linux/drivers/edac/edac_mc_sysfs.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
   4 *
   5 * This file may be distributed under the terms of the
   6 * GNU General Public License.
   7 *
   8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
   9 *
  10 * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
  11 *      The entire API were re-written, and ported to use struct device
  12 *
  13 */
  14
  15#include <linux/ctype.h>
  16#include <linux/slab.h>
  17#include <linux/edac.h>
  18#include <linux/bug.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/uaccess.h>
  21
  22#include "edac_core.h"
  23#include "edac_module.h"
  24
  25/* MC EDAC Controls, setable by module parameter, and sysfs */
  26static int edac_mc_log_ue = 1;
  27static int edac_mc_log_ce = 1;
  28static int edac_mc_panic_on_ue;
  29static int edac_mc_poll_msec = 1000;
  30
  31/* Getter functions for above */
  32int edac_mc_get_log_ue(void)
  33{
  34        return edac_mc_log_ue;
  35}
  36
  37int edac_mc_get_log_ce(void)
  38{
  39        return edac_mc_log_ce;
  40}
  41
  42int edac_mc_get_panic_on_ue(void)
  43{
  44        return edac_mc_panic_on_ue;
  45}
  46
  47/* this is temporary */
  48int edac_mc_get_poll_msec(void)
  49{
  50        return edac_mc_poll_msec;
  51}
  52
  53static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
  54{
  55        long l;
  56        int ret;
  57
  58        if (!val)
  59                return -EINVAL;
  60
  61        ret = strict_strtol(val, 0, &l);
  62        if (ret == -EINVAL || ((int)l != l))
  63                return -EINVAL;
  64        *((int *)kp->arg) = l;
  65
  66        /* notify edac_mc engine to reset the poll period */
  67        edac_mc_reset_delay_period(l);
  68
  69        return 0;
  70}
  71
  72/* Parameter declarations for above */
  73module_param(edac_mc_panic_on_ue, int, 0644);
  74MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
  75module_param(edac_mc_log_ue, int, 0644);
  76MODULE_PARM_DESC(edac_mc_log_ue,
  77                 "Log uncorrectable error to console: 0=off 1=on");
  78module_param(edac_mc_log_ce, int, 0644);
  79MODULE_PARM_DESC(edac_mc_log_ce,
  80                 "Log correctable error to console: 0=off 1=on");
  81module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
  82                  &edac_mc_poll_msec, 0644);
  83MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
  84
  85static struct device *mci_pdev;
  86
  87/*
  88 * various constants for Memory Controllers
  89 */
  90static const char *mem_types[] = {
  91        [MEM_EMPTY] = "Empty",
  92        [MEM_RESERVED] = "Reserved",
  93        [MEM_UNKNOWN] = "Unknown",
  94        [MEM_FPM] = "FPM",
  95        [MEM_EDO] = "EDO",
  96        [MEM_BEDO] = "BEDO",
  97        [MEM_SDR] = "Unbuffered-SDR",
  98        [MEM_RDR] = "Registered-SDR",
  99        [MEM_DDR] = "Unbuffered-DDR",
 100        [MEM_RDDR] = "Registered-DDR",
 101        [MEM_RMBS] = "RMBS",
 102        [MEM_DDR2] = "Unbuffered-DDR2",
 103        [MEM_FB_DDR2] = "FullyBuffered-DDR2",
 104        [MEM_RDDR2] = "Registered-DDR2",
 105        [MEM_XDR] = "XDR",
 106        [MEM_DDR3] = "Unbuffered-DDR3",
 107        [MEM_RDDR3] = "Registered-DDR3"
 108};
 109
 110static const char *dev_types[] = {
 111        [DEV_UNKNOWN] = "Unknown",
 112        [DEV_X1] = "x1",
 113        [DEV_X2] = "x2",
 114        [DEV_X4] = "x4",
 115        [DEV_X8] = "x8",
 116        [DEV_X16] = "x16",
 117        [DEV_X32] = "x32",
 118        [DEV_X64] = "x64"
 119};
 120
 121static const char *edac_caps[] = {
 122        [EDAC_UNKNOWN] = "Unknown",
 123        [EDAC_NONE] = "None",
 124        [EDAC_RESERVED] = "Reserved",
 125        [EDAC_PARITY] = "PARITY",
 126        [EDAC_EC] = "EC",
 127        [EDAC_SECDED] = "SECDED",
 128        [EDAC_S2ECD2ED] = "S2ECD2ED",
 129        [EDAC_S4ECD4ED] = "S4ECD4ED",
 130        [EDAC_S8ECD8ED] = "S8ECD8ED",
 131        [EDAC_S16ECD16ED] = "S16ECD16ED"
 132};
 133
 134#ifdef CONFIG_EDAC_LEGACY_SYSFS
 135/*
 136 * EDAC sysfs CSROW data structures and methods
 137 */
 138
 139#define to_csrow(k) container_of(k, struct csrow_info, dev)
 140
 141/*
 142 * We need it to avoid namespace conflicts between the legacy API
 143 * and the per-dimm/per-rank one
 144 */
 145#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
 146        struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
 147
 148struct dev_ch_attribute {
 149        struct device_attribute attr;
 150        int channel;
 151};
 152
 153#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
 154        struct dev_ch_attribute dev_attr_legacy_##_name = \
 155                { __ATTR(_name, _mode, _show, _store), (_var) }
 156
 157#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
 158
 159/* Set of more default csrow<id> attribute show/store functions */
 160static ssize_t csrow_ue_count_show(struct device *dev,
 161                                   struct device_attribute *mattr, char *data)
