linux/drivers/macintosh/therm_pm72.c
<<
>>
Prefs
   1/*
   2 * Device driver for the thermostats & fan controller of  the
   3 * Apple G5 "PowerMac7,2" desktop machines.
   4 *
   5 * (c) Copyright IBM Corp. 2003-2004
   6 *
   7 * Maintained by: Benjamin Herrenschmidt
   8 *                <benh@kernel.crashing.org>
   9 * 
  10 *
  11 * The algorithm used is the PID control algorithm, used the same
  12 * way the published Darwin code does, using the same values that
  13 * are present in the Darwin 7.0 snapshot property lists.
  14 *
  15 * As far as the CPUs control loops are concerned, I use the
  16 * calibration & PID constants provided by the EEPROM,
  17 * I do _not_ embed any value from the property lists, as the ones
  18 * provided by Darwin 7.0 seem to always have an older version that
  19 * what I've seen on the actual computers.
  20 * It would be interesting to verify that though. Darwin has a
  21 * version code of 1.0.0d11 for all control loops it seems, while
  22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
  23 *
  24 * Darwin doesn't provide source to all parts, some missing
  25 * bits like the AppleFCU driver or the actual scale of some
  26 * of the values returned by sensors had to be "guessed" some
  27 * way... or based on what Open Firmware does.
  28 *
  29 * I didn't yet figure out how to get the slots power consumption
  30 * out of the FCU, so that part has not been implemented yet and
  31 * the slots fan is set to a fixed 50% PWM, hoping this value is
  32 * safe enough ...
  33 *
  34 * Note: I have observed strange oscillations of the CPU control
  35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
  36 * oscillates slowly (over several minutes) between the minimum
  37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
  38 * this, it could be some incorrect constant or an error in the
  39 * way I ported the algorithm, or it could be just normal. I
  40 * don't have full understanding on the way Apple tweaked the PID
  41 * algorithm for the CPU control, it is definitely not a standard
  42 * implementation...
  43 *
  44 * TODO:  - Check MPU structure version/signature
  45 *        - Add things like /sbin/overtemp for non-critical
  46 *          overtemp conditions so userland can take some policy
  47 *          decisions, like slowing down CPUs
  48 *        - Deal with fan and i2c failures in a better way
  49 *        - Maybe do a generic PID based on params used for
  50 *          U3 and Drives ? Definitely need to factor code a bit
  51 *          better... also make sensor detection more robust using
  52 *          the device-tree to probe for them
  53 *        - Figure out how to get the slots consumption and set the
  54 *          slots fan accordingly
  55 *
  56 * History:
  57 *
  58 *  Nov. 13, 2003 : 0.5
  59 *      - First release
  60 *
  61 *  Nov. 14, 2003 : 0.6
  62 *      - Read fan speed from FCU, low level fan routines now deal
  63 *        with errors & check fan status, though higher level don't
  64 *        do much.
  65 *      - Move a bunch of definitions to .h file
  66 *
  67 *  Nov. 18, 2003 : 0.7
  68 *      - Fix build on ppc64 kernel
  69 *      - Move back statics definitions to .c file
  70 *      - Avoid calling schedule_timeout with a negative number
  71 *
  72 *  Dec. 18, 2003 : 0.8
  73 *      - Fix typo when reading back fan speed on 2 CPU machines
  74 *
  75 *  Mar. 11, 2004 : 0.9
  76 *      - Rework code accessing the ADC chips, make it more robust and
  77 *        closer to the chip spec. Also make sure it is configured properly,
  78 *        I've seen yet unexplained cases where on startup, I would have stale
  79 *        values in the configuration register
  80 *      - Switch back to use of target fan speed for PID, thus lowering
  81 *        pressure on i2c
  82 *
  83 *  Oct. 20, 2004 : 1.1
  84 *      - Add device-tree lookup for fan IDs, should detect liquid cooling
  85 *        pumps when present
  86 *      - Enable driver for PowerMac7,3 machines
  87 *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
  88 *      - Add new CPU cooling algorithm for machines with liquid cooling
  89 *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
  90 *      - Fix a signed/unsigned compare issue in some PID loops
  91 *
  92 *  Mar. 10, 2005 : 1.2
  93 *      - Add basic support for Xserve G5
  94 *      - Retrieve pumps min/max from EEPROM image in device-tree (broken)
  95 *      - Use min/max macros here or there
  96 *      - Latest darwin updated U3H min fan speed to 20% PWM
  97 *
  98 *  July. 06, 2006 : 1.3
  99 *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
 100 *      - Add missing slots fan control loop for Xserve G5
 101 *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 102 *        still can't properly implement the control loop for these, so let's
 103 *        reduce the noise a little bit, it appears that 40% still gives us
 104 *        a pretty good air flow
 105 *      - Add code to "tickle" the FCU regulary so it doesn't think that
 106 *        we are gone while in fact, the machine just didn't need any fan
 107 *        speed change lately
 108 *
 109 */
 110
 111#include <linux/types.h>
 112#include <linux/module.h>
 113#include <linux/errno.h>
 114#include <linux/kernel.h>
 115#include <linux/delay.h>
 116#include <linux/sched.h>
 117#include <linux/init.h>
 118#include <linux/spinlock.h>
 119#include <linux/wait.h>
 120#include <linux/reboot.h>
 121#include <linux/kmod.h>
 122#include <linux/i2c.h>
 123#include <linux/kthread.h>
 124#include <linux/mutex.h>
 125#include <linux/of_device.h>
 126#include <linux/of_platform.h>
 127#include <asm/prom.h>
 128#include <asm/machdep.h>
 129#include <asm/io.h>
 130#include <asm/sections.h>
 131#include <asm/macio.h>
 132
 133#include "therm_pm72.h"
 134
 135#define VERSION "1.3"
 136
 137#undef DEBUG
 138
 139#ifdef DEBUG
 140#define DBG(args...)    printk(args)
 141#else
 142#define DBG(args...)    do { } while(0)
 143#endif
 144
 145
 146/*
 147 * Driver statics
 148 */
 149
 150static struct platform_device *         of_dev;
 151static struct i2c_adapter *             u3_0;
 152static struct i2c_adapter *             u3_1;
 153static struct i2c_adapter *             k2;
 154static struct i2c_client *              fcu;
 155static struct cpu_pid_state             processor_state[2];
 156static struct basckside_pid_params      backside_params;
 157static struct backside_pid_state        backside_state;
 158static struct drives_pid_state          drives_state;
 159static struct dimm_pid_state            dimms_state;
 160static struct slots_pid_state           slots_state;
 161static int                              state;
 162static int                              cpu_count;
 163static int                              cpu_pid_type;
 164static struct task_struct               *ctrl_task;
 165static struct completion                ctrl_complete;
 166static int                              critical_state;
 167static int                              rackmac;
 168static s32                              dimm_output_clamp;
 169static int                              fcu_rpm_shift;
 170static int                              fcu_tickle_ticks;
 171static DEFINE_MUTEX(driver_lock);
 172
 173/*
 174 * We have 3 types of CPU PID control. One is "split" old style control
 175 * for intake & exhaust fans, the other is "combined" control for both
 176 * CPUs that also deals with the pumps when present. To be "compatible"
 177 * with OS X at this point, we only use "COMBINED" on the machines that
 178 * are identified as having the pumps (though that identification is at
 179 * least dodgy). Ultimately, we could probably switch completely to this
 180 * algorithm provided we hack it to deal with the UP case
 181 */
 182#define CPU_PID_TYPE_SPLIT      0
 183#define CPU_PID_TYPE_COMBINED   1
 184#define CPU_PID_TYPE_RACKMAC    2
 185
 186/*
 187 * This table describes all fans in the FCU. The "id" and "type" values
 188 * are defaults valid for all earlier machines. Newer machines will
 189 * eventually override the table content based on the device-tree
 190 */
 191struct fcu_fan_table
 192{
 193        char*   loc;    /* location code */
 194        int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
 195        int     id;     /* id or -1 */
 196};
 197
 198#define FCU_FAN_RPM             0
 199#define FCU_FAN_PWM             1
 200
 201#define FCU_FAN_ABSENT_ID       -1
 202
 203#define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
 204
 205struct fcu_fan_table    fcu_fans[] = {
 206        [BACKSIDE_FAN_PWM_INDEX] = {
 207                .loc    = "BACKSIDE,SYS CTRLR FAN",
 208                .type   = FCU_FAN_PWM,
 209                .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
 210        },
 211        [DRIVES_FAN_RPM_INDEX] = {
 212                .loc    = "DRIVE BAY",
 213                .type   = FCU_FAN_RPM,
 214                .id     = DRIVES_FAN_RPM_DEFAULT_ID,
 215        },
 216        [SLOTS_FAN_PWM_INDEX] = {
 217                .loc    = "SLOT,PCI FAN",
 218                .type   = FCU_FAN_PWM,
 219                .id     = SLOTS_FAN_PWM_DEFAULT_ID,
 220        },
 221        [CPUA_INTAKE_FAN_RPM_INDEX] = {
 222                .loc    = "CPU A INTAKE",
 223                .type   = FCU_FAN_RPM,
 224                .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 225        },
 226        [CPUA_EXHAUST_FAN_RPM_INDEX] = {
 227                .loc    = "CPU A EXHAUST",
 228                .type   = FCU_FAN_RPM,
 229                .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 230        },
 231        [CPUB_INTAKE_FAN_RPM_INDEX] = {
 232                .loc    = "CPU B INTAKE",
 233                .type   = FCU_FAN_RPM,
