linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39
  40#define rdev_crit(rdev, fmt, ...)                                       \
  41        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_err(rdev, fmt, ...)                                        \
  43        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_warn(rdev, fmt, ...)                                       \
  45        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_info(rdev, fmt, ...)                                       \
  47        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_dbg(rdev, fmt, ...)                                        \
  49        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50
  51static DEFINE_MUTEX(regulator_list_mutex);
  52static LIST_HEAD(regulator_list);
  53static LIST_HEAD(regulator_map_list);
  54static bool has_full_constraints;
  55static bool board_wants_dummy_regulator;
  56
  57static struct dentry *debugfs_root;
  58
  59/*
  60 * struct regulator_map
  61 *
  62 * Used to provide symbolic supply names to devices.
  63 */
  64struct regulator_map {
  65        struct list_head list;
  66        const char *dev_name;   /* The dev_name() for the consumer */
  67        const char *supply;
  68        struct regulator_dev *regulator;
  69};
  70
  71/*
  72 * struct regulator
  73 *
  74 * One for each consumer device.
  75 */
  76struct regulator {
  77        struct device *dev;
  78        struct list_head list;
  79        unsigned int always_on:1;
  80        unsigned int bypass:1;
  81        int uA_load;
  82        int min_uV;
  83        int max_uV;
  84        char *supply_name;
  85        struct device_attribute dev_attr;
  86        struct regulator_dev *rdev;
  87        struct dentry *debugfs;
  88};
  89
  90static int _regulator_is_enabled(struct regulator_dev *rdev);
  91static int _regulator_disable(struct regulator_dev *rdev);
  92static int _regulator_get_voltage(struct regulator_dev *rdev);
  93static int _regulator_get_current_limit(struct regulator_dev *rdev);
  94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  95static void _notifier_call_chain(struct regulator_dev *rdev,
  96                                  unsigned long event, void *data);
  97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  98                                     int min_uV, int max_uV);
  99static struct regulator *create_regulator(struct regulator_dev *rdev,
 100                                          struct device *dev,
 101                                          const char *supply_name);
 102
 103static const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105        if (rdev->constraints && rdev->constraints->name)
 106                return rdev->constraints->name;
 107        else if (rdev->desc->name)
 108                return rdev->desc->name;
 109        else
 110                return "";
 111}
 112
 113/**
 114 * of_get_regulator - get a regulator device node based on supply name
 115 * @dev: Device pointer for the consumer (of regulator) device
 116 * @supply: regulator supply name
 117 *
 118 * Extract the regulator device node corresponding to the supply name.
 119 * retruns the device node corresponding to the regulator if found, else
 120 * returns NULL.
 121 */
 122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 123{
 124        struct device_node *regnode = NULL;
 125        char prop_name[32]; /* 32 is max size of property name */
 126
 127        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 128
 129        snprintf(prop_name, 32, "%s-supply", supply);
 130        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 131
 132        if (!regnode) {
 133                dev_dbg(dev, "Looking up %s property in node %s failed",
 134                                prop_name, dev->of_node->full_name);
 135                return NULL;
 136        }
 137        return regnode;
 138}
 139
 140static int _regulator_can_change_status(struct regulator_dev *rdev)
 141{
 142        if (!rdev->constraints)
 143                return 0;
 144
 145        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 146                return 1;
 147        else
 148                return 0;
 149}
 150
 151/* Platform voltage constraint check */
 152static int regulator_check_voltage(struct regulator_dev *rdev,
 153                                   int *min_uV, int *max_uV)
 154{
 155        BUG_ON(*min_uV > *max_uV);
 156
 157        if (!rdev->constraints) {
 158                rdev_err(rdev, "no constraints\n");
 159                return -ENODEV;
 160        }
 161        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 162                rdev_err(rdev, "operation not allowed\n");
 163                return -EPERM;
 164        }
 165
 166        if (*max_uV > rdev->constraints->max_uV)
 167                *max_uV = rdev->constraints->max_uV;
 168        if (*min_uV < rdev->constraints->min_uV)
 169                *min_uV = rdev->constraints->min_uV;
 170
 171        if (*min_uV > *max_uV) {
 172                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 173                         *min_uV, *max_uV);
 174                return -EINVAL;
 175        }
 176
 177        return 0;
 178}
 179
 180/* Make sure we select a voltage that suits the needs of all
 181 * regulator consumers
 182 */
 183static int regulator_check_consumers(struct regulator_dev *rdev,
 184                                     int *min_uV, int *max_uV)
 185{
 186        struct regulator *regulator;
 187
 188        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 189                /*
 190                 * Assume consumers that didn't say anything are OK
 191                 * with anything in the constraint range.
 192                 */
 193                if (!regulator->min_uV && !regulator->max_uV)
 194                        continue;
 195
 196                if (*max_uV > regulator->max_uV)
 197                        *max_uV = regulator->max_uV;
 198                if (*min_uV < regulator->min_uV)
 199                        *min_uV = regulator->min_uV;
 200        }
 201
 202        if (*min_uV > *max_uV)
 203                return -EINVAL;
 204
 205        return 0;
 206}
 207
 208/* current constraint check */
 209static int regulator_check_current_limit(struct regulator_dev *rdev,
 210                                        int *min_uA, int *max_uA)
 211{
 212        BUG_ON(*min_uA > *max_uA);
 213
 214        if (!rdev->constraints) {
 215                rdev_err(rdev, "no constraints\n");
 216                return -ENODEV;
 217        }
 218        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 219                rdev_err(rdev, "operation not allowed\n");
 220                return -EPERM;
 221        }
 222
 223        if (*max_uA > rdev->constraints->max_uA)
 224                *max_uA = rdev->constraints->max_uA;
 225        if (*min_uA < rdev->constraints->min_uA)
 226                *min_uA = rdev->constraints->min_uA;
 227
 228        if (*min_uA > *max_uA) {
 229                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 230                         *min_uA, *max_uA);
 231                return -EINVAL;
 232        }
 233
 234        return 0;
 235}
 236
 237/* operating mode constraint check */
 238static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 239{
 240        switch (*mode) {
 241        case REGULATOR_MODE_FAST:
 242        case REGULATOR_MODE_NORMAL:
 243        case REGULATOR_MODE_IDLE:
 244        case REGULATOR_MODE_STANDBY:
 245                break;
 246        default:
 247                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 248                return -EINVAL;
 249        }
 250
 251        if (!rdev->constraints) {
 252                rdev_err(rdev, "no constraints\n");
 253                return -ENODEV;
 254        }
 255        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 256                rdev_err(rdev, "operation not allowed\n");
 257                return -EPERM;
 258        }
 259
 260        /* The modes are bitmasks, the most power hungry modes having
 261         * the lowest values. If the requested mode isn't supported
 262         * try higher modes. */
 263        while (*mode) {
 264                if (rdev->constraints->valid_modes_mask & *mode)
 265                        return 0;
 266                *mode /= 2;
 267        }
 268
 269        return -EINVAL;
 270}
 271
 272/* dynamic regulator mode switching constraint check */
 273static int regulator_check_drms(struct regulator_dev *rdev)
 274{
 275        if (!rdev->constraints) {
 276                rdev_err(rdev, "no constraints\n");
 277                return -ENODEV;
 278        }
 279        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 280                rdev_err(rdev, "operation not allowed\n");
 281                return -EPERM;
 282        }
 283        return 0;
 284}
 285
 286static ssize_t regulator_uV_show(struct device *dev,
 287                                struct device_attribute *attr, char *buf)
 288{
 289        struct regulator_dev *rdev = dev_get_drvdata(dev);
 290        ssize_t ret;
 291
 292        mutex_lock(&rdev->mutex);
 293        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 294        mutex_unlock(&rdev->mutex);
 295
 296        return ret;
 297}
 298static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 299
 300static ssize_t regulator_uA_show(struct device *dev,
 301                                struct device_attribute *attr, char *buf)
 302{
 303        struct regulator_dev *rdev = dev_get_drvdata(dev);
 304
 305        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 306}
 307static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 308
 309static ssize_t regulator_name_show(struct device *dev,
 310                             struct device_attribute *attr, char *buf)
 311{
 312        struct regulator_dev *rdev = dev_get_drvdata(dev);
 313
 314        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 315}
 316
 317static ssize_t regulator_print_opmode(char *buf, int mode)
 318{
 319        switch (mode) {
 320        case REGULATOR_MODE_FAST:
 321                return sprintf(buf, "fast\n");
 322        case REGULATOR_MODE_NORMAL:
 323                return sprintf(buf, "normal\n");
 324        case REGULATOR_MODE_IDLE:
 325                return sprintf(buf, "idle\n");
 326        case REGULATOR_MODE_STANDBY:
 327                return sprintf(buf, "standby\n");
 328        }
 329        return sprintf(buf, "unknown\n");
 330}
 331
 332static ssize_t regulator_opmode_show(struct device *dev,
 333                                    struct device_attribute *attr, char *buf)
 334{
 335        struct regulator_dev *rdev = dev_get_drvdata(dev);
 336
 337        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 338}
 339static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 340
 341static ssize_t regulator_print_state(char *buf, int state)
 342{
 343        if (state > 0)
 344                return sprintf(buf, "enabled\n");
 345        else if (state == 0)
 346                return sprintf(buf, "disabled\n");
 347        else
 348                return sprintf(buf, "unknown\n");
 349}
 350
 351static ssize_t regulator_state_show(struct device *dev,
 352                                   struct device_attribute *attr, char *buf)
 353{
 354        struct regulator_dev *rdev = dev_get_drvdata(dev);
 355        ssize_t ret;
 356
 357        mutex_lock(&rdev->mutex);
 358        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 359        mutex_unlock(&rdev->mutex);
 360
 361        return ret;
 362}
 363static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 364
 365static ssize_t regulator_status_show(struct device *dev,
 366                                   struct device_attribute *attr, char *buf)
 367{
 368        struct regulator_dev *rdev = dev_get_drvdata(dev);
 369        int status;
 370        char *label;
 371
 372        status = rdev->desc->ops->get_status(rdev);
 373        if (status < 0)
 374                return status;
 375
 376        switch (status) {
 377        case REGULATOR_STATUS_OFF:
 378                label = "off";
 379                break;
 380        case REGULATOR_STATUS_ON:
 381                label = "on";
 382                break;
 383        case REGULATOR_STATUS_ERROR:
 384                label = "error";
 385                break;
 386        case REGULATOR_STATUS_FAST:
 387                label = "fast";
 388                break;
 389        case REGULATOR_STATUS_NORMAL:
 390                label = "normal";
 391                break;
 392        case REGULATOR_STATUS_IDLE:
 393                label = "idle";
 394                break;
 395        case REGULATOR_STATUS_STANDBY:
 396                label = "standby";
 397                break;
 398        case REGULATOR_STATUS_BYPASS:
 399                label = "bypass";
 400                break;
 401        case REGULATOR_STATUS_UNDEFINED:
 402                label = "undefined";
 403                break;
 404        default:
 405                return -ERANGE;
 406        }
 407
 408        return sprintf(buf, "%s\n", label);
 409}
 410static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 411
 412static ssize_t regulator_min_uA_show(struct device *dev,
 413                                    struct device_attribute *attr, char *buf)
 414{
 415        struct regulator_dev *rdev = dev_get_drvdata(dev);
 416
 417        if (!rdev->constraints)
 418                return sprintf(buf, "constraint not defined\n");
 419
 420        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 421}
 422static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 423
 424static ssize_t regulator_max_uA_show(struct device *dev,
 425                                    struct device_attribute *attr, char *buf)
 426{
 427        struct regulator_dev *rdev = dev_get_drvdata(dev);
 428
 429        if (!rdev->constraints)
 430                return sprintf(buf, "constraint not defined\n");
 431
 432        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 433}
 434static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 435
 436static ssize_t regulator_min_uV_show(struct device *dev,
 437                                    struct device_attribute *attr, char *buf)
 438{
 439        struct regulator_dev *rdev = dev_get_drvdata(dev);
 440
 441        if (!rdev->constraints)
 442                return sprintf(buf, "constraint not defined\n");
 443
 444        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 445}
 446static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 447
 448static ssize_t regulator_max_uV_show(struct device *dev,
 449                                    struct device_attribute *attr, char *buf)
 450{
 451        struct regulator_dev *rdev = dev_get_drvdata(dev);
 452
 453        if (!rdev->constraints)
 454                return sprintf(buf, "constraint not defined\n");
 455
 456        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 457}
 458static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 459
 460static ssize_t regulator_total_uA_show(struct device *dev,
 461                                      struct device_attribute *attr, char *buf)
 462{
 463        struct regulator_dev *rdev = dev_get_drvdata(dev);
 464        struct regulator *regulator;
 465        int uA = 0;
 466
 467        mutex_lock(&rdev->mutex);
 468        list_for_each_entry(regulator, &rdev->consumer_list, list)
 469                uA += regulator->uA_load;
 470        mutex_unlock(&rdev->mutex);
 471        return sprintf(buf, "%d\n", uA);
 472}
 473static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 474
 475static ssize_t regulator_num_users_show(struct device *dev,
 476                                      struct device_attribute *attr, char *buf)
 477{
 478        struct regulator_dev *rdev = dev_get_drvdata(dev);
 479        return sprintf(buf, "%d\n", rdev->use_count);
 480}
 481
 482static ssize_t regulator_type_show(struct device *dev,
 483                                  struct device_attribute *attr, char *buf)
 484{
 485        struct regulator_dev *rdev = dev_get_drvdata(dev);
 486
 487        switch (rdev->desc->type) {
 488        case REGULATOR_VOLTAGE:
 489                return sprintf(buf, "voltage\n");
 490        case REGULATOR_CURRENT:
 491                return sprintf(buf, "current\n");
 492        }
 493        return sprintf(buf, "unknown\n");
 494}
 495
 496static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 497                                struct device_attribute *attr, char *buf)
 498{
 499        struct regulator_dev *rdev = dev_get_drvdata(dev);
 500
 501        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 502}
 503static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 504                regulator_suspend_mem_uV_show, NULL);
 505
 506static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 507                                struct device_attribute *attr, char *buf)
 508{
 509        struct regulator_dev *rdev = dev_get_drvdata(dev);
 510
 511        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 512}
 513static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 514                regulator_suspend_disk_uV_show, NULL);
 515
 516static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 517                                struct device_attribute *attr, char *buf)
 518{
 519        struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 522}
 523static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 524                regulator_suspend_standby_uV_show, NULL);
 525
 526static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 527                                struct device_attribute *attr, char *buf)
 528{
 529        struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531        return regulator_print_opmode(buf,
 532                rdev->constraints->state_mem.mode);
 533}
 534static DEVICE_ATTR(suspend_mem_mode, 0444,
 535                regulator_suspend_mem_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 538                                struct device_attribute *attr, char *buf)
 539{
 540        struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542        return regulator_print_opmode(buf,
 543                rdev->constraints->state_disk.mode);
 544}
 545static DEVICE_ATTR(suspend_disk_mode, 0444,
 546                regulator_suspend_disk_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 549                                struct device_attribute *attr, char *buf)
 550{
 551        struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553        return regulator_print_opmode(buf,
 554                rdev->constraints->state_standby.mode);
 555}
 556static DEVICE_ATTR(suspend_standby_mode, 0444,
 557                regulator_suspend_standby_mode_show, NULL);
 558
 559static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 560                                   struct device_attribute *attr, char *buf)
 561{
 562        struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564        return regulator_print_state(buf,
 565                        rdev->constraints->state_mem.enabled);
 566}
 567static DEVICE_ATTR(suspend_mem_state, 0444,
 568                regulator_suspend_mem_state_show, NULL);
 569
 570static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 571                                   struct device_attribute *attr, char *buf)
 572{
 573        struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575        return regulator_print_state(buf,
 576                        rdev->constraints->state_disk.enabled);
 577}
 578static DEVICE_ATTR(suspend_disk_state, 0444,
 579                regulator_suspend_disk_state_show, NULL);
 580
 581static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 582                                   struct device_attribute *attr, char *buf)
 583{
 584        struct regulator_dev *rdev = dev_get_drvdata(dev);
 585
 586        return regulator_print_state(buf,
 587                        rdev->constraints->state_standby.enabled);
 588}
 589static DEVICE_ATTR(suspend_standby_state, 0444,
 590                regulator_suspend_standby_state_show, NULL);
 591
 592static ssize_t regulator_bypass_show(struct device *dev,
 593                                     struct device_attribute *attr, char *buf)
 594{
 595        struct regulator_dev *rdev = dev_get_drvdata(dev);
 596        const char *report;
 597        bool bypass;
 598        int ret;
 599
 600        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 601
 602        if (ret != 0)
 603                report = "unknown";
 604        else if (bypass)
 605                report = "enabled";
 606        else
 607                report = "disabled";
 608
 609        return sprintf(buf, "%s\n", report);
 610}
 611static DEVICE_ATTR(bypass, 0444,
 612                   regulator_bypass_show, NULL);
 613
 614/*
 615 * These are the only attributes are present for all regulators.