 162{
 163        struct csrow_info *csrow = to_csrow(dev);
 164
 165        return sprintf(data, "%u\n", csrow->ue_count);
 166}
 167
 168static ssize_t csrow_ce_count_show(struct device *dev,
 169                                   struct device_attribute *mattr, char *data)
 170{
 171        struct csrow_info *csrow = to_csrow(dev);
 172
 173        return sprintf(data, "%u\n", csrow->ce_count);
 174}
 175
 176static ssize_t csrow_size_show(struct device *dev,
 177                               struct device_attribute *mattr, char *data)
 178{
 179        struct csrow_info *csrow = to_csrow(dev);
 180        int i;
 181        u32 nr_pages = 0;
 182
 183        for (i = 0; i < csrow->nr_channels; i++)
 184                nr_pages += csrow->channels[i]->dimm->nr_pages;
 185        return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
 186}
 187
 188static ssize_t csrow_mem_type_show(struct device *dev,
 189                                   struct device_attribute *mattr, char *data)
 190{
 191        struct csrow_info *csrow = to_csrow(dev);
 192
 193        return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
 194}
 195
 196static ssize_t csrow_dev_type_show(struct device *dev,
 197                                   struct device_attribute *mattr, char *data)
 198{
 199        struct csrow_info *csrow = to_csrow(dev);
 200
 201        return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
 202}
 203
 204static ssize_t csrow_edac_mode_show(struct device *dev,
 205                                    struct device_attribute *mattr,
 206                                    char *data)
 207{
 208        struct csrow_info *csrow = to_csrow(dev);
 209
 210        return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
 211}
 212
 213/* show/store functions for DIMM Label attributes */
 214static ssize_t channel_dimm_label_show(struct device *dev,
 215                                       struct device_attribute *mattr,
 216                                       char *data)
 217{
 218        struct csrow_info *csrow = to_csrow(dev);
 219        unsigned chan = to_channel(mattr);
 220        struct rank_info *rank = csrow->channels[chan];
 221
 222        /* if field has not been initialized, there is nothing to send */
 223        if (!rank->dimm->label[0])
 224                return 0;
 225
 226        return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
 227                        rank->dimm->label);
 228}
 229
 230static ssize_t channel_dimm_label_store(struct device *dev,
 231                                        struct device_attribute *mattr,
 232                                        const char *data, size_t count)
 233{
 234        struct csrow_info *csrow = to_csrow(dev);
 235        unsigned chan = to_channel(mattr);
 236        struct rank_info *rank = csrow->channels[chan];
 237
 238        ssize_t max_size = 0;
 239
 240        max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
 241        strncpy(rank->dimm->label, data, max_size);
 242        rank->dimm->label[max_size] = '\0';
 243
 244        return max_size;
 245}
 246
 247/* show function for dynamic chX_ce_count attribute */
 248static ssize_t channel_ce_count_show(struct device *dev,
 249                                     struct device_attribute *mattr, char *data)
 250{
 251        struct csrow_info *csrow = to_csrow(dev);
 252        unsigned chan = to_channel(mattr);
 253        struct rank_info *rank = csrow->channels[chan];
 254
 255        return sprintf(data, "%u\n", rank->ce_count);
 256}
 257
 258/* cwrow<id>/attribute files */
 259DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
 260DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
 261DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
 262DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
 263DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
 264DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
 265
 266/* default attributes of the CSROW<id> object */
 267static struct attribute *csrow_attrs[] = {
 268        &dev_attr_legacy_dev_type.attr,
 269        &dev_attr_legacy_mem_type.attr,
 270        &dev_attr_legacy_edac_mode.attr,
 271        &dev_attr_legacy_size_mb.attr,
 272        &dev_attr_legacy_ue_count.attr,
 273        &dev_attr_legacy_ce_count.attr,
 274        NULL,
 275};
 276
 277static struct attribute_group csrow_attr_grp = {
 278        .attrs  = csrow_attrs,
 279};
 280
 281static const struct attribute_group *csrow_attr_groups[] = {
 282        &csrow_attr_grp,
 283        NULL
 284};
 285
 286static void csrow_attr_release(struct device *dev)
 287{
 288        struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
 289
 290        edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
 291        kfree(csrow);
 292}
 293
 294static struct device_type csrow_attr_type = {
 295        .groups         = csrow_attr_groups,
 296        .release        = csrow_attr_release,
 297};
