973        }
1974        return err;
1975}
1976
1977/* A couple of helpful macros for getting the address of the 32/64 bit
1978 * fields which are the same type (int / unsigned) on our platforms.
1979 */
1980#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1982#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1983
1984struct used_address {
1985        struct sockaddr_storage name;
1986        unsigned int name_len;
1987};
1988
1989static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1990                         struct msghdr *msg_sys, unsigned int flags,
1991                         struct used_address *used_address)
1992{
1993        struct compat_msghdr __user *msg_compat =
1994            (struct compat_msghdr __user *)msg;
1995        struct sockaddr_storage address;
1996        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1997        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1998            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1999        /* 20 is size of ipv6_pktinfo */
2000        unsigned char *ctl_buf = ctl;
2001        int err, ctl_len, total_len;
2002
2003        err = -EFAULT;
2004        if (MSG_CMSG_COMPAT & flags) {
2005                if (get_compat_msghdr(msg_sys, msg_compat))
2006                        return -EFAULT;
2007        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2008                return -EFAULT;
2009
2010        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2011                err = -EMSGSIZE;
2012                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2013                        goto out;
2014                err = -ENOMEM;
2015                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2016                              GFP_KERNEL);
2017                if (!iov)
2018                        goto out;
2019        }
2020
2021        /* This will also move the address data into kernel space */
2022        if (MSG_CMSG_COMPAT & flags) {
2023                err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2024        } else
2025                err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2026        if (err < 0)
2027                goto out_freeiov;
2028        total_len = err;
2029
2030        err = -ENOBUFS;
2031
2032        if (msg_sys->msg_controllen > INT_MAX)
2033                goto out_freeiov;
2034        ctl_len = msg_sys->msg_controllen;
2035        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2036                err =
2037                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2038                                                     sizeof(ctl));
2039                if (err)
2040                        goto out_freeiov;
2041                ctl_buf = msg_sys->msg_control;
2042                ctl_len = msg_sys->msg_controllen;
2043        } else if (ctl_len) {
2044                if (ctl_len > sizeof(ctl)) {
2045                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2046                        if (ctl_buf == NULL)
2047                                goto out_freeiov;
2048                }
2049                err = -EFAULT;
2050                /*
2051                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2052                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2053                 * checking falls down on this.
2054                 */
2055                if (copy_from_user(ctl_buf,
2056                                   (void __user __force *)msg_sys->msg_control,
2057                                   ctl_len))
2058                        goto out_freectl;
2059                msg_sys->msg_control = ctl_buf;
2060        }
2061        msg_sys->msg_flags = flags;
2062
2063        if (sock->file->f_flags & O_NONBLOCK)
2064                msg_sys->msg_flags |= MSG_DONTWAIT;
2065        /*
2066         * If this is sendmmsg() and current destination address is same as
2067         * previously succeeded address, omit asking LSM's decision.
2068         * used_address->name_len is initialized to UINT_MAX so that the first
2069         * destination address never matches.
2070         */
2071        if (used_address && msg_sys->msg_name &&
2072            used_address->name_len == msg_sys->msg_namelen &&
2073            !memcmp(&used_address->name, msg_sys->msg_name,
2074                    used_address->name_len)) {
2075                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2076                goto out_freectl;
2077        }
2078        err = sock_sendmsg(sock, msg_sys, total_len);
2079        /*
2080         * If this is sendmmsg() and sending to current destination address was
2081         * successful, remember it.
2082         */
2083        if (used_address && err >= 0) {
2084                used_address->name_len = msg_sys->msg_namelen;
2085                if (msg_sys->msg_name)
2086                        memcpy(&used_address->name, msg_sys->msg_name,
2087                               used_address->name_len);
2088        }
2089
2090out_freectl:
2091        if (ctl_buf != ctl)
2092                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2093out_freeiov:
2094        if (iov != iovstack)
2095                kfree(iov);
2096out:
2097        return err;
2098}
2099
2100/*
2101 *      BSD sendmsg interface
2102 */
2103
2104SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2105{
2106        int fput_needed, err;
2107        struct msghdr msg_sys;
2108        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109
2110        if (!sock)
2111                goto out;
2112
2113        err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2114
2115        fput_light(sock->file, fput_needed);
2116out:
2117        return err;
2118}
2119
2120/*
2121 *      Linux sendmmsg interface
2122 */
2123
2124int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2125                   unsigned int flags)
2126{
2127        int fput_needed, err, datagrams;
2128        struct socket *sock;
2129        struct mmsghdr __user *entry;
2130        struct compat_mmsghdr __user *compat_entry;
2131        struct msghdr msg_sys;
2132        struct used_address used_address;
2133
2134        if (vlen > UIO_MAXIOV)
2135                vlen = UIO_MAXIOV;
2136
2137        datagrams = 0;
2138
2139        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2140        if (!sock)
2141                return err;
2142
2143        used_address.name_len = UINT_MAX;
2144        entry = mmsg;
2145        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2146        err = 0;
2147
2148        while (datagrams < vlen) {
2149                if (MSG_CMSG_COMPAT & flags) {
2150                        err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2151                                            &msg_sys, flags, &used_address);
2152                        if (err < 0)
2153                                break;
2154                        err = __put_user(err, &compat_entry->msg_len);
2155                        ++compat_entry;
2156                } else {
2157                        err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2158                                            &msg_sys, flags, &used_address);
2159                        if (err < 0)
2160                                break;
2161                        err = put_user(err, &entry->msg_len);
2162                        ++entry;
2163                }
2164
2165                if (err)
2166                        break;
2167                ++datagrams;
2168        }
2169
2170        fput_light(sock->file, fput_needed);
2171
2172        /* We only return an error if no datagrams were able to be sent */
2173        if (datagrams != 0)