 616 * Other attributes are a function of regulator functionality.
 617 */
 618static struct device_attribute regulator_dev_attrs[] = {
 619        __ATTR(name, 0444, regulator_name_show, NULL),
 620        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 621        __ATTR(type, 0444, regulator_type_show, NULL),
 622        __ATTR_NULL,
 623};
 624
 625static void regulator_dev_release(struct device *dev)
 626{
 627        struct regulator_dev *rdev = dev_get_drvdata(dev);
 628        kfree(rdev);
 629}
 630
 631static struct class regulator_class = {
 632        .name = "regulator",
 633        .dev_release = regulator_dev_release,
 634        .dev_attrs = regulator_dev_attrs,
 635};
 636
 637/* Calculate the new optimum regulator operating mode based on the new total
 638 * consumer load. All locks held by caller */
 639static void drms_uA_update(struct regulator_dev *rdev)
 640{
 641        struct regulator *sibling;
 642        int current_uA = 0, output_uV, input_uV, err;
 643        unsigned int mode;
 644
 645        err = regulator_check_drms(rdev);
 646        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 647            (!rdev->desc->ops->get_voltage &&
 648             !rdev->desc->ops->get_voltage_sel) ||
 649            !rdev->desc->ops->set_mode)
 650                return;
 651
 652        /* get output voltage */
 653        output_uV = _regulator_get_voltage(rdev);
 654        if (output_uV <= 0)
 655                return;
 656
 657        /* get input voltage */
 658        input_uV = 0;
 659        if (rdev->supply)
 660                input_uV = regulator_get_voltage(rdev->supply);
 661        if (input_uV <= 0)
 662                input_uV = rdev->constraints->input_uV;
 663        if (input_uV <= 0)
 664                return;
 665
 666        /* calc total requested load */
 667        list_for_each_entry(sibling, &rdev->consumer_list, list)
 668                current_uA += sibling->uA_load;
 669
 670        /* now get the optimum mode for our new total regulator load */
 671        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 672                                                  output_uV, current_uA);
 673
 674        /* check the new mode is allowed */
 675        err = regulator_mode_constrain(rdev, &mode);
 676        if (err == 0)
 677                rdev->desc->ops->set_mode(rdev, mode);
 678}
 679
 680static int suspend_set_state(struct regulator_dev *rdev,
 681        struct regulator_state *rstate)
 682{
 683        int ret = 0;
 684
 685        /* If we have no suspend mode configration don't set anything;
 686         * only warn if the driver implements set_suspend_voltage or
 687         * set_suspend_mode callback.
 688         */
 689        if (!rstate->enabled && !rstate->disabled) {
 690                if (rdev->desc->ops->set_suspend_voltage ||
 691                    rdev->desc->ops->set_suspend_mode)
 692                        rdev_warn(rdev, "No configuration\n");
 693                return 0;
 694        }
 695
 696        if (rstate->enabled && rstate->disabled) {
 697                rdev_err(rdev, "invalid configuration\n");
 698                return -EINVAL;
 699        }
 700
 701        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 702                ret = rdev->desc->ops->set_suspend_enable(rdev);
 703        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 704                ret = rdev->desc->ops->set_suspend_disable(rdev);
 705        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 706                ret = 0;
 707
 708        if (ret < 0) {
 709                rdev_err(rdev, "failed to enabled/disable\n");
 710                return ret;
 711        }
 712
 713        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 714                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 715                if (ret < 0) {
 716                        rdev_err(rdev, "failed to set voltage\n");
 717                        return ret;
 718                }
 719        }
 720
 721        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 722                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 723                if (ret < 0) {
 724                        rdev_err(rdev, "failed to set mode\n");
 725                        return ret;
 726                }
 727        }
 728        return ret;
 729}
 730
 731/* locks held by caller */
 732static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 733{
 734        if (!rdev->constraints)
 735                return -EINVAL;
 736
 737        switch (state) {
 738        case PM_SUSPEND_STANDBY:
 739                return suspend_set_state(rdev,
 740                        &rdev->constraints->state_standby);
 741        case PM_SUSPEND_MEM:
 742                return suspend_set_state(rdev,
 743                        &rdev->constraints->state_mem);
 744        case PM_SUSPEND_MAX:
 745                return suspend_set_state(rdev,
 746                        &rdev->constraints->state_disk);
 747        default:
 748                return -EINVAL;
 749        }
 750}
 751
 752static void print_constraints(struct regulator_dev *rdev)
 753{
 754        struct regulation_constraints *constraints = rdev->constraints;
 755        char buf[80] = "";
 756        int count = 0;
 757        int ret;
 758
 759        if (constraints->min_uV && constraints->max_uV) {
 760                if (constraints->min_uV == constraints->max_uV)
 761                        count += sprintf(buf + count, "%d mV ",
 762                                         constraints->min_uV / 1000);
 763                else
 764                        count += sprintf(buf + count, "%d <--> %d mV ",
 765                                         constraints->min_uV / 1000,
 766                                         constraints->max_uV / 1000);
 767        }
 768
 769        if (!constraints->min_uV ||
 770            constraints->min_uV != constraints->max_uV) {
 771                ret = _regulator_get_voltage(rdev);
 772                if (ret > 0)
 773                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 774        }
 775
 776        if (constraints->uV_offset)
 777                count += sprintf(buf, "%dmV offset ",
 778                                 constraints->uV_offset / 1000);
 779
 780        if (constraints->min_uA && constraints->max_uA) {
 781                if (constraints->min_uA == constraints->max_uA)
 782                        count += sprintf(buf + count, "%d mA ",
 783                                         constraints->min_uA / 1000);
 784                else
 785                        count += sprintf(buf + count, "%d <--> %d mA ",
 786                                         constraints->min_uA / 1000,
 787                                         constraints->max_uA / 1000);
 788        }
 789
 790        if (!constraints->min_uA ||
 791            constraints->min_uA != constraints->max_uA) {
 792                ret = _regulator_get_current_limit(rdev);
 793                if (ret > 0)
 794                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 795        }
 796
 797        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 798                count += sprintf(buf + count, "fast ");
 799        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 800                count += sprintf(buf + count, "normal ");
 801        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 802                count += sprintf(buf + count, "idle ");
 803        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 804                count += sprintf(buf + count, "standby");
 805
 806        if (!count)
 807                sprintf(buf, "no parameters");
 808
 809        rdev_info(rdev, "%s\n", buf);
 810
 811        if ((constraints->min_uV != constraints->max_uV) &&
 812            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 813                rdev_warn(rdev,
 814                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 815}
 816
 817static int machine_constraints_voltage(struct regulator_dev *rdev,
 818        struct regulation_constraints *constraints)
 819{
 820        struct regulator_ops *ops = rdev->desc->ops;
 821        int ret;
 822
 823        /* do we need to apply the constraint voltage */
 824        if (rdev->constraints->apply_uV &&
 825            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 826                ret = _regulator_do_set_voltage(rdev,
 827                                                rdev->constraints->min_uV,
 828                                                rdev->constraints->max_uV);
 829                if (ret < 0) {
 830                        rdev_err(rdev, "failed to apply %duV constraint\n",
 831                                 rdev->constraints->min_uV);
 832                        return ret;
 833                }
 834        }
 835
 836        /* constrain machine-level voltage specs to fit
 837         * the actual range supported by this regulator.
 838         */
 839        if (ops->list_voltage && rdev->desc->n_voltages) {
 840                int     count = rdev->desc->n_voltages;
 841                int     i;
 842                int     min_uV = INT_MAX;
 843                int     max_uV = INT_MIN;
 844                int     cmin = constraints->min_uV;
 845                int     cmax = constraints->max_uV;
 846
 847                /* it's safe to autoconfigure fixed-voltage supplies
 848                   and the constraints are used by list_voltage. */
 849                if (count == 1 && !cmin) {
 850                        cmin = 1;
 851                        cmax = INT_MAX;
 852                        constraints->min_uV = cmin;
 853                        constraints->max_uV = cmax;
 854                }
 855
 856                /* voltage constraints are optional */
 857                if ((cmin == 0) && (cmax == 0))
 858                        return 0;
 859
 860                /* else require explicit machine-level constraints */
 861                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 862                        rdev_err(rdev, "invalid voltage constraints\n");
 863                        return -EINVAL;
 864                }
 865
 866                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 867                for (i = 0; i < count; i++) {
 868                        int     value;
 869
 870                        value = ops->list_voltage(rdev, i);
 871                        if (value <= 0)
 872                                continue;
 873
 874                        /* maybe adjust [min_uV..max_uV] */
 875                        if (value >= cmin && value < min_uV)
 876                                min_uV = value;
 877                        if (value <= cmax && value > max_uV)
 878                                max_uV = value;
 879                }
 880
 881                /* final: [min_uV..max_uV] valid iff constraints valid */
 882                if (max_uV < min_uV) {
 883                        rdev_err(rdev, "unsupportable voltage constraints\n");
 884                        return -EINVAL;
 885                }
 886
 887                /* use regulator's subset of machine constraints */
 888                if (constraints->min_uV < min_uV) {
 889                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 890                                 constraints->min_uV, min_uV);
 891                        constraints->min_uV = min_uV;
 892                }
 893                if (constraints->max_uV > max_uV) {
 894                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 895                                 constraints->max_uV, max_uV);
 896                        constraints->max_uV = max_uV;
 897                }
 898        }
 899
 900        return 0;
 901}
 902
 903/**
 904 * set_machine_constraints - sets regulator constraints
 905 * @rdev: regulator source
 906 * @constraints: constraints to apply
 907 *
 908 * Allows platform initialisation code to define and constrain
 909 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 910 * Constraints *must* be set by platform code in order for some
 911 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 912 * set_mode.
 913 */
 914static int set_machine_constraints(struct regulator_dev *rdev,
 915        const struct regulation_constraints *constraints)
 916{
 917        int ret = 0;
 918        struct regulator_ops *ops = rdev->desc->ops;
 919
 920        if (constraints)
 921                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 922                                            GFP_KERNEL);
 923        else
 924                rdev->constraints = kzalloc(sizeof(*constraints),
 925                                            GFP_KERNEL);
 926        if (!rdev->constraints)
 927                return -ENOMEM;
 928
 929        ret = machine_constraints_voltage(rdev, rdev->constraints);
 930        if (ret != 0)
 931                goto out;
 932
 933        /* do we need to setup our suspend state */
 934        if (rdev->constraints->initial_state) {
 935                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 936                if (ret < 0) {
 937                        rdev_err(rdev, "failed to set suspend state\n");
 938                        goto out;
 939                }
 940        }
 941
 942        if (rdev->constraints->initial_mode) {
 943                if (!ops->set_mode) {
 944                        rdev_err(rdev, "no set_mode operation\n");
 945                        ret = -EINVAL;
 946                        goto out;
 947                }
 948
 949                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 950                if (ret < 0) {
 951                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 952                        goto out;
 953                }
 954        }
 955
 956        /* If the constraints say the regulator should be on at this point
 957         * and we have control then make sure it is enabled.
