linux/drivers/hwmon/abituguru.c
<<
>>
Prefs
   1/*
   2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18/*
  19 * This driver supports the sensor part of the first and second revision of
  20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
  21 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/sched.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/mutex.h>
  32#include <linux/err.h>
  33#include <linux/delay.h>
  34#include <linux/platform_device.h>
  35#include <linux/hwmon.h>
  36#include <linux/hwmon-sysfs.h>
  37#include <linux/dmi.h>
  38#include <linux/io.h>
  39
  40/* Banks */
  41#define ABIT_UGURU_ALARM_BANK                   0x20 /* 1x 3 bytes */
  42#define ABIT_UGURU_SENSOR_BANK1                 0x21 /* 16x volt and temp */
  43#define ABIT_UGURU_FAN_PWM                      0x24 /* 3x 5 bytes */
  44#define ABIT_UGURU_SENSOR_BANK2                 0x26 /* fans */
  45/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  46#define ABIT_UGURU_MAX_BANK1_SENSORS            16
  47/*
  48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  50 */
  51/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  52#define ABIT_UGURU_MAX_BANK2_SENSORS            6
  53/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  54#define ABIT_UGURU_MAX_PWMS                     5
  55/* uGuru sensor bank 1 flags */                      /* Alarm if: */
  56#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE       0x01 /*  temp over warn */
  57#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE       0x02 /*  volt over max */
  58#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE        0x04 /*  volt under min */
  59#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG         0x10 /* temp is over warn */
  60#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG         0x20 /* volt is over max */
  61#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG          0x40 /* volt is under min */
  62/* uGuru sensor bank 2 flags */                      /* Alarm if: */
  63#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE         0x01 /*   fan under min */
  64/* uGuru sensor bank common flags */
  65#define ABIT_UGURU_BEEP_ENABLE                  0x08 /* beep if alarm */
  66#define ABIT_UGURU_SHUTDOWN_ENABLE              0x80 /* shutdown if alarm */
  67/* uGuru fan PWM (speed control) flags */
  68#define ABIT_UGURU_FAN_PWM_ENABLE               0x80 /* enable speed control */
  69/* Values used for conversion */
  70#define ABIT_UGURU_FAN_MAX                      15300 /* RPM */
  71/* Bank1 sensor types */
  72#define ABIT_UGURU_IN_SENSOR                    0
  73#define ABIT_UGURU_TEMP_SENSOR                  1
  74#define ABIT_UGURU_NC                           2
  75/*
  76 * In many cases we need to wait for the uGuru to reach a certain status, most
  77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  78 * can best busy wait. This define gives the total amount of reads to try.
  79 */
  80#define ABIT_UGURU_WAIT_TIMEOUT                 125
  81/*
  82 * However sometimes older versions of the uGuru seem to be distracted and they
  83 * do not respond for a long time. To handle this we sleep before each of the
  84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  85 */
  86#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP           5
  87/*
  88 * Normally all expected status in abituguru_ready, are reported after the
  89 * first read, but sometimes not and we need to poll.
  90 */
  91#define ABIT_UGURU_READY_TIMEOUT                5
  92/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  93#define ABIT_UGURU_MAX_RETRIES                  3
  94#define ABIT_UGURU_RETRY_DELAY                  (HZ/5)
  95/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  96#define ABIT_UGURU_MAX_TIMEOUTS                 2
  97/* utility macros */
  98#define ABIT_UGURU_NAME                         "abituguru"
  99#define ABIT_UGURU_DEBUG(level, format, arg...)                         \
 100        if (level <= verbose)                                           \
 101                printk(KERN_DEBUG ABIT_UGURU_NAME ": "  format , ## arg)
 102/* Macros to help calculate the sysfs_names array length */
 103/*
 104 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 105 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 106 */
 107#define ABITUGURU_IN_NAMES_LENGTH       (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
 108/*
 109 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 110 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 111 */
 112#define ABITUGURU_TEMP_NAMES_LENGTH     (13 + 11 + 12 + 13 + 20 + 12 + 16)
 113/*
 114 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 115 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 116 */
 117#define ABITUGURU_FAN_NAMES_LENGTH      (11 + 9 + 11 + 18 + 10 + 14)
 118/*
 119 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 120 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 121 */
 122#define ABITUGURU_PWM_NAMES_LENGTH      (12 + 24 + 2 * 21 + 2 * 22)
 123/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 124#define ABITUGURU_SYSFS_NAMES_LENGTH    ( \
 125        ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 126        ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 127        ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 128
 129/*
 130 * All the macros below are named identical to the oguru and oguru2 programs
 131 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 132 * logical. I could come up with better names, but I prefer keeping the names
 133 * identical so that this driver can be compared with his work more easily.
 134 */
 135/* Two i/o-ports are used by uGuru */
 136#define ABIT_UGURU_BASE                         0x00E0
 137/* Used to tell uGuru what to read and to read the actual data */
 138#define ABIT_UGURU_CMD                          0x00
 139/* Mostly used to check if uGuru is busy */
 140#define ABIT_UGURU_DATA                         0x04
 141#define ABIT_UGURU_REGION_LENGTH                5
 142/* uGuru status' */
 143#define ABIT_UGURU_STATUS_WRITE                 0x00 /* Ready to be written */
 144#define ABIT_UGURU_STATUS_READ                  0x01 /* Ready to be read */
 145#define ABIT_UGURU_STATUS_INPUT                 0x08 /* More input */
 146#define ABIT_UGURU_STATUS_READY                 0x09 /* Ready to be written */
 147
 148/* Constants */
 149/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 150static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 151/*
 152 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 153 * correspond to 300-3000 RPM
 154 */
 155static const u8 abituguru_bank2_min_threshold = 5;
 156static const u8 abituguru_bank2_max_threshold = 50;
 157/*
 158 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 159 * are temperature trip points.
 160 */
 161static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 162/*
 163 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 164 * special case the minium allowed pwm% setting for this is 30% (77) on
 165 * some MB's this special case is handled in the code!
 166 */
 167static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 168static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 169
 170
 171/* Insmod parameters */
 172static bool force;
 173module_param(force, bool, 0);
 174MODULE_PARM_DESC(force, "Set to one to force detection.");
 175static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 176        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 177module_param_array(bank1_types, int, NULL, 0);
 178MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 179        "   -1 autodetect\n"
 180        "    0 volt sensor\n"
 181        "    1 temp sensor\n"
 182        "    2 not connected");
 183static int fan_sensors;
 184module_param(fan_sensors, int, 0);
 185MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 186        "(0 = autodetect)");
 187static int pwms;
 188module_param(pwms, int, 0);
 189MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 190        "(0 = autodetect)");
 191
 192/* Default verbose is 2, since this driver is still in the testing phase */
 193static int verbose = 2;
 194module_param(verbose, int, 0644);
 195MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 196        "   0 normal output\n"
 197        "   1 + verbose error reporting\n"
 198        "   2 + sensors type probing info\n"
 199        "   3 + retryable error reporting");
 200
 201
 202/*
 203 * For the Abit uGuru, we need to keep some data in memory.