 298
 299/*
 300 * possible dynamic channel DIMM Label attribute files
 301 *
 302 */
 303
 304#define EDAC_NR_CHANNELS        6
 305
 306DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
 307        channel_dimm_label_show, channel_dimm_label_store, 0);
 308DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
 309        channel_dimm_label_show, channel_dimm_label_store, 1);
 310DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
 311        channel_dimm_label_show, channel_dimm_label_store, 2);
 312DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
 313        channel_dimm_label_show, channel_dimm_label_store, 3);
 314DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
 315        channel_dimm_label_show, channel_dimm_label_store, 4);
 316DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
 317        channel_dimm_label_show, channel_dimm_label_store, 5);
 318
 319/* Total possible dynamic DIMM Label attribute file table */
 320static struct device_attribute *dynamic_csrow_dimm_attr[] = {
 321        &dev_attr_legacy_ch0_dimm_label.attr,
 322        &dev_attr_legacy_ch1_dimm_label.attr,
 323        &dev_attr_legacy_ch2_dimm_label.attr,
 324        &dev_attr_legacy_ch3_dimm_label.attr,
 325        &dev_attr_legacy_ch4_dimm_label.attr,
 326        &dev_attr_legacy_ch5_dimm_label.attr
 327};
 328
 329/* possible dynamic channel ce_count attribute files */
 330DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
 331                   channel_ce_count_show, NULL, 0);
 332DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
 333                   channel_ce_count_show, NULL, 1);
 334DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
 335                   channel_ce_count_show, NULL, 2);
 336DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
 337                   channel_ce_count_show, NULL, 3);
 338DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
 339                   channel_ce_count_show, NULL, 4);
 340DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
 341                   channel_ce_count_show, NULL, 5);
 342
 343/* Total possible dynamic ce_count attribute file table */
 344static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
 345        &dev_attr_legacy_ch0_ce_count.attr,
 346        &dev_attr_legacy_ch1_ce_count.attr,
 347        &dev_attr_legacy_ch2_ce_count.attr,
 348        &dev_attr_legacy_ch3_ce_count.attr,
 349        &dev_attr_legacy_ch4_ce_count.attr,
 350        &dev_attr_legacy_ch5_ce_count.attr
 351};
 352
 353static inline int nr_pages_per_csrow(struct csrow_info *csrow)
 354{
 355        int chan, nr_pages = 0;
 356
 357        for (chan = 0; chan < csrow->nr_channels; chan++)
 358                nr_pages += csrow->channels[chan]->dimm->nr_pages;
 359
 360        return nr_pages;
 361}
 362
 363/* Create a CSROW object under specifed edac_mc_device */
 364static int edac_create_csrow_object(struct mem_ctl_info *mci,
 365                                    struct csrow_info *csrow, int index)
 366{
 367        int err, chan;
 368
 369        if (csrow->nr_channels >= EDAC_NR_CHANNELS)
 370                return -ENODEV;
 371
 372        csrow->dev.type = &csrow_attr_type;
 373        csrow->dev.bus = &mci->bus;
 374        device_initialize(&csrow->dev);
 375        csrow->dev.parent = &mci->dev;
 376        dev_set_name(&csrow->dev, "csrow%d", index);
 377        dev_set_drvdata(&csrow->dev, csrow);
 378
 379        edac_dbg(0, "creating (virtual) csrow node %s\n",
 380                 dev_name(&csrow->dev));
 381
 382        err = device_add(&csrow->dev);
 383        if (err < 0)
 384                return err;
 385
 386        for (chan = 0; chan < csrow->nr_channels; chan++) {
 387                /* Only expose populated DIMMs */
 388                if (!csrow->channels[chan]->dimm->nr_pages)
 389                        continue;
 390                err = device_create_file(&csrow->dev,
 391                                         dynamic_csrow_dimm_attr[chan]);
 392                if (err < 0)
 393                        goto error;
 394                err = device_create_file(&csrow->dev,
 395                                         dynamic_csrow_ce_count_attr[chan]);
 396                if (err < 0) {
 397                        device_remove_file(&csrow->dev,
 398                                           dynamic_csrow_dimm_attr[chan]);
 399                        goto error;
 400                }
 401        }
 402
 403        return 0;
 404
 405error:
 406        for (--chan; chan >= 0; chan--) {
 407                device_remove_file(&csrow->dev,
 408                                        dynamic_csrow_dimm_attr[chan]);
 409                device_remove_file(&csrow->dev,
 410                                           dynamic_csrow_ce_count_attr[chan]);
 411        }
 412        put_device(&csrow->dev);
 413
 414        return err;
 415}
 416
 417/* Create a CSROW object under specifed edac_mc_device */