 234                .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 235        },
 236        [CPUB_EXHAUST_FAN_RPM_INDEX] = {
 237                .loc    = "CPU B EXHAUST",
 238                .type   = FCU_FAN_RPM,
 239                .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 240        },
 241        /* pumps aren't present by default, have to be looked up in the
 242         * device-tree
 243         */
 244        [CPUA_PUMP_RPM_INDEX] = {
 245                .loc    = "CPU A PUMP",
 246                .type   = FCU_FAN_RPM,          
 247                .id     = FCU_FAN_ABSENT_ID,
 248        },
 249        [CPUB_PUMP_RPM_INDEX] = {
 250                .loc    = "CPU B PUMP",
 251                .type   = FCU_FAN_RPM,
 252                .id     = FCU_FAN_ABSENT_ID,
 253        },
 254        /* Xserve fans */
 255        [CPU_A1_FAN_RPM_INDEX] = {
 256                .loc    = "CPU A 1",
 257                .type   = FCU_FAN_RPM,
 258                .id     = FCU_FAN_ABSENT_ID,
 259        },
 260        [CPU_A2_FAN_RPM_INDEX] = {
 261                .loc    = "CPU A 2",
 262                .type   = FCU_FAN_RPM,
 263                .id     = FCU_FAN_ABSENT_ID,
 264        },
 265        [CPU_A3_FAN_RPM_INDEX] = {
 266                .loc    = "CPU A 3",
 267                .type   = FCU_FAN_RPM,
 268                .id     = FCU_FAN_ABSENT_ID,
 269        },
 270        [CPU_B1_FAN_RPM_INDEX] = {
 271                .loc    = "CPU B 1",
 272                .type   = FCU_FAN_RPM,
 273                .id     = FCU_FAN_ABSENT_ID,
 274        },
 275        [CPU_B2_FAN_RPM_INDEX] = {
 276                .loc    = "CPU B 2",
 277                .type   = FCU_FAN_RPM,
 278                .id     = FCU_FAN_ABSENT_ID,
 279        },
 280        [CPU_B3_FAN_RPM_INDEX] = {
 281                .loc    = "CPU B 3",
 282                .type   = FCU_FAN_RPM,
 283                .id     = FCU_FAN_ABSENT_ID,
 284        },
 285};
 286
 287static struct i2c_driver therm_pm72_driver;
 288
 289/*
 290 * Utility function to create an i2c_client structure and
 291 * attach it to one of u3 adapters
 292 */
 293static struct i2c_client *attach_i2c_chip(int id, const char *name)
 294{
 295        struct i2c_client *clt;
 296        struct i2c_adapter *adap;
 297        struct i2c_board_info info;
 298
 299        if (id & 0x200)
 300                adap = k2;
 301        else if (id & 0x100)
 302                adap = u3_1;
 303        else
 304                adap = u3_0;
 305        if (adap == NULL)
 306                return NULL;
 307
 308        memset(&info, 0, sizeof(struct i2c_board_info));
 309        info.addr = (id >> 1) & 0x7f;
 310        strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
 311        clt = i2c_new_device(adap, &info);
 312        if (!clt) {
 313                printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 314                return NULL;
 315        }
 316
 317        /*
 318         * Let i2c-core delete that device on driver removal.
 319         * This is safe because i2c-core holds the core_lock mutex for us.
 320         */
 321        list_add_tail(&clt->detected, &therm_pm72_driver.clients);
 322        return clt;
 323}
 324
 325/*
 326 * Here are the i2c chip access wrappers
 327 */
 328
 329static void initialize_adc(struct cpu_pid_state *state)
 330{
 331        int rc;
 332        u8 buf[2];
 333
 334        /* Read ADC the configuration register and cache it. We
 335         * also make sure Config2 contains proper values, I've seen
 336         * cases where we got stale grabage in there, thus preventing
 337         * proper reading of conv. values
 338         */
 339
 340        /* Clear Config2 */
 341        buf[0] = 5;
 342        buf[1] = 0;
 343        i2c_master_send(state->monitor, buf, 2);
 344
 345        /* Read & cache Config1 */
 346        buf[0] = 1;
 347        rc = i2c_master_send(state->monitor, buf, 1);
 348        if (rc > 0) {
 349                rc = i2c_master_recv(state->monitor, buf, 1);
 350                if (rc > 0) {
 351                        state->adc_config = buf[0];
 352                        DBG("ADC config reg: %02x\n", state->adc_config);
 353                        /* Disable shutdown mode */
 354                        state->adc_config &= 0xfe;
 355                        buf[0] = 1;
 356                        buf[1] = state->adc_config;
 357                        rc = i2c_master_send(state->monitor, buf, 2);
 358                }
 359        }
 360        if (rc <= 0)
 361                printk(KERN_ERR "therm_pm72: Error reading ADC config"
 362                       " register !\n");
 363}
 364
 365static int read_smon_adc(struct cpu_pid_state *state, int chan)
 366{
 367        int rc, data, tries = 0;
 368        u8 buf[2];
 369
 370        for (;;) {
 371                /* Set channel */
 372                buf[0] = 1;
 373                buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 374                rc = i2c_master_send(state->monitor, buf, 2);
 375                if (rc <= 0)
 376                        goto error;
 377                /* Wait for conversion */
 378                msleep(1);
 379                /* Switch to data register */
 380                buf[0] = 4;
 381                rc = i2c_master_send(state->monitor, buf, 1);
 382                if (rc <= 0)
 383                        goto error;
 384                /* Read result */
 385                rc = i2c_master_recv(state->monitor, buf, 2);
 386                if (rc < 0)
 387                        goto error;
 388                data = ((u16)buf[0]) << 8 | (u16)buf[1];
 389                return data >> 6;
 390        error:
 391                DBG("Error reading ADC, retrying...\n");
 392                if (++tries > 10) {
 393                        printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 394                        return -1;
 395                }
 396                msleep(10);
 397        }
 398}
 399
 400static int read_lm87_reg(struct i2c_client * chip, int reg)
 401{
 402        int rc, tries = 0;
 403        u8 buf;
 404
 405        for (;;) {
 406                /* Set address */
 407                buf = (u8)reg;
 408                rc = i2c_master_send(chip, &buf, 1);
 409                if (rc <= 0)
 410                        goto error;
 411                rc = i2c_master_recv(chip, &buf, 1);
 412                if (rc <= 0)
 413                        goto error;
 414                return (int)buf;
 415        error:
 416                DBG("Error reading LM87, retrying...\n");
 417                if (++tries > 10) {
 418                        printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 419                        return -1;
 420                }
 421                msleep(10);
 422        }
 423}
 424
 425static int fan_read_reg(int reg, unsigned char *buf, int nb)
 426{
 427        int tries, nr, nw;
 428
 429        buf[0] = reg;
 430        tries = 0;
 431        for (;;) {
 432                nw = i2c_master_send(fcu, buf, 1);
 433                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 434                        break;
 435                msleep(10);
 436                ++tries;
 437        }
 438        if (nw <= 0) {
 439                printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 440                return -EIO;
 441        }
 442        tries = 0;
 443        for (;;) {
 444                nr = i2c_master_recv(fcu, buf, nb);
 445                if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
 446                        break;
 447                msleep(10);
 448                ++tries;
 449        }
 450        if (nr <= 0)
 451                printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 452        return nr;
 453}
 454
 455static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 456{
 457        int tries, nw;
 458        unsigned char buf[16];
 459
 460        buf[0] = reg;
 461        memcpy(buf+1, ptr, nb);
 462        ++nb;
 463        tries = 0;
 464        for (;;) {
 465                nw = i2c_master_send(fcu, buf, nb);
 466                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 467                        break;
 468                msleep(10);
 469                ++tries;
 470        }
 471        if (nw < 0)
 472                printk(KERN_ERR "Failure writing to FCU: %d", nw);
 473        return nw;
 474}
 475
 476static int start_fcu(void)
 477{
 478        unsigned char buf = 0xff;
 479        int rc;
 480
 481        rc = fan_write_reg(0xe, &buf, 1);
 482        if (rc < 0)
 483                return -EIO;
 484        rc = fan_write_reg(0x2e, &buf, 1);
 485        if (rc < 0)
 486                return -EIO;
 487        rc = fan_read_reg(0, &buf, 1);
 488        if (rc < 0)
 489                return -EIO;
 490        fcu_rpm_shift = (buf == 1) ? 2 : 3;
 491        printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 492               fcu_rpm_shift);
 493
 494        return 0;
 495}
 496
 497static int set_rpm_fan(int fan_index, int rpm)
 498{
 499        unsigned char buf[2];
 500        int rc, id, min, max;
 501
 502        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 503                return -EINVAL;
 504        id = fcu_fans[fan_index].id; 
 505        if (id == FCU_FAN_ABSENT_ID)
 506                return -EINVAL;
 507
 508        min = 2400 >> fcu_rpm_shift;
 509        max = 56000 >> fcu_rpm_shift;
 510
 511        if (rpm < min)
 512                rpm = min;
 513        else if (rpm > max)
 514                rpm = max;
 515        buf[0] = rpm >> (8 - fcu_rpm_shift);
 516        buf[1] = rpm << fcu_rpm_shift;
 517        rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 518        if (rc < 0)
