linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80        .prereset               = ata_std_prereset,
  81        .postreset              = ata_std_postreset,
  82        .error_handler          = ata_std_error_handler,
  83        .sched_eh               = ata_std_sched_eh,
  84        .end_eh                 = ata_std_end_eh,
  85};
  86
  87const struct ata_port_operations sata_port_ops = {
  88        .inherits               = &ata_base_port_ops,
  89
  90        .qc_defer               = ata_std_qc_defer,
  91        .hardreset              = sata_std_hardreset,
  92};
  93
  94static unsigned int ata_dev_init_params(struct ata_device *dev,
  95                                        u16 heads, u16 sectors);
  96static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  97static void ata_dev_xfermask(struct ata_device *dev);
  98static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  99
 100atomic_t ata_print_id = ATOMIC_INIT(0);
 101
 102struct ata_force_param {
 103        const char      *name;
 104        unsigned int    cbl;
 105        int             spd_limit;
 106        unsigned long   xfer_mask;
 107        unsigned int    horkage_on;
 108        unsigned int    horkage_off;
 109        unsigned int    lflags;
 110};
 111
 112struct ata_force_ent {
 113        int                     port;
 114        int                     device;
 115        struct ata_force_param  param;
 116};
 117
 118static struct ata_force_ent *ata_force_tbl;
 119static int ata_force_tbl_size;
 120
 121static char ata_force_param_buf[PAGE_SIZE] __initdata;
 122/* param_buf is thrown away after initialization, disallow read */
 123module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 124MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 125
 126static int atapi_enabled = 1;
 127module_param(atapi_enabled, int, 0444);
 128MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 129
 130static int atapi_dmadir = 0;
 131module_param(atapi_dmadir, int, 0444);
 132MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 133
 134int atapi_passthru16 = 1;
 135module_param(atapi_passthru16, int, 0444);
 136MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 137
 138int libata_fua = 0;
 139module_param_named(fua, libata_fua, int, 0444);
 140MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 141
 142static int ata_ignore_hpa;
 143module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 144MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 145
 146static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 147module_param_named(dma, libata_dma_mask, int, 0444);
 148MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 149
 150static int ata_probe_timeout;
 151module_param(ata_probe_timeout, int, 0444);
 152MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 153
 154int libata_noacpi = 0;
 155module_param_named(noacpi, libata_noacpi, int, 0444);
 156MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 157
 158int libata_allow_tpm = 0;
 159module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 160MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 161
 162static int atapi_an;
 163module_param(atapi_an, int, 0444);
 164MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 165
 166MODULE_AUTHOR("Jeff Garzik");
 167MODULE_DESCRIPTION("Library module for ATA devices");
 168MODULE_LICENSE("GPL");
 169MODULE_VERSION(DRV_VERSION);
 170
 171
 172static bool ata_sstatus_online(u32 sstatus)
 173{
 174        return (sstatus & 0xf) == 0x3;
 175}
 176
 177/**
 178 *      ata_link_next - link iteration helper
 179 *      @link: the previous link, NULL to start
 180 *      @ap: ATA port containing links to iterate
 181 *      @mode: iteration mode, one of ATA_LITER_*
 182 *
 183 *      LOCKING:
 184 *      Host lock or EH context.
 185 *
 186 *      RETURNS:
 187 *      Pointer to the next link.
 188 */
 189struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 190                               enum ata_link_iter_mode mode)
 191{
 192        BUG_ON(mode != ATA_LITER_EDGE &&
 193               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 194
 195        /* NULL link indicates start of iteration */
 196        if (!link)
 197                switch (mode) {
 198                case ATA_LITER_EDGE:
 199                case ATA_LITER_PMP_FIRST:
 200                        if (sata_pmp_attached(ap))
 201                                return ap->pmp_link;
 202                        /* fall through */
 203                case ATA_LITER_HOST_FIRST:
 204                        return &ap->link;
 205                }
 206
 207        /* we just iterated over the host link, what's next? */
 208        if (link == &ap->link)
 209                switch (mode) {
 210                case ATA_LITER_HOST_FIRST:
 211                        if (sata_pmp_attached(ap))
 212                                return ap->pmp_link;
 213                        /* fall through */
 214                case ATA_LITER_PMP_FIRST:
 215                        if (unlikely(ap->slave_link))
 216                                return ap->slave_link;
 217                        /* fall through */
 218                case ATA_LITER_EDGE:
 219                        return NULL;
 220                }
 221
 222        /* slave_link excludes PMP */
 223        if (unlikely(link == ap->slave_link))
 224                return NULL;
 225
 226        /* we were over a PMP link */
 227        if (++link < ap->pmp_link + ap->nr_pmp_links)
 228                return link;
 229
 230        if (mode == ATA_LITER_PMP_FIRST)
 231                return &ap->link;
 232
 233        return NULL;
 234}
 235
 236/**
 237 *      ata_dev_next - device iteration helper
 238 *      @dev: the previous device, NULL to start
 239 *      @link: ATA link containing devices to iterate
 240 *      @mode: iteration mode, one of ATA_DITER_*
 241 *
 242 *      LOCKING:
 243 *      Host lock or EH context.
 244 *
 245 *      RETURNS:
 246 *      Pointer to the next device.
 247 */
 248struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 249                                enum ata_dev_iter_mode mode)
 250{
 251        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 252               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 253
 254        /* NULL dev indicates start of iteration */
 255        if (!dev)
 256                switch (mode) {
 257                case ATA_DITER_ENABLED:
 258                case ATA_DITER_ALL:
 259                        dev = link->device;
 260                        goto check;
 261                case ATA_DITER_ENABLED_REVERSE:
 262                case ATA_DITER_ALL_REVERSE:
 263                        dev = link->device + ata_link_max_devices(link) - 1;
 264                        goto check;
 265                }
 266
 267 next:
 268        /* move to the next one */
 269        switch (mode) {
 270        case ATA_DITER_ENABLED:
 271        case ATA_DITER_ALL:
 272                if (++dev < link->device + ata_link_max_devices(link))
 273                        goto check;
 274                return NULL;
 275        case ATA_DITER_ENABLED_REVERSE:
 276        case ATA_DITER_ALL_REVERSE:
 277                if (--dev >= link->device)
 278                        goto check;
 279                return NULL;
 280        }
 281
 282 check:
 283        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 284            !ata_dev_enabled(dev))
 285                goto next;
 286        return dev;
 287}
 288
 289/**
 290 *      ata_dev_phys_link - find physical link for a device
 291 *      @dev: ATA device to look up physical link for
 292 *
 293 *      Look up physical link which @dev is attached to.  Note that
 294 *      this is different from @dev->link only when @dev is on slave
 295 *      link.  For all other cases, it's the same as @dev->link.
 296 *
 297 *      LOCKING:
 298 *      Don't care.
 299 *
 300 *      RETURNS:
 301 *      Pointer to the found physical link.
 302 */
 303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 304{
 305        struct ata_port *ap = dev->link->ap;
 306
 307        if (!ap->slave_link)
 308                return dev->link;
 309        if (!dev->devno)
 310                return &ap->link;
 311        return ap->slave_link;
 312}
 313
 314/**
 315 *      ata_force_cbl - force cable type according to libata.force
 316 *      @ap: ATA port of interest
 317 *
 318 *      Force cable type according to libata.force and whine about it.
 319 *      The last entry which has matching port number is used, so it
 320 *      can be specified as part of device force parameters.  For
 321 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 322 *      same effect.
 323 *
 324 *      LOCKING:
 325 *      EH context.
 326 */
 327void ata_force_cbl(struct ata_port *ap)
 328{
 329        int i;
 330
 331        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 332                const struct ata_force_ent *fe = &ata_force_tbl[i];
 333
 334                if (fe->port != -1 && fe->port != ap->print_id)
 335                        continue;
 336
 337                if (fe->param.cbl == ATA_CBL_NONE)
 338                        continue;
 339
 340                ap->cbl = fe->param.cbl;
 341                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 342                return;
 343        }
 344}
 345
 346/**
 347 *      ata_force_link_limits - force link limits according to libata.force
 348 *      @link: ATA link of interest
 349 *
 350 *      Force link flags and SATA spd limit according to libata.force
 351 *      and whine about it.  When only the port part is specified
 352 *      (e.g. 1:), the limit applies to all links connected to both
 353 *      the host link and all fan-out ports connected via PMP.  If the
 354 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 355 *      first fan-out link not the host link.  Device number 15 always
 356 *      points to the host link whether PMP is attached or not.  If the
 357 *      controller has slave link, device number 16 points to it.
 358 *
 359 *      LOCKING:
 360 *      EH context.
 361 */
 362static void ata_force_link_limits(struct ata_link *link)
 363{
 364        bool did_spd = false;
 365        int linkno = link->pmp;
 366        int i;
 367
 368        if (ata_is_host_link(link))
 369                linkno += 15;
 370
 371        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 372                const struct ata_force_ent *fe = &ata_force_tbl[i];
 373
 374                if (fe->port != -1 && fe->port != link->ap->print_id)
 375                        continue;
 376
 377                if (fe->device != -1 && fe->device != linkno)
 378                        continue;
 379
 380                /* only honor the first spd limit */
 381                if (!did_spd && fe->param.spd_limit) {
 382                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 383                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 384                                        fe->param.name);
 385                        did_spd = true;
 386                }
 387
 388                /* let lflags stack */
 389                if (fe->param.lflags) {
 390                        link->flags |= fe->param.lflags;
 391                        ata_link_notice(link,
 392                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 393                                        fe->param.lflags, link->flags);
 394                }
 395        }
 396}
 397
 398/**
 399 *      ata_force_xfermask - force xfermask according to libata.force
 400 *      @dev: ATA device of interest
 401 *
 402 *      Force xfer_mask according to libata.force and whine about it.
 403 *      For consistency with link selection, device number 15 selects
 404 *      the first device connected to the host link.
 405 *
 406 *      LOCKING:
 407 *      EH context.