 958         */
 959        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 960            ops->enable) {
 961                ret = ops->enable(rdev);
 962                if (ret < 0) {
 963                        rdev_err(rdev, "failed to enable\n");
 964                        goto out;
 965                }
 966        }
 967
 968        if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
 969                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
 970                if (ret < 0) {
 971                        rdev_err(rdev, "failed to set ramp_delay\n");
 972                        goto out;
 973                }
 974        }
 975
 976        print_constraints(rdev);
 977        return 0;
 978out:
 979        kfree(rdev->constraints);
 980        rdev->constraints = NULL;
 981        return ret;
 982}
 983
 984/**
 985 * set_supply - set regulator supply regulator
 986 * @rdev: regulator name
 987 * @supply_rdev: supply regulator name
 988 *
 989 * Called by platform initialisation code to set the supply regulator for this
 990 * regulator. This ensures that a regulators supply will also be enabled by the
 991 * core if it's child is enabled.
 992 */
 993static int set_supply(struct regulator_dev *rdev,
 994                      struct regulator_dev *supply_rdev)
 995{
 996        int err;
 997
 998        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 999
1000        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001        if (rdev->supply == NULL) {
1002                err = -ENOMEM;
1003                return err;
1004        }
1005        supply_rdev->open_count++;
1006
1007        return 0;
1008}
1009
1010/**
1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012 * @rdev:         regulator source
1013 * @consumer_dev_name: dev_name() string for device supply applies to
1014 * @supply:       symbolic name for supply
1015 *
1016 * Allows platform initialisation code to map physical regulator
1017 * sources to symbolic names for supplies for use by devices.  Devices
1018 * should use these symbolic names to request regulators, avoiding the
1019 * need to provide board-specific regulator names as platform data.
1020 */
1021static int set_consumer_device_supply(struct regulator_dev *rdev,
1022                                      const char *consumer_dev_name,
1023                                      const char *supply)
1024{
1025        struct regulator_map *node;
1026        int has_dev;
1027
1028        if (supply == NULL)
1029                return -EINVAL;
1030
1031        if (consumer_dev_name != NULL)
1032                has_dev = 1;
1033        else
1034                has_dev = 0;
1035
1036        list_for_each_entry(node, &regulator_map_list, list) {
1037                if (node->dev_name && consumer_dev_name) {
1038                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039                                continue;
1040                } else if (node->dev_name || consumer_dev_name) {
1041                        continue;
1042                }
1043
1044                if (strcmp(node->supply, supply) != 0)
1045                        continue;
1046
1047                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048                         consumer_dev_name,
1049                         dev_name(&node->regulator->dev),
1050                         node->regulator->desc->name,
1051                         supply,
1052                         dev_name(&rdev->dev), rdev_get_name(rdev));
1053                return -EBUSY;
1054        }
1055
1056        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057        if (node == NULL)
1058                return -ENOMEM;
1059
1060        node->regulator = rdev;
1061        node->supply = supply;
1062
1063        if (has_dev) {
1064                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065                if (node->dev_name == NULL) {
1066                        kfree(node);
1067                        return -ENOMEM;
1068                }
1069        }
1070
1071        list_add(&node->list, &regulator_map_list);
1072        return 0;
1073}
1074
1075static void unset_regulator_supplies(struct regulator_dev *rdev)
1076{
1077        struct regulator_map *node, *n;
1078
1079        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080                if (rdev == node->regulator) {
1081                        list_del(&node->list);
1082                        kfree(node->dev_name);
1083                        kfree(node);
1084                }
1085        }
1086}
1087
1088#define REG_STR_SIZE    64
1089
1090static struct regulator *create_regulator(struct regulator_dev *rdev,
1091                                          struct device *dev,
1092                                          const char *supply_name)
1093{
1094        struct regulator *regulator;
1095        char buf[REG_STR_SIZE];
1096        int err, size;
1097
1098        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099        if (regulator == NULL)
1100                return NULL;
1101
1102        mutex_lock(&rdev->mutex);
1103        regulator->rdev = rdev;
1104        list_add(&regulator->list, &rdev->consumer_list);
1105
1106        if (dev) {
1107                regulator->dev = dev;
1108
1109                /* Add a link to the device sysfs entry */
1110                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111                                 dev->kobj.name, supply_name);
1112                if (size >= REG_STR_SIZE)
1113                        goto overflow_err;
1114
1115                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116                if (regulator->supply_name == NULL)
1117                        goto overflow_err;
1118
1119                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120                                        buf);
1121                if (err) {
1122                        rdev_warn(rdev, "could not add device link %s err %d\n",
1123                                  dev->kobj.name, err);
1124                        /* non-fatal */
1125                }
1126        } else {
1127                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128                if (regulator->supply_name == NULL)
1129                        goto overflow_err;
1130        }
1131
1132        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133                                                rdev->debugfs);
1134        if (!regulator->debugfs) {
1135                rdev_warn(rdev, "Failed to create debugfs directory\n");
1136        } else {
1137                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138                                   &regulator->uA_load);
1139                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140                                   &regulator->min_uV);
1141                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142                                   &regulator->max_uV);
1143        }
1144
1145        /*
1146         * Check now if the regulator is an always on regulator - if
1147         * it is then we don't need to do nearly so much work for
1148         * enable/disable calls.
1149         */
1150        if (!_regulator_can_change_status(rdev) &&
1151            _regulator_is_enabled(rdev))
1152                regulator->always_on = true;
1153
1154        mutex_unlock(&rdev->mutex);
1155        return regulator;
1156overflow_err:
1157        list_del(&regulator->list);
1158        kfree(regulator);
1159        mutex_unlock(&rdev->mutex);
1160        return NULL;
1161}
1162
1163static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164{
1165        if (!rdev->desc->ops->enable_time)
1166                return rdev->desc->enable_time;
1167        return rdev->desc->ops->enable_time(rdev);
1168}
1169
1170static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171                                                  const char *supply,
1172                                                  int *ret)
1173{
1174        struct regulator_dev *r;
1175        struct device_node *node;
1176        struct regulator_map *map;
1177        const char *devname = NULL;
1178
1179        /* first do a dt based lookup */
1180        if (dev && dev->of_node) {
1181                node = of_get_regulator(dev, supply);
1182                if (node) {
1183                        list_for_each_entry(r, &regulator_list, list)
1184                                if (r->dev.parent &&
1185                                        node == r->dev.of_node)
1186                                        return r;
1187                } else {
1188                        /*
1189                         * If we couldn't even get the node then it's
1190                         * not just that the device didn't register
1191                         * yet, there's no node and we'll never
1192                         * succeed.
1193                         */
1194                        *ret = -ENODEV;
1195                }
1196        }
1197
1198        /* if not found, try doing it non-dt way */
1199        if (dev)
1200                devname = dev_name(dev);
1201
1202        list_for_each_entry(r, &regulator_list, list)
1203                if (strcmp(rdev_get_name(r), supply) == 0)
1204                        return r;
1205
1206        list_for_each_entry(map, &regulator_map_list, list) {
1207                /* If the mapping has a device set up it must match */
1208                if (map->dev_name &&
1209                    (!devname || strcmp(map->dev_name, devname)))
1210                        continue;
1211
1212                if (strcmp(map->supply, supply) == 0)
1213                        return map->regulator;
1214        }
1215
1216
1217        return NULL;
1218}
1219
1220/* Internal regulator request function */
1221static struct regulator *_regulator_get(struct device *dev, const char *id,
1222                                        int exclusive)
1223{
1224        struct regulator_dev *rdev;
1225        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226        const char *devname = NULL;
1227        int ret;
1228
1229        if (id == NULL) {
1230                pr_err("get() with no identifier\n");
1231                return regulator;
1232        }
1233
1234        if (dev)
1235                devname = dev_name(dev);
1236
1237        mutex_lock(&regulator_list_mutex);
1238
1239        rdev = regulator_dev_lookup(dev, id, &ret);
1240        if (rdev)
1241                goto found;
1242
1243        if (board_wants_dummy_regulator) {
1244                rdev = dummy_regulator_rdev;
1245                goto found;
1246        }
1247
1248#ifdef CONFIG_REGULATOR_DUMMY
1249        if (!devname)
1250                devname = "deviceless";
1251
1252        /* If the board didn't flag that it was fully constrained then
1253         * substitute in a dummy regulator so consumers can continue.
1254         */
1255        if (!has_full_constraints) {
1256                pr_warn("%s supply %s not found, using dummy regulator\n",
1257                        devname, id);
1258                rdev = dummy_regulator_rdev;
1259                goto found;
1260        }
1261#endif
1262
1263        mutex_unlock(&regulator_list_mutex);
1264        return regulator;
1265
1266found:
1267        if (rdev->exclusive) {
1268                regulator = ERR_PTR(-EPERM);
1269                goto out;
1270        }
1271
1272        if (exclusive && rdev->open_count) {
1273                regulator = ERR_PTR(-EBUSY);
1274                goto out;
1275        }
1276
1277        if (!try_module_get(rdev->owner))
1278                goto out;
1279
1280        regulator = create_regulator(rdev, dev, id);
1281        if (regulator == NULL) {
1282                regulator = ERR_PTR(-ENOMEM);
1283                module_put(rdev->owner);
1284                goto out;
1285        }
1286
1287        rdev->open_count++;
1288        if (exclusive) {
1289                rdev->exclusive = 1;
1290
1291                ret = _regulator_is_enabled(rdev);
1292                if (ret > 0)
1293                        rdev->use_count = 1;
1294                else
1295                        rdev->use_count = 0;
1296        }
1297
1298out:
1299        mutex_unlock(&regulator_list_mutex);
1300
1301        return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319        return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323static void devm_regulator_release(struct device *dev, void *res)
1324{
1325        regulator_put(*(struct regulator **)res);
1326}
1327
1328/**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338{
1339        struct regulator **ptr, *regulator;
1340
1341        ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342        if (!ptr)
1343                return ERR_PTR(-ENOMEM);
1344
1345        regulator = regulator_get(dev, id);
1346        if (!IS_ERR(regulator)) {
1347                *ptr = regulator;
1348                devres_add(dev, ptr);
1349        } else {
1350                devres_free(ptr);
1351        }
1352
1353        return regulator;
1354}
1355EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357/**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno.  Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged.  It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379{
1380        return _regulator_get(dev, id, 1);
1381}
1382EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384/* Locks held by regulator_put() */
1385static void _regulator_put(struct regulator *regulator)
1386{
1387        struct regulator_dev *rdev;
1388
1389        if (regulator == NULL || IS_ERR(regulator))
1390                return;
1391
1392        rdev = regulator->rdev;
1393
1394        debugfs_remove_recursive(regulator->debugfs);
1395
1396        /* remove any sysfs entries */
1397        if (regulator->dev)
1398                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399        kfree(regulator->supply_name);
1400        list_del(&regulator->list);
1401        kfree(regulator);
1402
1403        rdev->open_count--;
1404        rdev->exclusive = 0;
1405
1406        module_put(rdev->owner);
1407}
1408
1409/**
1410 * regulator_put - "free" the regulator source
1411 * @regulator: regulator source
1412 *
1413 * Note: drivers must ensure that all regulator_enable calls made on this
1414 * regulator source are balanced by regulator_disable calls prior to calling
1415 * this function.
1416 */
1417void regulator_put(struct regulator *regulator)
1418{
1419        mutex_lock(&regulator_list_mutex);
1420        _regulator_put(regulator);
1421        mutex_unlock(&regulator_list_mutex);
1422}
1423EXPORT_SYMBOL_GPL(regulator_put);
1424
1425static int devm_regulator_match(struct device *dev, void *res, void *data)
1426{
1427        struct regulator **r = res;
1428        if (!r || !*r) {
1429                WARN_ON(!r || !*r);
1430                return 0;
1431        }
1432        return *r == data;
1433}
1434
1435/**
1436 * devm_regulator_put - Resource managed regulator_put()
1437 * @regulator: regulator to free
1438 *
1439 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1440 * this function will not need to be called and the resource management
1441 * code will ensure that the resource is freed.
1442 */
1443void devm_regulator_put(struct regulator *regulator)
1444{
1445        int rc;
1446
1447        rc = devres_release(regulator->dev, devm_regulator_release,
1448                            devm_regulator_match, regulator);
1449        if (rc != 0)
1450                WARN_ON(rc);
1451}
1452EXPORT_SYMBOL_GPL(devm_regulator_put);
1453
1454static int _regulator_do_enable(struct regulator_dev *rdev)
1455{
1456        int ret, delay;
1457
1458        /* Query before enabling in case configuration dependent.  */
1459        ret = _regulator_get_enable_time(rdev);
1460        if (ret >= 0) {
1461                delay = ret;
1462        } else {
1463                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1464                delay = 0;
1465        }
1466
1467        trace_regulator_enable(rdev_get_name(rdev));
1468
1469        if (rdev->ena_gpio) {
1470                gpio_set_value_cansleep(rdev->ena_gpio,
1471                                        !rdev->ena_gpio_invert);
1472                rdev->ena_gpio_state = 1;
1473        } else if (rdev->desc->ops->enable) {
1474                ret = rdev->desc->ops->enable(rdev);
1475                if (ret < 0)
1476                        return ret;
1477        } else {
1478                return -EINVAL;
1479        }
1480
1481        /* Allow the regulator to ramp; it would be useful to extend
1482         * this for bulk operations so that the regulators can ramp
1483         * together.  */
1484        trace_regulator_enable_delay(rdev_get_name(rdev));
1485
1486        if (delay >= 1000) {
1487                mdelay(delay / 1000);
1488                udelay(delay % 1000);
1489        } else if (delay) {
1490                udelay(delay);
1491        }
1492
1493        trace_regulator_enable_complete(rdev_get_name(rdev));
1494
1495        return 0;
1496}
1497
1498/* locks held by regulator_enable() */
1499static int _regulator_enable(struct regulator_dev *rdev)
1500{
1501        int ret;
1502
1503        /* check voltage and requested load before enabling */
1504        if (rdev->constraints &&
1505            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1506                drms_uA_update(rdev);
1507
1508        if (rdev->use_count == 0) {
1509                /* The regulator may on if it's not switchable or left on */
1510                ret = _regulator_is_enabled(rdev);
1511                if (ret == -EINVAL || ret == 0) {
1512                        if (!_regulator_can_change_status(rdev))
1513                                return -EPERM;
1514
1515                        ret = _regulator_do_enable(rdev);
1516                        if (ret < 0)
1517                                return ret;
1518
1519                } else if (ret < 0) {
1520                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521                        return ret;
1522                }
1523                /* Fallthrough on positive return values - already enabled */
1524        }
1525
1526        rdev->use_count++;
1527
1528        return 0;
1529}
1530
1531/**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value.  Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
1539 * NOTE: the output value can be set by other drivers, boot loader or may be
1540 * hardwired in the regulator.
