linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/gfp.h>
   9#include <linux/bug.h>
  10#include <linux/list.h>
  11#include <linux/mmzone.h>
  12#include <linux/rbtree.h>
  13#include <linux/atomic.h>
  14#include <linux/debug_locks.h>
  15#include <linux/mm_types.h>
  16#include <linux/range.h>
  17#include <linux/pfn.h>
  18#include <linux/bit_spinlock.h>
  19#include <linux/shrinker.h>
  20
  21struct mempolicy;
  22struct anon_vma;
  23struct anon_vma_chain;
  24struct file_ra_state;
  25struct user_struct;
  26struct writeback_control;
  27
  28#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
  29extern unsigned long max_mapnr;
  30#endif
  31
  32extern unsigned long num_physpages;
  33extern unsigned long totalram_pages;
  34extern void * high_memory;
  35extern int page_cluster;
  36
  37#ifdef CONFIG_SYSCTL
  38extern int sysctl_legacy_va_layout;
  39#else
  40#define sysctl_legacy_va_layout 0
  41#endif
  42
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/processor.h>
  46
  47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  48
  49/* to align the pointer to the (next) page boundary */
  50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  51
  52/*
  53 * Linux kernel virtual memory manager primitives.
  54 * The idea being to have a "virtual" mm in the same way
  55 * we have a virtual fs - giving a cleaner interface to the
  56 * mm details, and allowing different kinds of memory mappings
  57 * (from shared memory to executable loading to arbitrary
  58 * mmap() functions).
  59 */
  60
  61extern struct kmem_cache *vm_area_cachep;
  62
  63#ifndef CONFIG_MMU
  64extern struct rb_root nommu_region_tree;
  65extern struct rw_semaphore nommu_region_sem;
  66
  67extern unsigned int kobjsize(const void *objp);
  68#endif
  69
  70/*
  71 * vm_flags in vm_area_struct, see mm_types.h.
  72 */
  73#define VM_NONE         0x00000000
  74
  75#define VM_READ         0x00000001      /* currently active flags */
  76#define VM_WRITE        0x00000002
  77#define VM_EXEC         0x00000004
  78#define VM_SHARED       0x00000008
  79
  80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  81#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
  82#define VM_MAYWRITE     0x00000020
  83#define VM_MAYEXEC      0x00000040
  84#define VM_MAYSHARE     0x00000080
  85
  86#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
  87#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
  88#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
  89
  90#define VM_LOCKED       0x00002000
  91#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
  92
  93                                        /* Used by sys_madvise() */
  94#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
  95#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
  96
  97#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
  98#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
  99#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 100#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 101#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 102#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 103#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 104#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 105
 106#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 107#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 108#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 109#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 110
 111#if defined(CONFIG_X86)
 112# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 113#elif defined(CONFIG_PPC)
 114# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 115#elif defined(CONFIG_PARISC)
 116# define VM_GROWSUP     VM_ARCH_1
 117#elif defined(CONFIG_IA64)
 118# define VM_GROWSUP     VM_ARCH_1
 119#elif !defined(CONFIG_MMU)
 120# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 121#endif
 122
 123#ifndef VM_GROWSUP
 124# define VM_GROWSUP     VM_NONE
 125#endif
 126
 127/* Bits set in the VMA until the stack is in its final location */
 128#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 129
 130#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 132#endif
 133
 134#ifdef CONFIG_STACK_GROWSUP
 135#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 136#else
 137#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 138#endif
 139
 140#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
 141#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
 142#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
 143#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
 144#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
 145
 146/*
 147 * Special vmas that are non-mergable, non-mlock()able.
 148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 149 */
 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
 151
 152/*
 153 * mapping from the currently active vm_flags protection bits (the
 154 * low four bits) to a page protection mask..
 155 */
 156extern pgprot_t protection_map[16];
 157
 158#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 159#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 160#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 161#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 162#define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
 163#define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
 164#define FAULT_FLAG_TRIED        0x40    /* second try */
 165
 166/*
 167 * vm_fault is filled by the the pagefault handler and passed to the vma's
 168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 170 *
 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 173 */
 174struct vm_fault {
 175        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 176        pgoff_t pgoff;                  /* Logical page offset based on vma */
 177        void __user *virtual_address;   /* Faulting virtual address */
 178
 179        struct page *page;              /* ->fault handlers should return a
 180                                         * page here, unless VM_FAULT_NOPAGE
 181                                         * is set (which is also implied by
 182                                         * VM_FAULT_ERROR).
 183                                         */
 184};
 185
 186/*
 187 * These are the virtual MM functions - opening of an area, closing and
 188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 189 * to the functions called when a no-page or a wp-page exception occurs. 
 190 */
 191struct vm_operations_struct {
 192        void (*open)(struct vm_area_struct * area);
 193        void (*close)(struct vm_area_struct * area);
 194        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 195
 196        /* notification that a previously read-only page is about to become
 197         * writable, if an error is returned it will cause a SIGBUS */
 198        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 199
 200        /* called by access_process_vm when get_user_pages() fails, typically
 201         * for use by special VMAs that can switch between memory and hardware
 202         */
 203        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 204                      void *buf, int len, int write);
 205#ifdef CONFIG_NUMA
 206        /*
 207         * set_policy() op must add a reference to any non-NULL @new mempolicy
 208         * to hold the policy upon return.  Caller should pass NULL @new to
 209         * remove a policy and fall back to surrounding context--i.e. do not
 210         * install a MPOL_DEFAULT policy, nor the task or system default
 211         * mempolicy.
 212         */
 213        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 214
 215        /*
 216         * get_policy() op must add reference [mpol_get()] to any policy at
 217         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 218         * in mm/mempolicy.c will do this automatically.
 219         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 220         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 221         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 222         * must return NULL--i.e., do not "fallback" to task or system default
 223         * policy.
 224         */
 225        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 226                                        unsigned long addr);
 227        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
 228                const nodemask_t *to, unsigned long flags);
 229#endif
 230        /* called by sys_remap_file_pages() to populate non-linear mapping */
 231        int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
 232                           unsigned long size, pgoff_t pgoff);
 233};
 234
 235struct mmu_gather;
 236struct inode;
 237
 238#define page_private(page)              ((page)->private)
 239#define set_page_private(page, v)       ((page)->private = (v))
 240
 241/* It's valid only if the page is free path or free_list */
 242static inline void set_freepage_migratetype(struct page *page, int migratetype)
 243{
 244        page->index = migratetype;
 245}
 246
 247/* It's valid only if the page is free path or free_list */
 248static inline int get_freepage_migratetype(struct page *page)
 249{
 250        return page->index;
 251}
 252
 253/*
 254 * FIXME: take this include out, include page-flags.h in
 255 * files which need it (119 of them)
 256 */
 257#include <linux/page-flags.h>
 258#include <linux/huge_mm.h>
 259
 260/*
 261 * Methods to modify the page usage count.