 408 */
 409static void ata_force_xfermask(struct ata_device *dev)
 410{
 411        int devno = dev->link->pmp + dev->devno;
 412        int alt_devno = devno;
 413        int i;
 414
 415        /* allow n.15/16 for devices attached to host port */
 416        if (ata_is_host_link(dev->link))
 417                alt_devno += 15;
 418
 419        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 420                const struct ata_force_ent *fe = &ata_force_tbl[i];
 421                unsigned long pio_mask, mwdma_mask, udma_mask;
 422
 423                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 424                        continue;
 425
 426                if (fe->device != -1 && fe->device != devno &&
 427                    fe->device != alt_devno)
 428                        continue;
 429
 430                if (!fe->param.xfer_mask)
 431                        continue;
 432
 433                ata_unpack_xfermask(fe->param.xfer_mask,
 434                                    &pio_mask, &mwdma_mask, &udma_mask);
 435                if (udma_mask)
 436                        dev->udma_mask = udma_mask;
 437                else if (mwdma_mask) {
 438                        dev->udma_mask = 0;
 439                        dev->mwdma_mask = mwdma_mask;
 440                } else {
 441                        dev->udma_mask = 0;
 442                        dev->mwdma_mask = 0;
 443                        dev->pio_mask = pio_mask;
 444                }
 445
 446                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 447                               fe->param.name);
 448                return;
 449        }
 450}
 451
 452/**
 453 *      ata_force_horkage - force horkage according to libata.force
 454 *      @dev: ATA device of interest
 455 *
 456 *      Force horkage according to libata.force and whine about it.
 457 *      For consistency with link selection, device number 15 selects
 458 *      the first device connected to the host link.
 459 *
 460 *      LOCKING:
 461 *      EH context.
 462 */
 463static void ata_force_horkage(struct ata_device *dev)
 464{
 465        int devno = dev->link->pmp + dev->devno;
 466        int alt_devno = devno;
 467        int i;
 468
 469        /* allow n.15/16 for devices attached to host port */
 470        if (ata_is_host_link(dev->link))
 471                alt_devno += 15;
 472
 473        for (i = 0; i < ata_force_tbl_size; i++) {
 474                const struct ata_force_ent *fe = &ata_force_tbl[i];
 475
 476                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 477                        continue;
 478
 479                if (fe->device != -1 && fe->device != devno &&
 480                    fe->device != alt_devno)
 481                        continue;
 482
 483                if (!(~dev->horkage & fe->param.horkage_on) &&
 484                    !(dev->horkage & fe->param.horkage_off))
 485                        continue;
 486
 487                dev->horkage |= fe->param.horkage_on;
 488                dev->horkage &= ~fe->param.horkage_off;
 489
 490                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 491                               fe->param.name);
 492        }
 493}
 494
 495/**
 496 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 497 *      @opcode: SCSI opcode
 498 *
 499 *      Determine ATAPI command type from @opcode.
 500 *
 501 *      LOCKING:
 502 *      None.
 503 *
 504 *      RETURNS:
 505 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 506 */
 507int atapi_cmd_type(u8 opcode)
 508{
 509        switch (opcode) {
 510        case GPCMD_READ_10:
 511        case GPCMD_READ_12:
 512                return ATAPI_READ;
 513
 514        case GPCMD_WRITE_10:
 515        case GPCMD_WRITE_12:
 516        case GPCMD_WRITE_AND_VERIFY_10:
 517                return ATAPI_WRITE;
 518
 519        case GPCMD_READ_CD:
 520        case GPCMD_READ_CD_MSF:
 521                return ATAPI_READ_CD;
 522
 523        case ATA_16:
 524        case ATA_12:
 525                if (atapi_passthru16)
 526                        return ATAPI_PASS_THRU;
 527                /* fall thru */
 528        default:
 529                return ATAPI_MISC;
 530        }
 531}
 532
 533/**
 534 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 535 *      @tf: Taskfile to convert
 536 *      @pmp: Port multiplier port
 537 *      @is_cmd: This FIS is for command
 538 *      @fis: Buffer into which data will output
 539 *
 540 *      Converts a standard ATA taskfile to a Serial ATA
 541 *      FIS structure (Register - Host to Device).
 542 *
 543 *      LOCKING:
 544 *      Inherited from caller.
 545 */
 546void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 547{
 548        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 549        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 550        if (is_cmd)
 551                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 552
 553        fis[2] = tf->command;
 554        fis[3] = tf->feature;
 555
 556        fis[4] = tf->lbal;
 557        fis[5] = tf->lbam;
 558        fis[6] = tf->lbah;
 559        fis[7] = tf->device;
 560
 561        fis[8] = tf->hob_lbal;
 562        fis[9] = tf->hob_lbam;
 563        fis[10] = tf->hob_lbah;
 564        fis[11] = tf->hob_feature;
 565
 566        fis[12] = tf->nsect;
 567        fis[13] = tf->hob_nsect;
 568        fis[14] = 0;
 569        fis[15] = tf->ctl;
 570
 571        fis[16] = 0;
 572        fis[17] = 0;
 573        fis[18] = 0;
 574        fis[19] = 0;
 575}
 576
 577/**
 578 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 579 *      @fis: Buffer from which data will be input
 580 *      @tf: Taskfile to output
 581 *
 582 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 583 *
 584 *      LOCKING:
 585 *      Inherited from caller.
 586 */
 587
 588void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 589{
 590        tf->command     = fis[2];       /* status */
 591        tf->feature     = fis[3];       /* error */
 592
 593        tf->lbal        = fis[4];
 594        tf->lbam        = fis[5];
 595        tf->lbah        = fis[6];
 596        tf->device      = fis[7];
 597
 598        tf->hob_lbal    = fis[8];
 599        tf->hob_lbam    = fis[9];
 600        tf->hob_lbah    = fis[10];
 601
 602        tf->nsect       = fis[12];
 603        tf->hob_nsect   = fis[13];
 604}
 605
 606static const u8 ata_rw_cmds[] = {
 607        /* pio multi */
 608        ATA_CMD_READ_MULTI,
 609        ATA_CMD_WRITE_MULTI,
 610        ATA_CMD_READ_MULTI_EXT,
 611        ATA_CMD_WRITE_MULTI_EXT,
 612        0,
 613        0,
 614        0,
 615        ATA_CMD_WRITE_MULTI_FUA_EXT,
 616        /* pio */
 617        ATA_CMD_PIO_READ,
 618        ATA_CMD_PIO_WRITE,
 619        ATA_CMD_PIO_READ_EXT,
 620        ATA_CMD_PIO_WRITE_EXT,
 621        0,
 622        0,
 623        0,
 624        0,
 625        /* dma */
 626        ATA_CMD_READ,
 627        ATA_CMD_WRITE,
 628        ATA_CMD_READ_EXT,
 629        ATA_CMD_WRITE_EXT,
 630        0,
 631        0,
 632        0,
 633        ATA_CMD_WRITE_FUA_EXT
 634};
 635
 636/**
 637 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 638 *      @tf: command to examine and configure
 639 *      @dev: device tf belongs to
 640 *
 641 *      Examine the device configuration and tf->flags to calculate
 642 *      the proper read/write commands and protocol to use.
 643 *
 644 *      LOCKING:
 645 *      caller.
 646 */
 647static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 648{
 649        u8 cmd;
 650
 651        int index, fua, lba48, write;
 652
 653        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 654        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 655        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 656
 657        if (dev->flags & ATA_DFLAG_PIO) {
 658                tf->protocol = ATA_PROT_PIO;
 659                index = dev->multi_count ? 0 : 8;
 660        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 661                /* Unable to use DMA due to host limitation */
 662                tf->protocol = ATA_PROT_PIO;
 663                index = dev->multi_count ? 0 : 8;
 664        } else {
 665                tf->protocol = ATA_PROT_DMA;
 666                index = 16;
 667        }
 668
 669        cmd = ata_rw_cmds[index + fua + lba48 + write];
 670        if (cmd) {
 671                tf->command = cmd;
 672                return 0;
 673        }
 674        return -1;
 675}
 676
 677/**
 678 *      ata_tf_read_block - Read block address from ATA taskfile
 679 *      @tf: ATA taskfile of interest
 680 *      @dev: ATA device @tf belongs to
 681 *
 682 *      LOCKING:
 683 *      None.
 684 *
 685 *      Read block address from @tf.  This function can handle all
 686 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 687 *      flags select the address format to use.
 688 *
 689 *      RETURNS:
 690 *      Block address read from @tf.
 691 */
 692u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 693{
 694        u64 block = 0;
 695
 696        if (tf->flags & ATA_TFLAG_LBA) {
 697                if (tf->flags & ATA_TFLAG_LBA48) {
 698                        block |= (u64)tf->hob_lbah << 40;
 699                        block |= (u64)tf->hob_lbam << 32;
 700                        block |= (u64)tf->hob_lbal << 24;
 701                } else
 702                        block |= (tf->device & 0xf) << 24;
 703
 704                block |= tf->lbah << 16;
 705                block |= tf->lbam << 8;
 706                block |= tf->lbal;
 707        } else {
 708                u32 cyl, head, sect;
 709
 710                cyl = tf->lbam | (tf->lbah << 8);
 711                head = tf->device & 0xf;
 712                sect = tf->lbal;
 713
 714                if (!sect) {
 715                        ata_dev_warn(dev,
 716                                     "device reported invalid CHS sector 0\n");
 717                        sect = 1; /* oh well */
 718                }
 719
 720                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 721        }
 722
 723        return block;
 724}
 725
 726/**
 727 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 728 *      @tf: Target ATA taskfile
 729 *      @dev: ATA device @tf belongs to
 730 *      @block: Block address
 731 *      @n_block: Number of blocks
 732 *      @tf_flags: RW/FUA etc...
 733 *      @tag: tag
 734 *
 735 *      LOCKING:
 736 *      None.
 737 *
 738 *      Build ATA taskfile @tf for read/write request described by
 739 *      @block, @n_block, @tf_flags and @tag on @dev.
 740 *
 741 *      RETURNS:
 742 *
 743 *      0 on success, -ERANGE if the request is too large for @dev,
 744 *      -EINVAL if the request is invalid.