1541 */
1542int regulator_enable(struct regulator *regulator)
1543{
1544        struct regulator_dev *rdev = regulator->rdev;
1545        int ret = 0;
1546
1547        if (regulator->always_on)
1548                return 0;
1549
1550        if (rdev->supply) {
1551                ret = regulator_enable(rdev->supply);
1552                if (ret != 0)
1553                        return ret;
1554        }
1555
1556        mutex_lock(&rdev->mutex);
1557        ret = _regulator_enable(rdev);
1558        mutex_unlock(&rdev->mutex);
1559
1560        if (ret != 0 && rdev->supply)
1561                regulator_disable(rdev->supply);
1562
1563        return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567static int _regulator_do_disable(struct regulator_dev *rdev)
1568{
1569        int ret;
1570
1571        trace_regulator_disable(rdev_get_name(rdev));
1572
1573        if (rdev->ena_gpio) {
1574                gpio_set_value_cansleep(rdev->ena_gpio,
1575                                        rdev->ena_gpio_invert);
1576                rdev->ena_gpio_state = 0;
1577
1578        } else if (rdev->desc->ops->disable) {
1579                ret = rdev->desc->ops->disable(rdev);
1580                if (ret != 0)
1581                        return ret;
1582        }
1583
1584        trace_regulator_disable_complete(rdev_get_name(rdev));
1585
1586        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1587                             NULL);
1588        return 0;
1589}
1590
1591/* locks held by regulator_disable() */
1592static int _regulator_disable(struct regulator_dev *rdev)
1593{
1594        int ret = 0;
1595
1596        if (WARN(rdev->use_count <= 0,
1597                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1598                return -EIO;
1599
1600        /* are we the last user and permitted to disable ? */
1601        if (rdev->use_count == 1 &&
1602            (rdev->constraints && !rdev->constraints->always_on)) {
1603
1604                /* we are last user */
1605                if (_regulator_can_change_status(rdev)) {
1606                        ret = _regulator_do_disable(rdev);
1607                        if (ret < 0) {
1608                                rdev_err(rdev, "failed to disable\n");
1609                                return ret;
1610                        }
1611                }
1612
1613                rdev->use_count = 0;
1614        } else if (rdev->use_count > 1) {
1615
1616                if (rdev->constraints &&
1617                        (rdev->constraints->valid_ops_mask &
1618                        REGULATOR_CHANGE_DRMS))
1619                        drms_uA_update(rdev);
1620
1621                rdev->use_count--;
1622        }
1623
1624        return ret;
1625}
1626
1627/**
1628 * regulator_disable - disable regulator output
1629 * @regulator: regulator source
1630 *
1631 * Disable the regulator output voltage or current.  Calls to
1632 * regulator_enable() must be balanced with calls to
1633 * regulator_disable().
1634 *
1635 * NOTE: this will only disable the regulator output if no other consumer
1636 * devices have it enabled, the regulator device supports disabling and
1637 * machine constraints permit this operation.
1638 */
1639int regulator_disable(struct regulator *regulator)
1640{
1641        struct regulator_dev *rdev = regulator->rdev;
1642        int ret = 0;
1643
1644        if (regulator->always_on)
1645                return 0;
1646
1647        mutex_lock(&rdev->mutex);
1648        ret = _regulator_disable(rdev);
1649        mutex_unlock(&rdev->mutex);
1650
1651        if (ret == 0 && rdev->supply)
1652                regulator_disable(rdev->supply);
1653
1654        return ret;
1655}
1656EXPORT_SYMBOL_GPL(regulator_disable);
1657
1658/* locks held by regulator_force_disable() */
1659static int _regulator_force_disable(struct regulator_dev *rdev)
1660{
1661        int ret = 0;
1662
1663        /* force disable */
1664        if (rdev->desc->ops->disable) {
1665                /* ah well, who wants to live forever... */
1666                ret = rdev->desc->ops->disable(rdev);
1667                if (ret < 0) {
1668                        rdev_err(rdev, "failed to force disable\n");
1669                        return ret;
1670                }
1671                /* notify other consumers that power has been forced off */
1672                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1673                        REGULATOR_EVENT_DISABLE, NULL);
1674        }
1675
1676        return ret;
1677}
1678
1679/**
1680 * regulator_force_disable - force disable regulator output
1681 * @regulator: regulator source
1682 *
1683 * Forcibly disable the regulator output voltage or current.
1684 * NOTE: this *will* disable the regulator output even if other consumer
1685 * devices have it enabled. This should be used for situations when device
1686 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1687 */
1688int regulator_force_disable(struct regulator *regulator)
1689{
1690        struct regulator_dev *rdev = regulator->rdev;
1691        int ret;
1692
1693        mutex_lock(&rdev->mutex);
1694        regulator->uA_load = 0;
1695        ret = _regulator_force_disable(regulator->rdev);
1696        mutex_unlock(&rdev->mutex);
1697
1698        if (rdev->supply)
1699                while (rdev->open_count--)
1700                        regulator_disable(rdev->supply);
1701
1702        return ret;
1703}
1704EXPORT_SYMBOL_GPL(regulator_force_disable);
1705
1706static void regulator_disable_work(struct work_struct *work)
1707{
1708        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1709                                                  disable_work.work);
1710        int count, i, ret;
1711
1712        mutex_lock(&rdev->mutex);
1713
1714        BUG_ON(!rdev->deferred_disables);
1715
1716        count = rdev->deferred_disables;
1717        rdev->deferred_disables = 0;
1718
1719        for (i = 0; i < count; i++) {
1720                ret = _regulator_disable(rdev);
1721                if (ret != 0)
1722                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1723        }
1724
1725        mutex_unlock(&rdev->mutex);
1726
1727        if (rdev->supply) {
1728                for (i = 0; i < count; i++) {
1729                        ret = regulator_disable(rdev->supply);
1730                        if (ret != 0) {
1731                                rdev_err(rdev,
1732                                         "Supply disable failed: %d\n", ret);
1733                        }
1734                }
1735        }
1736}
1737
1738/**
1739 * regulator_disable_deferred - disable regulator output with delay
1740 * @regulator: regulator source
1741 * @ms: miliseconds until the regulator is disabled
1742 *
1743 * Execute regulator_disable() on the regulator after a delay.  This
1744 * is intended for use with devices that require some time to quiesce.
1745 *
1746 * NOTE: this will only disable the regulator output if no other consumer
1747 * devices have it enabled, the regulator device supports disabling and
1748 * machine constraints permit this operation.
1749 */
1750int regulator_disable_deferred(struct regulator *regulator, int ms)
1751{
1752        struct regulator_dev *rdev = regulator->rdev;
1753        int ret;
1754
1755        if (regulator->always_on)
1756                return 0;
1757
1758        if (!ms)
1759                return regulator_disable(regulator);
1760
1761        mutex_lock(&rdev->mutex);
1762        rdev->deferred_disables++;
1763        mutex_unlock(&rdev->mutex);
1764
1765        ret = schedule_delayed_work(&rdev->disable_work,
1766                                    msecs_to_jiffies(ms));
1767        if (ret < 0)
1768                return ret;
1769        else
1770                return 0;
1771}
1772EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1773
1774/**
1775 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1776 *
1777 * @rdev: regulator to operate on
1778 *
1779 * Regulators that use regmap for their register I/O can set the
1780 * enable_reg and enable_mask fields in their descriptor and then use
1781 * this as their is_enabled operation, saving some code.
1782 */
1783int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1784{
1785        unsigned int val;
1786        int ret;
1787
1788        ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1789        if (ret != 0)
1790                return ret;
1791
1792        return (val & rdev->desc->enable_mask) != 0;
1793}
1794EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1795
1796/**
1797 * regulator_enable_regmap - standard enable() for regmap users
1798 *
1799 * @rdev: regulator to operate on
1800 *
1801 * Regulators that use regmap for their register I/O can set the
1802 * enable_reg and enable_mask fields in their descriptor and then use
1803 * this as their enable() operation, saving some code.
1804 */
1805int regulator_enable_regmap(struct regulator_dev *rdev)
1806{
1807        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1808                                  rdev->desc->enable_mask,
1809                                  rdev->desc->enable_mask);
1810}
1811EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1812
1813/**
1814 * regulator_disable_regmap - standard disable() for regmap users
1815 *
1816 * @rdev: regulator to operate on
1817 *
1818 * Regulators that use regmap for their register I/O can set the
1819 * enable_reg and enable_mask fields in their descriptor and then use
1820 * this as their disable() operation, saving some code.
1821 */
1822int regulator_disable_regmap(struct regulator_dev *rdev)
1823{
1824        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1825                                  rdev->desc->enable_mask, 0);
1826}
1827EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1828
1829static int _regulator_is_enabled(struct regulator_dev *rdev)
1830{
1831        /* A GPIO control always takes precedence */
1832        if (rdev->ena_gpio)
1833                return rdev->ena_gpio_state;
1834
1835        /* If we don't know then assume that the regulator is always on */
1836        if (!rdev->desc->ops->is_enabled)
1837                return 1;
1838
1839        return rdev->desc->ops->is_enabled(rdev);
1840}
1841
1842/**
1843 * regulator_is_enabled - is the regulator output enabled
1844 * @regulator: regulator source
1845 *
1846 * Returns positive if the regulator driver backing the source/client
1847 * has requested that the device be enabled, zero if it hasn't, else a
1848 * negative errno code.
1849 *
1850 * Note that the device backing this regulator handle can have multiple
1851 * users, so it might be enabled even if regulator_enable() was never
1852 * called for this particular source.
1853 */
1854int regulator_is_enabled(struct regulator *regulator)
1855{
1856        int ret;
1857
1858        if (regulator->always_on)
1859                return 1;
1860
1861        mutex_lock(&regulator->rdev->mutex);
1862        ret = _regulator_is_enabled(regulator->rdev);
1863        mutex_unlock(&regulator->rdev->mutex);
1864
1865        return ret;
1866}
1867EXPORT_SYMBOL_GPL(regulator_is_enabled);
1868
1869/**
1870 * regulator_count_voltages - count regulator_list_voltage() selectors
1871 * @regulator: regulator source
1872 *
1873 * Returns number of selectors, or negative errno.  Selectors are
1874 * numbered starting at zero, and typically correspond to bitfields
1875 * in hardware registers.
1876 */
1877int regulator_count_voltages(struct regulator *regulator)
1878{
1879        struct regulator_dev    *rdev = regulator->rdev;
1880
1881        return rdev->desc->n_voltages ? : -EINVAL;
1882}
1883EXPORT_SYMBOL_GPL(regulator_count_voltages);
1884
1885/**
1886 * regulator_list_voltage_linear - List voltages with simple calculation
1887 *
1888 * @rdev: Regulator device
1889 * @selector: Selector to convert into a voltage
1890 *
1891 * Regulators with a simple linear mapping between voltages and
1892 * selectors can set min_uV and uV_step in the regulator descriptor
1893 * and then use this function as their list_voltage() operation,
1894 */
1895int regulator_list_voltage_linear(struct regulator_dev *rdev,
1896                                  unsigned int selector)
1897{
1898        if (selector >= rdev->desc->n_voltages)
1899                return -EINVAL;
1900
1901        return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1902}
1903EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1904
1905/**
1906 * regulator_list_voltage_table - List voltages with table based mapping
1907 *
1908 * @rdev: Regulator device
1909 * @selector: Selector to convert into a voltage
1910 *
1911 * Regulators with table based mapping between voltages and
1912 * selectors can set volt_table in the regulator descriptor
1913 * and then use this function as their list_voltage() operation.
1914 */
1915int regulator_list_voltage_table(struct regulator_dev *rdev,
1916                                 unsigned int selector)
1917{
1918        if (!rdev->desc->volt_table) {
1919                BUG_ON(!rdev->desc->volt_table);
1920                return -EINVAL;
1921        }
1922
1923        if (selector >= rdev->desc->n_voltages)
1924                return -EINVAL;
1925
1926        return rdev->desc->volt_table[selector];
1927}
1928EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1929
1930/**
1931 * regulator_list_voltage - enumerate supported voltages
1932 * @regulator: regulator source
1933 * @selector: identify voltage to list
1934 * Context: can sleep
1935 *
1936 * Returns a voltage that can be passed to @regulator_set_voltage(),
1937 * zero if this selector code can't be used on this system, or a
1938 * negative errno.
1939 */
1940int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1941{
1942        struct regulator_dev    *rdev = regulator->rdev;
1943        struct regulator_ops    *ops = rdev->desc->ops;
1944        int                     ret;
1945
1946        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1947                return -EINVAL;
1948
1949        mutex_lock(&rdev->mutex);
1950        ret = ops->list_voltage(rdev, selector);
1951        mutex_unlock(&rdev->mutex);
1952
1953        if (ret > 0) {
1954                if (ret < rdev->constraints->min_uV)
1955                        ret = 0;
1956                else if (ret > rdev->constraints->max_uV)
1957                        ret = 0;
1958        }
1959
1960        return ret;
1961}
1962EXPORT_SYMBOL_GPL(regulator_list_voltage);
1963
1964/**
1965 * regulator_is_supported_voltage - check if a voltage range can be supported
1966 *
1967 * @regulator: Regulator to check.