 418static int edac_create_csrow_objects(struct mem_ctl_info *mci)
 419{
 420        int err, i, chan;
 421        struct csrow_info *csrow;
 422
 423        for (i = 0; i < mci->nr_csrows; i++) {
 424                csrow = mci->csrows[i];
 425                if (!nr_pages_per_csrow(csrow))
 426                        continue;
 427                err = edac_create_csrow_object(mci, mci->csrows[i], i);
 428                if (err < 0)
 429                        goto error;
 430        }
 431        return 0;
 432
 433error:
 434        for (--i; i >= 0; i--) {
 435                csrow = mci->csrows[i];
 436                if (!nr_pages_per_csrow(csrow))
 437                        continue;
 438                for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
 439                        if (!csrow->channels[chan]->dimm->nr_pages)
 440                                continue;
 441                        device_remove_file(&csrow->dev,
 442                                                dynamic_csrow_dimm_attr[chan]);
 443                        device_remove_file(&csrow->dev,
 444                                                dynamic_csrow_ce_count_attr[chan]);
 445                }
 446                put_device(&mci->csrows[i]->dev);
 447        }
 448
 449        return err;
 450}
 451
 452static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
 453{
 454        int i, chan;
 455        struct csrow_info *csrow;
 456
 457        for (i = mci->nr_csrows - 1; i >= 0; i--) {
 458                csrow = mci->csrows[i];
 459                if (!nr_pages_per_csrow(csrow))
 460                        continue;
 461                for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
 462                        if (!csrow->channels[chan]->dimm->nr_pages)
 463                                continue;
 464                        edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
 465                                 i, chan);
 466                        device_remove_file(&csrow->dev,
 467                                                dynamic_csrow_dimm_attr[chan]);
 468                        device_remove_file(&csrow->dev,
 469                                                dynamic_csrow_ce_count_attr[chan]);
 470                }
 471                put_device(&mci->csrows[i]->dev);
 472                device_del(&mci->csrows[i]->dev);
 473        }
 474}
 475#endif
 476
 477/*
 478 * Per-dimm (or per-rank) devices
 479 */
 480
 481#define to_dimm(k) container_of(k, struct dimm_info, dev)
 482
 483/* show/store functions for DIMM Label attributes */
 484static ssize_t dimmdev_location_show(struct device *dev,
 485                                     struct device_attribute *mattr, char *data)
 486{
 487        struct dimm_info *dimm = to_dimm(dev);
 488
 489        return edac_dimm_info_location(dimm, data, PAGE_SIZE);
 490}
 491
 492static ssize_t dimmdev_label_show(struct device *dev,
 493                                  struct device_attribute *mattr, char *data)
 494{
 495        struct dimm_info *dimm = to_dimm(dev);
 496
 497        /* if field has not been initialized, there is nothing to send */
 498        if (!dimm->label[0])
 499                return 0;
 500
 501        return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
 502}
 503
 504static ssize_t dimmdev_label_store(struct device *dev,
 505                                   struct device_attribute *mattr,
 506                                   const char *data,
 507                                   size_t count)
 508{
 509        struct dimm_info *dimm = to_dimm(dev);
 510
 511        ssize_t max_size = 0;
 512
 513        max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
 514        strncpy(dimm->label, data, max_size);
 515        dimm->label[max_size] = '\0';
 516
 517        return max_size;
 518}
 519
 520static ssize_t dimmdev_size_show(struct device *dev,
 521                                 struct device_attribute *mattr, char *data)
 522{
 523        struct dimm_info *dimm = to_dimm(dev);
 524
 525        return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
 526}
 527
 528static ssize_t dimmdev_mem_type_show(struct device *dev,
 529                                     struct device_attribute *mattr, char *data)
 530{
 531        struct dimm_info *dimm = to_dimm(dev);
 532
 533        return sprintf(data, "%s\n", mem_types[dimm->mtype]);
 534}
 535
 536static ssize_t dimmdev_dev_type_show(struct device *dev,
 537                                     struct device_attribute *mattr, char *data)
 538{
 539        struct dimm_info *dimm = to_dimm(dev);
 540
 541        return sprintf(data, "%s\n", dev_types[dimm->dtype]);
 542}
 543
 544static ssize_t dimmdev_edac_mode_show(struct device *dev,
 545                                      struct device_attribute *mattr,
 546                                      char *data)
 547{
 548        struct dimm_info *dimm = to_dimm(dev);
 549