 745 */
 746int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 747                    u64 block, u32 n_block, unsigned int tf_flags,
 748                    unsigned int tag)
 749{
 750        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 751        tf->flags |= tf_flags;
 752
 753        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 754                /* yay, NCQ */
 755                if (!lba_48_ok(block, n_block))
 756                        return -ERANGE;
 757
 758                tf->protocol = ATA_PROT_NCQ;
 759                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 760
 761                if (tf->flags & ATA_TFLAG_WRITE)
 762                        tf->command = ATA_CMD_FPDMA_WRITE;
 763                else
 764                        tf->command = ATA_CMD_FPDMA_READ;
 765
 766                tf->nsect = tag << 3;
 767                tf->hob_feature = (n_block >> 8) & 0xff;
 768                tf->feature = n_block & 0xff;
 769
 770                tf->hob_lbah = (block >> 40) & 0xff;
 771                tf->hob_lbam = (block >> 32) & 0xff;
 772                tf->hob_lbal = (block >> 24) & 0xff;
 773                tf->lbah = (block >> 16) & 0xff;
 774                tf->lbam = (block >> 8) & 0xff;
 775                tf->lbal = block & 0xff;
 776
 777                tf->device = ATA_LBA;
 778                if (tf->flags & ATA_TFLAG_FUA)
 779                        tf->device |= 1 << 7;
 780        } else if (dev->flags & ATA_DFLAG_LBA) {
 781                tf->flags |= ATA_TFLAG_LBA;
 782
 783                if (lba_28_ok(block, n_block)) {
 784                        /* use LBA28 */
 785                        tf->device |= (block >> 24) & 0xf;
 786                } else if (lba_48_ok(block, n_block)) {
 787                        if (!(dev->flags & ATA_DFLAG_LBA48))
 788                                return -ERANGE;
 789
 790                        /* use LBA48 */
 791                        tf->flags |= ATA_TFLAG_LBA48;
 792
 793                        tf->hob_nsect = (n_block >> 8) & 0xff;
 794
 795                        tf->hob_lbah = (block >> 40) & 0xff;
 796                        tf->hob_lbam = (block >> 32) & 0xff;
 797                        tf->hob_lbal = (block >> 24) & 0xff;
 798                } else
 799                        /* request too large even for LBA48 */
 800                        return -ERANGE;
 801
 802                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 803                        return -EINVAL;
 804
 805                tf->nsect = n_block & 0xff;
 806
 807                tf->lbah = (block >> 16) & 0xff;
 808                tf->lbam = (block >> 8) & 0xff;
 809                tf->lbal = block & 0xff;
 810
 811                tf->device |= ATA_LBA;
 812        } else {
 813                /* CHS */
 814                u32 sect, head, cyl, track;
 815
 816                /* The request -may- be too large for CHS addressing. */
 817                if (!lba_28_ok(block, n_block))
 818                        return -ERANGE;
 819
 820                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 821                        return -EINVAL;
 822
 823                /* Convert LBA to CHS */
 824                track = (u32)block / dev->sectors;
 825                cyl   = track / dev->heads;
 826                head  = track % dev->heads;
 827                sect  = (u32)block % dev->sectors + 1;
 828
 829                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 830                        (u32)block, track, cyl, head, sect);
 831
 832                /* Check whether the converted CHS can fit.
 833                   Cylinder: 0-65535
 834                   Head: 0-15
 835                   Sector: 1-255*/
 836                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 837                        return -ERANGE;
 838
 839                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 840                tf->lbal = sect;
 841                tf->lbam = cyl;
 842                tf->lbah = cyl >> 8;
 843                tf->device |= head;
 844        }
 845
 846        return 0;
 847}
 848
 849/**
 850 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 851 *      @pio_mask: pio_mask
 852 *      @mwdma_mask: mwdma_mask
 853 *      @udma_mask: udma_mask
 854 *
 855 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 856 *      unsigned int xfer_mask.
 857 *
 858 *      LOCKING:
 859 *      None.
 860 *
 861 *      RETURNS:
 862 *      Packed xfer_mask.
 863 */
 864unsigned long ata_pack_xfermask(unsigned long pio_mask,
 865                                unsigned long mwdma_mask,
 866                                unsigned long udma_mask)
 867{
 868        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 869                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 870                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 871}
 872
 873/**
 874 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 875 *      @xfer_mask: xfer_mask to unpack
 876 *      @pio_mask: resulting pio_mask
 877 *      @mwdma_mask: resulting mwdma_mask
 878 *      @udma_mask: resulting udma_mask
 879 *
 880 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 881 *      Any NULL distination masks will be ignored.
 882 */
 883void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 884                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 885{
 886        if (pio_mask)
 887                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 888        if (mwdma_mask)
 889                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 890        if (udma_mask)
 891                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 892}
 893
 894static const struct ata_xfer_ent {
 895        int shift, bits;
 896        u8 base;
 897} ata_xfer_tbl[] = {
 898        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 899        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 900        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 901        { -1, },
 902};
 903
 904/**
 905 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 906 *      @xfer_mask: xfer_mask of interest
 907 *
 908 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 909 *      bit of @xfer_mask is considered.
 910 *
 911 *      LOCKING:
 912 *      None.
 913 *
 914 *      RETURNS:
 915 *      Matching XFER_* value, 0xff if no match found.
 916 */
 917u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 918{
 919        int highbit = fls(xfer_mask) - 1;
 920        const struct ata_xfer_ent *ent;
 921
 922        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 923                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 924                        return ent->base + highbit - ent->shift;
 925        return 0xff;
 926}
 927
 928/**
 929 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 930 *      @xfer_mode: XFER_* of interest
 931 *
 932 *      Return matching xfer_mask for @xfer_mode.
 933 *
 934 *      LOCKING:
 935 *      None.
 936 *
 937 *      RETURNS:
 938 *      Matching xfer_mask, 0 if no match found.
 939 */
 940unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 941{
 942        const struct ata_xfer_ent *ent;
 943
 944        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 945                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 946                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 947                                & ~((1 << ent->shift) - 1);
 948        return 0;
 949}
 950
 951/**
 952 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 953 *      @xfer_mode: XFER_* of interest
 954 *
 955 *      Return matching xfer_shift for @xfer_mode.
 956 *
 957 *      LOCKING:
 958 *      None.
 959 *
 960 *      RETURNS:
 961 *      Matching xfer_shift, -1 if no match found.
 962 */
 963int ata_xfer_mode2shift(unsigned long xfer_mode)
 964{
 965        const struct ata_xfer_ent *ent;
 966
 967        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 968                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 969                        return ent->shift;
 970        return -1;
 971}
 972
 973/**
 974 *      ata_mode_string - convert xfer_mask to string
 975 *      @xfer_mask: mask of bits supported; only highest bit counts.
 976 *
 977 *      Determine string which represents the highest speed
 978 *      (highest bit in @modemask).
 979 *
 980 *      LOCKING:
 981 *      None.
 982 *
 983 *      RETURNS:
 984 *      Constant C string representing highest speed listed in
 985 *      @mode_mask, or the constant C string "<n/a>".
 986 */
 987const char *ata_mode_string(unsigned long xfer_mask)
 988{
 989        static const char * const xfer_mode_str[] = {
 990                "PIO0",
 991                "PIO1",
 992                "PIO2",
 993                "PIO3",
 994                "PIO4",
 995                "PIO5",
 996                "PIO6",
 997                "MWDMA0",
 998                "MWDMA1",
 999                "MWDMA2",
1000                "MWDMA3",
1001                "MWDMA4",
1002                "UDMA/16",
1003                "UDMA/25",
1004                "UDMA/33",
1005                "UDMA/44",
1006                "UDMA/66",
1007                "UDMA/100",
1008                "UDMA/133",
1009                "UDMA7",
1010        };
1011        int highbit;
1012
1013        highbit = fls(xfer_mask) - 1;
1014        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015                return xfer_mode_str[highbit];
1016        return "<n/a>";
1017}
1018
1019const char *sata_spd_string(unsigned int spd)
1020{
1021        static const char * const spd_str[] = {
1022                "1.5 Gbps",
1023                "3.0 Gbps",
1024                "6.0 Gbps",
1025        };
1026
1027        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028                return "<unknown>";
1029        return spd_str[spd - 1];
1030}
1031
1032/**
1033 *      ata_dev_classify - determine device type based on ATA-spec signature
1034 *      @tf: ATA taskfile register set for device to be identified
1035 *
1036 *      Determine from taskfile register contents whether a device is
1037 *      ATA or ATAPI, as per "Signature and persistence" section
1038 *      of ATA/PI spec (volume 1, sect 5.14).
1039 *
1040 *      LOCKING:
1041 *      None.
1042 *
1043 *      RETURNS:
1044 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045 *      %ATA_DEV_UNKNOWN the event of failure.
1046 */
1047unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048{
1049        /* Apple's open source Darwin code hints that some devices only
1050         * put a proper signature into the LBA mid/high registers,
1051         * So, we only check those.  It's sufficient for uniqueness.
1052         *
1053         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054         * signatures for ATA and ATAPI devices attached on SerialATA,
1055         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1056         * spec has never mentioned about using different signatures
1057         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1058         * Multiplier specification began to use 0x69/0x96 to identify
1059         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061         * 0x69/0x96 shortly and described them as reserved for
1062         * SerialATA.
1063         *
1064         * We follow the current spec and consider that 0x69/0x96
1065         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067         * SEMB signature.  This is worked around in
1068         * ata_dev_read_id().
1069         */
1070        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071                DPRINTK("found ATA device by sig\n");
1072                return ATA_DEV_ATA;
1073        }
1074
1075        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076                DPRINTK("found ATAPI device by sig\n");
1077                return ATA_DEV_ATAPI;
1078        }
1079
1080        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081                DPRINTK("found PMP device by sig\n");
1082                return ATA_DEV_PMP;
1083        }
1084
1085        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087                return ATA_DEV_SEMB;
1088        }
1089
1090        DPRINTK("unknown device\n");
1091        return ATA_DEV_UNKNOWN;
1092}
1093
1094/**
1095 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1096 *      @id: IDENTIFY DEVICE results we will examine
1097 *      @s: string into which data is output
1098 *      @ofs: offset into identify device page
1099 *      @len: length of string to return. must be an even number.
1100 *
1101 *      The strings in the IDENTIFY DEVICE page are broken up into
1102 *      16-bit chunks.  Run through the string, and output each
1103 *      8-bit chunk linearly, regardless of platform.
1104 *
1105 *      LOCKING:
1106 *      caller.
1107 */
1108
1109void ata_id_string(const u16 *id, unsigned char *s,
1110                   unsigned int ofs, unsigned int len)
1111{
1112        unsigned int c;
1113
1114        BUG_ON(len & 1);
1115
1116        while (len > 0) {
1117                c = id[ofs] >> 8;
1118                *s = c;
1119                s++;
1120
1121                c = id[ofs] & 0xff;
1122                *s = c;
1123                s++;
1124
1125                ofs++;
1126                len -= 2;
1127        }
1128}
1129
1130/**
1131 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132 *      @id: IDENTIFY DEVICE results we will examine
1133 *      @s: string into which data is output
1134 *      @ofs: offset into identify device page
1135 *      @len: length of string to return. must be an odd number.