 262 *
 263 * What counts for a page usage:
 264 * - cache mapping   (page->mapping)
 265 * - private data    (page->private)
 266 * - page mapped in a task's page tables, each mapping
 267 *   is counted separately
 268 *
 269 * Also, many kernel routines increase the page count before a critical
 270 * routine so they can be sure the page doesn't go away from under them.
 271 */
 272
 273/*
 274 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 275 */
 276static inline int put_page_testzero(struct page *page)
 277{
 278        VM_BUG_ON(atomic_read(&page->_count) == 0);
 279        return atomic_dec_and_test(&page->_count);
 280}
 281
 282/*
 283 * Try to grab a ref unless the page has a refcount of zero, return false if
 284 * that is the case.
 285 */
 286static inline int get_page_unless_zero(struct page *page)
 287{
 288        return atomic_inc_not_zero(&page->_count);
 289}
 290
 291extern int page_is_ram(unsigned long pfn);
 292
 293/* Support for virtually mapped pages */
 294struct page *vmalloc_to_page(const void *addr);
 295unsigned long vmalloc_to_pfn(const void *addr);
 296
 297/*
 298 * Determine if an address is within the vmalloc range
 299 *
 300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 301 * is no special casing required.
 302 */
 303static inline int is_vmalloc_addr(const void *x)
 304{
 305#ifdef CONFIG_MMU
 306        unsigned long addr = (unsigned long)x;
 307
 308        return addr >= VMALLOC_START && addr < VMALLOC_END;
 309#else
 310        return 0;
 311#endif
 312}
 313#ifdef CONFIG_MMU
 314extern int is_vmalloc_or_module_addr(const void *x);
 315#else
 316static inline int is_vmalloc_or_module_addr(const void *x)
 317{
 318        return 0;
 319}
 320#endif
 321
 322static inline void compound_lock(struct page *page)
 323{
 324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 325        VM_BUG_ON(PageSlab(page));
 326        bit_spin_lock(PG_compound_lock, &page->flags);
 327#endif
 328}
 329
 330static inline void compound_unlock(struct page *page)
 331{
 332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 333        VM_BUG_ON(PageSlab(page));
 334        bit_spin_unlock(PG_compound_lock, &page->flags);
 335#endif
 336}
 337
 338static inline unsigned long compound_lock_irqsave(struct page *page)
 339{
 340        unsigned long uninitialized_var(flags);
 341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 342        local_irq_save(flags);
 343        compound_lock(page);
 344#endif
 345        return flags;
 346}
 347
 348static inline void compound_unlock_irqrestore(struct page *page,
 349                                              unsigned long flags)
 350{
 351#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 352        compound_unlock(page);
 353        local_irq_restore(flags);
 354#endif
 355}
 356
 357static inline struct page *compound_head(struct page *page)
 358{
 359        if (unlikely(PageTail(page)))
 360                return page->first_page;
 361        return page;
 362}
 363
 364/*
 365 * The atomic page->_mapcount, starts from -1: so that transitions
 366 * both from it and to it can be tracked, using atomic_inc_and_test
 367 * and atomic_add_negative(-1).
 368 */
 369static inline void reset_page_mapcount(struct page *page)
 370{
 371        atomic_set(&(page)->_mapcount, -1);
 372}
 373
 374static inline int page_mapcount(struct page *page)
 375{
 376        return atomic_read(&(page)->_mapcount) + 1;
 377}
 378
 379static inline int page_count(struct page *page)
 380{
 381        return atomic_read(&compound_head(page)->_count);
 382}
 383
 384static inline void get_huge_page_tail(struct page *page)
 385{
 386        /*
 387         * __split_huge_page_refcount() cannot run
 388         * from under us.
 389         */
 390        VM_BUG_ON(page_mapcount(page) < 0);
 391        VM_BUG_ON(atomic_read(&page->_count) != 0);
 392        atomic_inc(&page->_mapcount);
 393}
 394
 395extern bool __get_page_tail(struct page *page);
 396
 397static inline void get_page(struct page *page)
 398{
 399        if (unlikely(PageTail(page)))
 400                if (likely(__get_page_tail(page)))
 401                        return;
 402        /*
 403         * Getting a normal page or the head of a compound page
 404         * requires to already have an elevated page->_count.
 405         */
 406        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 407        atomic_inc(&page->_count);
 408}
 409
 410static inline struct page *virt_to_head_page(const void *x)
 411{
 412        struct page *page = virt_to_page(x);
 413        return compound_head(page);
 414}
 415
 416/*
 417 * Setup the page count before being freed into the page allocator for
 418 * the first time (boot or memory hotplug)
 419 */
 420static inline void init_page_count(struct page *page)
 421{
 422        atomic_set(&page->_count, 1);
 423}
 424
 425/*
 426 * PageBuddy() indicate that the page is free and in the buddy system
 427 * (see mm/page_alloc.c).
 428 *
 429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 430 * -2 so that an underflow of the page_mapcount() won't be mistaken
 431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 432 * efficiently by most CPU architectures.
 433 */
 434#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 435
 436static inline int PageBuddy(struct page *page)
 437{
 438        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 439}
 440
 441static inline void __SetPageBuddy(struct page *page)
 442{
 443        VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
 444        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 445}
 446
 447static inline void __ClearPageBuddy(struct page *page)
 448{
 449        VM_BUG_ON(!PageBuddy(page));
 450        atomic_set(&page->_mapcount, -1);
 451}
 452
 453void put_page(struct page *page);
 454void put_pages_list(struct list_head *pages);
 455
 456void split_page(struct page *page, unsigned int order);
 457int split_free_page(struct page *page);
 458int capture_free_page(struct page *page, int alloc_order, int migratetype);
 459
 460/*
 461 * Compound pages have a destructor function.  Provide a
 462 * prototype for that function and accessor functions.
 463 * These are _only_ valid on the head of a PG_compound page.