 204 * The structure is dynamically allocated, at the same time when a new
 205 * abituguru device is allocated.
 206 */
 207struct abituguru_data {
 208        struct device *hwmon_dev;       /* hwmon registered device */
 209        struct mutex update_lock;       /* protect access to data and uGuru */
 210        unsigned long last_updated;     /* In jiffies */
 211        unsigned short addr;            /* uguru base address */
 212        char uguru_ready;               /* is the uguru in ready state? */
 213        unsigned char update_timeouts;  /*
 214                                         * number of update timeouts since last
 215                                         * successful update
 216                                         */
 217
 218        /*
 219         * The sysfs attr and their names are generated automatically, for bank1
 220         * we cannot use a predefined array because we don't know beforehand
 221         * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 222         * easier todo things the same way.  For in sensors we have 9 (temp 7)
 223         * sysfs entries per sensor, for bank2 and pwms 6.
 224         */
 225        struct sensor_device_attribute_2 sysfs_attr[
 226                ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 227                ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 228        /* Buffer to store the dynamically generated sysfs names */
 229        char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 230
 231        /* Bank 1 data */
 232        /* number of and addresses of [0] in, [1] temp sensors */
 233        u8 bank1_sensors[2];
 234        u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 235        u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236        /*
 237         * This array holds 3 entries per sensor for the bank 1 sensor settings
 238         * (flags, min, max for voltage / flags, warn, shutdown for temp).
 239         */
 240        u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 241        /*
 242         * Maximum value for each sensor used for scaling in mV/millidegrees
 243         * Celsius.
 244         */
 245        int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 246
 247        /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 248        u8 bank2_sensors; /* actual number of bank2 sensors found */
 249        u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 250        u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 251
 252        /* Alarms 2 bytes for bank1, 1 byte for bank2 */
 253        u8 alarms[3];
 254
 255        /* Fan PWM (speed control) 5 bytes per PWM */
 256        u8 pwms; /* actual number of pwms found */
 257        u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 258};
 259
 260static const char *never_happen = "This should never happen.";
 261static const char *report_this =
 262        "Please report this to the abituguru maintainer (see MAINTAINERS)";
 263
 264/* wait till the uguru is in the specified state */
 265static int abituguru_wait(struct abituguru_data *data, u8 state)
 266{
 267        int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 268
 269        while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 270                timeout--;
 271                if (timeout == 0)
 272                        return -EBUSY;
 273                /*
 274                 * sleep a bit before our last few tries, see the comment on
 275                 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 276                 */
 277                if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 278                        msleep(0);
 279        }
 280        return 0;
 281}
 282
 283/* Put the uguru in ready for input state */
 284static int abituguru_ready(struct abituguru_data *data)
 285{
 286        int timeout = ABIT_UGURU_READY_TIMEOUT;
 287
 288        if (data->uguru_ready)
 289                return 0;
 290
 291        /* Reset? / Prepare for next read/write cycle */
 292        outb(0x00, data->addr + ABIT_UGURU_DATA);
 293
 294        /* Wait till the uguru is ready */
 295        if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 296                ABIT_UGURU_DEBUG(1,
 297                        "timeout exceeded waiting for ready state\n");
 298                return -EIO;
 299        }
 300
 301        /* Cmd port MUST be read now and should contain 0xAC */
 302        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 303                timeout--;
 304                if (timeout == 0) {
 305                        ABIT_UGURU_DEBUG(1,
 306                           "CMD reg does not hold 0xAC after ready command\n");
 307                        return -EIO;
 308                }
 309                msleep(0);
 310        }
 311
 312        /*
 313         * After this the ABIT_UGURU_DATA port should contain
 314         * ABIT_UGURU_STATUS_INPUT
 315         */
 316        timeout = ABIT_UGURU_READY_TIMEOUT;
 317        while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 318                timeout--;
 319                if (timeout == 0) {
 320                        ABIT_UGURU_DEBUG(1,
 321                                "state != more input after ready command\n");
 322                        return -EIO;
 323                }
 324                msleep(0);
 325        }
 326
 327        data->uguru_ready = 1;
 328        return 0;
 329}
 330
 331/*
 332 * Send the bank and then sensor address to the uGuru for the next read/write
 333 * cycle. This function gets called as the first part of a read/write by
 334 * abituguru_read and abituguru_write. This function should never be
 335 * called by any other function.
 336 */
 337static int abituguru_send_address(struct abituguru_data *data,
 338        u8 bank_addr, u8 sensor_addr, int retries)
 339{
 340        /*
 341         * assume the caller does error handling itself if it has not requested
 342         * any retries, and thus be quiet.
 343         */
 344        int report_errors = retries;
 345
 346        for (;;) {
 347                /*
 348                 * Make sure the uguru is ready and then send the bank address,
 349                 * after this the uguru is no longer "ready".
 350                 */
 351                if (abituguru_ready(data) != 0)
 352                        return -EIO;
 353                outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 354                data->uguru_ready = 0;
 355
 356                /*
 357                 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 358                 * and send the sensor addr
 359                 */
 360                if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 361                        if (retries) {
 362                                ABIT_UGURU_DEBUG(3, "timeout exceeded "
 363                                        "waiting for more input state, %d "
 364                                        "tries remaining\n", retries);
 365                                set_current_state(TASK_UNINTERRUPTIBLE);
 366                                schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 367                                retries--;
 368                                continue;
 369                        }
 370                        if (report_errors)
 371                                ABIT_UGURU_DEBUG(1, "timeout exceeded "
 372                                        "waiting for more input state "
 373                                        "(bank: %d)\n", (int)bank_addr);
 374                        return -EBUSY;
 375                }
 376                outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 377                return 0;
 378        }
 379}
 380
 381/*
 382 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 383 * result in buf, retry the send address part of the read retries times.