1136 *
1137 *      This function is identical to ata_id_string except that it
1138 *      trims trailing spaces and terminates the resulting string with
1139 *      null.  @len must be actual maximum length (even number) + 1.
1140 *
1141 *      LOCKING:
1142 *      caller.
1143 */
1144void ata_id_c_string(const u16 *id, unsigned char *s,
1145                     unsigned int ofs, unsigned int len)
1146{
1147        unsigned char *p;
1148
1149        ata_id_string(id, s, ofs, len - 1);
1150
1151        p = s + strnlen(s, len - 1);
1152        while (p > s && p[-1] == ' ')
1153                p--;
1154        *p = '\0';
1155}
1156
1157static u64 ata_id_n_sectors(const u16 *id)
1158{
1159        if (ata_id_has_lba(id)) {
1160                if (ata_id_has_lba48(id))
1161                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162                else
1163                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164        } else {
1165                if (ata_id_current_chs_valid(id))
1166                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167                               id[ATA_ID_CUR_SECTORS];
1168                else
1169                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170                               id[ATA_ID_SECTORS];
1171        }
1172}
1173
1174u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175{
1176        u64 sectors = 0;
1177
1178        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181        sectors |= (tf->lbah & 0xff) << 16;
1182        sectors |= (tf->lbam & 0xff) << 8;
1183        sectors |= (tf->lbal & 0xff);
1184
1185        return sectors;
1186}
1187
1188u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189{
1190        u64 sectors = 0;
1191
1192        sectors |= (tf->device & 0x0f) << 24;
1193        sectors |= (tf->lbah & 0xff) << 16;
1194        sectors |= (tf->lbam & 0xff) << 8;
1195        sectors |= (tf->lbal & 0xff);
1196
1197        return sectors;
1198}
1199
1200/**
1201 *      ata_read_native_max_address - Read native max address
1202 *      @dev: target device
1203 *      @max_sectors: out parameter for the result native max address
1204 *
1205 *      Perform an LBA48 or LBA28 native size query upon the device in
1206 *      question.
1207 *
1208 *      RETURNS:
1209 *      0 on success, -EACCES if command is aborted by the drive.
1210 *      -EIO on other errors.
1211 */
1212static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213{
1214        unsigned int err_mask;
1215        struct ata_taskfile tf;
1216        int lba48 = ata_id_has_lba48(dev->id);
1217
1218        ata_tf_init(dev, &tf);
1219
1220        /* always clear all address registers */
1221        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223        if (lba48) {
1224                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225                tf.flags |= ATA_TFLAG_LBA48;
1226        } else
1227                tf.command = ATA_CMD_READ_NATIVE_MAX;
1228
1229        tf.protocol |= ATA_PROT_NODATA;
1230        tf.device |= ATA_LBA;
1231
1232        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233        if (err_mask) {
1234                ata_dev_warn(dev,
1235                             "failed to read native max address (err_mask=0x%x)\n",
1236                             err_mask);
1237                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238                        return -EACCES;
1239                return -EIO;
1240        }
1241
1242        if (lba48)
1243                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1244        else
1245                *max_sectors = ata_tf_to_lba(&tf) + 1;
1246        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247                (*max_sectors)--;
1248        return 0;
1249}
1250
1251/**
1252 *      ata_set_max_sectors - Set max sectors
1253 *      @dev: target device
1254 *      @new_sectors: new max sectors value to set for the device
1255 *
1256 *      Set max sectors of @dev to @new_sectors.
1257 *
1258 *      RETURNS:
1259 *      0 on success, -EACCES if command is aborted or denied (due to
1260 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1261 *      errors.
1262 */
1263static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264{
1265        unsigned int err_mask;
1266        struct ata_taskfile tf;
1267        int lba48 = ata_id_has_lba48(dev->id);
1268
1269        new_sectors--;
1270
1271        ata_tf_init(dev, &tf);
1272
1273        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274
1275        if (lba48) {
1276                tf.command = ATA_CMD_SET_MAX_EXT;
1277                tf.flags |= ATA_TFLAG_LBA48;
1278
1279                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282        } else {
1283                tf.command = ATA_CMD_SET_MAX;
1284
1285                tf.device |= (new_sectors >> 24) & 0xf;
1286        }
1287
1288        tf.protocol |= ATA_PROT_NODATA;
1289        tf.device |= ATA_LBA;
1290
1291        tf.lbal = (new_sectors >> 0) & 0xff;
1292        tf.lbam = (new_sectors >> 8) & 0xff;
1293        tf.lbah = (new_sectors >> 16) & 0xff;
1294
1295        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296        if (err_mask) {
1297                ata_dev_warn(dev,
1298                             "failed to set max address (err_mask=0x%x)\n",
1299                             err_mask);
1300                if (err_mask == AC_ERR_DEV &&
1301                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302                        return -EACCES;
1303                return -EIO;
1304        }
1305
1306        return 0;
1307}
1308
1309/**
1310 *      ata_hpa_resize          -       Resize a device with an HPA set
1311 *      @dev: Device to resize
1312 *
1313 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314 *      it if required to the full size of the media. The caller must check
1315 *      the drive has the HPA feature set enabled.
1316 *
1317 *      RETURNS:
1318 *      0 on success, -errno on failure.
1319 */
1320static int ata_hpa_resize(struct ata_device *dev)
1321{
1322        struct ata_eh_context *ehc = &dev->link->eh_context;
1323        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325        u64 sectors = ata_id_n_sectors(dev->id);
1326        u64 native_sectors;
1327        int rc;
1328
1329        /* do we need to do it? */
1330        if (dev->class != ATA_DEV_ATA ||
1331            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333                return 0;
1334
1335        /* read native max address */
1336        rc = ata_read_native_max_address(dev, &native_sectors);
1337        if (rc) {
1338                /* If device aborted the command or HPA isn't going to
1339                 * be unlocked, skip HPA resizing.
1340                 */
1341                if (rc == -EACCES || !unlock_hpa) {
1342                        ata_dev_warn(dev,
1343                                     "HPA support seems broken, skipping HPA handling\n");
1344                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345
1346                        /* we can continue if device aborted the command */
1347                        if (rc == -EACCES)
1348                                rc = 0;
1349                }
1350
1351                return rc;
1352        }
1353        dev->n_native_sectors = native_sectors;
1354
1355        /* nothing to do? */
1356        if (native_sectors <= sectors || !unlock_hpa) {
1357                if (!print_info || native_sectors == sectors)
1358                        return 0;
1359
1360                if (native_sectors > sectors)
1361                        ata_dev_info(dev,
1362                                "HPA detected: current %llu, native %llu\n",
1363                                (unsigned long long)sectors,
1364                                (unsigned long long)native_sectors);
1365                else if (native_sectors < sectors)
1366                        ata_dev_warn(dev,
1367                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1368                                (unsigned long long)native_sectors,
1369                                (unsigned long long)sectors);
1370                return 0;
1371        }
1372
1373        /* let's unlock HPA */
1374        rc = ata_set_max_sectors(dev, native_sectors);
1375        if (rc == -EACCES) {
1376                /* if device aborted the command, skip HPA resizing */
1377                ata_dev_warn(dev,
1378                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379                             (unsigned long long)sectors,
1380                             (unsigned long long)native_sectors);
1381                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382                return 0;
1383        } else if (rc)
1384                return rc;
1385
1386        /* re-read IDENTIFY data */
1387        rc = ata_dev_reread_id(dev, 0);
1388        if (rc) {
1389                ata_dev_err(dev,
1390                            "failed to re-read IDENTIFY data after HPA resizing\n");
1391                return rc;
1392        }
1393
1394        if (print_info) {
1395                u64 new_sectors = ata_id_n_sectors(dev->id);
1396                ata_dev_info(dev,
1397                        "HPA unlocked: %llu -> %llu, native %llu\n",
1398                        (unsigned long long)sectors,
1399                        (unsigned long long)new_sectors,
1400                        (unsigned long long)native_sectors);
1401        }
1402
1403        return 0;
1404}
1405
1406/**
1407 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1408 *      @id: IDENTIFY DEVICE page to dump
1409 *
1410 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1411 *      page.
1412 *
1413 *      LOCKING:
1414 *      caller.
1415 */
1416
1417static inline void ata_dump_id(const u16 *id)
1418{
1419        DPRINTK("49==0x%04x  "
1420                "53==0x%04x  "
1421                "63==0x%04x  "
1422                "64==0x%04x  "
1423                "75==0x%04x  \n",
1424                id[49],
1425                id[53],
1426                id[63],
1427                id[64],
1428                id[75]);
1429        DPRINTK("80==0x%04x  "
1430                "81==0x%04x  "
1431                "82==0x%04x  "
1432                "83==0x%04x  "
1433                "84==0x%04x  \n",
1434                id[80],
1435                id[81],
1436                id[82],
1437                id[83],
1438                id[84]);
1439        DPRINTK("88==0x%04x  "
1440                "93==0x%04x\n",
1441                id[88],
1442                id[93]);
1443}
1444
1445/**
1446 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447 *      @id: IDENTIFY data to compute xfer mask from
1448 *
1449 *      Compute the xfermask for this device. This is not as trivial
1450 *      as it seems if we must consider early devices correctly.
1451 *
1452 *      FIXME: pre IDE drive timing (do we care ?).
1453 *
1454 *      LOCKING:
1455 *      None.
1456 *
1457 *      RETURNS:
1458 *      Computed xfermask
1459 */
1460unsigned long ata_id_xfermask(const u16 *id)
1461{
1462        unsigned long pio_mask, mwdma_mask, udma_mask;
1463
1464        /* Usual case. Word 53 indicates word 64 is valid */
1465        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467                pio_mask <<= 3;
1468                pio_mask |= 0x7;
1469        } else {
1470                /* If word 64 isn't valid then Word 51 high byte holds
1471                 * the PIO timing number for the maximum. Turn it into
1472                 * a mask.