 464 */
 465typedef void compound_page_dtor(struct page *);
 466
 467static inline void set_compound_page_dtor(struct page *page,
 468                                                compound_page_dtor *dtor)
 469{
 470        page[1].lru.next = (void *)dtor;
 471}
 472
 473static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 474{
 475        return (compound_page_dtor *)page[1].lru.next;
 476}
 477
 478static inline int compound_order(struct page *page)
 479{
 480        if (!PageHead(page))
 481                return 0;
 482        return (unsigned long)page[1].lru.prev;
 483}
 484
 485static inline int compound_trans_order(struct page *page)
 486{
 487        int order;
 488        unsigned long flags;
 489
 490        if (!PageHead(page))
 491                return 0;
 492
 493        flags = compound_lock_irqsave(page);
 494        order = compound_order(page);
 495        compound_unlock_irqrestore(page, flags);
 496        return order;
 497}
 498
 499static inline void set_compound_order(struct page *page, unsigned long order)
 500{
 501        page[1].lru.prev = (void *)order;
 502}
 503
 504#ifdef CONFIG_MMU
 505/*
 506 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 507 * servicing faults for write access.  In the normal case, do always want
 508 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 509 * that do not have writing enabled, when used by access_process_vm.
 510 */
 511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 512{
 513        if (likely(vma->vm_flags & VM_WRITE))
 514                pte = pte_mkwrite(pte);
 515        return pte;
 516}
 517#endif
 518
 519/*
 520 * Multiple processes may "see" the same page. E.g. for untouched
 521 * mappings of /dev/null, all processes see the same page full of
 522 * zeroes, and text pages of executables and shared libraries have
 523 * only one copy in memory, at most, normally.
 524 *
 525 * For the non-reserved pages, page_count(page) denotes a reference count.
 526 *   page_count() == 0 means the page is free. page->lru is then used for
 527 *   freelist management in the buddy allocator.
 528 *   page_count() > 0  means the page has been allocated.
 529 *
 530 * Pages are allocated by the slab allocator in order to provide memory
 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 533 * unless a particular usage is carefully commented. (the responsibility of
 534 * freeing the kmalloc memory is the caller's, of course).
 535 *
 536 * A page may be used by anyone else who does a __get_free_page().
 537 * In this case, page_count still tracks the references, and should only
 538 * be used through the normal accessor functions. The top bits of page->flags
 539 * and page->virtual store page management information, but all other fields
 540 * are unused and could be used privately, carefully. The management of this
 541 * page is the responsibility of the one who allocated it, and those who have
 542 * subsequently been given references to it.
 543 *
 544 * The other pages (we may call them "pagecache pages") are completely
 545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 546 * The following discussion applies only to them.
 547 *
 548 * A pagecache page contains an opaque `private' member, which belongs to the
 549 * page's address_space. Usually, this is the address of a circular list of
 550 * the page's disk buffers. PG_private must be set to tell the VM to call
 551 * into the filesystem to release these pages.
 552 *
 553 * A page may belong to an inode's memory mapping. In this case, page->mapping
 554 * is the pointer to the inode, and page->index is the file offset of the page,
 555 * in units of PAGE_CACHE_SIZE.
 556 *
 557 * If pagecache pages are not associated with an inode, they are said to be
 558 * anonymous pages. These may become associated with the swapcache, and in that
 559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 560 *
 561 * In either case (swapcache or inode backed), the pagecache itself holds one
 562 * reference to the page. Setting PG_private should also increment the
 563 * refcount. The each user mapping also has a reference to the page.
 564 *
 565 * The pagecache pages are stored in a per-mapping radix tree, which is
 566 * rooted at mapping->page_tree, and indexed by offset.
 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 569 *
 570 * All pagecache pages may be subject to I/O:
 571 * - inode pages may need to be read from disk,
 572 * - inode pages which have been modified and are MAP_SHARED may need
 573 *   to be written back to the inode on disk,
 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 575 *   modified may need to be swapped out to swap space and (later) to be read
 576 *   back into memory.
 577 */
 578
 579/*
 580 * The zone field is never updated after free_area_init_core()
 581 * sets it, so none of the operations on it need to be atomic.
 582 */
 583
 584
 585/*
 586 * page->flags layout:
 587 *
 588 * There are three possibilities for how page->flags get
 589 * laid out.  The first is for the normal case, without
 590 * sparsemem.  The second is for sparsemem when there is
 591 * plenty of space for node and section.  The last is when
 592 * we have run out of space and have to fall back to an
 593 * alternate (slower) way of determining the node.
 594 *
 595 * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
 596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
 597 * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
 598 */
 599#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 600#define SECTIONS_WIDTH          SECTIONS_SHIFT
 601#else
 602#define SECTIONS_WIDTH          0
 603#endif
 604
 605#define ZONES_WIDTH             ZONES_SHIFT
 606
 607#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
 608#define NODES_WIDTH             NODES_SHIFT
 609#else
 610#ifdef CONFIG_SPARSEMEM_VMEMMAP
 611#error "Vmemmap: No space for nodes field in page flags"
 612#endif
 613#define NODES_WIDTH             0
 614#endif
 615
 616/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
 617#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 618#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 619#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 620
 621/*
 622 * We are going to use the flags for the page to node mapping if its in
 623 * there.  This includes the case where there is no node, so it is implicit.
 624 */
 625#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
 626#define NODE_NOT_IN_PAGE_FLAGS
 627#endif
 628
 629/*
 630 * Define the bit shifts to access each section.  For non-existent
 631 * sections we define the shift as 0; that plus a 0 mask ensures
 632 * the compiler will optimise away reference to them.
 633 */
 634#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 635#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 636#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 637
 638/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 639#ifdef NODE_NOT_IN_PAGE_FLAGS
 640#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 641#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 642                                                SECTIONS_PGOFF : ZONES_PGOFF)
 643#else
 644#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 645#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 646                                                NODES_PGOFF : ZONES_PGOFF)
 647#endif
 648
 649#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 650
 651#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 652#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 653#endif
 654
 655#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 656#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 657#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 658#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 659
 660static inline enum zone_type page_zonenum(const struct page *page)
 661{
 662        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 663}
 664
 665/*
 666 * The identification function is only used by the buddy allocator for
 667 * determining if two pages could be buddies. We are not really
 668 * identifying a zone since we could be using a the section number
 669 * id if we have not node id available in page flags.