 384 */
 385static int abituguru_read(struct abituguru_data *data,
 386        u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 387{
 388        int i;
 389
 390        /* Send the address */
 391        i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 392        if (i)
 393                return i;
 394
 395        /* And read the data */
 396        for (i = 0; i < count; i++) {
 397                if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 398                        ABIT_UGURU_DEBUG(retries ? 1 : 3,
 399                                "timeout exceeded waiting for "
 400                                "read state (bank: %d, sensor: %d)\n",
 401                                (int)bank_addr, (int)sensor_addr);
 402                        break;
 403                }
 404                buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 405        }
 406
 407        /* Last put the chip back in ready state */
 408        abituguru_ready(data);
 409
 410        return i;
 411}
 412
 413/*
 414 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 415 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 416 */
 417static int abituguru_write(struct abituguru_data *data,
 418        u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 419{
 420        /*
 421         * We use the ready timeout as we have to wait for 0xAC just like the
 422         * ready function
 423         */
 424        int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 425
 426        /* Send the address */
 427        i = abituguru_send_address(data, bank_addr, sensor_addr,
 428                ABIT_UGURU_MAX_RETRIES);
 429        if (i)
 430                return i;
 431
 432        /* And write the data */
 433        for (i = 0; i < count; i++) {
 434                if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 435                        ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 436                                "write state (bank: %d, sensor: %d)\n",
 437                                (int)bank_addr, (int)sensor_addr);
 438                        break;
 439                }
 440                outb(buf[i], data->addr + ABIT_UGURU_CMD);
 441        }
 442
 443        /*
 444         * Now we need to wait till the chip is ready to be read again,
 445         * so that we can read 0xAC as confirmation that our write has
 446         * succeeded.
 447         */
 448        if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 449                ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 450                        "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 451                        (int)sensor_addr);
 452                return -EIO;
 453        }
 454
 455        /* Cmd port MUST be read now and should contain 0xAC */
 456        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 457                timeout--;
 458                if (timeout == 0) {
 459                        ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 460                                "write (bank: %d, sensor: %d)\n",
 461                                (int)bank_addr, (int)sensor_addr);
 462                        return -EIO;
 463                }
 464                msleep(0);
 465        }
 466
 467        /* Last put the chip back in ready state */
 468        abituguru_ready(data);
 469
 470        return i;
 471}
 472
 473/*
 474 * Detect sensor type. Temp and Volt sensors are enabled with
 475 * different masks and will ignore enable masks not meant for them.
 476 * This enables us to test what kind of sensor we're dealing with.
 477 * By setting the alarm thresholds so that we will always get an
 478 * alarm for sensor type X and then enabling the sensor as sensor type
 479 * X, if we then get an alarm it is a sensor of type X.
 480 */
 481static int __devinit
 482abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 483                                   u8 sensor_addr)
 484{
 485        u8 val, test_flag, buf[3];
 486        int i, ret = -ENODEV; /* error is the most common used retval :| */
 487
 488        /* If overriden by the user return the user selected type */
 489        if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 490                        bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 491                ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 492                        "%d because of \"bank1_types\" module param\n",
 493                        bank1_types[sensor_addr], (int)sensor_addr);
 494                return bank1_types[sensor_addr];
 495        }
 496
 497        /* First read the sensor and the current settings */
 498        if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 499                        1, ABIT_UGURU_MAX_RETRIES) != 1)
 500                return -ENODEV;
 501
 502        /* Test val is sane / usable for sensor type detection. */
 503        if ((val < 10u) || (val > 250u)) {
 504                pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 505                        "unable to determine sensor type, skipping sensor\n",
 506                        (int)sensor_addr, (int)val);
 507                /*
 508                 * assume no sensor is there for sensors for which we can't
 509                 * determine the sensor type because their reading is too close
 510                 * to their limits, this usually means no sensor is there.
 511                 */
 512                return ABIT_UGURU_NC;
 513        }
 514
 515        ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 516        /*
 517         * Volt sensor test, enable volt low alarm, set min value ridicously
 518         * high, or vica versa if the reading is very high. If its a volt
 519         * sensor this should always give us an alarm.
 520         */
 521        if (val <= 240u) {
 522                buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 523                buf[1] = 245;
 524                buf[2] = 250;
 525                test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 526        } else {
 527                buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 528                buf[1] = 5;
 529                buf[2] = 10;
 530                test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 531        }
 532
 533        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 534                        buf, 3) != 3)
 535                goto abituguru_detect_bank1_sensor_type_exit;
 536        /*
 537         * Now we need 20 ms to give the uguru time to read the sensors
 538         * and raise a voltage alarm
 539         */
 540        set_current_state(TASK_UNINTERRUPTIBLE);
 541        schedule_timeout(HZ/50);
 542        /* Check for alarm and check the alarm is a volt low alarm. */
 543        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 544                        ABIT_UGURU_MAX_RETRIES) != 3)
 545                goto abituguru_detect_bank1_sensor_type_exit;
 546        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 547                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 548                                sensor_addr, buf, 3,
 549                                ABIT_UGURU_MAX_RETRIES) != 3)
 550                        goto abituguru_detect_bank1_sensor_type_exit;
 551                if (buf[0] & test_flag) {
 552                        ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 553                        ret = ABIT_UGURU_IN_SENSOR;
 554                        goto abituguru_detect_bank1_sensor_type_exit;
 555                } else
 556                        ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 557                                "sensor test, but volt range flag not set\n");
 558        } else
 559                ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 560                        "test\n");
 561
 562        /*
 563         * Temp sensor test, enable sensor as a temp sensor, set beep value
 564         * ridicously low (but not too low, otherwise uguru ignores it).
 565         * If its a temp sensor this should always give us an alarm.
 566         */
 567        buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 568        buf[1] = 5;
 569        buf[2] = 10;
 570        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 571                        buf, 3) != 3)
 572                goto abituguru_detect_bank1_sensor_type_exit;
 573        /*
 574         * Now we need 50 ms to give the uguru time to read the sensors
 575         * and raise a temp alarm
 576         */
 577        set_current_state(TASK_UNINTERRUPTIBLE);
 578        schedule_timeout(HZ/20);
 579        /* Check for alarm and check the alarm is a temp high alarm. */
 580        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 581                        ABIT_UGURU_MAX_RETRIES) != 3)
 582                goto abituguru_detect_bank1_sensor_type_exit;
 583        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 584                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 585                                sensor_addr, buf, 3,
 586                                ABIT_UGURU_MAX_RETRIES) != 3)
 587                        goto abituguru_detect_bank1_sensor_type_exit;
 588                if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 589                        ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 590                        ret = ABIT_UGURU_TEMP_SENSOR;
 591                        goto abituguru_detect_bank1_sensor_type_exit;
 592                } else
 593                        ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 594                                "sensor test, but temp high flag not set\n");
 595        } else
 596                ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 597                        "test\n");
 598
 599        ret = ABIT_UGURU_NC;
 600abituguru_detect_bank1_sensor_type_exit:
 601        /*
 602         * Restore original settings, failing here is really BAD, it has been
 603         * reported that some BIOS-es hang when entering the uGuru menu with
 604         * invalid settings present in the uGuru, so we try this 3 times.