1473                 */
1474                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475                if (mode < 5)   /* Valid PIO range */
1476                        pio_mask = (2 << mode) - 1;
1477                else
1478                        pio_mask = 1;
1479
1480                /* But wait.. there's more. Design your standards by
1481                 * committee and you too can get a free iordy field to
1482                 * process. However its the speeds not the modes that
1483                 * are supported... Note drivers using the timing API
1484                 * will get this right anyway
1485                 */
1486        }
1487
1488        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489
1490        if (ata_id_is_cfa(id)) {
1491                /*
1492                 *      Process compact flash extended modes
1493                 */
1494                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496
1497                if (pio)
1498                        pio_mask |= (1 << 5);
1499                if (pio > 1)
1500                        pio_mask |= (1 << 6);
1501                if (dma)
1502                        mwdma_mask |= (1 << 3);
1503                if (dma > 1)
1504                        mwdma_mask |= (1 << 4);
1505        }
1506
1507        udma_mask = 0;
1508        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510
1511        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512}
1513
1514static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515{
1516        struct completion *waiting = qc->private_data;
1517
1518        complete(waiting);
1519}
1520
1521/**
1522 *      ata_exec_internal_sg - execute libata internal command
1523 *      @dev: Device to which the command is sent
1524 *      @tf: Taskfile registers for the command and the result
1525 *      @cdb: CDB for packet command
1526 *      @dma_dir: Data tranfer direction of the command
1527 *      @sgl: sg list for the data buffer of the command
1528 *      @n_elem: Number of sg entries
1529 *      @timeout: Timeout in msecs (0 for default)
1530 *
1531 *      Executes libata internal command with timeout.  @tf contains
1532 *      command on entry and result on return.  Timeout and error
1533 *      conditions are reported via return value.  No recovery action
1534 *      is taken after a command times out.  It's caller's duty to
1535 *      clean up after timeout.
1536 *
1537 *      LOCKING:
1538 *      None.  Should be called with kernel context, might sleep.
1539 *
1540 *      RETURNS:
1541 *      Zero on success, AC_ERR_* mask on failure
1542 */
1543unsigned ata_exec_internal_sg(struct ata_device *dev,
1544                              struct ata_taskfile *tf, const u8 *cdb,
1545                              int dma_dir, struct scatterlist *sgl,
1546                              unsigned int n_elem, unsigned long timeout)
1547{
1548        struct ata_link *link = dev->link;
1549        struct ata_port *ap = link->ap;
1550        u8 command = tf->command;
1551        int auto_timeout = 0;
1552        struct ata_queued_cmd *qc;
1553        unsigned int tag, preempted_tag;
1554        u32 preempted_sactive, preempted_qc_active;
1555        int preempted_nr_active_links;
1556        DECLARE_COMPLETION_ONSTACK(wait);
1557        unsigned long flags;
1558        unsigned int err_mask;
1559        int rc;
1560
1561        spin_lock_irqsave(ap->lock, flags);
1562
1563        /* no internal command while frozen */
1564        if (ap->pflags & ATA_PFLAG_FROZEN) {
1565                spin_unlock_irqrestore(ap->lock, flags);
1566                return AC_ERR_SYSTEM;
1567        }
1568
1569        /* initialize internal qc */
1570
1571        /* XXX: Tag 0 is used for drivers with legacy EH as some
1572         * drivers choke if any other tag is given.  This breaks
1573         * ata_tag_internal() test for those drivers.  Don't use new
1574         * EH stuff without converting to it.
1575         */
1576        if (ap->ops->error_handler)
1577                tag = ATA_TAG_INTERNAL;
1578        else
1579                tag = 0;
1580
1581        if (test_and_set_bit(tag, &ap->qc_allocated))
1582                BUG();
1583        qc = __ata_qc_from_tag(ap, tag);
1584
1585        qc->tag = tag;
1586        qc->scsicmd = NULL;
1587        qc->ap = ap;
1588        qc->dev = dev;
1589        ata_qc_reinit(qc);
1590
1591        preempted_tag = link->active_tag;
1592        preempted_sactive = link->sactive;
1593        preempted_qc_active = ap->qc_active;
1594        preempted_nr_active_links = ap->nr_active_links;
1595        link->active_tag = ATA_TAG_POISON;
1596        link->sactive = 0;
1597        ap->qc_active = 0;
1598        ap->nr_active_links = 0;
1599
1600        /* prepare & issue qc */
1601        qc->tf = *tf;
1602        if (cdb)
1603                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604        qc->flags |= ATA_QCFLAG_RESULT_TF;
1605        qc->dma_dir = dma_dir;
1606        if (dma_dir != DMA_NONE) {
1607                unsigned int i, buflen = 0;
1608                struct scatterlist *sg;
1609
1610                for_each_sg(sgl, sg, n_elem, i)
1611                        buflen += sg->length;
1612
1613                ata_sg_init(qc, sgl, n_elem);
1614                qc->nbytes = buflen;
1615        }
1616
1617        qc->private_data = &wait;
1618        qc->complete_fn = ata_qc_complete_internal;
1619
1620        ata_qc_issue(qc);
1621
1622        spin_unlock_irqrestore(ap->lock, flags);
1623
1624        if (!timeout) {
1625                if (ata_probe_timeout)
1626                        timeout = ata_probe_timeout * 1000;
1627                else {
1628                        timeout = ata_internal_cmd_timeout(dev, command);
1629                        auto_timeout = 1;
1630                }
1631        }
1632
1633        if (ap->ops->error_handler)
1634                ata_eh_release(ap);
1635
1636        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637
1638        if (ap->ops->error_handler)
1639                ata_eh_acquire(ap);
1640
1641        ata_sff_flush_pio_task(ap);
1642
1643        if (!rc) {
1644                spin_lock_irqsave(ap->lock, flags);
1645
1646                /* We're racing with irq here.  If we lose, the
1647                 * following test prevents us from completing the qc
1648                 * twice.  If we win, the port is frozen and will be
1649                 * cleaned up by ->post_internal_cmd().
1650                 */
1651                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652                        qc->err_mask |= AC_ERR_TIMEOUT;
1653
1654                        if (ap->ops->error_handler)
1655                                ata_port_freeze(ap);
1656                        else
1657                                ata_qc_complete(qc);
1658
1659                        if (ata_msg_warn(ap))
1660                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661                                             command);
1662                }
1663
1664                spin_unlock_irqrestore(ap->lock, flags);
1665        }
1666
1667        /* do post_internal_cmd */
1668        if (ap->ops->post_internal_cmd)
1669                ap->ops->post_internal_cmd(qc);
1670
1671        /* perform minimal error analysis */
1672        if (qc->flags & ATA_QCFLAG_FAILED) {
1673                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674                        qc->err_mask |= AC_ERR_DEV;
1675
1676                if (!qc->err_mask)
1677                        qc->err_mask |= AC_ERR_OTHER;
1678
1679                if (qc->err_mask & ~AC_ERR_OTHER)
1680                        qc->err_mask &= ~AC_ERR_OTHER;
1681        }
1682
1683        /* finish up */
1684        spin_lock_irqsave(ap->lock, flags);
1685
1686        *tf = qc->result_tf;
1687        err_mask = qc->err_mask;
1688
1689        ata_qc_free(qc);
1690        link->active_tag = preempted_tag;
1691        link->sactive = preempted_sactive;
1692        ap->qc_active = preempted_qc_active;
1693        ap->nr_active_links = preempted_nr_active_links;
1694
1695        spin_unlock_irqrestore(ap->lock, flags);
1696
1697        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698                ata_internal_cmd_timed_out(dev, command);
1699
1700        return err_mask;
1701}
1702
1703/**
1704 *      ata_exec_internal - execute libata internal command
1705 *      @dev: Device to which the command is sent
1706 *      @tf: Taskfile registers for the command and the result
1707 *      @cdb: CDB for packet command
1708 *      @dma_dir: Data tranfer direction of the command
1709 *      @buf: Data buffer of the command
1710 *      @buflen: Length of data buffer
1711 *      @timeout: Timeout in msecs (0 for default)
1712 *
1713 *      Wrapper around ata_exec_internal_sg() which takes simple
1714 *      buffer instead of sg list.
1715 *
1716 *      LOCKING:
1717 *      None.  Should be called with kernel context, might sleep.
1718 *
1719 *      RETURNS:
1720 *      Zero on success, AC_ERR_* mask on failure
1721 */
1722unsigned ata_exec_internal(struct ata_device *dev,
1723                           struct ata_taskfile *tf, const u8 *cdb,
1724                           int dma_dir, void *buf, unsigned int buflen,
1725                           unsigned long timeout)
1726{
1727        struct scatterlist *psg = NULL, sg;
1728        unsigned int n_elem = 0;
1729
1730        if (dma_dir != DMA_NONE) {
1731                WARN_ON(!buf);
1732                sg_init_one(&sg, buf, buflen);
1733                psg = &sg;
1734                n_elem++;
1735        }
1736
1737        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738                                    timeout);
1739}
1740
1741/**
1742 *      ata_do_simple_cmd - execute simple internal command
1743 *      @dev: Device to which the command is sent
1744 *      @cmd: Opcode to execute
1745 *
1746 *      Execute a 'simple' command, that only consists of the opcode
1747 *      'cmd' itself, without filling any other registers
1748 *
1749 *      LOCKING:
1750 *      Kernel thread context (may sleep).
1751 *
1752 *      RETURNS:
1753 *      Zero on success, AC_ERR_* mask on failure
1754 */
1755unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756{
1757        struct ata_taskfile tf;
1758
1759        ata_tf_init(dev, &tf);
1760
1761        tf.command = cmd;
1762        tf.flags |= ATA_TFLAG_DEVICE;
1763        tf.protocol = ATA_PROT_NODATA;
1764
1765        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766}
1767
1768/**
1769 *      ata_pio_need_iordy      -       check if iordy needed
1770 *      @adev: ATA device
1771 *
1772 *      Check if the current speed of the device requires IORDY. Used
1773 *      by various controllers for chip configuration.
1774 */
1775unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776{
1777        /* Don't set IORDY if we're preparing for reset.  IORDY may
1778         * lead to controller lock up on certain controllers if the
1779         * port is not occupied.  See bko#11703 for details.
1780         */
1781        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782                return 0;
1783        /* Controller doesn't support IORDY.  Probably a pointless
1784         * check as the caller should know this.