 670 * We guarantee only that it will return the same value for two
 671 * combinable pages in a zone.
 672 */
 673static inline int page_zone_id(struct page *page)
 674{
 675        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 676}
 677
 678static inline int zone_to_nid(struct zone *zone)
 679{
 680#ifdef CONFIG_NUMA
 681        return zone->node;
 682#else
 683        return 0;
 684#endif
 685}
 686
 687#ifdef NODE_NOT_IN_PAGE_FLAGS
 688extern int page_to_nid(const struct page *page);
 689#else
 690static inline int page_to_nid(const struct page *page)
 691{
 692        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 693}
 694#endif
 695
 696static inline struct zone *page_zone(const struct page *page)
 697{
 698        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 699}
 700
 701#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 702static inline void set_page_section(struct page *page, unsigned long section)
 703{
 704        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 705        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 706}
 707
 708static inline unsigned long page_to_section(const struct page *page)
 709{
 710        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 711}
 712#endif
 713
 714static inline void set_page_zone(struct page *page, enum zone_type zone)
 715{
 716        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 717        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 718}
 719
 720static inline void set_page_node(struct page *page, unsigned long node)
 721{
 722        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 723        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 724}
 725
 726static inline void set_page_links(struct page *page, enum zone_type zone,
 727        unsigned long node, unsigned long pfn)
 728{
 729        set_page_zone(page, zone);
 730        set_page_node(page, node);
 731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 732        set_page_section(page, pfn_to_section_nr(pfn));
 733#endif
 734}
 735
 736/*
 737 * Some inline functions in vmstat.h depend on page_zone()
 738 */
 739#include <linux/vmstat.h>
 740
 741static __always_inline void *lowmem_page_address(const struct page *page)
 742{
 743        return __va(PFN_PHYS(page_to_pfn(page)));
 744}
 745
 746#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 747#define HASHED_PAGE_VIRTUAL
 748#endif
 749
 750#if defined(WANT_PAGE_VIRTUAL)
 751#define page_address(page) ((page)->virtual)
 752#define set_page_address(page, address)                 \
 753        do {                                            \
 754                (page)->virtual = (address);            \
 755        } while(0)
 756#define page_address_init()  do { } while(0)
 757#endif
 758
 759#if defined(HASHED_PAGE_VIRTUAL)
 760void *page_address(const struct page *page);
 761void set_page_address(struct page *page, void *virtual);
 762void page_address_init(void);
 763#endif
 764
 765#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 766#define page_address(page) lowmem_page_address(page)
 767#define set_page_address(page, address)  do { } while(0)
 768#define page_address_init()  do { } while(0)
 769#endif
 770
 771/*
 772 * On an anonymous page mapped into a user virtual memory area,
 773 * page->mapping points to its anon_vma, not to a struct address_space;
 774 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 775 *
 776 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 777 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 778 * and then page->mapping points, not to an anon_vma, but to a private
 779 * structure which KSM associates with that merged page.  See ksm.h.
 780 *
 781 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 782 *
 783 * Please note that, confusingly, "page_mapping" refers to the inode
 784 * address_space which maps the page from disk; whereas "page_mapped"
 785 * refers to user virtual address space into which the page is mapped.
 786 */
 787#define PAGE_MAPPING_ANON       1
 788#define PAGE_MAPPING_KSM        2
 789#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 790
 791extern struct address_space swapper_space;
 792static inline struct address_space *page_mapping(struct page *page)
 793{
 794        struct address_space *mapping = page->mapping;
 795
 796        VM_BUG_ON(PageSlab(page));
 797        if (unlikely(PageSwapCache(page)))
 798                mapping = &swapper_space;
 799        else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 800                mapping = NULL;
 801        return mapping;
 802}
 803
 804/* Neutral page->mapping pointer to address_space or anon_vma or other */
 805static inline void *page_rmapping(struct page *page)
 806{
 807        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
 808}
 809
 810extern struct address_space *__page_file_mapping(struct page *);
 811
 812static inline
 813struct address_space *page_file_mapping(struct page *page)
 814{
 815        if (unlikely(PageSwapCache(page)))
 816                return __page_file_mapping(page);
 817
 818        return page->mapping;
 819}
 820
 821static inline int PageAnon(struct page *page)
 822{
 823        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 824}
 825
 826/*
 827 * Return the pagecache index of the passed page.  Regular pagecache pages
 828 * use ->index whereas swapcache pages use ->private
 829 */
 830static inline pgoff_t page_index(struct page *page)
 831{
 832        if (unlikely(PageSwapCache(page)))
 833                return page_private(page);
 834        return page->index;
 835}
 836
 837extern pgoff_t __page_file_index(struct page *page);
 838
 839/*
 840 * Return the file index of the page. Regular pagecache pages use ->index
 841 * whereas swapcache pages use swp_offset(->private)
 842 */
 843static inline pgoff_t page_file_index(struct page *page)
 844{
 845        if (unlikely(PageSwapCache(page)))
 846                return __page_file_index(page);
 847
 848        return page->index;
 849}
 850
 851/*
 852 * Return true if this page is mapped into pagetables.
 853 */
 854static inline int page_mapped(struct page *page)
 855{
 856        return atomic_read(&(page)->_mapcount) >= 0;
 857}
 858
 859/*
 860 * Different kinds of faults, as returned by handle_mm_fault().
 861 * Used to decide whether a process gets delivered SIGBUS or
 862 * just gets major/minor fault counters bumped up.
 863 */
 864
 865#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
 866
 867#define VM_FAULT_OOM    0x0001
 868#define VM_FAULT_SIGBUS 0x0002
 869#define VM_FAULT_MAJOR  0x0004
 870#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
 871#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
 872#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
 873
 874#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
 875#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
 876#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
 877
 878#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
 879
 880#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
 881                         VM_FAULT_HWPOISON_LARGE)
 882
 883/* Encode hstate index for a hwpoisoned large page */
 884#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
 885#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
 886
 887/*
 888 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 889 */
 890extern void pagefault_out_of_memory(void);
 891
 892#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
 893
 894/*
 895 * Flags passed to show_mem() and show_free_areas() to suppress output in
 896 * various contexts.