 605         */
 606        for (i = 0; i < 3; i++)
 607                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 608                                sensor_addr, data->bank1_settings[sensor_addr],
 609                                3) == 3)
 610                        break;
 611        if (i == 3) {
 612                pr_err("Fatal error could not restore original settings. %s %s\n",
 613                       never_happen, report_this);
 614                return -ENODEV;
 615        }
 616        return ret;
 617}
 618
 619/*
 620 * These functions try to find out how many sensors there are in bank2 and how
 621 * many pwms there are. The purpose of this is to make sure that we don't give
 622 * the user the possibility to change settings for non-existent sensors / pwm.
 623 * The uGuru will happily read / write whatever memory happens to be after the
 624 * memory storing the PWM settings when reading/writing to a PWM which is not
 625 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 626 * write to it, unless the user tries to change the settings.
 627 *
 628 * Although the uGuru allows reading (settings) from non existing bank2
 629 * sensors, my version of the uGuru does seem to stop writing to them, the
 630 * write function above aborts in this case with:
 631 * "CMD reg does not hold 0xAC after write"
 632 *
 633 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 634 * they would defeat their purpose. Although for the bank2_sensors detection a
 635 * read/write test would be feasible because of the reaction above, I've
 636 * however opted to stay on the safe side.
 637 */
 638static void __devinit
 639abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 640{
 641        int i;
 642
 643        if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 644                data->bank2_sensors = fan_sensors;
 645                ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 646                        "\"fan_sensors\" module param\n",
 647                        (int)data->bank2_sensors);
 648                return;
 649        }
 650
 651        ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 652        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 653                /*
 654                 * 0x89 are the known used bits:
 655                 * -0x80 enable shutdown
 656                 * -0x08 enable beep
 657                 * -0x01 enable alarm
 658                 * All other bits should be 0, but on some motherboards
 659                 * 0x40 (bit 6) is also high for some of the fans??
 660                 */
 661                if (data->bank2_settings[i][0] & ~0xC9) {
 662                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 663                                "to be a fan sensor: settings[0] = %02X\n",
 664                                i, (unsigned int)data->bank2_settings[i][0]);
 665                        break;
 666                }
 667
 668                /* check if the threshold is within the allowed range */
 669                if (data->bank2_settings[i][1] <
 670                                abituguru_bank2_min_threshold) {
 671                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 672                                "to be a fan sensor: the threshold (%d) is "
 673                                "below the minimum (%d)\n", i,
 674                                (int)data->bank2_settings[i][1],
 675                                (int)abituguru_bank2_min_threshold);
 676                        break;
 677                }
 678                if (data->bank2_settings[i][1] >
 679                                abituguru_bank2_max_threshold) {
 680                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 681                                "to be a fan sensor: the threshold (%d) is "
 682                                "above the maximum (%d)\n", i,
 683                                (int)data->bank2_settings[i][1],
 684                                (int)abituguru_bank2_max_threshold);
 685                        break;
 686                }
 687        }
 688
 689        data->bank2_sensors = i;
 690        ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 691                (int)data->bank2_sensors);
 692}
 693
 694static void __devinit
 695abituguru_detect_no_pwms(struct abituguru_data *data)
 696{
 697        int i, j;
 698
 699        if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 700                data->pwms = pwms;
 701                ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 702                        "\"pwms\" module param\n", (int)data->pwms);
 703                return;
 704        }
 705
 706        ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 707        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 708                /*
 709                 * 0x80 is the enable bit and the low
 710                 * nibble is which temp sensor to use,
 711                 * the other bits should be 0
 712                 */
 713                if (data->pwm_settings[i][0] & ~0x8F) {
 714                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 715                                "to be a pwm channel: settings[0] = %02X\n",
 716                                i, (unsigned int)data->pwm_settings[i][0]);
 717                        break;
 718                }
 719
 720                /*
 721                 * the low nibble must correspond to one of the temp sensors
 722                 * we've found
 723                 */
 724                for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 725                                j++) {
 726                        if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 727                                        (data->pwm_settings[i][0] & 0x0F))
 728                                break;
 729                }
 730                if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 731                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 732                                "to be a pwm channel: %d is not a valid temp "
 733                                "sensor address\n", i,
 734                                data->pwm_settings[i][0] & 0x0F);
 735                        break;
 736                }
 737
 738                /* check if all other settings are within the allowed range */
 739                for (j = 1; j < 5; j++) {
 740                        u8 min;
 741                        /* special case pwm1 min pwm% */
 742                        if ((i == 0) && ((j == 1) || (j == 2)))
 743                                min = 77;
 744                        else
 745                                min = abituguru_pwm_min[j];
 746                        if (data->pwm_settings[i][j] < min) {
 747                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 748                                        "not seem to be a pwm channel: "
 749                                        "setting %d (%d) is below the minimum "
 750                                        "value (%d)\n", i, j,
 751                                        (int)data->pwm_settings[i][j],
 752                                        (int)min);
 753                                goto abituguru_detect_no_pwms_exit;
 754                        }
 755                        if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 756                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 757                                        "not seem to be a pwm channel: "
 758                                        "setting %d (%d) is above the maximum "
 759                                        "value (%d)\n", i, j,
 760                                        (int)data->pwm_settings[i][j],
 761                                        (int)abituguru_pwm_max[j]);
 762                                goto abituguru_detect_no_pwms_exit;
 763                        }
 764                }
 765
 766                /* check that min temp < max temp and min pwm < max pwm */
 767                if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 768                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 769                                "to be a pwm channel: min pwm (%d) >= "
 770                                "max pwm (%d)\n", i,
 771                                (int)data->pwm_settings[i][1],
 772                                (int)data->pwm_settings[i][2]);
 773                        break;
 774                }
 775                if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 776                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 777                                "to be a pwm channel: min temp (%d) >= "
 778                                "max temp (%d)\n", i,
 779                                (int)data->pwm_settings[i][3],
 780                                (int)data->pwm_settings[i][4]);
 781                        break;
 782                }
 783        }
 784
 785abituguru_detect_no_pwms_exit:
 786        data->pwms = i;
 787        ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 788}
 789
 790/*
 791 * Following are the sysfs callback functions. These functions expect:
 792 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 793 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 794 */
 795static struct abituguru_data *abituguru_update_device(struct device *dev);
 796
 797static ssize_t show_bank1_value(struct device *dev,
 798        struct device_attribute *devattr, char *buf)
 799{
 800        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 801        struct abituguru_data *data = abituguru_update_device(dev);
 802        if (!data)
 803                return -EIO;
 804        return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 805                data->bank1_max_value[attr->index] + 128) / 255);