1785         */
1786        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787                return 0;
1788        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1789        if (ata_id_is_cfa(adev->id)
1790            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791                return 0;
1792        /* PIO3 and higher it is mandatory */
1793        if (adev->pio_mode > XFER_PIO_2)
1794                return 1;
1795        /* We turn it on when possible */
1796        if (ata_id_has_iordy(adev->id))
1797                return 1;
1798        return 0;
1799}
1800
1801/**
1802 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1803 *      @adev: ATA device
1804 *
1805 *      Compute the highest mode possible if we are not using iordy. Return
1806 *      -1 if no iordy mode is available.
1807 */
1808static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809{
1810        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1811        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1812                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813                /* Is the speed faster than the drive allows non IORDY ? */
1814                if (pio) {
1815                        /* This is cycle times not frequency - watch the logic! */
1816                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1817                                return 3 << ATA_SHIFT_PIO;
1818                        return 7 << ATA_SHIFT_PIO;
1819                }
1820        }
1821        return 3 << ATA_SHIFT_PIO;
1822}
1823
1824/**
1825 *      ata_do_dev_read_id              -       default ID read method
1826 *      @dev: device
1827 *      @tf: proposed taskfile
1828 *      @id: data buffer
1829 *
1830 *      Issue the identify taskfile and hand back the buffer containing
1831 *      identify data. For some RAID controllers and for pre ATA devices
1832 *      this function is wrapped or replaced by the driver
1833 */
1834unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835                                        struct ata_taskfile *tf, u16 *id)
1836{
1837        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839}
1840
1841/**
1842 *      ata_dev_read_id - Read ID data from the specified device
1843 *      @dev: target device
1844 *      @p_class: pointer to class of the target device (may be changed)
1845 *      @flags: ATA_READID_* flags
1846 *      @id: buffer to read IDENTIFY data into
1847 *
1848 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1849 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1851 *      for pre-ATA4 drives.
1852 *
1853 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854 *      now we abort if we hit that case.
1855 *
1856 *      LOCKING:
1857 *      Kernel thread context (may sleep)
1858 *
1859 *      RETURNS:
1860 *      0 on success, -errno otherwise.
1861 */
1862int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863                    unsigned int flags, u16 *id)
1864{
1865        struct ata_port *ap = dev->link->ap;
1866        unsigned int class = *p_class;
1867        struct ata_taskfile tf;
1868        unsigned int err_mask = 0;
1869        const char *reason;
1870        bool is_semb = class == ATA_DEV_SEMB;
1871        int may_fallback = 1, tried_spinup = 0;
1872        int rc;
1873
1874        if (ata_msg_ctl(ap))
1875                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876
1877retry:
1878        ata_tf_init(dev, &tf);
1879
1880        switch (class) {
1881        case ATA_DEV_SEMB:
1882                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1883        case ATA_DEV_ATA:
1884                tf.command = ATA_CMD_ID_ATA;
1885                break;
1886        case ATA_DEV_ATAPI:
1887                tf.command = ATA_CMD_ID_ATAPI;
1888                break;
1889        default:
1890                rc = -ENODEV;
1891                reason = "unsupported class";
1892                goto err_out;
1893        }
1894
1895        tf.protocol = ATA_PROT_PIO;
1896
1897        /* Some devices choke if TF registers contain garbage.  Make
1898         * sure those are properly initialized.
1899         */
1900        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902        /* Device presence detection is unreliable on some
1903         * controllers.  Always poll IDENTIFY if available.
1904         */
1905        tf.flags |= ATA_TFLAG_POLLING;
1906
1907        if (ap->ops->read_id)
1908                err_mask = ap->ops->read_id(dev, &tf, id);
1909        else
1910                err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912        if (err_mask) {
1913                if (err_mask & AC_ERR_NODEV_HINT) {
1914                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1915                        return -ENOENT;
1916                }
1917
1918                if (is_semb) {
1919                        ata_dev_info(dev,
1920                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921                        /* SEMB is not supported yet */
1922                        *p_class = ATA_DEV_SEMB_UNSUP;
1923                        return 0;
1924                }
1925
1926                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927                        /* Device or controller might have reported
1928                         * the wrong device class.  Give a shot at the
1929                         * other IDENTIFY if the current one is
1930                         * aborted by the device.
1931                         */
1932                        if (may_fallback) {
1933                                may_fallback = 0;
1934
1935                                if (class == ATA_DEV_ATA)
1936                                        class = ATA_DEV_ATAPI;
1937                                else
1938                                        class = ATA_DEV_ATA;
1939                                goto retry;
1940                        }
1941
1942                        /* Control reaches here iff the device aborted
1943                         * both flavors of IDENTIFYs which happens
1944                         * sometimes with phantom devices.
1945                         */
1946                        ata_dev_dbg(dev,
1947                                    "both IDENTIFYs aborted, assuming NODEV\n");
1948                        return -ENOENT;
1949                }
1950
1951                rc = -EIO;
1952                reason = "I/O error";
1953                goto err_out;
1954        }
1955
1956        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958                            "class=%d may_fallback=%d tried_spinup=%d\n",
1959                            class, may_fallback, tried_spinup);
1960                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962        }
1963
1964        /* Falling back doesn't make sense if ID data was read
1965         * successfully at least once.
1966         */
1967        may_fallback = 0;
1968
1969        swap_buf_le16(id, ATA_ID_WORDS);
1970
1971        /* sanity check */
1972        rc = -EINVAL;
1973        reason = "device reports invalid type";
1974
1975        if (class == ATA_DEV_ATA) {
1976                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977                        goto err_out;
1978                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979                                                        ata_id_is_ata(id)) {
1980                        ata_dev_dbg(dev,
1981                                "host indicates ignore ATA devices, ignored\n");
1982                        return -ENOENT;
1983                }
1984        } else {
1985                if (ata_id_is_ata(id))
1986                        goto err_out;
1987        }
1988
1989        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990                tried_spinup = 1;
1991                /*
1992                 * Drive powered-up in standby mode, and requires a specific
1993                 * SET_FEATURES spin-up subcommand before it will accept
1994                 * anything other than the original IDENTIFY command.
1995                 */
1996                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997                if (err_mask && id[2] != 0x738c) {
1998                        rc = -EIO;
1999                        reason = "SPINUP failed";
2000                        goto err_out;
2001                }
2002                /*
2003                 * If the drive initially returned incomplete IDENTIFY info,
2004                 * we now must reissue the IDENTIFY command.
2005                 */
2006                if (id[2] == 0x37c8)
2007                        goto retry;
2008        }
2009
2010        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011                /*
2012                 * The exact sequence expected by certain pre-ATA4 drives is:
2013                 * SRST RESET
2014                 * IDENTIFY (optional in early ATA)
2015                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016                 * anything else..
2017                 * Some drives were very specific about that exact sequence.
2018                 *
2019                 * Note that ATA4 says lba is mandatory so the second check
2020                 * should never trigger.
2021                 */
2022                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024                        if (err_mask) {
2025                                rc = -EIO;
2026                                reason = "INIT_DEV_PARAMS failed";
2027                                goto err_out;
2028                        }
2029
2030                        /* current CHS translation info (id[53-58]) might be
2031                         * changed. reread the identify device info.
2032                         */
2033                        flags &= ~ATA_READID_POSTRESET;
2034                        goto retry;
2035                }
2036        }
2037
2038        *p_class = class;
2039
2040        return 0;
2041
2042 err_out:
2043        if (ata_msg_warn(ap))
2044                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045                             reason, err_mask);
2046        return rc;
2047}
2048
2049static int ata_do_link_spd_horkage(struct ata_device *dev)
2050{
2051        struct ata_link *plink = ata_dev_phys_link(dev);
2052        u32 target, target_limit;
2053
2054        if (!sata_scr_valid(plink))
2055                return 0;
2056
2057        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058                target = 1;
2059        else
2060                return 0;
2061
2062        target_limit = (1 << target) - 1;
2063
2064        /* if already on stricter limit, no need to push further */
2065        if (plink->sata_spd_limit <= target_limit)
2066                return 0;
2067
2068        plink->sata_spd_limit = target_limit;
2069
2070        /* Request another EH round by returning -EAGAIN if link is
2071         * going faster than the target speed.  Forward progress is
2072         * guaranteed by setting sata_spd_limit to target_limit above.
2073         */
2074        if (plink->sata_spd > target) {
2075                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076                             sata_spd_string(target));
2077                return -EAGAIN;
2078        }
2079        return 0;
2080}
2081
2082static inline u8 ata_dev_knobble(struct ata_device *dev)
2083{
2084        struct ata_port *ap = dev->link->ap;
2085
2086        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087                return 0;
2088
2089        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090}
2091
2092static int ata_dev_config_ncq(struct ata_device *dev,
2093                               char *desc, size_t desc_sz)
2094{
2095        struct ata_port *ap = dev->link->ap;
2096        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097        unsigned int err_mask;
2098        char *aa_desc = "";
2099
2100        if (!ata_id_has_ncq(dev->id)) {
2101                desc[0] = '\0';
2102                return 0;
2103        }
2104        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105                snprintf(desc, desc_sz, "NCQ (not used)");
2106                return 0;
2107        }
2108        if (ap->flags & ATA_FLAG_NCQ) {
2109                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110                dev->flags |= ATA_DFLAG_NCQ;
2111        }
2112
2113        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2115                ata_id_has_fpdma_aa(dev->id)) {
2116                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117                        SATA_FPDMA_AA);
2118                if (err_mask) {
2119                        ata_dev_err(dev,
2120                                    "failed to enable AA (error_mask=0x%x)\n",
2121                                    err_mask);
2122                        if (err_mask != AC_ERR_DEV) {
2123                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124                                return -EIO;
2125                        }
2126                } else
2127                        aa_desc = ", AA";
2128        }
2129
2130        if (hdepth >= ddepth)
2131                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132        else
2133                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134                        ddepth, aa_desc);
2135        return 0;
2136}
2137
2138/**
2139 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2140 *      @dev: Target device to configure
2141 *
2142 *      Configure @dev according to @dev->id.  Generic and low-level
2143 *      driver specific fixups are also applied.