 897 */
 898#define SHOW_MEM_FILTER_NODES   (0x0001u)       /* filter disallowed nodes */
 899
 900extern void show_free_areas(unsigned int flags);
 901extern bool skip_free_areas_node(unsigned int flags, int nid);
 902
 903int shmem_zero_setup(struct vm_area_struct *);
 904
 905extern int can_do_mlock(void);
 906extern int user_shm_lock(size_t, struct user_struct *);
 907extern void user_shm_unlock(size_t, struct user_struct *);
 908
 909/*
 910 * Parameter block passed down to zap_pte_range in exceptional cases.
 911 */
 912struct zap_details {
 913        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
 914        struct address_space *check_mapping;    /* Check page->mapping if set */
 915        pgoff_t first_index;                    /* Lowest page->index to unmap */
 916        pgoff_t last_index;                     /* Highest page->index to unmap */
 917};
 918
 919struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 920                pte_t pte);
 921
 922int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 923                unsigned long size);
 924void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 925                unsigned long size, struct zap_details *);
 926void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 927                unsigned long start, unsigned long end);
 928
 929/**
 930 * mm_walk - callbacks for walk_page_range
 931 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 932 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 933 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 934 *             this handler is required to be able to handle
 935 *             pmd_trans_huge() pmds.  They may simply choose to
 936 *             split_huge_page() instead of handling it explicitly.
 937 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 938 * @pte_hole: if set, called for each hole at all levels
 939 * @hugetlb_entry: if set, called for each hugetlb entry
 940 *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 941 *                            is used.
 942 *
 943 * (see walk_page_range for more details)
 944 */
 945struct mm_walk {
 946        int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
 947        int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
 948        int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
 949        int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
 950        int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
 951        int (*hugetlb_entry)(pte_t *, unsigned long,
 952                             unsigned long, unsigned long, struct mm_walk *);
 953        struct mm_struct *mm;
 954        void *private;
 955};
 956
 957int walk_page_range(unsigned long addr, unsigned long end,
 958                struct mm_walk *walk);
 959void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 960                unsigned long end, unsigned long floor, unsigned long ceiling);
 961int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 962                        struct vm_area_struct *vma);
 963void unmap_mapping_range(struct address_space *mapping,
 964                loff_t const holebegin, loff_t const holelen, int even_cows);
 965int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 966        unsigned long *pfn);
 967int follow_phys(struct vm_area_struct *vma, unsigned long address,
 968                unsigned int flags, unsigned long *prot, resource_size_t *phys);
 969int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 970                        void *buf, int len, int write);
 971
 972static inline void unmap_shared_mapping_range(struct address_space *mapping,
 973                loff_t const holebegin, loff_t const holelen)
 974{
 975        unmap_mapping_range(mapping, holebegin, holelen, 0);
 976}
 977
 978extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
 979extern void truncate_setsize(struct inode *inode, loff_t newsize);
 980extern int vmtruncate(struct inode *inode, loff_t offset);
 981void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 982int truncate_inode_page(struct address_space *mapping, struct page *page);
 983int generic_error_remove_page(struct address_space *mapping, struct page *page);
 984int invalidate_inode_page(struct page *page);
 985
 986#ifdef CONFIG_MMU
 987extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 988                        unsigned long address, unsigned int flags);
 989extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 990                            unsigned long address, unsigned int fault_flags);
 991#else
 992static inline int handle_mm_fault(struct mm_struct *mm,
 993                        struct vm_area_struct *vma, unsigned long address,
 994                        unsigned int flags)
 995{
 996        /* should never happen if there's no MMU */
 997        BUG();
 998        return VM_FAULT_SIGBUS;
 999}
1000static inline int fixup_user_fault(struct task_struct *tsk,
1001                struct mm_struct *mm, unsigned long address,
1002                unsigned int fault_flags)
1003{
1004        /* should never happen if there's no MMU */
1005        BUG();
1006        return -EFAULT;
1007}
1008#endif
1009
1010extern int make_pages_present(unsigned long addr, unsigned long end);
1011extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1012extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1013                void *buf, int len, int write);
1014
1015int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1016                     unsigned long start, int len, unsigned int foll_flags,
1017                     struct page **pages, struct vm_area_struct **vmas,
1018                     int *nonblocking);
1019int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1020                        unsigned long start, int nr_pages, int write, int force,
1021                        struct page **pages, struct vm_area_struct **vmas);
1022int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1023                        struct page **pages);
1024struct kvec;
1025int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1026                        struct page **pages);
1027int get_kernel_page(unsigned long start, int write, struct page **pages);
1028struct page *get_dump_page(unsigned long addr);
1029
1030extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1031extern void do_invalidatepage(struct page *page, unsigned long offset);
1032
1033int __set_page_dirty_nobuffers(struct page *page);
1034int __set_page_dirty_no_writeback(struct page *page);
1035int redirty_page_for_writepage(struct writeback_control *wbc,
1036                                struct page *page);
1037void account_page_dirtied(struct page *page, struct address_space *mapping);
1038void account_page_writeback(struct page *page);
1039int set_page_dirty(struct page *page);
1040int set_page_dirty_lock(struct page *page);
1041int clear_page_dirty_for_io(struct page *page);
1042
1043/* Is the vma a continuation of the stack vma above it? */
1044static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1045{
1046        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1047}
1048
1049static inline int stack_guard_page_start(struct vm_area_struct *vma,
1050                                             unsigned long addr)
1051{
1052        return (vma->vm_flags & VM_GROWSDOWN) &&
1053                (vma->vm_start == addr) &&
1054                !vma_growsdown(vma->vm_prev, addr);
1055}
1056
1057/* Is the vma a continuation of the stack vma below it? */
1058static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1059{
1060        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1061}
1062
1063static inline int stack_guard_page_end(struct vm_area_struct *vma,
1064                                           unsigned long addr)
1065{
1066        return (vma->vm_flags & VM_GROWSUP) &&
1067                (vma->vm_end == addr) &&
1068                !vma_growsup(vma->vm_next, addr);
1069}
1070
1071extern pid_t
1072vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1073
1074extern unsigned long move_page_tables(struct vm_area_struct *vma,
1075                unsigned long old_addr, struct vm_area_struct *new_vma,
1076                unsigned long new_addr, unsigned long len,
1077                bool need_rmap_locks);
1078extern unsigned long do_mremap(unsigned long addr,
1079                               unsigned long old_len, unsigned long new_len,
1080                               unsigned long flags, unsigned long new_addr);
1081extern int mprotect_fixup(struct vm_area_struct *vma,
1082                          struct vm_area_struct **pprev, unsigned long start,
1083                          unsigned long end, unsigned long newflags);
1084
1085/*
1086 * doesn't attempt to fault and will return short.