 519                return -EIO;
 520        return 0;
 521}
 522
 523static int get_rpm_fan(int fan_index, int programmed)
 524{
 525        unsigned char failure;
 526        unsigned char active;
 527        unsigned char buf[2];
 528        int rc, id, reg_base;
 529
 530        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 531                return -EINVAL;
 532        id = fcu_fans[fan_index].id; 
 533        if (id == FCU_FAN_ABSENT_ID)
 534                return -EINVAL;
 535
 536        rc = fan_read_reg(0xb, &failure, 1);
 537        if (rc != 1)
 538                return -EIO;
 539        if ((failure & (1 << id)) != 0)
 540                return -EFAULT;
 541        rc = fan_read_reg(0xd, &active, 1);
 542        if (rc != 1)
 543                return -EIO;
 544        if ((active & (1 << id)) == 0)
 545                return -ENXIO;
 546
 547        /* Programmed value or real current speed */
 548        reg_base = programmed ? 0x10 : 0x11;
 549        rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 550        if (rc != 2)
 551                return -EIO;
 552
 553        return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 554}
 555
 556static int set_pwm_fan(int fan_index, int pwm)
 557{
 558        unsigned char buf[2];
 559        int rc, id;
 560
 561        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 562                return -EINVAL;
 563        id = fcu_fans[fan_index].id; 
 564        if (id == FCU_FAN_ABSENT_ID)
 565                return -EINVAL;
 566
 567        if (pwm < 10)
 568                pwm = 10;
 569        else if (pwm > 100)
 570                pwm = 100;
 571        pwm = (pwm * 2559) / 1000;
 572        buf[0] = pwm;
 573        rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 574        if (rc < 0)
 575                return rc;
 576        return 0;
 577}
 578
 579static int get_pwm_fan(int fan_index)
 580{
 581        unsigned char failure;
 582        unsigned char active;
 583        unsigned char buf[2];
 584        int rc, id;
 585
 586        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 587                return -EINVAL;
 588        id = fcu_fans[fan_index].id; 
 589        if (id == FCU_FAN_ABSENT_ID)
 590                return -EINVAL;
 591
 592        rc = fan_read_reg(0x2b, &failure, 1);
 593        if (rc != 1)
 594                return -EIO;
 595        if ((failure & (1 << id)) != 0)
 596                return -EFAULT;
 597        rc = fan_read_reg(0x2d, &active, 1);
 598        if (rc != 1)
 599                return -EIO;
 600        if ((active & (1 << id)) == 0)
 601                return -ENXIO;
 602
 603        /* Programmed value or real current speed */
 604        rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 605        if (rc != 1)
 606                return -EIO;
 607
 608        return (buf[0] * 1000) / 2559;
 609}
 610
 611static void tickle_fcu(void)
 612{
 613        int pwm;
 614
 615        pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 616
 617        DBG("FCU Tickle, slots fan is: %d\n", pwm);
 618        if (pwm < 0)
 619                pwm = 100;
 620
 621        if (!rackmac) {
 622                pwm = SLOTS_FAN_DEFAULT_PWM;
 623        } else if (pwm < SLOTS_PID_OUTPUT_MIN)
 624                pwm = SLOTS_PID_OUTPUT_MIN;
 625
 626        /* That is hopefully enough to make the FCU happy */
 627        set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 628}
 629
 630
 631/*
 632 * Utility routine to read the CPU calibration EEPROM data
 633 * from the device-tree
 634 */
 635static int read_eeprom(int cpu, struct mpu_data *out)
 636{
 637        struct device_node *np;
 638        char nodename[64];
 639        const u8 *data;
 640        int len;
 641
 642        /* prom.c routine for finding a node by path is a bit brain dead
 643         * and requires exact @xxx unit numbers. This is a bit ugly but
 644         * will work for these machines
 645         */
 646        sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 647        np = of_find_node_by_path(nodename);
 648        if (np == NULL) {
 649                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 650                return -ENODEV;
 651        }
 652        data = of_get_property(np, "cpuid", &len);
 653        if (data == NULL) {
 654                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 655                of_node_put(np);
 656                return -ENODEV;
 657        }
 658        memcpy(out, data, sizeof(struct mpu_data));
 659        of_node_put(np);
 660        
 661        return 0;
 662}
 663
 664static void fetch_cpu_pumps_minmax(void)
 665{
 666        struct cpu_pid_state *state0 = &processor_state[0];
 667        struct cpu_pid_state *state1 = &processor_state[1];
 668        u16 pump_min = 0, pump_max = 0xffff;
 669        u16 tmp[4];
 670
 671        /* Try to fetch pumps min/max infos from eeprom */
 672
 673        memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 674        if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 675                pump_min = max(pump_min, tmp[0]);
 676                pump_max = min(pump_max, tmp[1]);
 677        }
 678        if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 679                pump_min = max(pump_min, tmp[2]);
 680                pump_max = min(pump_max, tmp[3]);
 681        }
 682
 683        /* Double check the values, this _IS_ needed as the EEPROM on
 684         * some dual 2.5Ghz G5s seem, at least, to have both min & max
 685         * same to the same value ... (grrrr)
 686         */
 687        if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 688                pump_min = CPU_PUMP_OUTPUT_MIN;
 689                pump_max = CPU_PUMP_OUTPUT_MAX;
 690        }
 691
 692        state0->pump_min = state1->pump_min = pump_min;
 693        state0->pump_max = state1->pump_max = pump_max;
 694}
 695
 696/* 
 697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 698 * pass around to the attribute functions, so we don't really have
 699 * choice but implement a bunch of them...
 700 *
 701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 702 * the input twice... I accept patches :)
 703 */
 704#define BUILD_SHOW_FUNC_FIX(name, data)                         \
 705static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 706{                                                               \
 707        ssize_t r;                                              \
 708        mutex_lock(&driver_lock);                                       \
 709        r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
 710        mutex_unlock(&driver_lock);                                     \
 711        return r;                                               \
 712}
 713#define BUILD_SHOW_FUNC_INT(name, data)                         \
 714static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 715{                                                               \
 716        return sprintf(buf, "%d", data);                        \
 717}
 718
 719BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
 720BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
 721BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
 722BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
 723BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
 724
 725BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
 726BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
 727BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
 728BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
 729BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
 730
 731BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 732BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 733
 734BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 735BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 736
 737BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 738BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 739
 740BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 741
 742static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 743static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 744static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 745static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 746static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 747
 748static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 749static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 750static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 751static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 752static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 753
 754static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 755static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 756
 757static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 758static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 759
 760static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 761static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 762
 763static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 764
 765/*
 766 * CPUs fans control loop
 767 */
 768
 769static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 770{
 771        s32 ltemp, volts, amps;
 772        int index, rc = 0;
 773
 774        /* Default (in case of error) */
 775        *temp = state->cur_temp;
 776        *power = state->cur_power;
 777
 778        if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 779                index = (state->index == 0) ?
 780                        CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 781        else
 782                index = (state->index == 0) ?