 806}
 807
 808static ssize_t show_bank1_setting(struct device *dev,
 809        struct device_attribute *devattr, char *buf)
 810{
 811        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812        struct abituguru_data *data = dev_get_drvdata(dev);
 813        return sprintf(buf, "%d\n",
 814                (data->bank1_settings[attr->index][attr->nr] *
 815                data->bank1_max_value[attr->index] + 128) / 255);
 816}
 817
 818static ssize_t show_bank2_value(struct device *dev,
 819        struct device_attribute *devattr, char *buf)
 820{
 821        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 822        struct abituguru_data *data = abituguru_update_device(dev);
 823        if (!data)
 824                return -EIO;
 825        return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 826                ABIT_UGURU_FAN_MAX + 128) / 255);
 827}
 828
 829static ssize_t show_bank2_setting(struct device *dev,
 830        struct device_attribute *devattr, char *buf)
 831{
 832        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833        struct abituguru_data *data = dev_get_drvdata(dev);
 834        return sprintf(buf, "%d\n",
 835                (data->bank2_settings[attr->index][attr->nr] *
 836                ABIT_UGURU_FAN_MAX + 128) / 255);
 837}
 838
 839static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 840        *devattr, const char *buf, size_t count)
 841{
 842        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 843        struct abituguru_data *data = dev_get_drvdata(dev);
 844        unsigned long val;
 845        ssize_t ret;
 846
 847        ret = kstrtoul(buf, 10, &val);
 848        if (ret)
 849                return ret;
 850
 851        ret = count;
 852        val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 853                data->bank1_max_value[attr->index];
 854        if (val > 255)
 855                return -EINVAL;
 856
 857        mutex_lock(&data->update_lock);
 858        if (data->bank1_settings[attr->index][attr->nr] != val) {
 859                u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 860                data->bank1_settings[attr->index][attr->nr] = val;
 861                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 862                                attr->index, data->bank1_settings[attr->index],
 863                                3) <= attr->nr) {
 864                        data->bank1_settings[attr->index][attr->nr] = orig_val;
 865                        ret = -EIO;
 866                }
 867        }
 868        mutex_unlock(&data->update_lock);
 869        return ret;
 870}
 871
 872static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 873        *devattr, const char *buf, size_t count)
 874{
 875        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 876        struct abituguru_data *data = dev_get_drvdata(dev);
 877        unsigned long val;
 878        ssize_t ret;
 879
 880        ret = kstrtoul(buf, 10, &val);
 881        if (ret)
 882                return ret;
 883
 884        ret = count;
 885        val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 886
 887        /* this check can be done before taking the lock */
 888        if (val < abituguru_bank2_min_threshold ||
 889                        val > abituguru_bank2_max_threshold)
 890                return -EINVAL;
 891
 892        mutex_lock(&data->update_lock);
 893        if (data->bank2_settings[attr->index][attr->nr] != val) {
 894                u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 895                data->bank2_settings[attr->index][attr->nr] = val;
 896                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 897                                attr->index, data->bank2_settings[attr->index],
 898                                2) <= attr->nr) {
 899                        data->bank2_settings[attr->index][attr->nr] = orig_val;
 900                        ret = -EIO;
 901                }
 902        }
 903        mutex_unlock(&data->update_lock);
 904        return ret;
 905}
 906
 907static ssize_t show_bank1_alarm(struct device *dev,
 908        struct device_attribute *devattr, char *buf)
 909{
 910        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 911        struct abituguru_data *data = abituguru_update_device(dev);
 912        if (!data)
 913                return -EIO;
 914        /*
 915         * See if the alarm bit for this sensor is set, and if the
 916         * alarm matches the type of alarm we're looking for (for volt
 917         * it can be either low or high). The type is stored in a few
 918         * readonly bits in the settings part of the relevant sensor.
 919         * The bitmask of the type is passed to us in attr->nr.
 920         */
 921        if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 922                        (data->bank1_settings[attr->index][0] & attr->nr))
 923                return sprintf(buf, "1\n");
 924        else
 925                return sprintf(buf, "0\n");
 926}
 927
 928static ssize_t show_bank2_alarm(struct device *dev,
 929        struct device_attribute *devattr, char *buf)
 930{
 931        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 932        struct abituguru_data *data = abituguru_update_device(dev);
 933        if (!data)
 934                return -EIO;
 935        if (data->alarms[2] & (0x01 << attr->index))
 936                return sprintf(buf, "1\n");
 937        else
 938                return sprintf(buf, "0\n");
 939}
 940
 941static ssize_t show_bank1_mask(struct device *dev,
 942        struct device_attribute *devattr, char *buf)
 943{
 944        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 945        struct abituguru_data *data = dev_get_drvdata(dev);
 946        if (data->bank1_settings[attr->index][0] & attr->nr)
 947                return sprintf(buf, "1\n");
 948        else
 949                return sprintf(buf, "0\n");
 950}
 951
 952static ssize_t show_bank2_mask(struct device *dev,
 953        struct device_attribute *devattr, char *buf)
 954{
 955        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 956        struct abituguru_data *data = dev_get_drvdata(dev);
 957        if (data->bank2_settings[attr->index][0] & attr->nr)
 958                return sprintf(buf, "1\n");
 959        else
 960                return sprintf(buf, "0\n");
 961}
 962
 963static ssize_t store_bank1_mask(struct device *dev,
 964        struct device_attribute *devattr, const char *buf, size_t count)
 965{
 966        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 967        struct abituguru_data *data = dev_get_drvdata(dev);
 968        ssize_t ret;
 969        u8 orig_val;
 970        unsigned long mask;
 971
 972        ret = kstrtoul(buf, 10, &mask);
 973        if (ret)
 974                return ret;
 975
 976        ret = count;
 977        mutex_lock(&data->update_lock);
 978        orig_val = data->bank1_settings[attr->index][0];
 979
 980        if (mask)
 981                data->bank1_settings[attr->index][0] |= attr->nr;
 982        else
 983                data->bank1_settings[attr->index][0] &= ~attr->nr;
 984
 985        if ((data->bank1_settings[attr->index][0] != orig_val) &&
 986                        (abituguru_write(data,
 987                        ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 988                        data->bank1_settings[attr->index], 3) < 1)) {
 989                data->bank1_settings[attr->index][0] = orig_val;
 990                ret = -EIO;
 991        }
 992        mutex_unlock(&data->update_lock);
 993        return ret;
 994}
 995
 996static ssize_t store_bank2_mask(struct device *dev,
 997        struct device_attribute *devattr, const char *buf, size_t count)
 998{
 999        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1000        struct abituguru_data *data = dev_get_drvdata(dev);
1001        ssize_t ret;
1002        u8 orig_val;
1003        unsigned long mask;
1004
1005        ret = kstrtoul(buf, 10, &mask);
1006        if (ret)
1007                return ret;
1008
1009        ret = count;
1010        mutex_lock(&data->update_lock);
1011        orig_val = data->bank2_settings[attr->index][0];
1012
1013        if (mask)
1014                data->bank2_settings[attr->index][0] |= attr->nr;
1015        else
1016                data->bank2_settings[attr->index][0] &= ~attr->nr;
1017
1018        if ((data->bank2_settings[attr->index][0] != orig_val) &&
1019                        (abituguru_write(data,
1020                        ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1021                        data->bank2_settings[attr->index], 2) < 1)) {
1022                data->bank2_settings[attr->index][0] = orig_val;
1023                ret = -EIO;
1024        }
1025        mutex_unlock(&data->update_lock);
1026        return ret;
1027}
1028
1029/* Fan PWM (speed control) */
1030static ssize_t show_pwm_setting(struct device *dev,
1031        struct device_attribute *devattr, char *buf)
1032{
1033        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1034        struct abituguru_data *data = dev_get_drvdata(dev);
1035        return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1036                abituguru_pwm_settings_multiplier[attr->nr]);
1037}
1038
1039static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1040        *devattr, const char *buf, size_t count)
1041{
1042        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1043        struct abituguru_data *data = dev_get_drvdata(dev);
1044        u8 min;
1045        unsigned long val;
1046        ssize_t ret;
1047
1048        ret = kstrtoul(buf, 10, &val);
1049        if (ret)
1050                return ret;
1051
1052        ret = count;
1053        val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1054                                abituguru_pwm_settings_multiplier[attr->nr];