2174                return datagrams;
2175
2176        return err;
2177}
2178
2179SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2180                unsigned int, vlen, unsigned int, flags)
2181{
2182        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2183}
2184
2185static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2186                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2187{
2188        struct compat_msghdr __user *msg_compat =
2189            (struct compat_msghdr __user *)msg;
2190        struct iovec iovstack[UIO_FASTIOV];
2191        struct iovec *iov = iovstack;
2192        unsigned long cmsg_ptr;
2193        int err, total_len, len;
2194
2195        /* kernel mode address */
2196        struct sockaddr_storage addr;
2197
2198        /* user mode address pointers */
2199        struct sockaddr __user *uaddr;
2200        int __user *uaddr_len;
2201
2202        if (MSG_CMSG_COMPAT & flags) {
2203                if (get_compat_msghdr(msg_sys, msg_compat))
2204                        return -EFAULT;
2205        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2206                return -EFAULT;
2207
2208        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2209                err = -EMSGSIZE;
2210                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2211                        goto out;
2212                err = -ENOMEM;
2213                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2214                              GFP_KERNEL);
2215                if (!iov)
2216                        goto out;
2217        }
2218
2219        /*
2220         *      Save the user-mode address (verify_iovec will change the
2221         *      kernel msghdr to use the kernel address space)
2222         */
2223
2224        uaddr = (__force void __user *)msg_sys->msg_name;
2225        uaddr_len = COMPAT_NAMELEN(msg);
2226        if (MSG_CMSG_COMPAT & flags) {
2227                err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228        } else
2229                err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2230        if (err < 0)
2231                goto out_freeiov;
2232        total_len = err;
2233
2234        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2235        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2236
2237        if (sock->file->f_flags & O_NONBLOCK)
2238                flags |= MSG_DONTWAIT;
2239        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2240                                                          total_len, flags);
2241        if (err < 0)
2242                goto out_freeiov;
2243        len = err;
2244
2245        if (uaddr != NULL) {
2246                err = move_addr_to_user(&addr,
2247                                        msg_sys->msg_namelen, uaddr,
2248                                        uaddr_len);
2249                if (err < 0)
2250                        goto out_freeiov;
2251        }
2252        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2253                         COMPAT_FLAGS(msg));
2254        if (err)
2255                goto out_freeiov;
2256        if (MSG_CMSG_COMPAT & flags)
2257                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2258                                 &msg_compat->msg_controllen);
2259        else
2260                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2261                                 &msg->msg_controllen);
2262        if (err)
2263                goto out_freeiov;
2264        err = len;
2265
2266out_freeiov:
2267        if (iov != iovstack)
2268                kfree(iov);
2269out:
2270        return err;
2271}
2272
2273/*
2274 *      BSD recvmsg interface
2275 */
2276
2277SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2278                unsigned int, flags)
2279{
2280        int fput_needed, err;
2281        struct msghdr msg_sys;
2282        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2283
2284        if (!sock)
2285                goto out;
2286
2287        err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2288
2289        fput_light(sock->file, fput_needed);
2290out:
2291        return err;
2292}
2293
2294/*
2295 *     Linux recvmmsg interface
2296 */
2297
2298int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2299                   unsigned int flags, struct timespec *timeout)
2300{
2301        int fput_needed, err, datagrams;
2302        struct socket *sock;
2303        struct mmsghdr __user *entry;
2304        struct compat_mmsghdr __user *compat_entry;
2305        struct msghdr msg_sys;
2306        struct timespec end_time;
2307
2308        if (timeout &&
2309            poll_select_set_timeout(&end_time, timeout->tv_sec,
2310                                    timeout->tv_nsec))
2311                return -EINVAL;
2312
2313        datagrams = 0;
2314
2315        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2316        if (!sock)
2317                return err;
2318
2319        err = sock_error(sock->sk);
2320        if (err)
2321                goto out_put;
2322
2323        entry = mmsg;
2324        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2325
2326        while (datagrams < vlen) {
2327                /*
2328                 * No need to ask LSM for more than the first datagram.
2329                 */
2330                if (MSG_CMSG_COMPAT & flags) {
2331                        err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2332                                            &msg_sys, flags & ~MSG_WAITFORONE,
2333                                            datagrams);
2334                        if (err < 0)
2335                                break;
2336                        err = __put_user(err, &compat_entry->msg_len);
2337                        ++compat_entry;
2338                } else {
2339                        err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2340                                            &msg_sys, flags & ~MSG_WAITFORONE,
2341                                            datagrams);
2342                        if (err < 0)
2343                                break;
2344                        err = put_user(err, &entry->msg_len);
2345                        ++entry;
2346                }
2347
2348                if (err)
2349                        break;
2350                ++datagrams;
2351
2352                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2353                if (flags & MSG_WAITFORONE)
2354                        flags |= MSG_DONTWAIT;
2355
2356                if (timeout) {
2357                        ktime_get_ts(timeout);
2358                        *timeout = timespec_sub(end_time, *timeout);
2359                        if (timeout->tv_sec < 0) {
2360                                timeout->tv_sec = timeout->tv_nsec = 0;
2361                                break;
2362                        }
2363
2364                        /* Timeout, return less than vlen datagrams */
2365                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2366                                break;
2367                }
2368
2369                /* Out of band data, return right away */
2370                if (msg_sys.msg_flags & MSG_OOB)
2371                        break;
2372        }
2373
2374out_put:
2375        fput_light(sock->file, fput_needed);
2376
2377        if (err == 0)
2378                return datagrams;
2379
2380        if (datagrams != 0) {
2381                /*
2382                 * We may return less entries than requested (vlen) if the
2383                 * sock is non block and there aren't enough datagrams...