 783                        CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 784
 785        /* Read current fan status */
 786        rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 787        if (rc < 0) {
 788                /* XXX What do we do now ? Nothing for now, keep old value, but
 789                 * return error upstream
 790                 */
 791                DBG("  cpu %d, fan reading error !\n", state->index);
 792        } else {
 793                state->rpm = rc;
 794                DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 795        }
 796
 797        /* Get some sensor readings and scale it */
 798        ltemp = read_smon_adc(state, 1);
 799        if (ltemp == -1) {
 800                /* XXX What do we do now ? */
 801                state->overtemp++;
 802                if (rc == 0)
 803                        rc = -EIO;
 804                DBG("  cpu %d, temp reading error !\n", state->index);
 805        } else {
 806                /* Fixup temperature according to diode calibration
 807                 */
 808                DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 809                    state->index,
 810                    ltemp, state->mpu.mdiode, state->mpu.bdiode);
 811                *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 812                state->last_temp = *temp;
 813                DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 814        }
 815
 816        /*
 817         * Read voltage & current and calculate power
 818         */
 819        volts = read_smon_adc(state, 3);
 820        amps = read_smon_adc(state, 4);
 821
 822        /* Scale voltage and current raw sensor values according to fixed scales
 823         * obtained in Darwin and calculate power from I and V
 824         */
 825        volts *= ADC_CPU_VOLTAGE_SCALE;
 826        amps *= ADC_CPU_CURRENT_SCALE;
 827        *power = (((u64)volts) * ((u64)amps)) >> 16;
 828        state->voltage = volts;
 829        state->current_a = amps;
 830        state->last_power = *power;
 831
 832        DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 833            state->index, FIX32TOPRINT(state->current_a),
 834            FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 835
 836        return 0;
 837}
 838
 839static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 840{
 841        s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 842        s64 integ_p, deriv_p, prop_p, sum; 
 843        int i;
 844
 845        /* Calculate power target value (could be done once for all)
 846         * and convert to a 16.16 fp number
 847         */
 848        power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 849        DBG("  power target: %d.%03d, error: %d.%03d\n",
 850            FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 851
 852        /* Store temperature and power in history array */
 853        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 854        state->temp_history[state->cur_temp] = temp;
 855        state->cur_power = (state->cur_power + 1) % state->count_power;
 856        state->power_history[state->cur_power] = power;
 857        state->error_history[state->cur_power] = power_target - power;
 858        
 859        /* If first loop, fill the history table */
 860        if (state->first) {
 861                for (i = 0; i < (state->count_power - 1); i++) {
 862                        state->cur_power = (state->cur_power + 1) % state->count_power;
 863                        state->power_history[state->cur_power] = power;
 864                        state->error_history[state->cur_power] = power_target - power;
 865                }
 866                for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 867                        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 868                        state->temp_history[state->cur_temp] = temp;                    
 869                }
 870                state->first = 0;
 871        }
 872
 873        /* Calculate the integral term normally based on the "power" values */
 874        sum = 0;
 875        integral = 0;
 876        for (i = 0; i < state->count_power; i++)
 877                integral += state->error_history[i];
 878        integral *= CPU_PID_INTERVAL;
 879        DBG("  integral: %08x\n", integral);
 880
 881        /* Calculate the adjusted input (sense value).
 882         *   G_r is 12.20
 883         *   integ is 16.16
 884         *   so the result is 28.36
 885         *
 886         * input target is mpu.ttarget, input max is mpu.tmax
 887         */
 888        integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 889        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 890        sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 891        adj_in_target = (state->mpu.ttarget << 16);
 892        if (adj_in_target > sval)
 893                adj_in_target = sval;
 894        DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 895            state->mpu.ttarget);
 896
 897        /* Calculate the derivative term */
 898        derivative = state->temp_history[state->cur_temp] -
 899                state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 900                                    % CPU_TEMP_HISTORY_SIZE];
 901        derivative /= CPU_PID_INTERVAL;
 902        deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 903        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 904        sum += deriv_p;
 905
 906        /* Calculate the proportional term */
 907        proportional = temp - adj_in_target;
 908        prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 909        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 910        sum += prop_p;
 911
 912        /* Scale sum */
 913        sum >>= 36;
 914
 915        DBG("   sum: %d\n", (int)sum);
 916        state->rpm += (s32)sum;
 917}
 918
 919static void do_monitor_cpu_combined(void)
 920{
 921        struct cpu_pid_state *state0 = &processor_state[0];
 922        struct cpu_pid_state *state1 = &processor_state[1];
 923        s32 temp0, power0, temp1, power1;
 924        s32 temp_combi, power_combi;
 925        int rc, intake, pump;
 926
 927        rc = do_read_one_cpu_values(state0, &temp0, &power0);
 928        if (rc < 0) {
 929                /* XXX What do we do now ? */
 930        }
 931        state1->overtemp = 0;
 932        rc = do_read_one_cpu_values(state1, &temp1, &power1);
 933        if (rc < 0) {
 934                /* XXX What do we do now ? */
 935        }
 936        if (state1->overtemp)
 937                state0->overtemp++;
 938
 939        temp_combi = max(temp0, temp1);
 940        power_combi = max(power0, power1);
 941
 942        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 943         * full blown immediately and try to trigger a shutdown
 944         */
 945        if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 946                printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 947                       temp_combi >> 16);
 948                state0->overtemp += CPU_MAX_OVERTEMP / 4;
 949        } else if (temp_combi > (state0->mpu.tmax << 16)) {
 950                state0->overtemp++;
 951                printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
 952                       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
 953        } else {
 954                if (state0->overtemp)
 955                        printk(KERN_WARNING "Temperature back down to %d\n",
 956                               temp_combi >> 16);
 957                state0->overtemp = 0;
 958        }
 959        if (state0->overtemp >= CPU_MAX_OVERTEMP)
 960                critical_state = 1;
 961        if (state0->overtemp > 0) {
 962                state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 963                state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 964                pump = state0->pump_max;
 965                goto do_set_fans;
 966        }
 967
 968        /* Do the PID */
 969        do_cpu_pid(state0, temp_combi, power_combi);
 970
 971        /* Range check */
 972        state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 973        state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 974
 975        /* Calculate intake fan speed */
 976        intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 977        intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 978        intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 979        state0->intake_rpm = intake;
 980
 981        /* Calculate pump speed */
 982        pump = (state0->rpm * state0->pump_max) /
 983                state0->mpu.rmaxn_exhaust_fan;
 984        pump = min(pump, state0->pump_max);
 985        pump = max(pump, state0->pump_min);
 986        
 987 do_set_fans:
 988        /* We copy values from state 0 to state 1 for /sysfs */
 989        state1->rpm = state0->rpm;
 990        state1->intake_rpm = state0->intake_rpm;
 991
 992        DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 993            state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 994
 995        /* We should check for errors, shouldn't we ? But then, what
 996         * do we do once the error occurs ? For FCU notified fan
 997         * failures (-EFAULT) we probably want to notify userland
 998         * some way...
 999         */
1000        set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1001        set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1002        set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1003        set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1004
1005        if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1006                set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1007        if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008                set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1009}
1010
1011static void do_monitor_cpu_split(struct cpu_pid_state *state)
1012{
1013        s32 temp, power;
1014        int rc, intake;
1015
1016        /* Read current fan status */
1017        rc = do_read_one_cpu_values(state, &temp, &power);
1018        if (rc < 0) {
1019                /* XXX What do we do now ? */
1020        }
1021
1022        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1023         * full blown immediately and try to trigger a shutdown
1024         */
1025        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1026                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1027                       " (%d) !\n",
1028                       state->index, temp >> 16);
1029                state->overtemp += CPU_MAX_OVERTEMP / 4;
1030        } else if (temp > (state->mpu.tmax << 16)) {
1031                state->overtemp++;
1032                printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1033                       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1034        } else {
1035                if (state->overtemp)
1036                        printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1037                               state->index, temp >> 16);
1038                state->overtemp = 0;
1039        }
1040        if (state->overtemp >= CPU_MAX_OVERTEMP)
1041                critical_state = 1;
1042        if (state->overtemp > 0) {
1043                state->rpm = state->mpu.rmaxn_exhaust_fan;
1044                state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1045                goto do_set_fans;
1046        }
1047
1048        /* Do the PID */
1049        do_cpu_pid(state, temp, power);
1050
1051        /* Range check */
1052        state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1053        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1054
1055        /* Calculate intake fan */
1056        intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1057        intake = max(intake, (int)state->mpu.rminn_intake_fan);
1058        intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1059        state->intake_rpm = intake;
1060
1061 do_set_fans:
1062        DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1063            state->index, (int)state->rpm, intake, state->overtemp);
1064
1065        /* We should check for errors, shouldn't we ? But then, what
1066         * do we do once the error occurs ? For FCU notified fan
1067         * failures (-EFAULT) we probably want to notify userland
1068         * some way...