2144 *
2145 *      LOCKING:
2146 *      Kernel thread context (may sleep)
2147 *
2148 *      RETURNS:
2149 *      0 on success, -errno otherwise
2150 */
2151int ata_dev_configure(struct ata_device *dev)
2152{
2153        struct ata_port *ap = dev->link->ap;
2154        struct ata_eh_context *ehc = &dev->link->eh_context;
2155        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156        const u16 *id = dev->id;
2157        unsigned long xfer_mask;
2158        unsigned int err_mask;
2159        char revbuf[7];         /* XYZ-99\0 */
2160        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2161        char modelbuf[ATA_ID_PROD_LEN+1];
2162        int rc;
2163
2164        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2165                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2166                return 0;
2167        }
2168
2169        if (ata_msg_probe(ap))
2170                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2171
2172        /* set horkage */
2173        dev->horkage |= ata_dev_blacklisted(dev);
2174        ata_force_horkage(dev);
2175
2176        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2177                ata_dev_info(dev, "unsupported device, disabling\n");
2178                ata_dev_disable(dev);
2179                return 0;
2180        }
2181
2182        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2183            dev->class == ATA_DEV_ATAPI) {
2184                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2185                             atapi_enabled ? "not supported with this driver"
2186                             : "disabled");
2187                ata_dev_disable(dev);
2188                return 0;
2189        }
2190
2191        rc = ata_do_link_spd_horkage(dev);
2192        if (rc)
2193                return rc;
2194
2195        /* let ACPI work its magic */
2196        rc = ata_acpi_on_devcfg(dev);
2197        if (rc)
2198                return rc;
2199
2200        /* massage HPA, do it early as it might change IDENTIFY data */
2201        rc = ata_hpa_resize(dev);
2202        if (rc)
2203                return rc;
2204
2205        /* print device capabilities */
2206        if (ata_msg_probe(ap))
2207                ata_dev_dbg(dev,
2208                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2209                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2210                            __func__,
2211                            id[49], id[82], id[83], id[84],
2212                            id[85], id[86], id[87], id[88]);
2213
2214        /* initialize to-be-configured parameters */
2215        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2216        dev->max_sectors = 0;
2217        dev->cdb_len = 0;
2218        dev->n_sectors = 0;
2219        dev->cylinders = 0;
2220        dev->heads = 0;
2221        dev->sectors = 0;
2222        dev->multi_count = 0;
2223
2224        /*
2225         * common ATA, ATAPI feature tests
2226         */
2227
2228        /* find max transfer mode; for printk only */
2229        xfer_mask = ata_id_xfermask(id);
2230
2231        if (ata_msg_probe(ap))
2232                ata_dump_id(id);
2233
2234        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2235        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2236                        sizeof(fwrevbuf));
2237
2238        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2239                        sizeof(modelbuf));
2240
2241        /* ATA-specific feature tests */
2242        if (dev->class == ATA_DEV_ATA) {
2243                if (ata_id_is_cfa(id)) {
2244                        /* CPRM may make this media unusable */
2245                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2246                                ata_dev_warn(dev,
2247        "supports DRM functions and may not be fully accessible\n");
2248                        snprintf(revbuf, 7, "CFA");
2249                } else {
2250                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2251                        /* Warn the user if the device has TPM extensions */
2252                        if (ata_id_has_tpm(id))
2253                                ata_dev_warn(dev,
2254        "supports DRM functions and may not be fully accessible\n");
2255                }
2256
2257                dev->n_sectors = ata_id_n_sectors(id);
2258
2259                /* get current R/W Multiple count setting */
2260                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2261                        unsigned int max = dev->id[47] & 0xff;
2262                        unsigned int cnt = dev->id[59] & 0xff;
2263                        /* only recognize/allow powers of two here */
2264                        if (is_power_of_2(max) && is_power_of_2(cnt))
2265                                if (cnt <= max)
2266                                        dev->multi_count = cnt;
2267                }
2268
2269                if (ata_id_has_lba(id)) {
2270                        const char *lba_desc;
2271                        char ncq_desc[24];
2272
2273                        lba_desc = "LBA";
2274                        dev->flags |= ATA_DFLAG_LBA;
2275                        if (ata_id_has_lba48(id)) {
2276                                dev->flags |= ATA_DFLAG_LBA48;
2277                                lba_desc = "LBA48";
2278
2279                                if (dev->n_sectors >= (1UL << 28) &&
2280                                    ata_id_has_flush_ext(id))
2281                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2282                        }
2283
2284                        /* config NCQ */
2285                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2286                        if (rc)
2287                                return rc;
2288
2289                        /* print device info to dmesg */
2290                        if (ata_msg_drv(ap) && print_info) {
2291                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2292                                             revbuf, modelbuf, fwrevbuf,
2293                                             ata_mode_string(xfer_mask));
2294                                ata_dev_info(dev,
2295                                             "%llu sectors, multi %u: %s %s\n",
2296                                        (unsigned long long)dev->n_sectors,
2297                                        dev->multi_count, lba_desc, ncq_desc);
2298                        }
2299                } else {
2300                        /* CHS */
2301
2302                        /* Default translation */
2303                        dev->cylinders  = id[1];
2304                        dev->heads      = id[3];
2305                        dev->sectors    = id[6];
2306
2307                        if (ata_id_current_chs_valid(id)) {
2308                                /* Current CHS translation is valid. */
2309                                dev->cylinders = id[54];
2310                                dev->heads     = id[55];
2311                                dev->sectors   = id[56];
2312                        }
2313
2314                        /* print device info to dmesg */
2315                        if (ata_msg_drv(ap) && print_info) {
2316                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2317                                             revbuf,    modelbuf, fwrevbuf,
2318                                             ata_mode_string(xfer_mask));
2319                                ata_dev_info(dev,
2320                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2321                                             (unsigned long long)dev->n_sectors,
2322                                             dev->multi_count, dev->cylinders,
2323                                             dev->heads, dev->sectors);
2324                        }
2325                }
2326
2327                /* check and mark DevSlp capability */
2328                if (ata_id_has_devslp(dev->id))
2329                        dev->flags |= ATA_DFLAG_DEVSLP;
2330
2331                /* Obtain SATA Settings page from Identify Device Data Log,
2332                 * which contains DevSlp timing variables etc.
2333                 * Exclude old devices with ata_id_has_ncq()
2334                 */
2335                if (ata_id_has_ncq(dev->id)) {
2336                        err_mask = ata_read_log_page(dev,
2337                                                     ATA_LOG_SATA_ID_DEV_DATA,
2338                                                     ATA_LOG_SATA_SETTINGS,
2339                                                     dev->sata_settings,
2340                                                     1);
2341                        if (err_mask)
2342                                ata_dev_dbg(dev,
2343                                            "failed to get Identify Device Data, Emask 0x%x\n",
2344                                            err_mask);
2345                }
2346
2347                dev->cdb_len = 16;
2348        }
2349
2350        /* ATAPI-specific feature tests */
2351        else if (dev->class == ATA_DEV_ATAPI) {
2352                const char *cdb_intr_string = "";
2353                const char *atapi_an_string = "";
2354                const char *dma_dir_string = "";
2355                u32 sntf;
2356
2357                rc = atapi_cdb_len(id);
2358                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2359                        if (ata_msg_warn(ap))
2360                                ata_dev_warn(dev, "unsupported CDB len\n");
2361                        rc = -EINVAL;
2362                        goto err_out_nosup;
2363                }
2364                dev->cdb_len = (unsigned int) rc;
2365
2366                /* Enable ATAPI AN if both the host and device have
2367                 * the support.  If PMP is attached, SNTF is required
2368                 * to enable ATAPI AN to discern between PHY status
2369                 * changed notifications and ATAPI ANs.
2370                 */
2371                if (atapi_an &&
2372                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2373                    (!sata_pmp_attached(ap) ||
2374                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2375                        /* issue SET feature command to turn this on */
2376                        err_mask = ata_dev_set_feature(dev,
2377                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2378                        if (err_mask)
2379                                ata_dev_err(dev,
2380                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2381                                            err_mask);
2382                        else {
2383                                dev->flags |= ATA_DFLAG_AN;
2384                                atapi_an_string = ", ATAPI AN";
2385                        }
2386                }
2387
2388                if (ata_id_cdb_intr(dev->id)) {
2389                        dev->flags |= ATA_DFLAG_CDB_INTR;
2390                        cdb_intr_string = ", CDB intr";
2391                }
2392
2393                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2394                        dev->flags |= ATA_DFLAG_DMADIR;
2395                        dma_dir_string = ", DMADIR";
2396                }
2397
2398                if (ata_id_has_da(dev->id))
2399                        dev->flags |= ATA_DFLAG_DA;
2400
2401                /* print device info to dmesg */
2402                if (ata_msg_drv(ap) && print_info)
2403                        ata_dev_info(dev,
2404                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2405                                     modelbuf, fwrevbuf,
2406                                     ata_mode_string(xfer_mask),
2407                                     cdb_intr_string, atapi_an_string,
2408                                     dma_dir_string);
2409        }
2410
2411        /* determine max_sectors */
2412        dev->max_sectors = ATA_MAX_SECTORS;
2413        if (dev->flags & ATA_DFLAG_LBA48)
2414                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2415
2416        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2417           200 sectors */
2418        if (ata_dev_knobble(dev)) {
2419                if (ata_msg_drv(ap) && print_info)
2420                        ata_dev_info(dev, "applying bridge limits\n");
2421                dev->udma_mask &= ATA_UDMA5;
2422                dev->max_sectors = ATA_MAX_SECTORS;
2423        }
2424
2425        if ((dev->class == ATA_DEV_ATAPI) &&
2426            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2427                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2428                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2429        }
2430
2431        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2432                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2433                                         dev->max_sectors);
2434
2435        if (ap->ops->dev_config)
2436                ap->ops->dev_config(dev);
2437
2438        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2439                /* Let the user know. We don't want to disallow opens for
2440                   rescue purposes, or in case the vendor is just a blithering
2441                   idiot. Do this after the dev_config call as some controllers
2442                   with buggy firmware may want to avoid reporting false device
2443                   bugs */
2444
2445                if (print_info) {
2446                        ata_dev_warn(dev,
2447"Drive reports diagnostics failure. This may indicate a drive\n");
2448                        ata_dev_warn(dev,
2449"fault or invalid emulation. Contact drive vendor for information.\n");
2450                }
2451        }
2452
2453        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2454                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2455                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2456        }
2457
2458        return 0;
2459
2460err_out_nosup:
2461        if (ata_msg_probe(ap))
2462                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2463        return rc;
2464}
2465
2466/**
2467 *      ata_cable_40wire        -       return 40 wire cable type
2468 *      @ap: port
2469 *
2470 *      Helper method for drivers which want to hardwire 40 wire cable
2471 *      detection.