2384                 */
2385                if (err != -EAGAIN) {
2386                        /*
2387                         * ... or  if recvmsg returns an error after we
2388                         * received some datagrams, where we record the
2389                         * error to return on the next call or if the
2390                         * app asks about it using getsockopt(SO_ERROR).
2391                         */
2392                        sock->sk->sk_err = -err;
2393                }
2394
2395                return datagrams;
2396        }
2397
2398        return err;
2399}
2400
2401SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2402                unsigned int, vlen, unsigned int, flags,
2403                struct timespec __user *, timeout)
2404{
2405        int datagrams;
2406        struct timespec timeout_sys;
2407
2408        if (!timeout)
2409                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2410
2411        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2412                return -EFAULT;
2413
2414        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2415
2416        if (datagrams > 0 &&
2417            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2418                datagrams = -EFAULT;
2419
2420        return datagrams;
2421}
2422
2423#ifdef __ARCH_WANT_SYS_SOCKETCALL
2424/* Argument list sizes for sys_socketcall */
2425#define AL(x) ((x) * sizeof(unsigned long))
2426static const unsigned char nargs[21] = {
2427        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2428        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2429        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2430        AL(4), AL(5), AL(4)
2431};
2432
2433#undef AL
2434
2435/*
2436 *      System call vectors.
2437 *
2438 *      Argument checking cleaned up. Saved 20% in size.
2439 *  This function doesn't need to set the kernel lock because
2440 *  it is set by the callees.
2441 */
2442
2443SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2444{
2445        unsigned long a[6];
2446        unsigned long a0, a1;
2447        int err;
2448        unsigned int len;
2449
2450        if (call < 1 || call > SYS_SENDMMSG)
2451                return -EINVAL;
2452
2453        len = nargs[call];
2454        if (len > sizeof(a))
2455                return -EINVAL;
2456
2457        /* copy_from_user should be SMP safe. */
2458        if (copy_from_user(a, args, len))
2459                return -EFAULT;
2460
2461        audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2462
2463        a0 = a[0];
2464        a1 = a[1];
2465
2466        switch (call) {
2467        case SYS_SOCKET:
2468                err = sys_socket(a0, a1, a[2]);
2469                break;
2470        case SYS_BIND:
2471                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2472                break;
2473        case SYS_CONNECT:
2474                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2475                break;
2476        case SYS_LISTEN:
2477                err = sys_listen(a0, a1);
2478                break;
2479        case SYS_ACCEPT:
2480                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2481                                  (int __user *)a[2], 0);
2482                break;
2483        case SYS_GETSOCKNAME:
2484                err =
2485                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2486                                    (int __user *)a[2]);
2487                break;
2488        case SYS_GETPEERNAME:
2489                err =
2490                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2491                                    (int __user *)a[2]);
2492                break;
2493        case SYS_SOCKETPAIR:
2494                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2495                break;
2496        case SYS_SEND:
2497                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2498                break;
2499        case SYS_SENDTO:
2500                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2501                                 (struct sockaddr __user *)a[4], a[5]);
2502                break;
2503        case SYS_RECV:
2504                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2505                break;
2506        case SYS_RECVFROM:
2507                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2508                                   (struct sockaddr __user *)a[4],
2509                                   (int __user *)a[5]);
2510                break;
2511        case SYS_SHUTDOWN:
2512                err = sys_shutdown(a0, a1);
2513                break;
2514        case SYS_SETSOCKOPT:
2515                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2516                break;
2517        case SYS_GETSOCKOPT:
2518                err =
2519                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2520                                   (int __user *)a[4]);
2521                break;
2522        case SYS_SENDMSG:
2523                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2524                break;
2525        case SYS_SENDMMSG:
2526                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2527                break;
2528        case SYS_RECVMSG:
2529                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2530                break;
2531        case SYS_RECVMMSG:
2532                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2533                                   (struct timespec __user *)a[4]);
2534                break;
2535        case SYS_ACCEPT4:
2536                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2537                                  (int __user *)a[2], a[3]);
2538                break;
2539        default:
2540                err = -EINVAL;
2541                break;
2542        }
2543        return err;
2544}
2545
2546#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2547
2548/**
2549 *      sock_register - add a socket protocol handler
2550 *      @ops: description of protocol
2551 *
2552 *      This function is called by a protocol handler that wants to
2553 *      advertise its address family, and have it linked into the
2554 *      socket interface. The value ops->family coresponds to the
2555 *      socket system call protocol family.