1069         */
1070        if (state->index == 0) {
1071                set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1072                set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1073        } else {
1074                set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1075                set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1076        }
1077}
1078
1079static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1080{
1081        s32 temp, power, fan_min;
1082        int rc;
1083
1084        /* Read current fan status */
1085        rc = do_read_one_cpu_values(state, &temp, &power);
1086        if (rc < 0) {
1087                /* XXX What do we do now ? */
1088        }
1089
1090        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1091         * full blown immediately and try to trigger a shutdown
1092         */
1093        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1094                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1095                       " (%d) !\n",
1096                       state->index, temp >> 16);
1097                state->overtemp = CPU_MAX_OVERTEMP / 4;
1098        } else if (temp > (state->mpu.tmax << 16)) {
1099                state->overtemp++;
1100                printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1101                       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1102        } else {
1103                if (state->overtemp)
1104                        printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1105                               state->index, temp >> 16);
1106                state->overtemp = 0;
1107        }
1108        if (state->overtemp >= CPU_MAX_OVERTEMP)
1109                critical_state = 1;
1110        if (state->overtemp > 0) {
1111                state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1112                goto do_set_fans;
1113        }
1114
1115        /* Do the PID */
1116        do_cpu_pid(state, temp, power);
1117
1118        /* Check clamp from dimms */
1119        fan_min = dimm_output_clamp;
1120        fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1121
1122        DBG(" CPU min mpu = %d, min dimm = %d\n",
1123            state->mpu.rminn_intake_fan, dimm_output_clamp);
1124
1125        state->rpm = max(state->rpm, (int)fan_min);
1126        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1127        state->intake_rpm = state->rpm;
1128
1129 do_set_fans:
1130        DBG("** CPU %d RPM: %d overtemp: %d\n",
1131            state->index, (int)state->rpm, state->overtemp);
1132
1133        /* We should check for errors, shouldn't we ? But then, what
1134         * do we do once the error occurs ? For FCU notified fan
1135         * failures (-EFAULT) we probably want to notify userland
1136         * some way...
1137         */
1138        if (state->index == 0) {
1139                set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1140                set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1141                set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1142        } else {
1143                set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1144                set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1145                set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1146        }
1147}
1148
1149/*
1150 * Initialize the state structure for one CPU control loop
1151 */
1152static int init_processor_state(struct cpu_pid_state *state, int index)
1153{
1154        int err;
1155
1156        state->index = index;
1157        state->first = 1;
1158        state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1159        state->overtemp = 0;
1160        state->adc_config = 0x00;
1161
1162
1163        if (index == 0)
1164                state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1165        else if (index == 1)
1166                state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1167        if (state->monitor == NULL)
1168                goto fail;
1169
1170        if (read_eeprom(index, &state->mpu))
1171                goto fail;
1172
1173        state->count_power = state->mpu.tguardband;
1174        if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1175                printk(KERN_WARNING "Warning ! too many power history slots\n");
1176                state->count_power = CPU_POWER_HISTORY_SIZE;
1177        }
1178        DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1179
1180        if (index == 0) {
1181                err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1182                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1183                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1184                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1185                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1186        } else {
1187                err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1188                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1189                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1190                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1191                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1192        }
1193        if (err)
1194                printk(KERN_WARNING "Failed to create some of the attribute"
1195                        "files for CPU %d\n", index);
1196
1197        return 0;
1198 fail:
1199        state->monitor = NULL;
1200        
1201        return -ENODEV;
1202}
1203
1204/*
1205 * Dispose of the state data for one CPU control loop
1206 */
1207static void dispose_processor_state(struct cpu_pid_state *state)
1208{
1209        if (state->monitor == NULL)
1210                return;
1211
1212        if (state->index == 0) {
1213                device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1214                device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1215                device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1216                device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1217                device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1218        } else {
1219                device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1220                device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1221                device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1222                device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1223                device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1224        }
1225
1226        state->monitor = NULL;
1227}
1228
1229/*
1230 * Motherboard backside & U3 heatsink fan control loop
1231 */
1232static void do_monitor_backside(struct backside_pid_state *state)
1233{
1234        s32 temp, integral, derivative, fan_min;
1235        s64 integ_p, deriv_p, prop_p, sum; 
1236        int i, rc;
1237
1238        if (--state->ticks != 0)
1239                return;
1240        state->ticks = backside_params.interval;
1241
1242        DBG("backside:\n");
1243
1244        /* Check fan status */
1245        rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1246        if (rc < 0) {
1247                printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1248                /* XXX What do we do now ? */
1249        } else
1250                state->pwm = rc;
1251        DBG("  current pwm: %d\n", state->pwm);
1252
1253        /* Get some sensor readings */
1254        temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1255        state->last_temp = temp;
1256        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1257            FIX32TOPRINT(backside_params.input_target));
1258
1259        /* Store temperature and error in history array */
1260        state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1261        state->sample_history[state->cur_sample] = temp;
1262        state->error_history[state->cur_sample] = temp - backside_params.input_target;
1263        
1264        /* If first loop, fill the history table */
1265        if (state->first) {
1266                for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1267                        state->cur_sample = (state->cur_sample + 1) %
1268                                BACKSIDE_PID_HISTORY_SIZE;
1269                        state->sample_history[state->cur_sample] = temp;
1270                        state->error_history[state->cur_sample] =
1271                                temp - backside_params.input_target;
1272                }
1273                state->first = 0;
1274        }
1275
1276        /* Calculate the integral term */
1277        sum = 0;
1278        integral = 0;
1279        for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1280                integral += state->error_history[i];
1281        integral *= backside_params.interval;
1282        DBG("  integral: %08x\n", integral);
1283        integ_p = ((s64)backside_params.G_r) * (s64)integral;
1284        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1285        sum += integ_p;
1286
1287        /* Calculate the derivative term */
1288        derivative = state->error_history[state->cur_sample] -
1289                state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1290                                    % BACKSIDE_PID_HISTORY_SIZE];
1291        derivative /= backside_params.interval;
1292        deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1293        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1294        sum += deriv_p;
1295
1296        /* Calculate the proportional term */
1297        prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1298        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1299        sum += prop_p;
1300
1301        /* Scale sum */
1302        sum >>= 36;
1303
1304        DBG("   sum: %d\n", (int)sum);
1305        if (backside_params.additive)
1306                state->pwm += (s32)sum;
1307        else
1308                state->pwm = sum;
1309
1310        /* Check for clamp */
1311        fan_min = (dimm_output_clamp * 100) / 14000;
1312        fan_min = max(fan_min, backside_params.output_min);
1313
1314        state->pwm = max(state->pwm, fan_min);
1315        state->pwm = min(state->pwm, backside_params.output_max);
1316
1317        DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1318        set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1319}
1320
1321/*
1322 * Initialize the state structure for the backside fan control loop
1323 */
1324static int init_backside_state(struct backside_pid_state *state)
1325{
1326        struct device_node *u3;
1327        int u3h = 1; /* conservative by default */
1328        int err;
1329
1330        /*
1331         * There are different PID params for machines with U3 and machines
1332         * with U3H, pick the right ones now
1333         */
1334        u3 = of_find_node_by_path("/u3@0,f8000000");
1335        if (u3 != NULL) {
1336                const u32 *vers = of_get_property(u3, "device-rev", NULL);
1337                if (vers)
1338                        if (((*vers) & 0x3f) < 0x34)
1339                                u3h = 0;
1340                of_node_put(u3);
1341        }
1342
1343        if (rackmac) {
1344                backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1345                backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1346                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1347                backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1348                backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1349                backside_params.G_r = BACKSIDE_PID_G_r;
1350                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351                backside_params.additive = 0;
1352        } else if (u3h) {
1353                backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1354                backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1355                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1356                backside_params.interval = BACKSIDE_PID_INTERVAL;
1357                backside_params.G_p = BACKSIDE_PID_G_p;
1358                backside_params.G_r = BACKSIDE_PID_G_r;
1359                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1360                backside_params.additive = 1;
1361        } else {
1362                backside_params.G_d = BACKSIDE_PID_U3_G_d;
1363                backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1364                backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1365                backside_params.interval = BACKSIDE_PID_INTERVAL;