1968 * @min_uV: Minimum required voltage in uV.
1969 * @max_uV: Maximum required voltage in uV.
1970 *
1971 * Returns a boolean or a negative error code.
1972 */
1973int regulator_is_supported_voltage(struct regulator *regulator,
1974                                   int min_uV, int max_uV)
1975{
1976        struct regulator_dev *rdev = regulator->rdev;
1977        int i, voltages, ret;
1978
1979        /* If we can't change voltage check the current voltage */
1980        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1981                ret = regulator_get_voltage(regulator);
1982                if (ret >= 0)
1983                        return (min_uV <= ret && ret <= max_uV);
1984                else
1985                        return ret;
1986        }
1987
1988        ret = regulator_count_voltages(regulator);
1989        if (ret < 0)
1990                return ret;
1991        voltages = ret;
1992
1993        for (i = 0; i < voltages; i++) {
1994                ret = regulator_list_voltage(regulator, i);
1995
1996                if (ret >= min_uV && ret <= max_uV)
1997                        return 1;
1998        }
1999
2000        return 0;
2001}
2002EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2003
2004/**
2005 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2006 *
2007 * @rdev: regulator to operate on
2008 *
2009 * Regulators that use regmap for their register I/O can set the
2010 * vsel_reg and vsel_mask fields in their descriptor and then use this
2011 * as their get_voltage_vsel operation, saving some code.
2012 */
2013int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2014{
2015        unsigned int val;
2016        int ret;
2017
2018        ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2019        if (ret != 0)
2020                return ret;
2021
2022        val &= rdev->desc->vsel_mask;
2023        val >>= ffs(rdev->desc->vsel_mask) - 1;
2024
2025        return val;
2026}
2027EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2028
2029/**
2030 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2031 *
2032 * @rdev: regulator to operate on
2033 * @sel: Selector to set
2034 *
2035 * Regulators that use regmap for their register I/O can set the
2036 * vsel_reg and vsel_mask fields in their descriptor and then use this
2037 * as their set_voltage_vsel operation, saving some code.
2038 */
2039int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2040{
2041        sel <<= ffs(rdev->desc->vsel_mask) - 1;
2042
2043        return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2044                                  rdev->desc->vsel_mask, sel);
2045}
2046EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2047
2048/**
2049 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2050 *
2051 * @rdev: Regulator to operate on
2052 * @min_uV: Lower bound for voltage
2053 * @max_uV: Upper bound for voltage
2054 *
2055 * Drivers implementing set_voltage_sel() and list_voltage() can use
2056 * this as their map_voltage() operation.  It will find a suitable
2057 * voltage by calling list_voltage() until it gets something in bounds
2058 * for the requested voltages.
2059 */
2060int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2061                                  int min_uV, int max_uV)
2062{
2063        int best_val = INT_MAX;
2064        int selector = 0;
2065        int i, ret;
2066
2067        /* Find the smallest voltage that falls within the specified
2068         * range.
2069         */
2070        for (i = 0; i < rdev->desc->n_voltages; i++) {
2071                ret = rdev->desc->ops->list_voltage(rdev, i);
2072                if (ret < 0)
2073                        continue;
2074
2075                if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2076                        best_val = ret;
2077                        selector = i;
2078                }
2079        }
2080
2081        if (best_val != INT_MAX)
2082                return selector;
2083        else
2084                return -EINVAL;
2085}
2086EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2087
2088/**
2089 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2090 *
2091 * @rdev: Regulator to operate on
2092 * @min_uV: Lower bound for voltage
2093 * @max_uV: Upper bound for voltage
2094 *
2095 * Drivers providing min_uV and uV_step in their regulator_desc can
2096 * use this as their map_voltage() operation.
2097 */
2098int regulator_map_voltage_linear(struct regulator_dev *rdev,
2099                                 int min_uV, int max_uV)
2100{
2101        int ret, voltage;
2102
2103        /* Allow uV_step to be 0 for fixed voltage */
2104        if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2105                if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2106                        return 0;
2107                else
2108                        return -EINVAL;
2109        }
2110
2111        if (!rdev->desc->uV_step) {
2112                BUG_ON(!rdev->desc->uV_step);
2113                return -EINVAL;
2114        }
2115
2116        if (min_uV < rdev->desc->min_uV)
2117                min_uV = rdev->desc->min_uV;
2118
2119        ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2120        if (ret < 0)
2121                return ret;
2122
2123        /* Map back into a voltage to verify we're still in bounds */
2124        voltage = rdev->desc->ops->list_voltage(rdev, ret);
2125        if (voltage < min_uV || voltage > max_uV)
2126                return -EINVAL;
2127
2128        return ret;
2129}
2130EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2131
2132static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2133                                     int min_uV, int max_uV)
2134{
2135        int ret;
2136        int delay = 0;
2137        int best_val = 0;
2138        unsigned int selector;
2139        int old_selector = -1;
2140
2141        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2142
2143        min_uV += rdev->constraints->uV_offset;
2144        max_uV += rdev->constraints->uV_offset;
2145
2146        /*
2147         * If we can't obtain the old selector there is not enough
2148         * info to call set_voltage_time_sel().
2149         */
2150        if (_regulator_is_enabled(rdev) &&
2151            rdev->desc->ops->set_voltage_time_sel &&
2152            rdev->desc->ops->get_voltage_sel) {
2153                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2154                if (old_selector < 0)
2155                        return old_selector;
2156        }
2157
2158        if (rdev->desc->ops->set_voltage) {
2159                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2160                                                   &selector);
2161
2162                if (ret >= 0) {
2163                        if (rdev->desc->ops->list_voltage)
2164                                best_val = rdev->desc->ops->list_voltage(rdev,
2165                                                                         selector);
2166                        else
2167                                best_val = _regulator_get_voltage(rdev);
2168                }
2169
2170        } else if (rdev->desc->ops->set_voltage_sel) {
2171                if (rdev->desc->ops->map_voltage) {
2172                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2173                                                           max_uV);
2174                } else {
2175                        if (rdev->desc->ops->list_voltage ==
2176                            regulator_list_voltage_linear)
2177                                ret = regulator_map_voltage_linear(rdev,
2178                                                                min_uV, max_uV);
2179                        else
2180                                ret = regulator_map_voltage_iterate(rdev,
2181                                                                min_uV, max_uV);
2182                }
2183
2184                if (ret >= 0) {
2185                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2186                        if (min_uV <= best_val && max_uV >= best_val) {
2187                                selector = ret;
2188                                ret = rdev->desc->ops->set_voltage_sel(rdev,
2189                                                                       ret);
2190                        } else {
2191                                ret = -EINVAL;
2192                        }
2193                }
2194        } else {
2195                ret = -EINVAL;
2196        }
2197
2198        /* Call set_voltage_time_sel if successfully obtained old_selector */
2199        if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2200            rdev->desc->ops->set_voltage_time_sel) {
2201
2202                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2203                                                old_selector, selector);
2204                if (delay < 0) {
2205                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2206                                  delay);
2207                        delay = 0;
2208                }
2209
2210                /* Insert any necessary delays */
2211                if (delay >= 1000) {
2212                        mdelay(delay / 1000);
2213                        udelay(delay % 1000);
2214                } else if (delay) {
2215                        udelay(delay);
2216                }
2217        }
2218
2219        if (ret == 0 && best_val >= 0) {
2220                unsigned long data = best_val;
2221
2222                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2223                                     (void *)data);
2224        }
2225
2226        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2227
2228        return ret;
2229}
2230
2231/**
2232 * regulator_set_voltage - set regulator output voltage
2233 * @regulator: regulator source
2234 * @min_uV: Minimum required voltage in uV
2235 * @max_uV: Maximum acceptable voltage in uV
2236 *
2237 * Sets a voltage regulator to the desired output voltage. This can be set
2238 * during any regulator state. IOW, regulator can be disabled or enabled.
2239 *
2240 * If the regulator is enabled then the voltage will change to the new value
2241 * immediately otherwise if the regulator is disabled the regulator will
2242 * output at the new voltage when enabled.
2243 *
2244 * NOTE: If the regulator is shared between several devices then the lowest
2245 * request voltage that meets the system constraints will be used.
2246 * Regulator system constraints must be set for this regulator before
2247 * calling this function otherwise this call will fail.
2248 */
2249int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2250{
2251        struct regulator_dev *rdev = regulator->rdev;
2252        int ret = 0;
2253
2254        mutex_lock(&rdev->mutex);
2255
2256        /* If we're setting the same range as last time the change
2257         * should be a noop (some cpufreq implementations use the same
2258         * voltage for multiple frequencies, for example).
2259         */
2260        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2261                goto out;
2262
2263        /* sanity check */
2264        if (!rdev->desc->ops->set_voltage &&
2265            !rdev->desc->ops->set_voltage_sel) {
2266                ret = -EINVAL;
2267                goto out;
2268        }
2269
2270        /* constraints check */
2271        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2272        if (ret < 0)
2273                goto out;
2274        regulator->min_uV = min_uV;
2275        regulator->max_uV = max_uV;
2276
2277        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2278        if (ret < 0)
2279                goto out;
2280
2281        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2282
2283out:
2284        mutex_unlock(&rdev->mutex);
2285        return ret;
2286}
2287EXPORT_SYMBOL_GPL(regulator_set_voltage);
2288
2289/**
2290 * regulator_set_voltage_time - get raise/fall time
2291 * @regulator: regulator source
2292 * @old_uV: starting voltage in microvolts
2293 * @new_uV: target voltage in microvolts
2294 *
2295 * Provided with the starting and ending voltage, this function attempts to
2296 * calculate the time in microseconds required to rise or fall to this new
2297 * voltage.
2298 */
2299int regulator_set_voltage_time(struct regulator *regulator,
2300                               int old_uV, int new_uV)
2301{
2302        struct regulator_dev    *rdev = regulator->rdev;
2303        struct regulator_ops    *ops = rdev->desc->ops;
2304        int old_sel = -1;
2305        int new_sel = -1;
2306        int voltage;
2307        int i;
2308
2309        /* Currently requires operations to do this */
2310        if (!ops->list_voltage || !ops->set_voltage_time_sel
2311            || !rdev->desc->n_voltages)
2312                return -EINVAL;
2313
2314        for (i = 0; i < rdev->desc->n_voltages; i++) {
2315                /* We only look for exact voltage matches here */
2316                voltage = regulator_list_voltage(regulator, i);
2317                if (voltage < 0)
2318                        return -EINVAL;
2319                if (voltage == 0)
2320                        continue;
2321                if (voltage == old_uV)
2322                        old_sel = i;
2323                if (voltage == new_uV)
2324                        new_sel = i;
2325        }
2326
2327        if (old_sel < 0 || new_sel < 0)
2328                return -EINVAL;
2329
2330        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2331}
2332EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2333
2334/**
2335 * regulator_set_voltage_time_sel - get raise/fall time
2336 * @rdev: regulator source device
2337 * @old_selector: selector for starting voltage
2338 * @new_selector: selector for target voltage
2339 *
2340 * Provided with the starting and target voltage selectors, this function
2341 * returns time in microseconds required to rise or fall to this new voltage
2342 *
2343 * Drivers providing ramp_delay in regulation_constraints can use this as their
2344 * set_voltage_time_sel() operation.
2345 */
2346int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2347                                   unsigned int old_selector,
2348                                   unsigned int new_selector)
2349{
2350        unsigned int ramp_delay = 0;
2351        int old_volt, new_volt;
2352
2353        if (rdev->constraints->ramp_delay)
2354                ramp_delay = rdev->constraints->ramp_delay;
2355        else if (rdev->desc->ramp_delay)
2356                ramp_delay = rdev->desc->ramp_delay;
2357
2358        if (ramp_delay == 0) {
2359                rdev_warn(rdev, "ramp_delay not set\n");
2360                return 0;
2361        }
2362
2363        /* sanity check */
2364        if (!rdev->desc->ops->list_voltage)
2365                return -EINVAL;
2366
2367        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2368        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2369
2370        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2371}
2372EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2373
2374/**
2375 * regulator_sync_voltage - re-apply last regulator output voltage
2376 * @regulator: regulator source
2377 *
2378 * Re-apply the last configured voltage.  This is intended to be used
2379 * where some external control source the consumer is cooperating with
2380 * has caused the configured voltage to change.
2381 */
2382int regulator_sync_voltage(struct regulator *regulator)
2383{
2384        struct regulator_dev *rdev = regulator->rdev;
2385        int ret, min_uV, max_uV;
2386
2387        mutex_lock(&rdev->mutex);
2388
2389        if (!rdev->desc->ops->set_voltage &&
2390            !rdev->desc->ops->set_voltage_sel) {
2391                ret = -EINVAL;
2392                goto out;
2393        }
2394
2395        /* This is only going to work if we've had a voltage configured. */
2396        if (!regulator->min_uV && !regulator->max_uV) {
2397                ret = -EINVAL;
2398                goto out;
2399        }
2400
2401        min_uV = regulator->min_uV;
2402        max_uV = regulator->max_uV;
2403
2404        /* This should be a paranoia check... */
2405        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2406        if (ret < 0)
2407                goto out;
2408
2409        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2410        if (ret < 0)
2411                goto out;
2412
2413        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2414
2415out:
2416        mutex_unlock(&rdev->mutex);
2417        return ret;
2418}
2419EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2420
2421static int _regulator_get_voltage(struct regulator_dev *rdev)
2422{
2423        int sel, ret;
2424
2425        if (rdev->desc->ops->get_voltage_sel) {
2426                sel = rdev->desc->ops->get_voltage_sel(rdev);
2427                if (sel < 0)
2428                        return sel;
2429                ret = rdev->desc->ops->list_voltage(rdev, sel);
2430        } else if (rdev->desc->ops->get_voltage) {
2431                ret = rdev->desc->ops->get_voltage(rdev);
2432        } else if (rdev->desc->ops->list_voltage) {
2433                ret = rdev->desc->ops->list_voltage(rdev, 0);
2434        } else {
2435                return -EINVAL;
2436        }
2437
2438        if (ret < 0)
2439                return ret;
2440        return ret - rdev->constraints->uV_offset;
2441}
2442
2443/**
2444 * regulator_get_voltage - get regulator output voltage
2445 * @regulator: regulator source
2446 *
2447 * This returns the current regulator voltage in uV.