2556 */
2557int sock_register(const struct net_proto_family *ops)
2558{
2559        int err;
2560
2561        if (ops->family >= NPROTO) {
2562                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2563                       NPROTO);
2564                return -ENOBUFS;
2565        }
2566
2567        spin_lock(&net_family_lock);
2568        if (rcu_dereference_protected(net_families[ops->family],
2569                                      lockdep_is_held(&net_family_lock)))
2570                err = -EEXIST;
2571        else {
2572                rcu_assign_pointer(net_families[ops->family], ops);
2573                err = 0;
2574        }
2575        spin_unlock(&net_family_lock);
2576
2577        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2578        return err;
2579}
2580EXPORT_SYMBOL(sock_register);
2581
2582/**
2583 *      sock_unregister - remove a protocol handler
2584 *      @family: protocol family to remove
2585 *
2586 *      This function is called by a protocol handler that wants to
2587 *      remove its address family, and have it unlinked from the
2588 *      new socket creation.
2589 *
2590 *      If protocol handler is a module, then it can use module reference
2591 *      counts to protect against new references. If protocol handler is not
2592 *      a module then it needs to provide its own protection in
2593 *      the ops->create routine.
2594 */
2595void sock_unregister(int family)
2596{
2597        BUG_ON(family < 0 || family >= NPROTO);
2598
2599        spin_lock(&net_family_lock);
2600        RCU_INIT_POINTER(net_families[family], NULL);
2601        spin_unlock(&net_family_lock);
2602
2603        synchronize_rcu();
2604
2605        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2606}
2607EXPORT_SYMBOL(sock_unregister);
2608
2609static int __init sock_init(void)
2610{
2611        int err;
2612        /*
2613         *      Initialize the network sysctl infrastructure.
2614         */
2615        err = net_sysctl_init();
2616        if (err)
2617                goto out;
2618
2619        /*
2620         *      Initialize skbuff SLAB cache
2621         */
2622        skb_init();
2623
2624        /*
2625         *      Initialize the protocols module.
2626         */
2627
2628        init_inodecache();
2629
2630        err = register_filesystem(&sock_fs_type);
2631        if (err)
2632                goto out_fs;
2633        sock_mnt = kern_mount(&sock_fs_type);
2634        if (IS_ERR(sock_mnt)) {
2635                err = PTR_ERR(sock_mnt);
2636                goto out_mount;
2637        }
2638
2639        /* The real protocol initialization is performed in later initcalls.
2640         */
2641
2642#ifdef CONFIG_NETFILTER
2643        netfilter_init();
2644#endif
2645
2646#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2647        skb_timestamping_init();
2648#endif
2649
2650out:
2651        return err;
2652
2653out_mount:
2654        unregister_filesystem(&sock_fs_type);
2655out_fs:
2656        goto out;
2657}
2658
2659core_initcall(sock_init);       /* early initcall */
2660
2661#ifdef CONFIG_PROC_FS
2662void socket_seq_show(struct seq_file *seq)
2663{
2664        int cpu;
2665        int counter = 0;
2666
2667        for_each_possible_cpu(cpu)
2668            counter += per_cpu(sockets_in_use, cpu);
2669
2670        /* It can be negative, by the way. 8) */
2671        if (counter < 0)
2672                counter = 0;
2673
2674        seq_printf(seq, "sockets: used %d\n", counter);
2675}
2676#endif                          /* CONFIG_PROC_FS */
2677
2678#ifdef CONFIG_COMPAT
2679static int do_siocgstamp(struct net *net, struct socket *sock,
2680                         unsigned int cmd, void __user *up)
2681{
2682        mm_segment_t old_fs = get_fs();
2683        struct timeval ktv;
2684        int err;
2685
2686        set_fs(KERNEL_DS);
2687        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2688        set_fs(old_fs);
2689        if (!err)
2690                err = compat_put_timeval(&ktv, up);
2691
2692        return err;
2693}
2694
2695static int do_siocgstampns(struct net *net, struct socket *sock,
2696                           unsigned int cmd, void __user *up)
2697{
2698        mm_segment_t old_fs = get_fs();
2699        struct timespec kts;
2700        int err;
2701
2702        set_fs(KERNEL_DS);
2703        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2704        set_fs(old_fs);
2705        if (!err)
2706                err = compat_put_timespec(&kts, up);
2707
2708        return err;
2709}
2710
2711static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2712{
2713        struct ifreq __user *uifr;
2714        int err;
2715
2716        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2717        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2718                return -EFAULT;
2719
2720        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2721        if (err)
2722                return err;
2723
2724        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2725                return -EFAULT;
2726
2727        return 0;
2728}
2729
2730static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2731{
2732        struct compat_ifconf ifc32;
2733        struct ifconf ifc;
2734        struct ifconf __user *uifc;
2735        struct compat_ifreq __user *ifr32;
2736        struct ifreq __user *ifr;
2737        unsigned int i, j;
2738        int err;
2739
2740        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2741                return -EFAULT;
2742
2743        memset(&ifc, 0, sizeof(ifc));
2744        if (ifc32.ifcbuf == 0) {
2745                ifc32.ifc_len = 0;
2746                ifc.ifc_len = 0;
2747                ifc.ifc_req = NULL;
2748                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2749        } else {
2750                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2751                        sizeof(struct ifreq);
2752                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2753                ifc.ifc_len = len;
2754                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2755                ifr32 = compat_ptr(ifc32.ifcbuf);
2756                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2757                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2758                                return -EFAULT;
2759                        ifr++;
2760                        ifr32++;
2761                }
2762        }
2763        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2764                return -EFAULT;
2765
2766        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2767        if (err)
2768                return err;
2769
2770        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2771                return -EFAULT;
2772
2773        ifr = ifc.ifc_req;
2774        ifr32 = compat_ptr(ifc32.ifcbuf);
2775        for (i = 0, j = 0;
2776             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2777             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2778                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2779                        return -EFAULT;
2780                ifr32++;
2781                ifr++;
2782        }
2783
2784        if (ifc32.ifcbuf == 0) {
2785                /* Translate from 64-bit structure multiple to
2786                 * a 32-bit one.