1366                backside_params.G_p = BACKSIDE_PID_G_p;
1367                backside_params.G_r = BACKSIDE_PID_G_r;
1368                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1369                backside_params.additive = 1;
1370        }
1371
1372        state->ticks = 1;
1373        state->first = 1;
1374        state->pwm = 50;
1375
1376        state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1377        if (state->monitor == NULL)
1378                return -ENODEV;
1379
1380        err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1381        err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1382        if (err)
1383                printk(KERN_WARNING "Failed to create attribute file(s)"
1384                        " for backside fan\n");
1385
1386        return 0;
1387}
1388
1389/*
1390 * Dispose of the state data for the backside control loop
1391 */
1392static void dispose_backside_state(struct backside_pid_state *state)
1393{
1394        if (state->monitor == NULL)
1395                return;
1396
1397        device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398        device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1399
1400        state->monitor = NULL;
1401}
1402 
1403/*
1404 * Drives bay fan control loop
1405 */
1406static void do_monitor_drives(struct drives_pid_state *state)
1407{
1408        s32 temp, integral, derivative;
1409        s64 integ_p, deriv_p, prop_p, sum; 
1410        int i, rc;
1411
1412        if (--state->ticks != 0)
1413                return;
1414        state->ticks = DRIVES_PID_INTERVAL;
1415
1416        DBG("drives:\n");
1417
1418        /* Check fan status */
1419        rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420        if (rc < 0) {
1421                printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422                /* XXX What do we do now ? */
1423        } else
1424                state->rpm = rc;
1425        DBG("  current rpm: %d\n", state->rpm);
1426
1427        /* Get some sensor readings */
1428        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429                                                    DS1775_TEMP)) << 8;
1430        state->last_temp = temp;
1431        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432            FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433
1434        /* Store temperature and error in history array */
1435        state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436        state->sample_history[state->cur_sample] = temp;
1437        state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438        
1439        /* If first loop, fill the history table */
1440        if (state->first) {
1441                for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442                        state->cur_sample = (state->cur_sample + 1) %
1443                                DRIVES_PID_HISTORY_SIZE;
1444                        state->sample_history[state->cur_sample] = temp;
1445                        state->error_history[state->cur_sample] =
1446                                temp - DRIVES_PID_INPUT_TARGET;
1447                }
1448                state->first = 0;
1449        }
1450
1451        /* Calculate the integral term */
1452        sum = 0;
1453        integral = 0;
1454        for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455                integral += state->error_history[i];
1456        integral *= DRIVES_PID_INTERVAL;
1457        DBG("  integral: %08x\n", integral);
1458        integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1460        sum += integ_p;
1461
1462        /* Calculate the derivative term */
1463        derivative = state->error_history[state->cur_sample] -
1464                state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465                                    % DRIVES_PID_HISTORY_SIZE];
1466        derivative /= DRIVES_PID_INTERVAL;
1467        deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1469        sum += deriv_p;
1470
1471        /* Calculate the proportional term */
1472        prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1474        sum += prop_p;
1475
1476        /* Scale sum */
1477        sum >>= 36;
1478
1479        DBG("   sum: %d\n", (int)sum);
1480        state->rpm += (s32)sum;
1481
1482        state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483        state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484
1485        DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486        set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487}
1488
1489/*
1490 * Initialize the state structure for the drives bay fan control loop
1491 */
1492static int init_drives_state(struct drives_pid_state *state)
1493{
1494        int err;
1495
1496        state->ticks = 1;
1497        state->first = 1;
1498        state->rpm = 1000;
1499
1500        state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501        if (state->monitor == NULL)
1502                return -ENODEV;
1503
1504        err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505        err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506        if (err)
1507                printk(KERN_WARNING "Failed to create attribute file(s)"
1508                        " for drives bay fan\n");
1509
1510        return 0;
1511}
1512
1513/*
1514 * Dispose of the state data for the drives control loop
1515 */
1516static void dispose_drives_state(struct drives_pid_state *state)
1517{
1518        if (state->monitor == NULL)
1519                return;
1520
1521        device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1522        device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1523
1524        state->monitor = NULL;
1525}
1526
1527/*
1528 * DIMMs temp control loop
1529 */
1530static void do_monitor_dimms(struct dimm_pid_state *state)
1531{
1532        s32 temp, integral, derivative, fan_min;
1533        s64 integ_p, deriv_p, prop_p, sum;
1534        int i;
1535
1536        if (--state->ticks != 0)
1537                return;
1538        state->ticks = DIMM_PID_INTERVAL;
1539
1540        DBG("DIMM:\n");
1541
1542        DBG("  current value: %d\n", state->output);
1543
1544        temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1545        if (temp < 0)
1546                return;
1547        temp <<= 16;
1548        state->last_temp = temp;
1549        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1550            FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1551
1552        /* Store temperature and error in history array */
1553        state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1554        state->sample_history[state->cur_sample] = temp;
1555        state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1556
1557        /* If first loop, fill the history table */
1558        if (state->first) {
1559                for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1560                        state->cur_sample = (state->cur_sample + 1) %
1561                                DIMM_PID_HISTORY_SIZE;
1562                        state->sample_history[state->cur_sample] = temp;
1563                        state->error_history[state->cur_sample] =
1564                                temp - DIMM_PID_INPUT_TARGET;
1565                }
1566                state->first = 0;
1567        }
1568
1569        /* Calculate the integral term */
1570        sum = 0;
1571        integral = 0;
1572        for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1573                integral += state->error_history[i];
1574        integral *= DIMM_PID_INTERVAL;
1575        DBG("  integral: %08x\n", integral);
1576        integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1577        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1578        sum += integ_p;
1579
1580        /* Calculate the derivative term */
1581        derivative = state->error_history[state->cur_sample] -
1582                state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1583                                    % DIMM_PID_HISTORY_SIZE];
1584        derivative /= DIMM_PID_INTERVAL;
1585        deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1586        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1587        sum += deriv_p;
1588
1589        /* Calculate the proportional term */
1590        prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1591        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1592        sum += prop_p;
1593
1594        /* Scale sum */
1595        sum >>= 36;
1596
1597        DBG("   sum: %d\n", (int)sum);
1598        state->output = (s32)sum;
1599        state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1600        state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1601        dimm_output_clamp = state->output;
1602
1603        DBG("** DIMM clamp value: %d\n", (int)state->output);
1604
1605        /* Backside PID is only every 5 seconds, force backside fan clamping now */
1606        fan_min = (dimm_output_clamp * 100) / 14000;
1607        fan_min = max(fan_min, backside_params.output_min);
1608        if (backside_state.pwm < fan_min) {
1609                backside_state.pwm = fan_min;
1610                DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1611                set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1612        }
1613}
1614
1615/*
1616 * Initialize the state structure for the DIMM temp control loop
1617 */
1618static int init_dimms_state(struct dimm_pid_state *state)
1619{
1620        state->ticks = 1;
1621        state->first = 1;
1622        state->output = 4000;
1623
1624        state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1625        if (state->monitor == NULL)
1626                return -ENODEV;
1627
1628        if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1629                printk(KERN_WARNING "Failed to create attribute file"
1630                        " for DIMM temperature\n");
1631
1632        return 0;
1633}
1634
1635/*
1636 * Dispose of the state data for the DIMM control loop
1637 */
1638static void dispose_dimms_state(struct dimm_pid_state *state)
1639{
1640        if (state->monitor == NULL)
1641                return;
1642
1643        device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1644
1645        state->monitor = NULL;
1646}
1647
1648/*
1649 * Slots fan control loop
1650 */
1651static void do_monitor_slots(struct slots_pid_state *state)
1652{
1653        s32 temp, integral, derivative;
1654        s64 integ_p, deriv_p, prop_p, sum;
1655        int i, rc;
1656
1657        if (--state->ticks != 0)
1658                return;
1659        state->ticks = SLOTS_PID_INTERVAL;
1660
1661        DBG("slots:\n");
1662
1663        /* Check fan status */
1664        rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1665        if (rc < 0) {
1666                printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1667                /* XXX What do we do now ? */
1668        } else
1669                state->pwm = rc;
1670        DBG("  current pwm: %d\n", state->pwm);
1671
1672        /* Get some sensor readings */
1673        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1674                                                    DS1775_TEMP)) << 8;
1675        state->last_temp = temp;
1676        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1677            FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1678
1679        /* Store temperature and error in history array */
1680        state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1681        state->sample_history[state->cur_sample] = temp;
1682        state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1683
1684        /* If first loop, fill the history table */
1685        if (state->first) {
1686                for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1687                        state->cur_sample = (state->cur_sample + 1) %
1688                                SLOTS_PID_HISTORY_SIZE;
1689                        state->sample_history[state->cur_sample] = temp;
1690                        state->error_history[state->cur_sample] =
1691                                temp - SLOTS_PID_INPUT_TARGET;
1692                }
1693                state->first = 0;
1694        }
1695
1696        /* Calculate the integral term */
1697        sum = 0;
1698        integral = 0;
1699        for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1700                integral += state->error_history[i];
1701        integral *= SLOTS_PID_INTERVAL;
1702        DBG("  integral: %08x\n", integral);