2448 *
2449 * NOTE: If the regulator is disabled it will return the voltage value. This
2450 * function should not be used to determine regulator state.
2451 */
2452int regulator_get_voltage(struct regulator *regulator)
2453{
2454        int ret;
2455
2456        mutex_lock(&regulator->rdev->mutex);
2457
2458        ret = _regulator_get_voltage(regulator->rdev);
2459
2460        mutex_unlock(&regulator->rdev->mutex);
2461
2462        return ret;
2463}
2464EXPORT_SYMBOL_GPL(regulator_get_voltage);
2465
2466/**
2467 * regulator_set_current_limit - set regulator output current limit
2468 * @regulator: regulator source
2469 * @min_uA: Minimuum supported current in uA
2470 * @max_uA: Maximum supported current in uA
2471 *
2472 * Sets current sink to the desired output current. This can be set during
2473 * any regulator state. IOW, regulator can be disabled or enabled.
2474 *
2475 * If the regulator is enabled then the current will change to the new value
2476 * immediately otherwise if the regulator is disabled the regulator will
2477 * output at the new current when enabled.
2478 *
2479 * NOTE: Regulator system constraints must be set for this regulator before
2480 * calling this function otherwise this call will fail.
2481 */
2482int regulator_set_current_limit(struct regulator *regulator,
2483                               int min_uA, int max_uA)
2484{
2485        struct regulator_dev *rdev = regulator->rdev;
2486        int ret;
2487
2488        mutex_lock(&rdev->mutex);
2489
2490        /* sanity check */
2491        if (!rdev->desc->ops->set_current_limit) {
2492                ret = -EINVAL;
2493                goto out;
2494        }
2495
2496        /* constraints check */
2497        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2498        if (ret < 0)
2499                goto out;
2500
2501        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2502out:
2503        mutex_unlock(&rdev->mutex);
2504        return ret;
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2507
2508static int _regulator_get_current_limit(struct regulator_dev *rdev)
2509{
2510        int ret;
2511
2512        mutex_lock(&rdev->mutex);
2513
2514        /* sanity check */
2515        if (!rdev->desc->ops->get_current_limit) {
2516                ret = -EINVAL;
2517                goto out;
2518        }
2519
2520        ret = rdev->desc->ops->get_current_limit(rdev);
2521out:
2522        mutex_unlock(&rdev->mutex);
2523        return ret;
2524}
2525
2526/**
2527 * regulator_get_current_limit - get regulator output current
2528 * @regulator: regulator source
2529 *
2530 * This returns the current supplied by the specified current sink in uA.
2531 *
2532 * NOTE: If the regulator is disabled it will return the current value. This
2533 * function should not be used to determine regulator state.
2534 */
2535int regulator_get_current_limit(struct regulator *regulator)
2536{
2537        return _regulator_get_current_limit(regulator->rdev);
2538}
2539EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2540
2541/**
2542 * regulator_set_mode - set regulator operating mode
2543 * @regulator: regulator source
2544 * @mode: operating mode - one of the REGULATOR_MODE constants
2545 *
2546 * Set regulator operating mode to increase regulator efficiency or improve
2547 * regulation performance.
2548 *
2549 * NOTE: Regulator system constraints must be set for this regulator before
2550 * calling this function otherwise this call will fail.
2551 */
2552int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2553{
2554        struct regulator_dev *rdev = regulator->rdev;
2555        int ret;
2556        int regulator_curr_mode;
2557
2558        mutex_lock(&rdev->mutex);
2559
2560        /* sanity check */
2561        if (!rdev->desc->ops->set_mode) {
2562                ret = -EINVAL;
2563                goto out;
2564        }
2565
2566        /* return if the same mode is requested */
2567        if (rdev->desc->ops->get_mode) {
2568                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2569                if (regulator_curr_mode == mode) {
2570                        ret = 0;
2571                        goto out;
2572                }
2573        }
2574
2575        /* constraints check */
2576        ret = regulator_mode_constrain(rdev, &mode);
2577        if (ret < 0)
2578                goto out;
2579
2580        ret = rdev->desc->ops->set_mode(rdev, mode);
2581out:
2582        mutex_unlock(&rdev->mutex);
2583        return ret;
2584}
2585EXPORT_SYMBOL_GPL(regulator_set_mode);
2586
2587static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2588{
2589        int ret;
2590
2591        mutex_lock(&rdev->mutex);
2592
2593        /* sanity check */
2594        if (!rdev->desc->ops->get_mode) {
2595                ret = -EINVAL;
2596                goto out;
2597        }
2598
2599        ret = rdev->desc->ops->get_mode(rdev);
2600out:
2601        mutex_unlock(&rdev->mutex);
2602        return ret;
2603}
2604
2605/**
2606 * regulator_get_mode - get regulator operating mode
2607 * @regulator: regulator source
2608 *
2609 * Get the current regulator operating mode.
2610 */
2611unsigned int regulator_get_mode(struct regulator *regulator)
2612{
2613        return _regulator_get_mode(regulator->rdev);
2614}
2615EXPORT_SYMBOL_GPL(regulator_get_mode);
2616
2617/**
2618 * regulator_set_optimum_mode - set regulator optimum operating mode
2619 * @regulator: regulator source
2620 * @uA_load: load current
2621 *
2622 * Notifies the regulator core of a new device load. This is then used by
2623 * DRMS (if enabled by constraints) to set the most efficient regulator
2624 * operating mode for the new regulator loading.
2625 *
2626 * Consumer devices notify their supply regulator of the maximum power
2627 * they will require (can be taken from device datasheet in the power
2628 * consumption tables) when they change operational status and hence power
2629 * state. Examples of operational state changes that can affect power
2630 * consumption are :-
2631 *
2632 *    o Device is opened / closed.
2633 *    o Device I/O is about to begin or has just finished.
2634 *    o Device is idling in between work.
2635 *
2636 * This information is also exported via sysfs to userspace.
2637 *
2638 * DRMS will sum the total requested load on the regulator and change
2639 * to the most efficient operating mode if platform constraints allow.
2640 *
2641 * Returns the new regulator mode or error.
2642 */
2643int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2644{
2645        struct regulator_dev *rdev = regulator->rdev;
2646        struct regulator *consumer;
2647        int ret, output_uV, input_uV = 0, total_uA_load = 0;
2648        unsigned int mode;
2649
2650        if (rdev->supply)
2651                input_uV = regulator_get_voltage(rdev->supply);
2652
2653        mutex_lock(&rdev->mutex);
2654
2655        /*
2656         * first check to see if we can set modes at all, otherwise just
2657         * tell the consumer everything is OK.
2658         */
2659        regulator->uA_load = uA_load;
2660        ret = regulator_check_drms(rdev);
2661        if (ret < 0) {
2662                ret = 0;
2663                goto out;
2664        }
2665
2666        if (!rdev->desc->ops->get_optimum_mode)
2667                goto out;
2668
2669        /*
2670         * we can actually do this so any errors are indicators of
2671         * potential real failure.
2672         */
2673        ret = -EINVAL;
2674
2675        if (!rdev->desc->ops->set_mode)
2676                goto out;
2677
2678        /* get output voltage */
2679        output_uV = _regulator_get_voltage(rdev);
2680        if (output_uV <= 0) {
2681                rdev_err(rdev, "invalid output voltage found\n");
2682                goto out;
2683        }
2684
2685        /* No supply? Use constraint voltage */
2686        if (input_uV <= 0)
2687                input_uV = rdev->constraints->input_uV;
2688        if (input_uV <= 0) {
2689                rdev_err(rdev, "invalid input voltage found\n");
2690                goto out;
2691        }
2692
2693        /* calc total requested load for this regulator */
2694        list_for_each_entry(consumer, &rdev->consumer_list, list)
2695                total_uA_load += consumer->uA_load;
2696
2697        mode = rdev->desc->ops->get_optimum_mode(rdev,
2698                                                 input_uV, output_uV,
2699                                                 total_uA_load);
2700        ret = regulator_mode_constrain(rdev, &mode);
2701        if (ret < 0) {
2702                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2703                         total_uA_load, input_uV, output_uV);
2704                goto out;
2705        }
2706
2707        ret = rdev->desc->ops->set_mode(rdev, mode);
2708        if (ret < 0) {
2709                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2710                goto out;
2711        }
2712        ret = mode;
2713out:
2714        mutex_unlock(&rdev->mutex);
2715        return ret;
2716}
2717EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2718
2719/**
2720 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2721 *
2722 * @rdev: device to operate on.
2723 * @enable: state to set.
2724 */
2725int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2726{
2727        unsigned int val;
2728
2729        if (enable)
2730                val = rdev->desc->bypass_mask;
2731        else
2732                val = 0;
2733
2734        return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2735                                  rdev->desc->bypass_mask, val);
2736}
2737EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2738
2739/**
2740 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2741 *
2742 * @rdev: device to operate on.
2743 * @enable: current state.
2744 */
2745int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2746{
2747        unsigned int val;
2748        int ret;
2749
2750        ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2751        if (ret != 0)
2752                return ret;
2753
2754        *enable = val & rdev->desc->bypass_mask;
2755
2756        return 0;
2757}
2758EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2759
2760/**
2761 * regulator_allow_bypass - allow the regulator to go into bypass mode
2762 *
2763 * @regulator: Regulator to configure
2764 * @allow: enable or disable bypass mode
2765 *
2766 * Allow the regulator to go into bypass mode if all other consumers
2767 * for the regulator also enable bypass mode and the machine
2768 * constraints allow this.  Bypass mode means that the regulator is
2769 * simply passing the input directly to the output with no regulation.
2770 */
2771int regulator_allow_bypass(struct regulator *regulator, bool enable)
2772{
2773        struct regulator_dev *rdev = regulator->rdev;
2774        int ret = 0;
2775
2776        if (!rdev->desc->ops->set_bypass)
2777                return 0;
2778
2779        if (rdev->constraints &&
2780            !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2781                return 0;
2782
2783        mutex_lock(&rdev->mutex);
2784
2785        if (enable && !regulator->bypass) {
2786                rdev->bypass_count++;
2787
2788                if (rdev->bypass_count == rdev->open_count) {
2789                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2790                        if (ret != 0)
2791                                rdev->bypass_count--;
2792                }
2793
2794        } else if (!enable && regulator->bypass) {
2795                rdev->bypass_count--;
2796
2797                if (rdev->bypass_count != rdev->open_count) {
2798                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2799                        if (ret != 0)
2800                                rdev->bypass_count++;
2801                }
2802        }
2803
2804        if (ret == 0)
2805                regulator->bypass = enable;
2806
2807        mutex_unlock(&rdev->mutex);
2808
2809        return ret;
2810}
2811EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2812
2813/**
2814 * regulator_register_notifier - register regulator event notifier
2815 * @regulator: regulator source
2816 * @nb: notifier block
2817 *
2818 * Register notifier block to receive regulator events.
2819 */
2820int regulator_register_notifier(struct regulator *regulator,
2821                              struct notifier_block *nb)
2822{
2823        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2824                                                nb);
2825}
2826EXPORT_SYMBOL_GPL(regulator_register_notifier);
2827
2828/**
2829 * regulator_unregister_notifier - unregister regulator event notifier
2830 * @regulator: regulator source
2831 * @nb: notifier block
2832 *
2833 * Unregister regulator event notifier block.
2834 */
2835int regulator_unregister_notifier(struct regulator *regulator,
2836                                struct notifier_block *nb)
2837{
2838        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2839                                                  nb);
2840}
2841EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2842
2843/* notify regulator consumers and downstream regulator consumers.
2844 * Note mutex must be held by caller.
2845 */
2846static void _notifier_call_chain(struct regulator_dev *rdev,
2847                                  unsigned long event, void *data)
2848{
2849        /* call rdev chain first */
2850        blocking_notifier_call_chain(&rdev->notifier, event, data);
2851}
2852
2853/**
2854 * regulator_bulk_get - get multiple regulator consumers
2855 *
2856 * @dev:           Device to supply
2857 * @num_consumers: Number of consumers to register
2858 * @consumers:     Configuration of consumers; clients are stored here.
2859 *
2860 * @return 0 on success, an errno on failure.
2861 *
2862 * This helper function allows drivers to get several regulator
2863 * consumers in one operation.  If any of the regulators cannot be
2864 * acquired then any regulators that were allocated will be freed
2865 * before returning to the caller.
2866 */
2867int regulator_bulk_get(struct device *dev, int num_consumers,
2868                       struct regulator_bulk_data *consumers)
2869{
2870        int i;
2871        int ret;
2872
2873        for (i = 0; i < num_consumers; i++)
2874                consumers[i].consumer = NULL;
2875
2876        for (i = 0; i < num_consumers; i++) {
2877                consumers[i].consumer = regulator_get(dev,
2878                                                      consumers[i].supply);
2879                if (IS_ERR(consumers[i].consumer)) {
2880                        ret = PTR_ERR(consumers[i].consumer);
2881                        dev_err(dev, "Failed to get supply '%s': %d\n",
2882                                consumers[i].supply, ret);
2883                        consumers[i].consumer = NULL;
2884                        goto err;
2885                }
2886        }
2887
2888        return 0;
2889
2890err:
2891        while (--i >= 0)
2892                regulator_put(consumers[i].consumer);
2893
2894        return ret;
2895}
2896EXPORT_SYMBOL_GPL(regulator_bulk_get);
2897
2898/**
2899 * devm_regulator_bulk_get - managed get multiple regulator consumers
2900 *
2901 * @dev:           Device to supply
2902 * @num_consumers: Number of consumers to register
2903 * @consumers:     Configuration of consumers; clients are stored here.