2787                 */
2788                i = ifc.ifc_len;
2789                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2790                ifc32.ifc_len = i;
2791        } else {
2792                ifc32.ifc_len = i;
2793        }
2794        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2795                return -EFAULT;
2796
2797        return 0;
2798}
2799
2800static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2801{
2802        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2803        bool convert_in = false, convert_out = false;
2804        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2805        struct ethtool_rxnfc __user *rxnfc;
2806        struct ifreq __user *ifr;
2807        u32 rule_cnt = 0, actual_rule_cnt;
2808        u32 ethcmd;
2809        u32 data;
2810        int ret;
2811
2812        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2813                return -EFAULT;
2814
2815        compat_rxnfc = compat_ptr(data);
2816
2817        if (get_user(ethcmd, &compat_rxnfc->cmd))
2818                return -EFAULT;
2819
2820        /* Most ethtool structures are defined without padding.
2821         * Unfortunately struct ethtool_rxnfc is an exception.
2822         */
2823        switch (ethcmd) {
2824        default:
2825                break;
2826        case ETHTOOL_GRXCLSRLALL:
2827                /* Buffer size is variable */
2828                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2829                        return -EFAULT;
2830                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2831                        return -ENOMEM;
2832                buf_size += rule_cnt * sizeof(u32);
2833                /* fall through */
2834        case ETHTOOL_GRXRINGS:
2835        case ETHTOOL_GRXCLSRLCNT:
2836        case ETHTOOL_GRXCLSRULE:
2837        case ETHTOOL_SRXCLSRLINS:
2838                convert_out = true;
2839                /* fall through */
2840        case ETHTOOL_SRXCLSRLDEL:
2841                buf_size += sizeof(struct ethtool_rxnfc);
2842                convert_in = true;
2843                break;
2844        }
2845
2846        ifr = compat_alloc_user_space(buf_size);
2847        rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2848
2849        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2850                return -EFAULT;
2851
2852        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2853                     &ifr->ifr_ifru.ifru_data))
2854                return -EFAULT;
2855
2856        if (convert_in) {
2857                /* We expect there to be holes between fs.m_ext and
2858                 * fs.ring_cookie and at the end of fs, but nowhere else.
2859                 */
2860                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861                             sizeof(compat_rxnfc->fs.m_ext) !=
2862                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863                             sizeof(rxnfc->fs.m_ext));
2864                BUILD_BUG_ON(
2865                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867                        offsetof(struct ethtool_rxnfc, fs.location) -
2868                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870                if (copy_in_user(rxnfc, compat_rxnfc,
2871                                 (void *)(&rxnfc->fs.m_ext + 1) -
2872                                 (void *)rxnfc) ||
2873                    copy_in_user(&rxnfc->fs.ring_cookie,
2874                                 &compat_rxnfc->fs.ring_cookie,
2875                                 (void *)(&rxnfc->fs.location + 1) -
2876                                 (void *)&rxnfc->fs.ring_cookie) ||
2877                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878                                 sizeof(rxnfc->rule_cnt)))
2879                        return -EFAULT;
2880        }
2881
2882        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2883        if (ret)
2884                return ret;
2885
2886        if (convert_out) {
2887                if (copy_in_user(compat_rxnfc, rxnfc,
2888                                 (const void *)(&rxnfc->fs.m_ext + 1) -
2889                                 (const void *)rxnfc) ||
2890                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891                                 &rxnfc->fs.ring_cookie,
2892                                 (const void *)(&rxnfc->fs.location + 1) -
2893                                 (const void *)&rxnfc->fs.ring_cookie) ||
2894                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895                                 sizeof(rxnfc->rule_cnt)))
2896                        return -EFAULT;
2897
2898                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899                        /* As an optimisation, we only copy the actual
2900                         * number of rules that the underlying
2901                         * function returned.  Since Mallory might
2902                         * change the rule count in user memory, we
2903                         * check that it is less than the rule count
2904                         * originally given (as the user buffer size),
2905                         * which has been range-checked.