1055
1056        /* special case pwm1 min pwm% */
1057        if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1058                min = 77;
1059        else
1060                min = abituguru_pwm_min[attr->nr];
1061
1062        /* this check can be done before taking the lock */
1063        if (val < min || val > abituguru_pwm_max[attr->nr])
1064                return -EINVAL;
1065
1066        mutex_lock(&data->update_lock);
1067        /* this check needs to be done after taking the lock */
1068        if ((attr->nr & 1) &&
1069                        (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1070                ret = -EINVAL;
1071        else if (!(attr->nr & 1) &&
1072                        (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1073                ret = -EINVAL;
1074        else if (data->pwm_settings[attr->index][attr->nr] != val) {
1075                u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1076                data->pwm_settings[attr->index][attr->nr] = val;
1077                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1078                                attr->index, data->pwm_settings[attr->index],
1079                                5) <= attr->nr) {
1080                        data->pwm_settings[attr->index][attr->nr] =
1081                                orig_val;
1082                        ret = -EIO;
1083                }
1084        }
1085        mutex_unlock(&data->update_lock);
1086        return ret;
1087}
1088
1089static ssize_t show_pwm_sensor(struct device *dev,
1090        struct device_attribute *devattr, char *buf)
1091{
1092        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1093        struct abituguru_data *data = dev_get_drvdata(dev);
1094        int i;
1095        /*
1096         * We need to walk to the temp sensor addresses to find what
1097         * the userspace id of the configured temp sensor is.
1098         */
1099        for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1100                if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1101                                (data->pwm_settings[attr->index][0] & 0x0F))
1102                        return sprintf(buf, "%d\n", i+1);
1103
1104        return -ENXIO;
1105}
1106
1107static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1108        *devattr, const char *buf, size_t count)
1109{
1110        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1111        struct abituguru_data *data = dev_get_drvdata(dev);
1112        ssize_t ret;
1113        unsigned long val;
1114        u8 orig_val;
1115        u8 address;
1116
1117        ret = kstrtoul(buf, 10, &val);
1118        if (ret)
1119                return ret;
1120
1121        if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1122                return -EINVAL;
1123
1124        val -= 1;
1125        ret = count;
1126        mutex_lock(&data->update_lock);
1127        orig_val = data->pwm_settings[attr->index][0];
1128        address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1129        data->pwm_settings[attr->index][0] &= 0xF0;
1130        data->pwm_settings[attr->index][0] |= address;
1131        if (data->pwm_settings[attr->index][0] != orig_val) {
1132                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1133                                    data->pwm_settings[attr->index], 5) < 1) {
1134                        data->pwm_settings[attr->index][0] = orig_val;
1135                        ret = -EIO;
1136                }
1137        }
1138        mutex_unlock(&data->update_lock);
1139        return ret;
1140}
1141
1142static ssize_t show_pwm_enable(struct device *dev,
1143        struct device_attribute *devattr, char *buf)
1144{
1145        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1146        struct abituguru_data *data = dev_get_drvdata(dev);
1147        int res = 0;
1148        if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1149                res = 2;
1150        return sprintf(buf, "%d\n", res);
1151}
1152
1153static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1154        *devattr, const char *buf, size_t count)
1155{
1156        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1157        struct abituguru_data *data = dev_get_drvdata(dev);
1158        u8 orig_val;
1159        ssize_t ret;
1160        unsigned long user_val;
1161
1162        ret = kstrtoul(buf, 10, &user_val);
1163        if (ret)
1164                return ret;
1165
1166        ret = count;
1167        mutex_lock(&data->update_lock);
1168        orig_val = data->pwm_settings[attr->index][0];
1169        switch (user_val) {
1170        case 0:
1171                data->pwm_settings[attr->index][0] &=
1172                        ~ABIT_UGURU_FAN_PWM_ENABLE;
1173                break;
1174        case 2:
1175                data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1176                break;
1177        default:
1178                ret = -EINVAL;
1179        }
1180        if ((data->pwm_settings[attr->index][0] != orig_val) &&
1181                        (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1182                        attr->index, data->pwm_settings[attr->index],
1183                        5) < 1)) {
1184                data->pwm_settings[attr->index][0] = orig_val;
1185                ret = -EIO;
1186        }
1187        mutex_unlock(&data->update_lock);
1188        return ret;
1189}
1190
1191static ssize_t show_name(struct device *dev,
1192        struct device_attribute *devattr, char *buf)
1193{
1194        return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1195}
1196
1197/* Sysfs attr templates, the real entries are generated automatically. */
1198static const
1199struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1200        {
1201        SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1202        SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1203                store_bank1_setting, 1, 0),
1204        SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1205                ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1206        SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1207                store_bank1_setting, 2, 0),
1208        SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1209                ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1210        SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1211                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1212        SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1213                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1214        SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1215                store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1216        SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1217                store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1218        }, {
1219        SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1220        SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1221                ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1222        SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1223                store_bank1_setting, 1, 0),
1224        SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1225                store_bank1_setting, 2, 0),
1226        SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1227                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1228        SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1229                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1230        SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1231                store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1232        }
1233};
1234
1235static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1236        SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1237        SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1238        SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1239                store_bank2_setting, 1, 0),
1240        SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1241                store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1242        SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1243                store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1244        SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1245                store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1246};
1247
1248static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1249        SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1250                store_pwm_enable, 0, 0),
1251        SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1252                store_pwm_sensor, 0, 0),
1253        SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1254                store_pwm_setting, 1, 0),
1255        SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1256                store_pwm_setting, 2, 0),
1257        SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1258                store_pwm_setting, 3, 0),
1259        SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1260                store_pwm_setting, 4, 0),
1261};
1262
1263static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1264        SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1265};
1266
1267static int __devinit abituguru_probe(struct platform_device *pdev)
1268{
1269        struct abituguru_data *data;
1270        int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1271        char *sysfs_filename;
1272
1273        /*
1274         * El weirdo probe order, to keep the sysfs order identical to the
1275         * BIOS and window-appliction listing order.