1087 */
1088int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1089                          struct page **pages);
1090/*
1091 * per-process(per-mm_struct) statistics.
1092 */
1093static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1094{
1095        long val = atomic_long_read(&mm->rss_stat.count[member]);
1096
1097#ifdef SPLIT_RSS_COUNTING
1098        /*
1099         * counter is updated in asynchronous manner and may go to minus.
1100         * But it's never be expected number for users.
1101         */
1102        if (val < 0)
1103                val = 0;
1104#endif
1105        return (unsigned long)val;
1106}
1107
1108static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1109{
1110        atomic_long_add(value, &mm->rss_stat.count[member]);
1111}
1112
1113static inline void inc_mm_counter(struct mm_struct *mm, int member)
1114{
1115        atomic_long_inc(&mm->rss_stat.count[member]);
1116}
1117
1118static inline void dec_mm_counter(struct mm_struct *mm, int member)
1119{
1120        atomic_long_dec(&mm->rss_stat.count[member]);
1121}
1122
1123static inline unsigned long get_mm_rss(struct mm_struct *mm)
1124{
1125        return get_mm_counter(mm, MM_FILEPAGES) +
1126                get_mm_counter(mm, MM_ANONPAGES);
1127}
1128
1129static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1130{
1131        return max(mm->hiwater_rss, get_mm_rss(mm));
1132}
1133
1134static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1135{
1136        return max(mm->hiwater_vm, mm->total_vm);
1137}
1138
1139static inline void update_hiwater_rss(struct mm_struct *mm)
1140{
1141        unsigned long _rss = get_mm_rss(mm);
1142
1143        if ((mm)->hiwater_rss < _rss)
1144                (mm)->hiwater_rss = _rss;
1145}
1146
1147static inline void update_hiwater_vm(struct mm_struct *mm)
1148{
1149        if (mm->hiwater_vm < mm->total_vm)
1150                mm->hiwater_vm = mm->total_vm;
1151}
1152
1153static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1154                                         struct mm_struct *mm)
1155{
1156        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1157
1158        if (*maxrss < hiwater_rss)
1159                *maxrss = hiwater_rss;
1160}
1161
1162#if defined(SPLIT_RSS_COUNTING)
1163void sync_mm_rss(struct mm_struct *mm);
1164#else
1165static inline void sync_mm_rss(struct mm_struct *mm)
1166{
1167}
1168#endif
1169
1170int vma_wants_writenotify(struct vm_area_struct *vma);
1171
1172extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1173                               spinlock_t **ptl);
1174static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1175                                    spinlock_t **ptl)
1176{
1177        pte_t *ptep;
1178        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1179        return ptep;
1180}
1181
1182#ifdef __PAGETABLE_PUD_FOLDED
1183static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1184                                                unsigned long address)
1185{
1186        return 0;
1187}
1188#else
1189int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1190#endif
1191
1192#ifdef __PAGETABLE_PMD_FOLDED
1193static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1194                                                unsigned long address)
1195{
1196        return 0;
1197}
1198#else
1199int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1200#endif
1201
1202int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1203                pmd_t *pmd, unsigned long address);
1204int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1205
1206/*
1207 * The following ifdef needed to get the 4level-fixup.h header to work.
1208 * Remove it when 4level-fixup.h has been removed.
1209 */
1210#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1211static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1212{
1213        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1214                NULL: pud_offset(pgd, address);
1215}
1216
1217static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1218{
1219        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1220                NULL: pmd_offset(pud, address);
1221}
1222#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1223
1224#if USE_SPLIT_PTLOCKS
1225/*
1226 * We tuck a spinlock to guard each pagetable page into its struct page,
1227 * at page->private, with BUILD_BUG_ON to make sure that this will not
1228 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1229 * When freeing, reset page->mapping so free_pages_check won't complain.
1230 */
1231#define __pte_lockptr(page)     &((page)->ptl)
1232#define pte_lock_init(_page)    do {                                    \
1233        spin_lock_init(__pte_lockptr(_page));                           \
1234} while (0)
1235#define pte_lock_deinit(page)   ((page)->mapping = NULL)
1236#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1237#else   /* !USE_SPLIT_PTLOCKS */
1238/*
1239 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1240 */
1241#define pte_lock_init(page)     do {} while (0)
1242#define pte_lock_deinit(page)   do {} while (0)
1243#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1244#endif /* USE_SPLIT_PTLOCKS */
1245
1246static inline void pgtable_page_ctor(struct page *page)
1247{
1248        pte_lock_init(page);
1249        inc_zone_page_state(page, NR_PAGETABLE);
1250}
1251
1252static inline void pgtable_page_dtor(struct page *page)
1253{
1254        pte_lock_deinit(page);
1255        dec_zone_page_state(page, NR_PAGETABLE);
1256}
1257
1258#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1259({                                                      \
1260        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1261        pte_t *__pte = pte_offset_map(pmd, address);    \
1262        *(ptlp) = __ptl;                                \
1263        spin_lock(__ptl);                               \
1264        __pte;                                          \
1265})
1266
1267#define pte_unmap_unlock(pte, ptl)      do {            \
1268        spin_unlock(ptl);                               \
1269        pte_unmap(pte);                                 \
1270} while (0)
1271
1272#define pte_alloc_map(mm, vma, pmd, address)                            \
1273        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1274                                                        pmd, address))? \
1275         NULL: pte_offset_map(pmd, address))
1276
1277#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1278        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1279                                                        pmd, address))? \
1280                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1281
1282#define pte_alloc_kernel(pmd, address)                  \
1283        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1284                NULL: pte_offset_kernel(pmd, address))
1285
1286extern void free_area_init(unsigned long * zones_size);
1287extern void free_area_init_node(int nid, unsigned long * zones_size,
1288                unsigned long zone_start_pfn, unsigned long *zholes_size);
1289extern void free_initmem(void);
1290
1291#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1292/*
1293 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1294 * zones, allocate the backing mem_map and account for memory holes in a more
1295 * architecture independent manner. This is a substitute for creating the
1296 * zone_sizes[] and zholes_size[] arrays and passing them to
1297 * free_area_init_node()
1298 *
1299 * An architecture is expected to register range of page frames backed by
1300 * physical memory with memblock_add[_node]() before calling
1301 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1302 * usage, an architecture is expected to do something like
1303 *
1304 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1305 *                                                       max_highmem_pfn};
1306 * for_each_valid_physical_page_range()
1307 *      memblock_add_node(base, size, nid)
1308 * free_area_init_nodes(max_zone_pfns);
1309 *
1310 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1311 * registered physical page range.  Similarly
1312 * sparse_memory_present_with_active_regions() calls memory_present() for
1313 * each range when SPARSEMEM is enabled.