2906                         */
2907                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908                                return -EFAULT;
2909                        if (actual_rule_cnt < rule_cnt)
2910                                rule_cnt = actual_rule_cnt;
2911                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912                                         &rxnfc->rule_locs[0],
2913                                         rule_cnt * sizeof(u32)))
2914                                return -EFAULT;
2915                }
2916        }
2917
2918        return 0;
2919}
2920
2921static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922{
2923        void __user *uptr;
2924        compat_uptr_t uptr32;
2925        struct ifreq __user *uifr;
2926
2927        uifr = compat_alloc_user_space(sizeof(*uifr));
2928        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2929                return -EFAULT;
2930
2931        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932                return -EFAULT;
2933
2934        uptr = compat_ptr(uptr32);
2935
2936        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2937                return -EFAULT;
2938
2939        return dev_ioctl(net, SIOCWANDEV, uifr);
2940}
2941
2942static int bond_ioctl(struct net *net, unsigned int cmd,
2943                         struct compat_ifreq __user *ifr32)
2944{
2945        struct ifreq kifr;
2946        struct ifreq __user *uifr;
2947        mm_segment_t old_fs;
2948        int err;
2949        u32 data;
2950        void __user *datap;
2951
2952        switch (cmd) {
2953        case SIOCBONDENSLAVE:
2954        case SIOCBONDRELEASE:
2955        case SIOCBONDSETHWADDR:
2956        case SIOCBONDCHANGEACTIVE:
2957                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2958                        return -EFAULT;
2959
2960                old_fs = get_fs();
2961                set_fs(KERNEL_DS);
2962                err = dev_ioctl(net, cmd,
2963                                (struct ifreq __user __force *) &kifr);
2964                set_fs(old_fs);
2965
2966                return err;
2967        case SIOCBONDSLAVEINFOQUERY:
2968        case SIOCBONDINFOQUERY:
2969                uifr = compat_alloc_user_space(sizeof(*uifr));
2970                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2971                        return -EFAULT;
2972
2973                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2974                        return -EFAULT;
2975
2976                datap = compat_ptr(data);
2977                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2978                        return -EFAULT;
2979
2980                return dev_ioctl(net, cmd, uifr);
2981        default:
2982                return -ENOIOCTLCMD;
2983        }
2984}
2985
2986static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2987                                 struct compat_ifreq __user *u_ifreq32)
2988{
2989        struct ifreq __user *u_ifreq64;
2990        char tmp_buf[IFNAMSIZ];
2991        void __user *data64;
2992        u32 data32;
2993
2994        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2995                           IFNAMSIZ))
2996                return -EFAULT;
2997        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2998                return -EFAULT;
2999        data64 = compat_ptr(data32);
3000
3001        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3002
3003        /* Don't check these user accesses, just let that get trapped
3004         * in the ioctl handler instead.
3005         */
3006        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3007                         IFNAMSIZ))
3008                return -EFAULT;
3009        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3010                return -EFAULT;
3011
3012        return dev_ioctl(net, cmd, u_ifreq64);
3013}
3014
3015static int dev_ifsioc(struct net *net, struct socket *sock,
3016                         unsigned int cmd, struct compat_ifreq __user *uifr32)
3017{
3018        struct ifreq __user *uifr;
3019        int err;
3020
3021        uifr = compat_alloc_user_space(sizeof(*uifr));
3022        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3023                return -EFAULT;
3024
3025        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3026
3027        if (!err) {
3028                switch (cmd) {
3029                case SIOCGIFFLAGS:
3030                case SIOCGIFMETRIC:
3031                case SIOCGIFMTU:
3032                case SIOCGIFMEM:
3033                case SIOCGIFHWADDR:
3034                case SIOCGIFINDEX:
3035                case SIOCGIFADDR:
3036                case SIOCGIFBRDADDR:
3037                case SIOCGIFDSTADDR:
3038                case SIOCGIFNETMASK:
3039                case SIOCGIFPFLAGS:
3040                case SIOCGIFTXQLEN:
3041                case SIOCGMIIPHY:
3042                case SIOCGMIIREG:
3043                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3044                                err = -EFAULT;
3045                        break;
3046                }
3047        }
3048        return err;
3049}
3050
3051static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3052                        struct compat_ifreq __user *uifr32)
3053{
3054        struct ifreq ifr;
3055        struct compat_ifmap __user *uifmap32;
3056        mm_segment_t old_fs;
3057        int err;
3058
3059        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3060        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3061        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3065        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3066        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3067        if (err)
3068                return -EFAULT;
3069
3070        old_fs = get_fs();
3071        set_fs(KERNEL_DS);
3072        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3073        set_fs(old_fs);
3074
3075        if (cmd == SIOCGIFMAP && !err) {
3076                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3077                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3078                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3079                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3080                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3081                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3082                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3083                if (err)