1276         */
1277        const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1278                0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1279                0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1280
1281        data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1282                            GFP_KERNEL);
1283        if (!data)
1284                return -ENOMEM;
1285
1286        data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1287        mutex_init(&data->update_lock);
1288        platform_set_drvdata(pdev, data);
1289
1290        /* See if the uGuru is ready */
1291        if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1292                data->uguru_ready = 1;
1293
1294        /*
1295         * Completely read the uGuru this has 2 purposes:
1296         * - testread / see if one really is there.
1297         * - make an in memory copy of all the uguru settings for future use.
1298         */
1299        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1300                        data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1301                goto abituguru_probe_error;
1302
1303        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1304                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1305                                &data->bank1_value[i], 1,
1306                                ABIT_UGURU_MAX_RETRIES) != 1)
1307                        goto abituguru_probe_error;
1308                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1309                                data->bank1_settings[i], 3,
1310                                ABIT_UGURU_MAX_RETRIES) != 3)
1311                        goto abituguru_probe_error;
1312        }
1313        /*
1314         * Note: We don't know how many bank2 sensors / pwms there really are,
1315         * but in order to "detect" this we need to read the maximum amount
1316         * anyways. If we read sensors/pwms not there we'll just read crap
1317         * this can't hurt. We need the detection because we don't want
1318         * unwanted writes, which will hurt!
1319         */
1320        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1321                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1322                                &data->bank2_value[i], 1,
1323                                ABIT_UGURU_MAX_RETRIES) != 1)
1324                        goto abituguru_probe_error;
1325                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1326                                data->bank2_settings[i], 2,
1327                                ABIT_UGURU_MAX_RETRIES) != 2)
1328                        goto abituguru_probe_error;
1329        }
1330        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1331                if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1332                                data->pwm_settings[i], 5,
1333                                ABIT_UGURU_MAX_RETRIES) != 5)
1334                        goto abituguru_probe_error;
1335        }
1336        data->last_updated = jiffies;
1337
1338        /* Detect sensor types and fill the sysfs attr for bank1 */
1339        sysfs_attr_i = 0;
1340        sysfs_filename = data->sysfs_names;
1341        sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1342        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1343                res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1344                if (res < 0)
1345                        goto abituguru_probe_error;
1346                if (res == ABIT_UGURU_NC)
1347                        continue;
1348
1349                /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1350                for (j = 0; j < (res ? 7 : 9); j++) {
1351                        used = snprintf(sysfs_filename, sysfs_names_free,
1352                                abituguru_sysfs_bank1_templ[res][j].dev_attr.
1353                                attr.name, data->bank1_sensors[res] + res)
1354                                + 1;
1355                        data->sysfs_attr[sysfs_attr_i] =
1356                                abituguru_sysfs_bank1_templ[res][j];
1357                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1358                                sysfs_filename;
1359                        data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1360                        sysfs_filename += used;
1361                        sysfs_names_free -= used;
1362                        sysfs_attr_i++;
1363                }
1364                data->bank1_max_value[probe_order[i]] =
1365                        abituguru_bank1_max_value[res];
1366                data->bank1_address[res][data->bank1_sensors[res]] =
1367                        probe_order[i];
1368                data->bank1_sensors[res]++;
1369        }
1370        /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1371        abituguru_detect_no_bank2_sensors(data);
1372        for (i = 0; i < data->bank2_sensors; i++) {
1373                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1374                        used = snprintf(sysfs_filename, sysfs_names_free,
1375                                abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1376                                i + 1) + 1;
1377                        data->sysfs_attr[sysfs_attr_i] =
1378                                abituguru_sysfs_fan_templ[j];
1379                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1380                                sysfs_filename;
1381                        data->sysfs_attr[sysfs_attr_i].index = i;
1382                        sysfs_filename += used;
1383                        sysfs_names_free -= used;
1384                        sysfs_attr_i++;
1385                }
1386        }
1387        /* Detect number of sensors and fill the sysfs attr for pwms */
1388        abituguru_detect_no_pwms(data);
1389        for (i = 0; i < data->pwms; i++) {
1390                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1391                        used = snprintf(sysfs_filename, sysfs_names_free,
1392                                abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1393                                i + 1) + 1;
1394                        data->sysfs_attr[sysfs_attr_i] =
1395                                abituguru_sysfs_pwm_templ[j];
1396                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1397                                sysfs_filename;
1398                        data->sysfs_attr[sysfs_attr_i].index = i;
1399                        sysfs_filename += used;
1400                        sysfs_names_free -= used;
1401                        sysfs_attr_i++;
1402                }
1403        }
1404        /* Fail safe check, this should never happen! */
1405        if (sysfs_names_free < 0) {
1406                pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1407                       never_happen, report_this);
1408                res = -ENAMETOOLONG;
1409                goto abituguru_probe_error;
1410        }
1411        pr_info("found Abit uGuru\n");
1412
1413        /* Register sysfs hooks */
1414        for (i = 0; i < sysfs_attr_i; i++)
1415                if (device_create_file(&pdev->dev,
1416                                &data->sysfs_attr[i].dev_attr))
1417                        goto abituguru_probe_error;
1418        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1419                if (device_create_file(&pdev->dev,
1420                                &abituguru_sysfs_attr[i].dev_attr))
1421                        goto abituguru_probe_error;
1422
1423        data->hwmon_dev = hwmon_device_register(&pdev->dev);
1424        if (!IS_ERR(data->hwmon_dev))
1425                return 0; /* success */
1426
1427        res = PTR_ERR(data->hwmon_dev);
1428abituguru_probe_error:
1429        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1430                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1431        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1432                device_remove_file(&pdev->dev,
1433                        &abituguru_sysfs_attr[i].dev_attr);
1434        return res;