1314 *
1315 * See mm/page_alloc.c for more information on each function exposed by
1316 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1317 */
1318extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1319unsigned long node_map_pfn_alignment(void);
1320unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1321                                                unsigned long end_pfn);
1322extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1323                                                unsigned long end_pfn);
1324extern void get_pfn_range_for_nid(unsigned int nid,
1325                        unsigned long *start_pfn, unsigned long *end_pfn);
1326extern unsigned long find_min_pfn_with_active_regions(void);
1327extern void free_bootmem_with_active_regions(int nid,
1328                                                unsigned long max_low_pfn);
1329extern void sparse_memory_present_with_active_regions(int nid);
1330
1331#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1332
1333#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1334    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1335static inline int __early_pfn_to_nid(unsigned long pfn)
1336{
1337        return 0;
1338}
1339#else
1340/* please see mm/page_alloc.c */
1341extern int __meminit early_pfn_to_nid(unsigned long pfn);
1342#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1343/* there is a per-arch backend function. */
1344extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1345#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1346#endif
1347
1348extern void set_dma_reserve(unsigned long new_dma_reserve);
1349extern void memmap_init_zone(unsigned long, int, unsigned long,
1350                                unsigned long, enum memmap_context);
1351extern void setup_per_zone_wmarks(void);
1352extern int __meminit init_per_zone_wmark_min(void);
1353extern void mem_init(void);
1354extern void __init mmap_init(void);
1355extern void show_mem(unsigned int flags);
1356extern void si_meminfo(struct sysinfo * val);
1357extern void si_meminfo_node(struct sysinfo *val, int nid);
1358extern int after_bootmem;
1359
1360extern __printf(3, 4)
1361void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1362
1363extern void setup_per_cpu_pageset(void);
1364
1365extern void zone_pcp_update(struct zone *zone);
1366extern void zone_pcp_reset(struct zone *zone);
1367
1368/* nommu.c */
1369extern atomic_long_t mmap_pages_allocated;
1370extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1371
1372/* interval_tree.c */
1373void vma_interval_tree_insert(struct vm_area_struct *node,
1374                              struct rb_root *root);
1375void vma_interval_tree_insert_after(struct vm_area_struct *node,
1376                                    struct vm_area_struct *prev,
1377                                    struct rb_root *root);
1378void vma_interval_tree_remove(struct vm_area_struct *node,
1379                              struct rb_root *root);
1380struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1381                                unsigned long start, unsigned long last);
1382struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1383                                unsigned long start, unsigned long last);
1384
1385#define vma_interval_tree_foreach(vma, root, start, last)               \
1386        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1387             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1388
1389static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1390                                        struct list_head *list)
1391{
1392        list_add_tail(&vma->shared.nonlinear, list);
1393}
1394
1395void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1396                                   struct rb_root *root);
1397void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1398                                   struct rb_root *root);
1399struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1400        struct rb_root *root, unsigned long start, unsigned long last);
1401struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1402        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1403#ifdef CONFIG_DEBUG_VM_RB
1404void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1405#endif
1406
1407#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1408        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1409             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1410
1411/* mmap.c */
1412extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1413extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1414        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1415extern struct vm_area_struct *vma_merge(struct mm_struct *,
1416        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1417        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1418        struct mempolicy *);
1419extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1420extern int split_vma(struct mm_struct *,
1421        struct vm_area_struct *, unsigned long addr, int new_below);
1422extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1423extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1424        struct rb_node **, struct rb_node *);
1425extern void unlink_file_vma(struct vm_area_struct *);
1426extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1427        unsigned long addr, unsigned long len, pgoff_t pgoff,
1428        bool *need_rmap_locks);
1429extern void exit_mmap(struct mm_struct *);
1430
1431extern int mm_take_all_locks(struct mm_struct *mm);
1432extern void mm_drop_all_locks(struct mm_struct *mm);
1433
1434extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1435extern struct file *get_mm_exe_file(struct mm_struct *mm);
1436
1437extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1438extern int install_special_mapping(struct mm_struct *mm,
1439                                   unsigned long addr, unsigned long len,
1440                                   unsigned long flags, struct page **pages);
1441
1442extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1443
1444extern unsigned long mmap_region(struct file *file, unsigned long addr,
1445        unsigned long len, unsigned long flags,
1446        vm_flags_t vm_flags, unsigned long pgoff);
1447extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1448        unsigned long, unsigned long,
1449        unsigned long, unsigned long);
1450extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1451
1452/* These take the mm semaphore themselves */
1453extern unsigned long vm_brk(unsigned long, unsigned long);
1454extern int vm_munmap(unsigned long, size_t);
1455extern unsigned long vm_mmap(struct file *, unsigned long,
1456        unsigned long, unsigned long,
1457        unsigned long, unsigned long);
1458
1459/* truncate.c */
1460extern void truncate_inode_pages(struct address_space *, loff_t);
1461extern void truncate_inode_pages_range(struct address_space *,
1462                                       loff_t lstart, loff_t lend);
1463
1464/* generic vm_area_ops exported for stackable file systems */
1465extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1466extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1467
1468/* mm/page-writeback.c */
1469int write_one_page(struct page *page, int wait);
1470void task_dirty_inc(struct task_struct *tsk);
1471
1472/* readahead.c */
1473#define VM_MAX_READAHEAD        128     /* kbytes */
1474#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1475
1476int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1477                        pgoff_t offset, unsigned long nr_to_read);
1478
1479void page_cache_sync_readahead(struct address_space *mapping,
1480                               struct file_ra_state *ra,
1481                               struct file *filp,
1482                               pgoff_t offset,
1483                               unsigned long size);
1484
1485void page_cache_async_readahead(struct address_space *mapping,
1486                                struct file_ra_state *ra,
1487                                struct file *filp,
1488                                struct page *pg,
1489                                pgoff_t offset,