1703        integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1704        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1705        sum += integ_p;
1706
1707        /* Calculate the derivative term */
1708        derivative = state->error_history[state->cur_sample] -
1709                state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1710                                    % SLOTS_PID_HISTORY_SIZE];
1711        derivative /= SLOTS_PID_INTERVAL;
1712        deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1713        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1714        sum += deriv_p;
1715
1716        /* Calculate the proportional term */
1717        prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1718        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1719        sum += prop_p;
1720
1721        /* Scale sum */
1722        sum >>= 36;
1723
1724        DBG("   sum: %d\n", (int)sum);
1725        state->pwm = (s32)sum;
1726
1727        state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1728        state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1729
1730        DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1731        set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1732}
1733
1734/*
1735 * Initialize the state structure for the slots bay fan control loop
1736 */
1737static int init_slots_state(struct slots_pid_state *state)
1738{
1739        int err;
1740
1741        state->ticks = 1;
1742        state->first = 1;
1743        state->pwm = 50;
1744
1745        state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1746        if (state->monitor == NULL)
1747                return -ENODEV;
1748
1749        err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1750        err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1751        if (err)
1752                printk(KERN_WARNING "Failed to create attribute file(s)"
1753                        " for slots bay fan\n");
1754
1755        return 0;
1756}
1757
1758/*
1759 * Dispose of the state data for the slots control loop
1760 */
1761static void dispose_slots_state(struct slots_pid_state *state)
1762{
1763        if (state->monitor == NULL)
1764                return;
1765
1766        device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1767        device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1768
1769        state->monitor = NULL;
1770}
1771
1772
1773static int call_critical_overtemp(void)
1774{
1775        char *argv[] = { critical_overtemp_path, NULL };
1776        static char *envp[] = { "HOME=/",
1777                                "TERM=linux",
1778                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1779                                NULL };
1780
1781        return call_usermodehelper(critical_overtemp_path,
1782                                   argv, envp, UMH_WAIT_EXEC);
1783}
1784
1785
1786/*
1787 * Here's the kernel thread that calls the various control loops
1788 */
1789static int main_control_loop(void *x)
1790{
1791        DBG("main_control_loop started\n");
1792
1793        mutex_lock(&driver_lock);
1794
1795        if (start_fcu() < 0) {
1796                printk(KERN_ERR "kfand: failed to start FCU\n");
1797                mutex_unlock(&driver_lock);
1798                goto out;
1799        }
1800
1801        /* Set the PCI fan once for now on non-RackMac */
1802        if (!rackmac)
1803                set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1804
1805        /* Initialize ADCs */
1806        initialize_adc(&processor_state[0]);
1807        if (processor_state[1].monitor != NULL)
1808                initialize_adc(&processor_state[1]);
1809
1810        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1811
1812        mutex_unlock(&driver_lock);
1813
1814        while (state == state_attached) {
1815                unsigned long elapsed, start;
1816
1817                start = jiffies;
1818
1819                mutex_lock(&driver_lock);
1820
1821                /* Tickle the FCU just in case */
1822                if (--fcu_tickle_ticks < 0) {
1823                        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1824                        tickle_fcu();
1825                }
1826
1827                /* First, we always calculate the new DIMMs state on an Xserve */
1828                if (rackmac)
1829                        do_monitor_dimms(&dimms_state);
1830
1831                /* Then, the CPUs */
1832                if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1833                        do_monitor_cpu_combined();
1834                else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1835                        do_monitor_cpu_rack(&processor_state[0]);
1836                        if (processor_state[1].monitor != NULL)
1837                                do_monitor_cpu_rack(&processor_state[1]);
1838                        // better deal with UP
1839                } else {
1840                        do_monitor_cpu_split(&processor_state[0]);
1841                        if (processor_state[1].monitor != NULL)
1842                                do_monitor_cpu_split(&processor_state[1]);
1843                        // better deal with UP
1844                }
1845                /* Then, the rest */
1846                do_monitor_backside(&backside_state);
1847                if (rackmac)
1848                        do_monitor_slots(&slots_state);
1849                else
1850                        do_monitor_drives(&drives_state);
1851                mutex_unlock(&driver_lock);
1852
1853                if (critical_state == 1) {
1854                        printk(KERN_WARNING "Temperature control detected a critical condition\n");
1855                        printk(KERN_WARNING "Attempting to shut down...\n");
1856                        if (call_critical_overtemp()) {
1857                                printk(KERN_WARNING "Can't call %s, power off now!\n",
1858                                       critical_overtemp_path);
1859                                machine_power_off();
1860                        }
1861                }
1862                if (critical_state > 0)
1863                        critical_state++;
1864                if (critical_state > MAX_CRITICAL_STATE) {
1865                        printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1866                        machine_power_off();
1867                }
1868
1869                // FIXME: Deal with signals
1870                elapsed = jiffies - start;
1871                if (elapsed < HZ)
1872                        schedule_timeout_interruptible(HZ - elapsed);
1873        }
1874
1875 out:
1876        DBG("main_control_loop ended\n");
1877
1878        ctrl_task = 0;
1879        complete_and_exit(&ctrl_complete, 0);
1880}
1881
1882/*
1883 * Dispose the control loops when tearing down
1884 */
1885static void dispose_control_loops(void)
1886{
1887        dispose_processor_state(&processor_state[0]);
1888        dispose_processor_state(&processor_state[1]);
1889        dispose_backside_state(&backside_state);
1890        dispose_drives_state(&drives_state);
1891        dispose_slots_state(&slots_state);
1892        dispose_dimms_state(&dimms_state);
1893}
1894
1895/*
1896 * Create the control loops. U3-0 i2c bus is up, so we can now
1897 * get to the various sensors
1898 */
1899static int create_control_loops(void)
1900{
1901        struct device_node *np;
1902
1903        /* Count CPUs from the device-tree, we don't care how many are
1904         * actually used by Linux
1905         */
1906        cpu_count = 0;
1907        for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1908                cpu_count++;
1909
1910        DBG("counted %d CPUs in the device-tree\n", cpu_count);
1911
1912        /* Decide the type of PID algorithm to use based on the presence of
1913         * the pumps, though that may not be the best way, that is good enough
1914         * for now
1915         */
1916        if (rackmac)
1917                cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1918        else if (of_machine_is_compatible("PowerMac7,3")
1919            && (cpu_count > 1)
1920            && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1921            && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1922                printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1923                cpu_pid_type = CPU_PID_TYPE_COMBINED;
1924        } else
1925                cpu_pid_type = CPU_PID_TYPE_SPLIT;
1926
1927        /* Create control loops for everything. If any fail, everything
1928         * fails
1929         */
1930        if (init_processor_state(&processor_state[0], 0))
1931                goto fail;
1932        if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1933                fetch_cpu_pumps_minmax();
1934
1935        if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1936                goto fail;
1937        if (init_backside_state(&backside_state))
1938                goto fail;
1939        if (rackmac && init_dimms_state(&dimms_state))
1940                goto fail;
1941        if (rackmac && init_slots_state(&slots_state))
1942                goto fail;
1943        if (!rackmac && init_drives_state(&drives_state))
1944                goto fail;
1945
1946        DBG("all control loops up !\n");
1947
1948        return 0;
1949        
1950 fail:
1951        DBG("failure creating control loops, disposing\n");
1952
1953        dispose_control_loops();
1954
1955        return -ENODEV;
1956}
1957
1958/*
1959 * Start the control loops after everything is up, that is create
1960 * the thread that will make them run
1961 */
1962static void start_control_loops(void)
1963{
1964        init_completion(&ctrl_complete);
1965
1966        ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1967}
1968
1969/*
1970 * Stop the control loops when tearing down
1971 */
1972static void stop_control_loops(void)
1973{
1974        if (ctrl_task)
1975                wait_for_completion(&ctrl_complete);
1976}
1977
1978/*
1979 * Attach to the i2c FCU after detecting U3-1 bus
1980 */
1981static int attach_fcu(void)
1982{
1983        fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1984        if (fcu == NULL)
1985                return -ENODEV;
1986
1987        DBG("FCU attached\n");
1988
1989        return 0;
1990}
1991
1992/*
1993 * Detach from the i2c FCU when tearing down
1994 */
1995static void detach_fcu(void)
1996{
1997        fcu = NULL;
1998}
1999
2000/*
2001 * Attach to the i2c controller. We probe the various chips based
2002 * on the device-tree nodes and build everything for the driver to
2003 * run, we then kick the driver monitoring thread
2004 */
2005static int therm_pm72_attach(struct i2c_adapter *adapter)
2006{
2007        mutex_lock(&driver_lock);
2008
2009        /* Check state */
2010        if (state == state_detached)
2011                state = state_attaching;
2012        if (state != state_attaching) {
2013                mutex_unlock(&driver_lock);
2014                return 0;
2015        }
2016
2017        /* Check if we are looking for one of these */
2018        if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2019                u3_0 = adapter;
2020                DBG("found U3-0\n");
2021                if (k2 || !rackmac)
2022                        if (create_control_loops())
2023                                u3_0 = NULL;
2024        } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2025                u3_1 = adapter;
2026                DBG("found U3-1, attaching FCU\n");
2027                if (attach_fcu())
2028                        u3_1 = NULL;
2029        } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2030                k2 = adapter;
2031                DBG("Found K2\n");
2032                if (u3_0 && rackmac)
2033                        if (create_control_loops())
2034                                k2 = NULL;
2035        }
2036        /* We got all we need, start control loops */
2037        if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2038                DBG("everything up, starting control loops\n");
2039                state = state_attached;
2040                start_control_loops();
2041        }
2042        mutex_unlock(&driver_lock);
2043
2044        return 0;
2045}
2046
2047static int therm_pm72_probe(struct i2c_client *client,
2048                            const struct i2c_device_id *id)
2049{
2050        /* Always succeed, the real work was done in therm_pm72_attach() */
2051        return 0;
2052}
2053
2054/*
2055 * Called when any of the devices which participates into thermal management
2056 * is going away.