 550        return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
 551}
 552
 553/* dimm/rank attribute files */
 554static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
 555                   dimmdev_label_show, dimmdev_label_store);
 556static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
 557static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
 558static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
 559static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
 560static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
 561
 562/* attributes of the dimm<id>/rank<id> object */
 563static struct attribute *dimm_attrs[] = {
 564        &dev_attr_dimm_label.attr,
 565        &dev_attr_dimm_location.attr,
 566        &dev_attr_size.attr,
 567        &dev_attr_dimm_mem_type.attr,
 568        &dev_attr_dimm_dev_type.attr,
 569        &dev_attr_dimm_edac_mode.attr,
 570        NULL,
 571};
 572
 573static struct attribute_group dimm_attr_grp = {
 574        .attrs  = dimm_attrs,
 575};
 576
 577static const struct attribute_group *dimm_attr_groups[] = {
 578        &dimm_attr_grp,
 579        NULL
 580};
 581
 582static void dimm_attr_release(struct device *dev)
 583{
 584        struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
 585
 586        edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
 587        kfree(dimm);
 588}
 589
 590static struct device_type dimm_attr_type = {
 591        .groups         = dimm_attr_groups,
 592        .release        = dimm_attr_release,
 593};
 594
 595/* Create a DIMM object under specifed memory controller device */
 596static int edac_create_dimm_object(struct mem_ctl_info *mci,
 597                                   struct dimm_info *dimm,
 598                                   int index)
 599{
 600        int err;
 601        dimm->mci = mci;
 602
 603        dimm->dev.type = &dimm_attr_type;
 604        dimm->dev.bus = &mci->bus;
 605        device_initialize(&dimm->dev);
 606
 607        dimm->dev.parent = &mci->dev;
 608        if (mci->mem_is_per_rank)
 609                dev_set_name(&dimm->dev, "rank%d", index);
 610        else
 611                dev_set_name(&dimm->dev, "dimm%d", index);
 612        dev_set_drvdata(&dimm->dev, dimm);
 613        pm_runtime_forbid(&mci->dev);
 614
 615        err =  device_add(&dimm->dev);
 616
 617        edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
 618
 619        return err;
 620}
 621
 622/*
 623 * Memory controller device
 624 */
 625
 626#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
 627
 628static ssize_t mci_reset_counters_store(struct device *dev,
 629                                        struct device_attribute *mattr,
 630                                        const char *data, size_t count)
 631{
 632        struct mem_ctl_info *mci = to_mci(dev);
 633        int cnt, row, chan, i;
 634        mci->ue_mc = 0;
 635        mci->ce_mc = 0;
 636        mci->ue_noinfo_count = 0;
 637        mci->ce_noinfo_count = 0;
 638
 639        for (row = 0; row < mci->nr_csrows; row++) {
 640                struct csrow_info *ri = mci->csrows[row];
 641
 642                ri->ue_count = 0;
 643                ri->ce_count = 0;
 644
 645                for (chan = 0; chan < ri->nr_channels; chan++)
 646                        ri->channels[chan]->ce_count = 0;
 647        }
 648
 649        cnt = 1;
 650        for (i = 0; i < mci->n_layers; i++) {
 651                cnt *= mci->layers[i].size;
 652                memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
 653                memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
 654        }
 655
 656        mci->start_time = jiffies;
 657        return count;
 658}
 659
 660/* Memory scrubbing interface:
 661 *
 662 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
 663 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
 664 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
 665 *
 666 * Negative value still means that an error has occurred while setting
 667 * the scrub rate.
 668 */
 669static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
 670                                          struct device_attribute *mattr,
 671                                          const char *data, size_t count)
 672{
 673        struct mem_ctl_info *mci = to_mci(dev);
 674        unsigned long bandwidth = 0;
 675        int new_bw = 0;
 676
 677        if (!mci->set_sdram_scrub_rate)
 678                return -ENODEV;
 679
 680        if (strict_strtoul(data, 10, &bandwidth) < 0)
 681                return -EINVAL;
 682
 683        new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
 684        if (new_bw < 0) {
 685                edac_printk(KERN_WARNING, EDAC_MC,
 686                            "Error setting scrub rate to: %lu\n", bandwidth);
 687                return -EINVAL;
 688        }
 689
 690        return count;
 691}
 692
 693/*
 694 * ->get_sdram_scrub_rate() return value semantics same as above.