1435}
1436
1437static int __devexit abituguru_remove(struct platform_device *pdev)
1438{
1439        int i;
1440        struct abituguru_data *data = platform_get_drvdata(pdev);
1441
1442        hwmon_device_unregister(data->hwmon_dev);
1443        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1444                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1445        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1446                device_remove_file(&pdev->dev,
1447                        &abituguru_sysfs_attr[i].dev_attr);
1448
1449        return 0;
1450}
1451
1452static struct abituguru_data *abituguru_update_device(struct device *dev)
1453{
1454        int i, err;
1455        struct abituguru_data *data = dev_get_drvdata(dev);
1456        /* fake a complete successful read if no update necessary. */
1457        char success = 1;
1458
1459        mutex_lock(&data->update_lock);
1460        if (time_after(jiffies, data->last_updated + HZ)) {
1461                success = 0;
1462                err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1463                                     data->alarms, 3, 0);
1464                if (err != 3)
1465                        goto LEAVE_UPDATE;
1466                for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1467                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1468                                             i, &data->bank1_value[i], 1, 0);
1469                        if (err != 1)
1470                                goto LEAVE_UPDATE;
1471                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1472                                             i, data->bank1_settings[i], 3, 0);
1473                        if (err != 3)
1474                                goto LEAVE_UPDATE;
1475                }
1476                for (i = 0; i < data->bank2_sensors; i++) {
1477                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1478                                             &data->bank2_value[i], 1, 0);
1479                        if (err != 1)
1480                                goto LEAVE_UPDATE;
1481                }
1482                /* success! */
1483                success = 1;
1484                data->update_timeouts = 0;
1485LEAVE_UPDATE:
1486                /* handle timeout condition */
1487                if (!success && (err == -EBUSY || err >= 0)) {
1488                        /* No overflow please */
1489                        if (data->update_timeouts < 255u)
1490                                data->update_timeouts++;
1491                        if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1492                                ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1493                                        "try again next update\n");
1494                                /* Just a timeout, fake a successful read */
1495                                success = 1;
1496                        } else
1497                                ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1498                                        "times waiting for more input state\n",
1499                                        (int)data->update_timeouts);
1500                }
1501                /* On success set last_updated */
1502                if (success)
1503                        data->last_updated = jiffies;
1504        }
1505        mutex_unlock(&data->update_lock);
1506
1507        if (success)
1508                return data;
1509        else
1510                return NULL;
1511}
1512
1513#ifdef CONFIG_PM_SLEEP
1514static int abituguru_suspend(struct device *dev)
1515{
1516        struct abituguru_data *data = dev_get_drvdata(dev);
1517        /*
1518         * make sure all communications with the uguru are done and no new
1519         * ones are started
1520         */
1521        mutex_lock(&data->update_lock);
1522        return 0;
1523}
1524
1525static int abituguru_resume(struct device *dev)
1526{
1527        struct abituguru_data *data = dev_get_drvdata(dev);
1528        /* See if the uGuru is still ready */
1529        if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1530                data->uguru_ready = 0;
1531        mutex_unlock(&data->update_lock);
1532        return 0;
1533}
1534
1535static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1536#define ABIT_UGURU_PM   &abituguru_pm
1537#else
1538#define ABIT_UGURU_PM   NULL
1539#endif /* CONFIG_PM */
1540
1541static struct platform_driver abituguru_driver = {
1542        .driver = {
1543                .owner  = THIS_MODULE,
1544                .name   = ABIT_UGURU_NAME,
1545                .pm     = ABIT_UGURU_PM,
1546        },
1547        .probe          = abituguru_probe,
1548        .remove         = __devexit_p(abituguru_remove),
1549};
1550
1551static int __init abituguru_detect(void)
1552{
1553        /*
1554         * See if there is an uguru there. After a reboot uGuru will hold 0x00
1555         * at DATA and 0xAC, when this driver has already been loaded once
1556         * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1557         * scenario but some will hold 0x00.
1558         * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1559         * after reading CMD first, so CMD must be read first!
1560         */
1561        u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1562        u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1563        if (((data_val == 0x00) || (data_val == 0x08)) &&
1564            ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1565                return ABIT_UGURU_BASE;
1566
1567        ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1568                "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1569
1570        if (force) {
1571                pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1572                return ABIT_UGURU_BASE;
1573        }
1574
1575        /* No uGuru found */
1576        return -ENODEV;
1577}
1578
1579static struct platform_device *abituguru_pdev;
1580
1581static int __init abituguru_init(void)
1582{
1583        int address, err;
1584        struct resource res = { .flags = IORESOURCE_IO };
1585        const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1586
1587        /* safety check, refuse to load on non Abit motherboards */
1588        if (!force && (!board_vendor ||
1589                        strcmp(board_vendor, "http://www.abit.com.tw/")))
1590                return -ENODEV;
1591
1592        address = abituguru_detect();
1593        if (address < 0)
1594                return address;
1595
1596        err = platform_driver_register(&abituguru_driver);
1597        if (err)
1598                goto exit;
1599
1600        abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1601        if (!abituguru_pdev) {
1602                pr_err("Device allocation failed\n");
1603                err = -ENOMEM;
1604                goto exit_driver_unregister;
1605        }
1606
1607        res.start = address;
1608        res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1609        res.name = ABIT_UGURU_NAME;
1610
1611        err = platform_device_add_resources(abituguru_pdev, &res, 1);
1612        if (err) {
1613                pr_err("Device resource addition failed (%d)\n", err);
1614                goto exit_device_put;
1615        }
1616
1617        err = platform_device_add(abituguru_pdev);
1618        if (err) {
1619                pr_err("Device addition failed (%d)\n", err);
1620                goto exit_device_put;
1621        }
1622
1623        return 0;
1624
1625exit_device_put:
1626        platform_device_put(abituguru_pdev);
1627exit_driver_unregister:
1628        platform_driver_unregister(&abituguru_driver);
1629exit:
1630        return err;
1631}
1632
1633static void __exit abituguru_exit(void)
1634{
1635        platform_device_unregister(abituguru_pdev);
1636        platform_driver_unregister(&abituguru_driver);
1637}
1638
1639MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1640MODULE_DESCRIPTION("Abit uGuru Sensor device");
1641MODULE_LICENSE("GPL");
1642
1643module_init(abituguru_init);
1644module_exit(abituguru_exit);
1645
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.