2904 *
2905 * @return 0 on success, an errno on failure.
2906 *
2907 * This helper function allows drivers to get several regulator
2908 * consumers in one operation with management, the regulators will
2909 * automatically be freed when the device is unbound.  If any of the
2910 * regulators cannot be acquired then any regulators that were
2911 * allocated will be freed before returning to the caller.
2912 */
2913int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2914                            struct regulator_bulk_data *consumers)
2915{
2916        int i;
2917        int ret;
2918
2919        for (i = 0; i < num_consumers; i++)
2920                consumers[i].consumer = NULL;
2921
2922        for (i = 0; i < num_consumers; i++) {
2923                consumers[i].consumer = devm_regulator_get(dev,
2924                                                           consumers[i].supply);
2925                if (IS_ERR(consumers[i].consumer)) {
2926                        ret = PTR_ERR(consumers[i].consumer);
2927                        dev_err(dev, "Failed to get supply '%s': %d\n",
2928                                consumers[i].supply, ret);
2929                        consumers[i].consumer = NULL;
2930                        goto err;
2931                }
2932        }
2933
2934        return 0;
2935
2936err:
2937        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2938                devm_regulator_put(consumers[i].consumer);
2939
2940        return ret;
2941}
2942EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2943
2944static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2945{
2946        struct regulator_bulk_data *bulk = data;
2947
2948        bulk->ret = regulator_enable(bulk->consumer);
2949}
2950
2951/**
2952 * regulator_bulk_enable - enable multiple regulator consumers
2953 *
2954 * @num_consumers: Number of consumers
2955 * @consumers:     Consumer data; clients are stored here.
2956 * @return         0 on success, an errno on failure
2957 *
2958 * This convenience API allows consumers to enable multiple regulator
2959 * clients in a single API call.  If any consumers cannot be enabled
2960 * then any others that were enabled will be disabled again prior to
2961 * return.
2962 */
2963int regulator_bulk_enable(int num_consumers,
2964                          struct regulator_bulk_data *consumers)
2965{
2966        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2967        int i;
2968        int ret = 0;
2969
2970        for (i = 0; i < num_consumers; i++) {
2971                if (consumers[i].consumer->always_on)
2972                        consumers[i].ret = 0;
2973                else
2974                        async_schedule_domain(regulator_bulk_enable_async,
2975                                              &consumers[i], &async_domain);
2976        }
2977
2978        async_synchronize_full_domain(&async_domain);
2979
2980        /* If any consumer failed we need to unwind any that succeeded */
2981        for (i = 0; i < num_consumers; i++) {
2982                if (consumers[i].ret != 0) {
2983                        ret = consumers[i].ret;
2984                        goto err;
2985                }
2986        }
2987
2988        return 0;
2989
2990err:
2991        pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2992        while (--i >= 0)
2993                regulator_disable(consumers[i].consumer);
2994
2995        return ret;
2996}
2997EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2998
2999/**
3000 * regulator_bulk_disable - disable multiple regulator consumers
3001 *
3002 * @num_consumers: Number of consumers
3003 * @consumers:     Consumer data; clients are stored here.
3004 * @return         0 on success, an errno on failure
3005 *
3006 * This convenience API allows consumers to disable multiple regulator
3007 * clients in a single API call.  If any consumers cannot be disabled
3008 * then any others that were disabled will be enabled again prior to
3009 * return.
3010 */
3011int regulator_bulk_disable(int num_consumers,
3012                           struct regulator_bulk_data *consumers)
3013{
3014        int i;
3015        int ret, r;
3016
3017        for (i = num_consumers - 1; i >= 0; --i) {
3018                ret = regulator_disable(consumers[i].consumer);
3019                if (ret != 0)
3020                        goto err;
3021        }
3022
3023        return 0;
3024
3025err:
3026        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3027        for (++i; i < num_consumers; ++i) {
3028                r = regulator_enable(consumers[i].consumer);
3029                if (r != 0)
3030                        pr_err("Failed to reename %s: %d\n",
3031                               consumers[i].supply, r);
3032        }
3033
3034        return ret;
3035}
3036EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3037
3038/**
3039 * regulator_bulk_force_disable - force disable multiple regulator consumers
3040 *
3041 * @num_consumers: Number of consumers
3042 * @consumers:     Consumer data; clients are stored here.
3043 * @return         0 on success, an errno on failure
3044 *
3045 * This convenience API allows consumers to forcibly disable multiple regulator
3046 * clients in a single API call.
3047 * NOTE: This should be used for situations when device damage will
3048 * likely occur if the regulators are not disabled (e.g. over temp).
3049 * Although regulator_force_disable function call for some consumers can
3050 * return error numbers, the function is called for all consumers.
3051 */
3052int regulator_bulk_force_disable(int num_consumers,
3053                           struct regulator_bulk_data *consumers)
3054{
3055        int i;
3056        int ret;
3057
3058        for (i = 0; i < num_consumers; i++)
3059                consumers[i].ret =
3060                            regulator_force_disable(consumers[i].consumer);
3061
3062        for (i = 0; i < num_consumers; i++) {
3063                if (consumers[i].ret != 0) {
3064                        ret = consumers[i].ret;
3065                        goto out;
3066                }
3067        }
3068
3069        return 0;
3070out:
3071        return ret;
3072}
3073EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3074
3075/**
3076 * regulator_bulk_free - free multiple regulator consumers
3077 *
3078 * @num_consumers: Number of consumers
3079 * @consumers:     Consumer data; clients are stored here.
3080 *
3081 * This convenience API allows consumers to free multiple regulator
3082 * clients in a single API call.
3083 */
3084void regulator_bulk_free(int num_consumers,
3085                         struct regulator_bulk_data *consumers)
3086{
3087        int i;
3088
3089        for (i = 0; i < num_consumers; i++) {
3090                regulator_put(consumers[i].consumer);
3091                consumers[i].consumer = NULL;
3092        }
3093}
3094EXPORT_SYMBOL_GPL(regulator_bulk_free);
3095
3096/**
3097 * regulator_notifier_call_chain - call regulator event notifier
3098 * @rdev: regulator source
3099 * @event: notifier block
3100 * @data: callback-specific data.
3101 *
3102 * Called by regulator drivers to notify clients a regulator event has
3103 * occurred. We also notify regulator clients downstream.
3104 * Note lock must be held by caller.
3105 */
3106int regulator_notifier_call_chain(struct regulator_dev *rdev,
3107                                  unsigned long event, void *data)
3108{
3109        _notifier_call_chain(rdev, event, data);
3110        return NOTIFY_DONE;
3111
3112}
3113EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3114
3115/**
3116 * regulator_mode_to_status - convert a regulator mode into a status
3117 *
3118 * @mode: Mode to convert
3119 *
3120 * Convert a regulator mode into a status.
3121 */
3122int regulator_mode_to_status(unsigned int mode)
3123{
3124        switch (mode) {
3125        case REGULATOR_MODE_FAST:
3126                return REGULATOR_STATUS_FAST;
3127        case REGULATOR_MODE_NORMAL:
3128                return REGULATOR_STATUS_NORMAL;
3129        case REGULATOR_MODE_IDLE:
3130                return REGULATOR_STATUS_IDLE;
3131        case REGULATOR_MODE_STANDBY:
3132                return REGULATOR_STATUS_STANDBY;
3133        default:
3134                return REGULATOR_STATUS_UNDEFINED;
3135        }
3136}
3137EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3138
3139/*
3140 * To avoid cluttering sysfs (and memory) with useless state, only
3141 * create attributes that can be meaningfully displayed.
3142 */
3143static int add_regulator_attributes(struct regulator_dev *rdev)
3144{
3145        struct device           *dev = &rdev->dev;
3146        struct regulator_ops    *ops = rdev->desc->ops;
3147        int                     status = 0;
3148
3149        /* some attributes need specific methods to be displayed */
3150        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3151            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3152            (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3153                status = device_create_file(dev, &dev_attr_microvolts);
3154                if (status < 0)
3155                        return status;
3156        }
3157        if (ops->get_current_limit) {
3158                status = device_create_file(dev, &dev_attr_microamps);
3159                if (status < 0)
3160                        return status;
3161        }
3162        if (ops->get_mode) {
3163                status = device_create_file(dev, &dev_attr_opmode);
3164                if (status < 0)
3165                        return status;
3166        }
3167        if (ops->is_enabled) {
3168                status = device_create_file(dev, &dev_attr_state);
3169                if (status < 0)
3170                        return status;
3171        }
3172        if (ops->get_status) {
3173                status = device_create_file(dev, &dev_attr_status);
3174                if (status < 0)
3175                        return status;
3176        }
3177        if (ops->get_bypass) {
3178                status = device_create_file(dev, &dev_attr_bypass);
3179                if (status < 0)
3180                        return status;
3181        }
3182
3183        /* some attributes are type-specific */
3184        if (rdev->desc->type == REGULATOR_CURRENT) {
3185                status = device_create_file(dev, &dev_attr_requested_microamps);
3186                if (status < 0)
3187                        return status;
3188        }
3189
3190        /* all the other attributes exist to support constraints;
3191         * don't show them if there are no constraints, or if the
3192         * relevant supporting methods are missing.
3193         */
3194        if (!rdev->constraints)
3195                return status;
3196
3197        /* constraints need specific supporting methods */
3198        if (ops->set_voltage || ops->set_voltage_sel) {
3199                status = device_create_file(dev, &dev_attr_min_microvolts);
3200                if (status < 0)
3201                        return status;
3202                status = device_create_file(dev, &dev_attr_max_microvolts);
3203                if (status < 0)
3204                        return status;
3205        }
3206        if (ops->set_current_limit) {
3207                status = device_create_file(dev, &dev_attr_min_microamps);
3208                if (status < 0)
3209                        return status;
3210                status = device_create_file(dev, &dev_attr_max_microamps);
3211                if (status < 0)
3212                        return status;
3213        }
3214
3215        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3216        if (status < 0)
3217                return status;
3218        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3219        if (status < 0)
3220                return status;
3221        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3222        if (status < 0)
3223                return status;
3224
3225        if (ops->set_suspend_voltage) {
3226                status = device_create_file(dev,
3227                                &dev_attr_suspend_standby_microvolts);
3228                if (status < 0)
3229                        return status;
3230                status = device_create_file(dev,
3231                                &dev_attr_suspend_mem_microvolts);
3232                if (status < 0)
3233                        return status;
3234                status = device_create_file(dev,
3235                                &dev_attr_suspend_disk_microvolts);
3236                if (status < 0)
3237                        return status;
3238        }
3239
3240        if (ops->set_suspend_mode) {
3241                status = device_create_file(dev,
3242                                &dev_attr_suspend_standby_mode);
3243                if (status < 0)
3244                        return status;
3245                status = device_create_file(dev,
3246                                &dev_attr_suspend_mem_mode);
3247                if (status < 0)
3248                        return status;
3249                status = device_create_file(dev,
3250                                &dev_attr_suspend_disk_mode);
3251                if (status < 0)
3252                        return status;
3253        }
3254
3255        return status;
3256}
3257
3258static void rdev_init_debugfs(struct regulator_dev *rdev)
3259{
3260        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3261        if (!rdev->debugfs) {
3262                rdev_warn(rdev, "Failed to create debugfs directory\n");
3263                return;
3264        }
3265
3266        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3267                           &rdev->use_count);
3268        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3269                           &rdev->open_count);
3270        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3271                           &rdev->bypass_count);
3272}
3273
3274/**
3275 * regulator_register - register regulator
3276 * @regulator_desc: regulator to register
3277 * @config: runtime configuration for regulator
3278 *
3279 * Called by regulator drivers to register a regulator.
3280 * Returns 0 on success.