 695 */
 696static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
 697                                         struct device_attribute *mattr,
 698                                         char *data)
 699{
 700        struct mem_ctl_info *mci = to_mci(dev);
 701        int bandwidth = 0;
 702
 703        if (!mci->get_sdram_scrub_rate)
 704                return -ENODEV;
 705
 706        bandwidth = mci->get_sdram_scrub_rate(mci);
 707        if (bandwidth < 0) {
 708                edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
 709                return bandwidth;
 710        }
 711
 712        return sprintf(data, "%d\n", bandwidth);
 713}
 714
 715/* default attribute files for the MCI object */
 716static ssize_t mci_ue_count_show(struct device *dev,
 717                                 struct device_attribute *mattr,
 718                                 char *data)
 719{
 720        struct mem_ctl_info *mci = to_mci(dev);
 721
 722        return sprintf(data, "%d\n", mci->ue_mc);
 723}
 724
 725static ssize_t mci_ce_count_show(struct device *dev,
 726                                 struct device_attribute *mattr,
 727                                 char *data)
 728{
 729        struct mem_ctl_info *mci = to_mci(dev);
 730
 731        return sprintf(data, "%d\n", mci->ce_mc);
 732}
 733
 734static ssize_t mci_ce_noinfo_show(struct device *dev,
 735                                  struct device_attribute *mattr,
 736                                  char *data)
 737{
 738        struct mem_ctl_info *mci = to_mci(dev);
 739
 740        return sprintf(data, "%d\n", mci->ce_noinfo_count);
 741}
 742
 743static ssize_t mci_ue_noinfo_show(struct device *dev,
 744                                  struct device_attribute *mattr,
 745                                  char *data)
 746{
 747        struct mem_ctl_info *mci = to_mci(dev);
 748
 749        return sprintf(data, "%d\n", mci->ue_noinfo_count);
 750}
 751
 752static ssize_t mci_seconds_show(struct device *dev,
 753                                struct device_attribute *mattr,
 754                                char *data)
 755{
 756        struct mem_ctl_info *mci = to_mci(dev);
 757
 758        return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
 759}
 760
 761static ssize_t mci_ctl_name_show(struct device *dev,
 762                                 struct device_attribute *mattr,
 763                                 char *data)
 764{
 765        struct mem_ctl_info *mci = to_mci(dev);
 766
 767        return sprintf(data, "%s\n", mci->ctl_name);
 768}
 769
 770static ssize_t mci_size_mb_show(struct device *dev,
 771                                struct device_attribute *mattr,
 772                                char *data)
 773{
 774        struct mem_ctl_info *mci = to_mci(dev);
 775        int total_pages = 0, csrow_idx, j;
 776
 777        for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
 778                struct csrow_info *csrow = mci->csrows[csrow_idx];
 779
 780                for (j = 0; j < csrow->nr_channels; j++) {
 781                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 782
 783                        total_pages += dimm->nr_pages;
 784                }
 785        }
 786
 787        return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
 788}
 789
 790static ssize_t mci_max_location_show(struct device *dev,
 791                                     struct device_attribute *mattr,
 792                                     char *data)
 793{
 794        struct mem_ctl_info *mci = to_mci(dev);
 795        int i;
 796        char *p = data;
 797
 798        for (i = 0; i < mci->n_layers; i++) {
 799                p += sprintf(p, "%s %d ",
 800                             edac_layer_name[mci->layers[i].type],
 801                             mci->layers[i].size - 1);
 802        }
 803
 804        return p - data;
 805}
 806
 807#ifdef CONFIG_EDAC_DEBUG
 808static ssize_t edac_fake_inject_write(struct file *file,
 809                                      const char __user *data,
 810                                      size_t count, loff_t *ppos)
 811{
 812        struct device *dev = file->private_data;
 813        struct mem_ctl_info *mci = to_mci(dev);
 814        static enum hw_event_mc_err_type type;
 815        u16 errcount = mci->fake_inject_count;
 816
 817        if (!errcount)
 818                errcount = 1;
 819
 820        type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
 821                                   : HW_EVENT_ERR_CORRECTED;
 822
 823        printk(KERN_DEBUG
 824               "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
 825                errcount,
 826                (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
 827                errcount > 1 ? "s" : "",
 828                mci->fake_inject_layer[0],
 829                mci->fake_inject_layer[1],
 830                mci->fake_inject_layer[2]
 831               );