3084                        err = -EFAULT;
3085        }
3086        return err;
3087}
3088
3089static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3090{
3091        void __user *uptr;
3092        compat_uptr_t uptr32;
3093        struct ifreq __user *uifr;
3094
3095        uifr = compat_alloc_user_space(sizeof(*uifr));
3096        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3097                return -EFAULT;
3098
3099        if (get_user(uptr32, &uifr32->ifr_data))
3100                return -EFAULT;
3101
3102        uptr = compat_ptr(uptr32);
3103
3104        if (put_user(uptr, &uifr->ifr_data))
3105                return -EFAULT;
3106
3107        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3108}
3109
3110struct rtentry32 {
3111        u32             rt_pad1;
3112        struct sockaddr rt_dst;         /* target address               */
3113        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3114        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3115        unsigned short  rt_flags;
3116        short           rt_pad2;
3117        u32             rt_pad3;
3118        unsigned char   rt_tos;
3119        unsigned char   rt_class;
3120        short           rt_pad4;
3121        short           rt_metric;      /* +1 for binary compatibility! */
3122        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3123        u32             rt_mtu;         /* per route MTU/Window         */
3124        u32             rt_window;      /* Window clamping              */
3125        unsigned short  rt_irtt;        /* Initial RTT                  */
3126};
3127
3128struct in6_rtmsg32 {
3129        struct in6_addr         rtmsg_dst;
3130        struct in6_addr         rtmsg_src;
3131        struct in6_addr         rtmsg_gateway;
3132        u32                     rtmsg_type;
3133        u16                     rtmsg_dst_len;
3134        u16                     rtmsg_src_len;
3135        u32                     rtmsg_metric;
3136        u32                     rtmsg_info;
3137        u32                     rtmsg_flags;
3138        s32                     rtmsg_ifindex;
3139};
3140
3141static int routing_ioctl(struct net *net, struct socket *sock,
3142                         unsigned int cmd, void __user *argp)
3143{
3144        int ret;
3145        void *r = NULL;
3146        struct in6_rtmsg r6;
3147        struct rtentry r4;
3148        char devname[16];
3149        u32 rtdev;
3150        mm_segment_t old_fs = get_fs();
3151
3152        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3153                struct in6_rtmsg32 __user *ur6 = argp;
3154                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3155                        3 * sizeof(struct in6_addr));
3156                ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3157                ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3158                ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3159                ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3160                ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3161                ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3162                ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3163
3164                r = (void *) &r6;
3165        } else { /* ipv4 */
3166                struct rtentry32 __user *ur4 = argp;
3167                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3168                                        3 * sizeof(struct sockaddr));
3169                ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3170                ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3171                ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3172                ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3173                ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3174                ret |= __get_user(rtdev, &(ur4->rt_dev));
3175                if (rtdev) {
3176                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3177                        r4.rt_dev = (char __user __force *)devname;
3178                        devname[15] = 0;
3179                } else
3180                        r4.rt_dev = NULL;
3181
3182                r = (void *) &r4;
3183        }
3184
3185        if (ret) {
3186                ret = -EFAULT;
3187                goto out;
3188        }
3189
3190        set_fs(KERNEL_DS);
3191        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3192        set_fs(old_fs);
3193
3194out:
3195        return ret;
3196}
3197
3198/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3199 * for some operations; this forces use of the newer bridge-utils that
3200 * use compatible ioctls
3201 */
3202static int old_bridge_ioctl(compat_ulong_t __user *argp)
3203{
3204        compat_ulong_t tmp;
3205
3206        if (get_user(tmp, argp))
3207                return -EFAULT;
3208        if (tmp == BRCTL_GET_VERSION)
3209                return BRCTL_VERSION + 1;
3210        return -EINVAL;
3211}
3212
3213static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3214                         unsigned int cmd, unsigned long arg)
3215{
3216        void __user *argp = compat_ptr(arg);
3217        struct sock *sk = sock->sk;
3218        struct net *net = sock_net(sk);
3219
3220        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3221                return siocdevprivate_ioctl(net, cmd, argp);
3222
3223        switch (cmd) {
3224        case SIOCSIFBR:
3225        case SIOCGIFBR:
3226                return old_bridge_ioctl(argp);
3227        case SIOCGIFNAME:
3228                return dev_ifname32(net, argp);
3229        case SIOCGIFCONF:
3230                return dev_ifconf(net, argp);
3231        case SIOCETHTOOL:
3232                return ethtool_ioctl(net, argp);
3233        case SIOCWANDEV:
3234                return compat_siocwandev(net, argp);
3235        case SIOCGIFMAP:
3236        case SIOCSIFMAP:
3237                return compat_sioc_ifmap(net, cmd, argp);
3238        case SIOCBONDENSLAVE:
3239        case SIOCBONDRELEASE:
3240        case SIOCBONDSETHWADDR:
3241        case SIOCBONDSLAVEINFOQUERY:
3242        case SIOCBONDINFOQUERY:
3243        case SIOCBONDCHANGEACTIVE:
3244                return bond_ioctl(net, cmd, argp);
3245        case SIOCADDRT:
3246        case SIOCDELRT:
3247                return routing_ioctl(net, sock, cmd, argp);
3248        case SIOCGSTAMP:
3249                return do_siocgstamp(net, sock, cmd, argp);