3281 */
3282struct regulator_dev *
3283regulator_register(const struct regulator_desc *regulator_desc,
3284                   const struct regulator_config *config)
3285{
3286        const struct regulation_constraints *constraints = NULL;
3287        const struct regulator_init_data *init_data;
3288        static atomic_t regulator_no = ATOMIC_INIT(0);
3289        struct regulator_dev *rdev;
3290        struct device *dev;
3291        int ret, i;
3292        const char *supply = NULL;
3293
3294        if (regulator_desc == NULL || config == NULL)
3295                return ERR_PTR(-EINVAL);
3296
3297        dev = config->dev;
3298        WARN_ON(!dev);
3299
3300        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3301                return ERR_PTR(-EINVAL);
3302
3303        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3304            regulator_desc->type != REGULATOR_CURRENT)
3305                return ERR_PTR(-EINVAL);
3306
3307        /* Only one of each should be implemented */
3308        WARN_ON(regulator_desc->ops->get_voltage &&
3309                regulator_desc->ops->get_voltage_sel);
3310        WARN_ON(regulator_desc->ops->set_voltage &&
3311                regulator_desc->ops->set_voltage_sel);
3312
3313        /* If we're using selectors we must implement list_voltage. */
3314        if (regulator_desc->ops->get_voltage_sel &&
3315            !regulator_desc->ops->list_voltage) {
3316                return ERR_PTR(-EINVAL);
3317        }
3318        if (regulator_desc->ops->set_voltage_sel &&
3319            !regulator_desc->ops->list_voltage) {
3320                return ERR_PTR(-EINVAL);
3321        }
3322
3323        init_data = config->init_data;
3324
3325        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3326        if (rdev == NULL)
3327                return ERR_PTR(-ENOMEM);
3328
3329        mutex_lock(&regulator_list_mutex);
3330
3331        mutex_init(&rdev->mutex);
3332        rdev->reg_data = config->driver_data;
3333        rdev->owner = regulator_desc->owner;
3334        rdev->desc = regulator_desc;
3335        if (config->regmap)
3336                rdev->regmap = config->regmap;
3337        else if (dev_get_regmap(dev, NULL))
3338                rdev->regmap = dev_get_regmap(dev, NULL);
3339        else if (dev->parent)
3340                rdev->regmap = dev_get_regmap(dev->parent, NULL);
3341        INIT_LIST_HEAD(&rdev->consumer_list);
3342        INIT_LIST_HEAD(&rdev->list);
3343        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3344        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3345
3346        /* preform any regulator specific init */
3347        if (init_data && init_data->regulator_init) {
3348                ret = init_data->regulator_init(rdev->reg_data);
3349                if (ret < 0)
3350                        goto clean;
3351        }
3352
3353        /* register with sysfs */
3354        rdev->dev.class = &regulator_class;
3355        rdev->dev.of_node = config->of_node;
3356        rdev->dev.parent = dev;
3357        dev_set_name(&rdev->dev, "regulator.%d",
3358                     atomic_inc_return(&regulator_no) - 1);
3359        ret = device_register(&rdev->dev);
3360        if (ret != 0) {
3361                put_device(&rdev->dev);
3362                goto clean;
3363        }
3364
3365        dev_set_drvdata(&rdev->dev, rdev);
3366
3367        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3368                ret = gpio_request_one(config->ena_gpio,
3369                                       GPIOF_DIR_OUT | config->ena_gpio_flags,
3370                                       rdev_get_name(rdev));
3371                if (ret != 0) {
3372                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3373                                 config->ena_gpio, ret);
3374                        goto wash;
3375                }
3376
3377                rdev->ena_gpio = config->ena_gpio;
3378                rdev->ena_gpio_invert = config->ena_gpio_invert;
3379
3380                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3381                        rdev->ena_gpio_state = 1;
3382
3383                if (rdev->ena_gpio_invert)
3384                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3385        }
3386
3387        /* set regulator constraints */
3388        if (init_data)
3389                constraints = &init_data->constraints;
3390
3391        ret = set_machine_constraints(rdev, constraints);
3392        if (ret < 0)
3393                goto scrub;
3394
3395        /* add attributes supported by this regulator */
3396        ret = add_regulator_attributes(rdev);
3397        if (ret < 0)
3398                goto scrub;
3399
3400        if (init_data && init_data->supply_regulator)
3401                supply = init_data->supply_regulator;
3402        else if (regulator_desc->supply_name)
3403                supply = regulator_desc->supply_name;
3404
3405        if (supply) {
3406                struct regulator_dev *r;
3407
3408                r = regulator_dev_lookup(dev, supply, &ret);
3409
3410                if (!r) {
3411                        dev_err(dev, "Failed to find supply %s\n", supply);
3412                        ret = -EPROBE_DEFER;
3413                        goto scrub;
3414                }
3415
3416                ret = set_supply(rdev, r);
3417                if (ret < 0)
3418                        goto scrub;
3419
3420                /* Enable supply if rail is enabled */
3421                if (_regulator_is_enabled(rdev)) {
3422                        ret = regulator_enable(rdev->supply);
3423                        if (ret < 0)
3424                                goto scrub;
3425                }
3426        }
3427
3428        /* add consumers devices */
3429        if (init_data) {
3430                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3431                        ret = set_consumer_device_supply(rdev,
3432                                init_data->consumer_supplies[i].dev_name,
3433                                init_data->consumer_supplies[i].supply);
3434                        if (ret < 0) {
3435                                dev_err(dev, "Failed to set supply %s\n",
3436                                        init_data->consumer_supplies[i].supply);
3437                                goto unset_supplies;
3438                        }
3439                }
3440        }
3441
3442        list_add(&rdev->list, &regulator_list);
3443
3444        rdev_init_debugfs(rdev);
3445out:
3446        mutex_unlock(&regulator_list_mutex);
3447        return rdev;
3448
3449unset_supplies:
3450        unset_regulator_supplies(rdev);
3451
3452scrub:
3453        if (rdev->supply)
3454                _regulator_put(rdev->supply);
3455        if (rdev->ena_gpio)
3456                gpio_free(rdev->ena_gpio);
3457        kfree(rdev->constraints);
3458wash:
3459        device_unregister(&rdev->dev);
3460        /* device core frees rdev */
3461        rdev = ERR_PTR(ret);
3462        goto out;
3463
3464clean:
3465        kfree(rdev);
3466        rdev = ERR_PTR(ret);
3467        goto out;
3468}
3469EXPORT_SYMBOL_GPL(regulator_register);
3470
3471/**
3472 * regulator_unregister - unregister regulator
3473 * @rdev: regulator to unregister
3474 *
3475 * Called by regulator drivers to unregister a regulator.
3476 */
3477void regulator_unregister(struct regulator_dev *rdev)
3478{
3479        if (rdev == NULL)
3480                return;
3481
3482        if (rdev->supply)
3483                regulator_put(rdev->supply);
3484        mutex_lock(&regulator_list_mutex);
3485        debugfs_remove_recursive(rdev->debugfs);
3486        flush_work(&rdev->disable_work.work);
3487        WARN_ON(rdev->open_count);
3488        unset_regulator_supplies(rdev);
3489        list_del(&rdev->list);
3490        kfree(rdev->constraints);
3491        if (rdev->ena_gpio)
3492                gpio_free(rdev->ena_gpio);
3493        device_unregister(&rdev->dev);
3494        mutex_unlock(&regulator_list_mutex);
3495}
3496EXPORT_SYMBOL_GPL(regulator_unregister);
3497
3498/**
3499 * regulator_suspend_prepare - prepare regulators for system wide suspend
3500 * @state: system suspend state
3501 *
3502 * Configure each regulator with it's suspend operating parameters for state.
3503 * This will usually be called by machine suspend code prior to supending.
3504 */
3505int regulator_suspend_prepare(suspend_state_t state)
3506{
3507        struct regulator_dev *rdev;
3508        int ret = 0;
3509
3510        /* ON is handled by regulator active state */
3511        if (state == PM_SUSPEND_ON)
3512                return -EINVAL;
3513
3514        mutex_lock(&regulator_list_mutex);
3515        list_for_each_entry(rdev, &regulator_list, list) {
3516
3517                mutex_lock(&rdev->mutex);
3518                ret = suspend_prepare(rdev, state);
3519                mutex_unlock(&rdev->mutex);
3520
3521                if (ret < 0) {
3522                        rdev_err(rdev, "failed to prepare\n");
3523                        goto out;
3524                }
3525        }
3526out:
3527        mutex_unlock(&regulator_list_mutex);
3528        return ret;
3529}
3530EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3531
3532/**
3533 * regulator_suspend_finish - resume regulators from system wide suspend
3534 *
3535 * Turn on regulators that might be turned off by regulator_suspend_prepare
3536 * and that should be turned on according to the regulators properties.
3537 */
3538int regulator_suspend_finish(void)
3539{
3540        struct regulator_dev *rdev;
3541        int ret = 0, error;
3542
3543        mutex_lock(&regulator_list_mutex);
3544        list_for_each_entry(rdev, &regulator_list, list) {
3545                struct regulator_ops *ops = rdev->desc->ops;
3546
3547                mutex_lock(&rdev->mutex);
3548                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3549                                ops->enable) {
3550                        error = ops->enable(rdev);
3551                        if (error)
3552                                ret = error;
3553                } else {
3554                        if (!has_full_constraints)
3555                                goto unlock;
3556                        if (!ops->disable)
3557                                goto unlock;
3558                        if (!_regulator_is_enabled(rdev))
3559                                goto unlock;
3560
3561                        error = ops->disable(rdev);
3562                        if (error)
3563                                ret = error;
3564                }
3565unlock:
3566                mutex_unlock(&rdev->mutex);
3567        }
3568        mutex_unlock(&regulator_list_mutex);
3569        return ret;
3570}
3571EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3572
3573/**
3574 * regulator_has_full_constraints - the system has fully specified constraints
3575 *
3576 * Calling this function will cause the regulator API to disable all
3577 * regulators which have a zero use count and don't have an always_on
3578 * constraint in a late_initcall.
3579 *
3580 * The intention is that this will become the default behaviour in a
3581 * future kernel release so users are encouraged to use this facility
3582 * now.
3583 */
3584void regulator_has_full_constraints(void)
3585{
3586        has_full_constraints = 1;
3587}
3588EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3589
3590/**
3591 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3592 *
3593 * Calling this function will cause the regulator API to provide a
3594 * dummy regulator to consumers if no physical regulator is found,
3595 * allowing most consumers to proceed as though a regulator were
3596 * configured.  This allows systems such as those with software
3597 * controllable regulators for the CPU core only to be brought up more
3598 * readily.
3599 */
3600void regulator_use_dummy_regulator(void)
3601{
3602        board_wants_dummy_regulator = true;
3603}
3604EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3605
3606/**
3607 * rdev_get_drvdata - get rdev regulator driver data
3608 * @rdev: regulator
3609 *
3610 * Get rdev regulator driver private data. This call can be used in the
3611 * regulator driver context.
3612 */
3613void *rdev_get_drvdata(struct regulator_dev *rdev)
3614{
3615        return rdev->reg_data;
3616}
3617EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3618
3619/**
3620 * regulator_get_drvdata - get regulator driver data
3621 * @regulator: regulator
3622 *
3623 * Get regulator driver private data. This call can be used in the consumer
3624 * driver context when non API regulator specific functions need to be called.
3625 */
3626void *regulator_get_drvdata(struct regulator *regulator)
3627{
3628        return regulator->rdev->reg_data;
3629}
3630EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3631
3632/**
3633 * regulator_set_drvdata - set regulator driver data
3634 * @regulator: regulator
3635 * @data: data
3636 */
3637void regulator_set_drvdata(struct regulator *regulator, void *data)
3638{
3639        regulator->rdev->reg_data = data;
3640}
3641EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3642
3643/**
3644 * regulator_get_id - get regulator ID
3645 * @rdev: regulator
3646 */
3647int rdev_get_id(struct regulator_dev *rdev)
3648{
3649        return rdev->desc->id;
3650}
3651EXPORT_SYMBOL_GPL(rdev_get_id);
3652
3653struct device *rdev_get_dev(struct regulator_dev *rdev)
3654{
3655        return &rdev->dev;
3656}
3657EXPORT_SYMBOL_GPL(rdev_get_dev);
3658
3659void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3660{
3661        return reg_init_data->driver_data;
3662}
3663EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3664
3665#ifdef CONFIG_DEBUG_FS
3666static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3667                                    size_t count, loff_t *ppos)
3668{
3669        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3670        ssize_t len, ret = 0;
3671        struct regulator_map *map;
3672
3673        if (!buf)
3674                return -ENOMEM;
3675
3676        list_for_each_entry(map, &regulator_map_list, list) {
3677                len = snprintf(buf + ret, PAGE_SIZE - ret,
3678                               "%s -> %s.%s\n",
3679                               rdev_get_name(map->regulator), map->dev_name,
3680                               map->supply);
3681                if (len >= 0)
3682                        ret += len;
3683                if (ret > PAGE_SIZE) {
3684                        ret = PAGE_SIZE;
3685                        break;
3686                }
3687        }
3688
3689        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3690
3691        kfree(buf);
3692
3693        return ret;
3694}
3695#endif
3696
3697static const struct file_operations supply_map_fops = {
3698#ifdef CONFIG_DEBUG_FS
3699        .read = supply_map_read_file,
3700        .llseek = default_llseek,
3701#endif
3702};
3703
3704static int __init regulator_init(void)
3705{
3706        int ret;
3707
3708        ret = class_register(&regulator_class);
3709
3710        debugfs_root = debugfs_create_dir("regulator", NULL);
3711        if (!debugfs_root)
3712                pr_warn("regulator: Failed to create debugfs directory\n");
3713
3714        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3715                            &supply_map_fops);
3716
3717        regulator_dummy_init();
3718
3719        return ret;
3720}
3721
3722/* init early to allow our consumers to complete system booting */
3723core_initcall(regulator_init);
3724
3725static int __init regulator_init_complete(void)
3726{
3727        struct regulator_dev *rdev;
3728        struct regulator_ops *ops;
3729        struct regulation_constraints *c;
3730        int enabled, ret;
3731
3732        /*
3733         * Since DT doesn't provide an idiomatic mechanism for
3734         * enabling full constraints and since it's much more natural
3735         * with DT to provide them just assume that a DT enabled
3736         * system has full constraints.
3737         */
3738        if (of_have_populated_dt())
3739                has_full_constraints = true;
3740
3741        mutex_lock(&regulator_list_mutex);
3742
3743        /* If we have a full configuration then disable any regulators
3744         * which are not in use or always_on.  This will become the
3745         * default behaviour in the future.
3746         */
3747        list_for_each_entry(rdev, &regulator_list, list) {
3748                ops = rdev->desc->ops;
3749                c = rdev->constraints;
3750
3751                if (!ops->disable || (c && c->always_on))
3752                        continue;
3753
3754                mutex_lock(&rdev->mutex);
3755
3756                if (rdev->use_count)
3757                        goto unlock;
3758
3759                /* If we can't read the status assume it's on. */
3760                if (ops->is_enabled)
3761                        enabled = ops->is_enabled(rdev);
3762                else
3763                        enabled = 1;
3764
3765                if (!enabled)
3766                        goto unlock;
3767
3768                if (has_full_constraints) {
3769                        /* We log since this may kill the system if it
3770                         * goes wrong. */
3771                        rdev_info(rdev, "disabling\n");
3772                        ret = ops->disable(rdev);
3773                        if (ret != 0) {
3774                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3775                        }
3776                } else {
3777                        /* The intention is that in future we will
3778                         * assume that full constraints are provided
3779                         * so warn even if we aren't going to do
3780                         * anything here.
3781                         */
3782                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3783                }
3784
3785unlock:
3786                mutex_unlock(&rdev->mutex);
3787        }
3788
3789        mutex_unlock(&regulator_list_mutex);
3790
3791        return 0;
3792}
3793late_initcall(regulator_init_complete);
3794
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.