2057 */
2058static int therm_pm72_remove(struct i2c_client *client)
2059{
2060        struct i2c_adapter *adapter = client->adapter;
2061
2062        mutex_lock(&driver_lock);
2063
2064        if (state != state_detached)
2065                state = state_detaching;
2066
2067        /* Stop control loops if any */
2068        DBG("stopping control loops\n");
2069        mutex_unlock(&driver_lock);
2070        stop_control_loops();
2071        mutex_lock(&driver_lock);
2072
2073        if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2074                DBG("lost U3-0, disposing control loops\n");
2075                dispose_control_loops();
2076                u3_0 = NULL;
2077        }
2078        
2079        if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2080                DBG("lost U3-1, detaching FCU\n");
2081                detach_fcu();
2082                u3_1 = NULL;
2083        }
2084        if (u3_0 == NULL && u3_1 == NULL)
2085                state = state_detached;
2086
2087        mutex_unlock(&driver_lock);
2088
2089        return 0;
2090}
2091
2092/*
2093 * i2c_driver structure to attach to the host i2c controller
2094 */
2095
2096static const struct i2c_device_id therm_pm72_id[] = {
2097        /*
2098         * Fake device name, thermal management is done by several
2099         * chips but we don't need to differentiate between them at
2100         * this point.
2101         */
2102        { "therm_pm72", 0 },
2103        { }
2104};
2105
2106static struct i2c_driver therm_pm72_driver = {
2107        .driver = {
2108                .name   = "therm_pm72",
2109        },
2110        .attach_adapter = therm_pm72_attach,
2111        .probe          = therm_pm72_probe,
2112        .remove         = therm_pm72_remove,
2113        .id_table       = therm_pm72_id,
2114};
2115
2116static int fan_check_loc_match(const char *loc, int fan)
2117{
2118        char    tmp[64];
2119        char    *c, *e;
2120
2121        strlcpy(tmp, fcu_fans[fan].loc, 64);
2122
2123        c = tmp;
2124        for (;;) {
2125                e = strchr(c, ',');
2126                if (e)
2127                        *e = 0;
2128                if (strcmp(loc, c) == 0)
2129                        return 1;
2130                if (e == NULL)
2131                        break;
2132                c = e + 1;
2133        }
2134        return 0;
2135}
2136
2137static void fcu_lookup_fans(struct device_node *fcu_node)
2138{
2139        struct device_node *np = NULL;
2140        int i;
2141
2142        /* The table is filled by default with values that are suitable
2143         * for the old machines without device-tree informations. We scan
2144         * the device-tree and override those values with whatever is
2145         * there
2146         */
2147
2148        DBG("Looking up FCU controls in device-tree...\n");
2149
2150        while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2151                int type = -1;
2152                const char *loc;
2153                const u32 *reg;
2154
2155                DBG(" control: %s, type: %s\n", np->name, np->type);
2156
2157                /* Detect control type */
2158                if (!strcmp(np->type, "fan-rpm-control") ||
2159                    !strcmp(np->type, "fan-rpm"))
2160                        type = FCU_FAN_RPM;
2161                if (!strcmp(np->type, "fan-pwm-control") ||
2162                    !strcmp(np->type, "fan-pwm"))
2163                        type = FCU_FAN_PWM;
2164                /* Only care about fans for now */
2165                if (type == -1)
2166                        continue;
2167
2168                /* Lookup for a matching location */
2169                loc = of_get_property(np, "location", NULL);
2170                reg = of_get_property(np, "reg", NULL);
2171                if (loc == NULL || reg == NULL)
2172                        continue;
2173                DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2174
2175                for (i = 0; i < FCU_FAN_COUNT; i++) {
2176                        int fan_id;
2177
2178                        if (!fan_check_loc_match(loc, i))
2179                                continue;
2180                        DBG(" location match, index: %d\n", i);
2181                        fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2182                        if (type != fcu_fans[i].type) {
2183                                printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2184                                       "in device-tree for %s\n", np->full_name);
2185                                break;
2186                        }
2187                        if (type == FCU_FAN_RPM)
2188                                fan_id = ((*reg) - 0x10) / 2;
2189                        else
2190                                fan_id = ((*reg) - 0x30) / 2;
2191                        if (fan_id > 7) {
2192                                printk(KERN_WARNING "therm_pm72: Can't parse "
2193                                       "fan ID in device-tree for %s\n", np->full_name);
2194                                break;
2195                        }
2196                        DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2197                        fcu_fans[i].id = fan_id;
2198                }
2199        }
2200
2201        /* Now dump the array */
2202        printk(KERN_INFO "Detected fan controls:\n");
2203        for (i = 0; i < FCU_FAN_COUNT; i++) {
2204                if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2205                        continue;
2206                printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2207                       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2208                       fcu_fans[i].id, fcu_fans[i].loc);
2209        }
2210}
2211
2212static int fcu_of_probe(struct platform_device* dev)
2213{
2214        state = state_detached;
2215        of_dev = dev;
2216
2217        dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2218
2219        /* Lookup the fans in the device tree */
2220        fcu_lookup_fans(dev->dev.of_node);
2221
2222        /* Add the driver */
2223        return i2c_add_driver(&therm_pm72_driver);
2224}
2225
2226static int fcu_of_remove(struct platform_device* dev)
2227{
2228        i2c_del_driver(&therm_pm72_driver);
2229
2230        return 0;
2231}
2232
2233static const struct of_device_id fcu_match[] = 
2234{
2235        {
2236        .type           = "fcu",
2237        },
2238        {},
2239};
2240MODULE_DEVICE_TABLE(of, fcu_match);
2241
2242static struct platform_driver fcu_of_platform_driver = 
2243{
2244        .driver = {
2245                .name = "temperature",
2246                .owner = THIS_MODULE,
2247                .of_match_table = fcu_match,
2248        },
2249        .probe          = fcu_of_probe,
2250        .remove         = fcu_of_remove
2251};
2252
2253/*
2254 * Check machine type, attach to i2c controller
2255 */
2256static int __init therm_pm72_init(void)
2257{
2258        rackmac = of_machine_is_compatible("RackMac3,1");
2259
2260        if (!of_machine_is_compatible("PowerMac7,2") &&
2261            !of_machine_is_compatible("PowerMac7,3") &&
2262            !rackmac)
2263                return -ENODEV;
2264
2265        return platform_driver_register(&fcu_of_platform_driver);
2266}
2267
2268static void __exit therm_pm72_exit(void)
2269{
2270        platform_driver_unregister(&fcu_of_platform_driver);
2271}
2272
2273module_init(therm_pm72_init);
2274module_exit(therm_pm72_exit);
2275
2276MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278MODULE_LICENSE("GPL");
2279
2280
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.