 832        edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
 833                             mci->fake_inject_layer[0],
 834                             mci->fake_inject_layer[1],
 835                             mci->fake_inject_layer[2],
 836                             "FAKE ERROR", "for EDAC testing only");
 837
 838        return count;
 839}
 840
 841static int debugfs_open(struct inode *inode, struct file *file)
 842{
 843        file->private_data = inode->i_private;
 844        return 0;
 845}
 846
 847static const struct file_operations debug_fake_inject_fops = {
 848        .open = debugfs_open,
 849        .write = edac_fake_inject_write,
 850        .llseek = generic_file_llseek,
 851};
 852#endif
 853
 854/* default Control file */
 855DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
 856
 857/* default Attribute files */
 858DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
 859DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
 860DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
 861DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
 862DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
 863DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
 864DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
 865DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
 866
 867/* memory scrubber attribute file */
 868DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
 869        mci_sdram_scrub_rate_store);
 870
 871static struct attribute *mci_attrs[] = {
 872        &dev_attr_reset_counters.attr,
 873        &dev_attr_mc_name.attr,
 874        &dev_attr_size_mb.attr,
 875        &dev_attr_seconds_since_reset.attr,
 876        &dev_attr_ue_noinfo_count.attr,
 877        &dev_attr_ce_noinfo_count.attr,
 878        &dev_attr_ue_count.attr,
 879        &dev_attr_ce_count.attr,
 880        &dev_attr_sdram_scrub_rate.attr,
 881        &dev_attr_max_location.attr,
 882        NULL
 883};
 884
 885static struct attribute_group mci_attr_grp = {
 886        .attrs  = mci_attrs,
 887};
 888
 889static const struct attribute_group *mci_attr_groups[] = {
 890        &mci_attr_grp,
 891        NULL
 892};
 893
 894static void mci_attr_release(struct device *dev)
 895{
 896        struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
 897
 898        edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
 899        kfree(mci);
 900}
 901
 902static struct device_type mci_attr_type = {
 903        .groups         = mci_attr_groups,
 904        .release        = mci_attr_release,
 905};
 906
 907#ifdef CONFIG_EDAC_DEBUG
 908static struct dentry *edac_debugfs;
 909
 910int __init edac_debugfs_init(void)
 911{
 912        edac_debugfs = debugfs_create_dir("edac", NULL);
 913        if (IS_ERR(edac_debugfs)) {
 914                edac_debugfs = NULL;
 915                return -ENOMEM;
 916        }
 917        return 0;
 918}
 919
 920void __exit edac_debugfs_exit(void)
 921{
 922        debugfs_remove(edac_debugfs);
 923}
 924
 925int edac_create_debug_nodes(struct mem_ctl_info *mci)
 926{
 927        struct dentry *d, *parent;
 928        char name[80];
 929        int i;
 930
 931        if (!edac_debugfs)
 932                return -ENODEV;
 933
 934        d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
 935        if (!d)
 936                return -ENOMEM;
 937        parent = d;
 938
 939        for (i = 0; i < mci->n_layers; i++) {
 940                sprintf(name, "fake_inject_%s",
 941                             edac_layer_name[mci->layers[i].type]);
 942                d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
 943                                      &mci->fake_inject_layer[i]);
 944                if (!d)
 945                        goto nomem;
 946        }
 947
 948        d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
 949                                &mci->fake_inject_ue);
 950        if (!d)
 951                goto nomem;
 952
 953        d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
 954                                &mci->fake_inject_count);
 955        if (!d)
 956                goto nomem;
 957
 958        d = debugfs_create_file("fake_inject", S_IWUSR, parent,
 959                                &mci->dev,
 960                                &debug_fake_inject_fops);
 961        if (!d)
 962                goto nomem;
 963
 964        mci->debugfs = parent;
 965        return 0;
 966nomem:
 967        debugfs_remove(mci->debugfs);
 968        return -ENOMEM;
 969}
 970#endif
 971
 972/*
 973 * Create a new Memory Controller kobject instance,
 974 *      mc<id> under the 'mc' directory
 975 *
 976 * Return:
 977 *      0       Success
 978 *      !0      Failure
 979 */
 980int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
 981{
 982        int i, err;
 983
 984        /*
 985         * The memory controller needs its own bus, in order to avoid
 986         * namespace conflicts at /sys/bus/edac.