3250        case SIOCGSTAMPNS:
3251                return do_siocgstampns(net, sock, cmd, argp);
3252        case SIOCSHWTSTAMP:
3253                return compat_siocshwtstamp(net, argp);
3254
3255        case FIOSETOWN:
3256        case SIOCSPGRP:
3257        case FIOGETOWN:
3258        case SIOCGPGRP:
3259        case SIOCBRADDBR:
3260        case SIOCBRDELBR:
3261        case SIOCGIFVLAN:
3262        case SIOCSIFVLAN:
3263        case SIOCADDDLCI:
3264        case SIOCDELDLCI:
3265                return sock_ioctl(file, cmd, arg);
3266
3267        case SIOCGIFFLAGS:
3268        case SIOCSIFFLAGS:
3269        case SIOCGIFMETRIC:
3270        case SIOCSIFMETRIC:
3271        case SIOCGIFMTU:
3272        case SIOCSIFMTU:
3273        case SIOCGIFMEM:
3274        case SIOCSIFMEM:
3275        case SIOCGIFHWADDR:
3276        case SIOCSIFHWADDR:
3277        case SIOCADDMULTI:
3278        case SIOCDELMULTI:
3279        case SIOCGIFINDEX:
3280        case SIOCGIFADDR:
3281        case SIOCSIFADDR:
3282        case SIOCSIFHWBROADCAST:
3283        case SIOCDIFADDR:
3284        case SIOCGIFBRDADDR:
3285        case SIOCSIFBRDADDR:
3286        case SIOCGIFDSTADDR:
3287        case SIOCSIFDSTADDR:
3288        case SIOCGIFNETMASK:
3289        case SIOCSIFNETMASK:
3290        case SIOCSIFPFLAGS:
3291        case SIOCGIFPFLAGS:
3292        case SIOCGIFTXQLEN:
3293        case SIOCSIFTXQLEN:
3294        case SIOCBRADDIF:
3295        case SIOCBRDELIF:
3296        case SIOCSIFNAME:
3297        case SIOCGMIIPHY:
3298        case SIOCGMIIREG:
3299        case SIOCSMIIREG:
3300                return dev_ifsioc(net, sock, cmd, argp);
3301
3302        case SIOCSARP:
3303        case SIOCGARP:
3304        case SIOCDARP:
3305        case SIOCATMARK:
3306                return sock_do_ioctl(net, sock, cmd, arg);
3307        }
3308
3309        return -ENOIOCTLCMD;
3310}
3311
3312static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313                              unsigned long arg)
3314{
3315        struct socket *sock = file->private_data;
3316        int ret = -ENOIOCTLCMD;
3317        struct sock *sk;
3318        struct net *net;
3319
3320        sk = sock->sk;
3321        net = sock_net(sk);
3322
3323        if (sock->ops->compat_ioctl)
3324                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325
3326        if (ret == -ENOIOCTLCMD &&
3327            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328                ret = compat_wext_handle_ioctl(net, cmd, arg);
3329
3330        if (ret == -ENOIOCTLCMD)
3331                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332
3333        return ret;
3334}
3335#endif
3336
3337int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338{
3339        return sock->ops->bind(sock, addr, addrlen);
3340}
3341EXPORT_SYMBOL(kernel_bind);
3342
3343int kernel_listen(struct socket *sock, int backlog)
3344{
3345        return sock->ops->listen(sock, backlog);
3346}
3347EXPORT_SYMBOL(kernel_listen);
3348
3349int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350{
3351        struct sock *sk = sock->sk;
3352        int err;
3353
3354        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355                               newsock);
3356        if (err < 0)
3357                goto done;
3358
3359        err = sock->ops->accept(sock, *newsock, flags);
3360        if (err < 0) {
3361                sock_release(*newsock);
3362                *newsock = NULL;
3363                goto done;
3364        }
3365
3366        (*newsock)->ops = sock->ops;
3367        __module_get((*newsock)->ops->owner);
3368
3369done:
3370        return err;
3371}
3372EXPORT_SYMBOL(kernel_accept);
3373
3374int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375                   int flags)
3376{
3377        return sock->ops->connect(sock, addr, addrlen, flags);
3378}
3379EXPORT_SYMBOL(kernel_connect);
3380
3381int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382                         int *addrlen)
3383{
3384        return sock->ops->getname(sock, addr, addrlen, 0);
3385}
3386EXPORT_SYMBOL(kernel_getsockname);
3387
3388int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389                         int *addrlen)
3390{
3391        return sock->ops->getname(sock, addr, addrlen, 1);
3392}
3393EXPORT_SYMBOL(kernel_getpeername);
3394
3395int kernel_getsockopt(struct socket *sock, int level, int optname,
3396                        char *optval, int *optlen)
3397{
3398        mm_segment_t oldfs = get_fs();
3399        char __user *uoptval;
3400        int __user *uoptlen;
3401        int err;
3402
3403        uoptval = (char __user __force *) optval;
3404        uoptlen = (int __user __force *) optlen;
3405
3406        set_fs(KERNEL_DS);
3407        if (level == SOL_SOCKET)
3408                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409        else
3410                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411                                            uoptlen);
3412        set_fs(oldfs);
3413        return err;
3414}
3415EXPORT_SYMBOL(kernel_getsockopt);
3416
3417int kernel_setsockopt(struct socket *sock, int level, int optname,
3418                        char *optval, unsigned int optlen)
3419{
3420        mm_segment_t oldfs = get_fs();
3421        char __user *uoptval;
3422        int err;
3423
3424        uoptval = (char __user __force *) optval;
3425
3426        set_fs(KERNEL_DS);
3427        if (level == SOL_SOCKET)
3428                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429        else
3430                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431                                            optlen);
3432        set_fs(oldfs);
3433        return err;
3434}
3435EXPORT_SYMBOL(kernel_setsockopt);
3436
3437int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438                    size_t size, int flags)
3439{
3440        sock_update_classid(sock->sk);
3441
3442        if (sock->ops->sendpage)
3443                return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445        return sock_no_sendpage(sock, page, offset, size, flags);
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451        mm_segment_t oldfs = get_fs();
3452        int err;
3453
3454        set_fs(KERNEL_DS);
3455        err = sock->ops->ioctl(sock, cmd, arg);
3456        set_fs(oldfs);
3457
3458        return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464        return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);
3467
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.