1490                                unsigned long size);
1491
1492unsigned long max_sane_readahead(unsigned long nr);
1493unsigned long ra_submit(struct file_ra_state *ra,
1494                        struct address_space *mapping,
1495                        struct file *filp);
1496
1497/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1498extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1499
1500/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1501extern int expand_downwards(struct vm_area_struct *vma,
1502                unsigned long address);
1503#if VM_GROWSUP
1504extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1505#else
1506  #define expand_upwards(vma, address) do { } while (0)
1507#endif
1508
1509/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1510extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1511extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1512                                             struct vm_area_struct **pprev);
1513
1514/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1515   NULL if none.  Assume start_addr < end_addr. */
1516static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1517{
1518        struct vm_area_struct * vma = find_vma(mm,start_addr);
1519
1520        if (vma && end_addr <= vma->vm_start)
1521                vma = NULL;
1522        return vma;
1523}
1524
1525static inline unsigned long vma_pages(struct vm_area_struct *vma)
1526{
1527        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1528}
1529
1530/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1531static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1532                                unsigned long vm_start, unsigned long vm_end)
1533{
1534        struct vm_area_struct *vma = find_vma(mm, vm_start);
1535
1536        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1537                vma = NULL;
1538
1539        return vma;
1540}
1541
1542#ifdef CONFIG_MMU
1543pgprot_t vm_get_page_prot(unsigned long vm_flags);
1544#else
1545static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1546{
1547        return __pgprot(0);
1548}
1549#endif
1550
1551struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1552int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1553                        unsigned long pfn, unsigned long size, pgprot_t);
1554int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1555int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556                        unsigned long pfn);
1557int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1558                        unsigned long pfn);
1559
1560struct page *follow_page(struct vm_area_struct *, unsigned long address,
1561                        unsigned int foll_flags);
1562#define FOLL_WRITE      0x01    /* check pte is writable */
1563#define FOLL_TOUCH      0x02    /* mark page accessed */
1564#define FOLL_GET        0x04    /* do get_page on page */
1565#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1566#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1567#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1568                                 * and return without waiting upon it */
1569#define FOLL_MLOCK      0x40    /* mark page as mlocked */
1570#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1571#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1572
1573typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1574                        void *data);
1575extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1576                               unsigned long size, pte_fn_t fn, void *data);
1577
1578#ifdef CONFIG_PROC_FS
1579void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1580#else
1581static inline void vm_stat_account(struct mm_struct *mm,
1582                        unsigned long flags, struct file *file, long pages)
1583{
1584        mm->total_vm += pages;
1585}
1586#endif /* CONFIG_PROC_FS */
1587
1588#ifdef CONFIG_DEBUG_PAGEALLOC
1589extern void kernel_map_pages(struct page *page, int numpages, int enable);
1590#ifdef CONFIG_HIBERNATION
1591extern bool kernel_page_present(struct page *page);
1592#endif /* CONFIG_HIBERNATION */
1593#else
1594static inline void
1595kernel_map_pages(struct page *page, int numpages, int enable) {}
1596#ifdef CONFIG_HIBERNATION
1597static inline bool kernel_page_present(struct page *page) { return true; }
1598#endif /* CONFIG_HIBERNATION */
1599#endif
1600
1601extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1602#ifdef  __HAVE_ARCH_GATE_AREA
1603int in_gate_area_no_mm(unsigned long addr);
1604int in_gate_area(struct mm_struct *mm, unsigned long addr);
1605#else
1606int in_gate_area_no_mm(unsigned long addr);
1607#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1608#endif  /* __HAVE_ARCH_GATE_AREA */
1609
1610int drop_caches_sysctl_handler(struct ctl_table *, int,
1611                                        void __user *, size_t *, loff_t *);
1612unsigned long shrink_slab(struct shrink_control *shrink,
1613                          unsigned long nr_pages_scanned,
1614                          unsigned long lru_pages);
1615
1616#ifndef CONFIG_MMU
1617#define randomize_va_space 0
1618#else
1619extern int randomize_va_space;
1620#endif
1621
1622const char * arch_vma_name(struct vm_area_struct *vma);
1623void print_vma_addr(char *prefix, unsigned long rip);
1624
1625void sparse_mem_maps_populate_node(struct page **map_map,
1626                                   unsigned long pnum_begin,
1627                                   unsigned long pnum_end,
1628                                   unsigned long map_count,
1629                                   int nodeid);
1630
1631struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1632pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1633pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1634pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1635pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1636void *vmemmap_alloc_block(unsigned long size, int node);
1637void *vmemmap_alloc_block_buf(unsigned long size, int node);
1638void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1639int vmemmap_populate_basepages(struct page *start_page,
1640                                                unsigned long pages, int node);
1641int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1642void vmemmap_populate_print_last(void);
1643
1644
1645enum mf_flags {
1646        MF_COUNT_INCREASED = 1 << 0,
1647        MF_ACTION_REQUIRED = 1 << 1,
1648        MF_MUST_KILL = 1 << 2,
1649};
1650extern int memory_failure(unsigned long pfn, int trapno, int flags);
1651extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1652extern int unpoison_memory(unsigned long pfn);
1653extern int sysctl_memory_failure_early_kill;
1654extern int sysctl_memory_failure_recovery;
1655extern void shake_page(struct page *p, int access);
1656extern atomic_long_t mce_bad_pages;
1657extern int soft_offline_page(struct page *page, int flags);
1658
1659extern void dump_page(struct page *page);
1660
1661#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1662extern void clear_huge_page(struct page *page,
1663                            unsigned long addr,
1664                            unsigned int pages_per_huge_page);
1665extern void copy_user_huge_page(struct page *dst, struct page *src,
1666                                unsigned long addr, struct vm_area_struct *vma,
1667                                unsigned int pages_per_huge_page);
1668#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1669
1670#ifdef CONFIG_DEBUG_PAGEALLOC
1671extern unsigned int _debug_guardpage_minorder;
1672
1673static inline unsigned int debug_guardpage_minorder(void)
1674{
1675        return _debug_guardpage_minorder;
1676}
1677
1678static inline bool page_is_guard(struct page *page)
1679{
1680        return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1681}
1682#else
1683static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1684static inline bool page_is_guard(struct page *page) { return false; }
1685#endif /* CONFIG_DEBUG_PAGEALLOC */
1686
1687#endif /* __KERNEL__ */
1688#endif /* _LINUX_MM_H */
1689
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.