 987         */
 988        mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
 989        if (!mci->bus.name)
 990                return -ENOMEM;
 991        edac_dbg(0, "creating bus %s\n", mci->bus.name);
 992        err = bus_register(&mci->bus);
 993        if (err < 0)
 994                return err;
 995
 996        /* get the /sys/devices/system/edac subsys reference */
 997        mci->dev.type = &mci_attr_type;
 998        device_initialize(&mci->dev);
 999
1000        mci->dev.parent = mci_pdev;
1001        mci->dev.bus = &mci->bus;
1002        dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1003        dev_set_drvdata(&mci->dev, mci);
1004        pm_runtime_forbid(&mci->dev);
1005
1006        edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1007        err = device_add(&mci->dev);
1008        if (err < 0) {
1009                bus_unregister(&mci->bus);
1010                kfree(mci->bus.name);
1011                return err;
1012        }
1013
1014        /*
1015         * Create the dimm/rank devices
1016         */
1017        for (i = 0; i < mci->tot_dimms; i++) {
1018                struct dimm_info *dimm = mci->dimms[i];
1019                /* Only expose populated DIMMs */
1020                if (dimm->nr_pages == 0)
1021                        continue;
1022#ifdef CONFIG_EDAC_DEBUG
1023                edac_dbg(1, "creating dimm%d, located at ", i);
1024                if (edac_debug_level >= 1) {
1025                        int lay;
1026                        for (lay = 0; lay < mci->n_layers; lay++)
1027                                printk(KERN_CONT "%s %d ",
1028                                        edac_layer_name[mci->layers[lay].type],
1029                                        dimm->location[lay]);
1030                        printk(KERN_CONT "\n");
1031                }
1032#endif
1033                err = edac_create_dimm_object(mci, dimm, i);
1034                if (err) {
1035                        edac_dbg(1, "failure: create dimm %d obj\n", i);
1036                        goto fail;
1037                }
1038        }
1039
1040#ifdef CONFIG_EDAC_LEGACY_SYSFS
1041        err = edac_create_csrow_objects(mci);
1042        if (err < 0)
1043                goto fail;
1044#endif
1045
1046#ifdef CONFIG_EDAC_DEBUG
1047        edac_create_debug_nodes(mci);
1048#endif
1049        return 0;
1050
1051fail:
1052        for (i--; i >= 0; i--) {
1053                struct dimm_info *dimm = mci->dimms[i];
1054                if (dimm->nr_pages == 0)
1055                        continue;
1056                put_device(&dimm->dev);
1057                device_del(&dimm->dev);
1058        }
1059        put_device(&mci->dev);
1060        device_del(&mci->dev);
1061        bus_unregister(&mci->bus);
1062        kfree(mci->bus.name);
1063        return err;
1064}
1065
1066/*
1067 * remove a Memory Controller instance
1068 */
1069void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1070{
1071        int i;
1072
1073        edac_dbg(0, "\n");
1074
1075#ifdef CONFIG_EDAC_DEBUG
1076        debugfs_remove(mci->debugfs);
1077#endif
1078#ifdef CONFIG_EDAC_LEGACY_SYSFS
1079        edac_delete_csrow_objects(mci);
1080#endif
1081
1082        for (i = 0; i < mci->tot_dimms; i++) {
1083                struct dimm_info *dimm = mci->dimms[i];
1084                if (dimm->nr_pages == 0)
1085                        continue;
1086                edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1087                put_device(&dimm->dev);
1088                device_del(&dimm->dev);
1089        }
1090}
1091
1092void edac_unregister_sysfs(struct mem_ctl_info *mci)
1093{
1094        edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1095        put_device(&mci->dev);
1096        device_del(&mci->dev);
1097        bus_unregister(&mci->bus);
1098        kfree(mci->bus.name);
1099}
1100
1101static void mc_attr_release(struct device *dev)
1102{
1103        /*
1104         * There's no container structure here, as this is just the mci
1105         * parent device, used to create the /sys/devices/mc sysfs node.
1106         * So, there are no attributes on it.
1107         */
1108        edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1109        kfree(dev);
1110}
1111
1112static struct device_type mc_attr_type = {
1113        .release        = mc_attr_release,
1114};
1115/*
1116 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1117 */
1118int __init edac_mc_sysfs_init(void)
1119{
1120        struct bus_type *edac_subsys;
1121        int err;
1122
1123        /* get the /sys/devices/system/edac subsys reference */
1124        edac_subsys = edac_get_sysfs_subsys();
1125        if (edac_subsys == NULL) {
1126                edac_dbg(1, "no edac_subsys\n");
1127                return -EINVAL;
1128        }
1129
1130        mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1131
1132        mci_pdev->bus = edac_subsys;
1133        mci_pdev->type = &mc_attr_type;
1134        device_initialize(mci_pdev);
1135        dev_set_name(mci_pdev, "mc");
1136
1137        err = device_add(mci_pdev);
1138        if (err < 0)
1139                return err;
1140
1141        edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1142
1143        return 0;
1144}
1145
1146void __exit edac_mc_sysfs_exit(void)
1147{
1148        put_device(mci_pdev);
1149        device_del(mci_pdev);
1150        edac_put_sysfs_subsys();
1151}
1152
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.