2472 */
2473
2474int ata_cable_40wire(struct ata_port *ap)
2475{
2476        return ATA_CBL_PATA40;
2477}
2478
2479/**
2480 *      ata_cable_80wire        -       return 80 wire cable type
2481 *      @ap: port
2482 *
2483 *      Helper method for drivers which want to hardwire 80 wire cable
2484 *      detection.
2485 */
2486
2487int ata_cable_80wire(struct ata_port *ap)
2488{
2489        return ATA_CBL_PATA80;
2490}
2491
2492/**
2493 *      ata_cable_unknown       -       return unknown PATA cable.
2494 *      @ap: port
2495 *
2496 *      Helper method for drivers which have no PATA cable detection.
2497 */
2498
2499int ata_cable_unknown(struct ata_port *ap)
2500{
2501        return ATA_CBL_PATA_UNK;
2502}
2503
2504/**
2505 *      ata_cable_ignore        -       return ignored PATA cable.
2506 *      @ap: port
2507 *
2508 *      Helper method for drivers which don't use cable type to limit
2509 *      transfer mode.
2510 */
2511int ata_cable_ignore(struct ata_port *ap)
2512{
2513        return ATA_CBL_PATA_IGN;
2514}
2515
2516/**
2517 *      ata_cable_sata  -       return SATA cable type
2518 *      @ap: port
2519 *
2520 *      Helper method for drivers which have SATA cables
2521 */
2522
2523int ata_cable_sata(struct ata_port *ap)
2524{
2525        return ATA_CBL_SATA;
2526}
2527
2528/**
2529 *      ata_bus_probe - Reset and probe ATA bus
2530 *      @ap: Bus to probe
2531 *
2532 *      Master ATA bus probing function.  Initiates a hardware-dependent
2533 *      bus reset, then attempts to identify any devices found on
2534 *      the bus.
2535 *
2536 *      LOCKING:
2537 *      PCI/etc. bus probe sem.
2538 *
2539 *      RETURNS:
2540 *      Zero on success, negative errno otherwise.
2541 */
2542
2543int ata_bus_probe(struct ata_port *ap)
2544{
2545        unsigned int classes[ATA_MAX_DEVICES];
2546        int tries[ATA_MAX_DEVICES];
2547        int rc;
2548        struct ata_device *dev;
2549
2550        ata_for_each_dev(dev, &ap->link, ALL)
2551                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2552
2553 retry:
2554        ata_for_each_dev(dev, &ap->link, ALL) {
2555                /* If we issue an SRST then an ATA drive (not ATAPI)
2556                 * may change configuration and be in PIO0 timing. If
2557                 * we do a hard reset (or are coming from power on)
2558                 * this is true for ATA or ATAPI. Until we've set a
2559                 * suitable controller mode we should not touch the
2560                 * bus as we may be talking too fast.
2561                 */
2562                dev->pio_mode = XFER_PIO_0;
2563
2564                /* If the controller has a pio mode setup function
2565                 * then use it to set the chipset to rights. Don't
2566                 * touch the DMA setup as that will be dealt with when
2567                 * configuring devices.
2568                 */
2569                if (ap->ops->set_piomode)
2570                        ap->ops->set_piomode(ap, dev);
2571        }
2572
2573        /* reset and determine device classes */
2574        ap->ops->phy_reset(ap);
2575
2576        ata_for_each_dev(dev, &ap->link, ALL) {
2577                if (dev->class != ATA_DEV_UNKNOWN)
2578                        classes[dev->devno] = dev->class;
2579                else
2580                        classes[dev->devno] = ATA_DEV_NONE;
2581
2582                dev->class = ATA_DEV_UNKNOWN;
2583        }
2584
2585        /* read IDENTIFY page and configure devices. We have to do the identify
2586           specific sequence bass-ackwards so that PDIAG- is released by
2587           the slave device */
2588
2589        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2590                if (tries[dev->devno])
2591                        dev->class = classes[dev->devno];
2592
2593                if (!ata_dev_enabled(dev))
2594                        continue;
2595
2596                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2597                                     dev->id);
2598                if (rc)
2599                        goto fail;
2600        }
2601
2602        /* Now ask for the cable type as PDIAG- should have been released */
2603        if (ap->ops->cable_detect)
2604                ap->cbl = ap->ops->cable_detect(ap);
2605
2606        /* We may have SATA bridge glue hiding here irrespective of
2607         * the reported cable types and sensed types.  When SATA
2608         * drives indicate we have a bridge, we don't know which end
2609         * of the link the bridge is which is a problem.
2610         */
2611        ata_for_each_dev(dev, &ap->link, ENABLED)
2612                if (ata_id_is_sata(dev->id))
2613                        ap->cbl = ATA_CBL_SATA;
2614
2615        /* After the identify sequence we can now set up the devices. We do
2616           this in the normal order so that the user doesn't get confused */
2617
2618        ata_for_each_dev(dev, &ap->link, ENABLED) {
2619                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2620                rc = ata_dev_configure(dev);
2621                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2622                if (rc)
2623                        goto fail;
2624        }
2625
2626        /* configure transfer mode */
2627        rc = ata_set_mode(&ap->link, &dev);
2628        if (rc)
2629                goto fail;
2630
2631        ata_for_each_dev(dev, &ap->link, ENABLED)
2632                return 0;
2633
2634        return -ENODEV;
2635
2636 fail:
2637        tries[dev->devno]--;
2638
2639        switch (rc) {
2640        case -EINVAL:
2641                /* eeek, something went very wrong, give up */
2642                tries[dev->devno] = 0;
2643                break;
2644
2645        case -ENODEV:
2646                /* give it just one more chance */
2647                tries[dev->devno] = min(tries[dev->devno], 1);
2648        case -EIO:
2649                if (tries[dev->devno] == 1) {
2650                        /* This is the last chance, better to slow
2651                         * down than lose it.
2652                         */
2653                        sata_down_spd_limit(&ap->link, 0);
2654                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2655                }
2656        }
2657
2658        if (!tries[dev->devno])
2659                ata_dev_disable(dev);
2660
2661        goto retry;
2662}
2663
2664/**
2665 *      sata_print_link_status - Print SATA link status
2666 *      @link: SATA link to printk link status about
2667 *
2668 *      This function prints link speed and status of a SATA link.
2669 *
2670 *      LOCKING:
2671 *      None.
2672 */
2673static void sata_print_link_status(struct ata_link *link)
2674{
2675        u32 sstatus, scontrol, tmp;
2676
2677        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2678                return;
2679        sata_scr_read(link, SCR_CONTROL, &scontrol);
2680
2681        if (ata_phys_link_online(link)) {
2682                tmp = (sstatus >> 4) & 0xf;
2683                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2684                              sata_spd_string(tmp), sstatus, scontrol);
2685        } else {
2686                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2687                              sstatus, scontrol);
2688        }
2689}
2690
2691/**
2692 *      ata_dev_pair            -       return other device on cable
2693 *      @adev: device
2694 *
2695 *      Obtain the other device on the same cable, or if none is
2696 *      present NULL is returned
2697 */
2698
2699struct ata_device *ata_dev_pair(struct ata_device *adev)
2700{
2701        struct ata_link *link = adev->link;
2702        struct ata_device *pair = &link->device[1 - adev->devno];
2703        if (!ata_dev_enabled(pair))
2704                return NULL;
2705        return pair;
2706}
2707
2708/**
2709 *      sata_down_spd_limit - adjust SATA spd limit downward
2710 *      @link: Link to adjust SATA spd limit for
2711 *      @spd_limit: Additional limit
2712 *
2713 *      Adjust SATA spd limit of @link downward.  Note that this
2714 *      function only adjusts the limit.  The change must be applied
2715 *      using sata_set_spd().
2716 *
2717 *      If @spd_limit is non-zero, the speed is limited to equal to or
2718 *      lower than @spd_limit if such speed is supported.  If
2719 *      @spd_limit is slower than any supported speed, only the lowest
2720 *      supported speed is allowed.
2721 *
2722 *      LOCKING:
2723 *      Inherited from caller.
2724 *
2725 *      RETURNS:
2726 *      0 on success, negative errno on failure
2727 */
2728int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2729{
2730        u32 sstatus, spd, mask;
2731        int rc, bit;
2732
2733        if (!sata_scr_valid(link))
2734                return -EOPNOTSUPP;
2735
2736        /* If SCR can be read, use it to determine the current SPD.
2737         * If not, use cached value in link->sata_spd.
2738         */
2739        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2740        if (rc == 0 && ata_sstatus_online(sstatus))
2741                spd = (sstatus >> 4) & 0xf;
2742        else
2743                spd = link->sata_spd;
2744
2745        mask = link->sata_spd_limit;
2746        if (mask <= 1)
2747                return -EINVAL;
2748
2749        /* unconditionally mask off the highest bit */
2750        bit = fls(mask) - 1;
2751        mask &= ~(1 << bit);
2752
2753        /* Mask off all speeds higher than or equal to the current
2754         * one.  Force 1.5Gbps if current SPD is not available.
2755         */
2756        if (spd > 1)
2757                mask &= (1 << (spd - 1)) - 1;
2758        else
2759                mask &= 1;
2760
2761        /* were we already at the bottom? */
2762        if (!mask)
2763                return -EINVAL;
2764
2765        if (spd_limit) {
2766                if (mask & ((1 << spd_limit) - 1))
2767                        mask &= (1 << spd_limit) - 1;
2768                else {
2769                        bit = ffs(mask) - 1;
2770                        mask = 1 << bit;
2771                }
2772        }
2773
2774        link->sata_spd_limit = mask;
2775
2776        ata_link_warn(link, "limiting SATA link speed to %s\n",
2777                      sata_spd_string(fls(mask)));
2778
2779        return 0;
2780}
2781
2782static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2783{
2784        struct ata_link *host_link = &link->ap->link;
2785        u32 limit, target, spd;
2786
2787        limit = link->sata_spd_limit;
2788
2789        /* Don't configure downstream link faster than upstream link.
2790         * It doesn't speed up anything and some PMPs choke on such
2791         * configuration.
2792         */
2793        if (!ata_is_host_link(link) && host_link->sata_spd)
2794                limit &= (1 << host_link->sata_spd) - 1;
2795
2796        if (limit == UINT_MAX)
2797                target = 0;
2798        else
2799                target = fls(limit);
2800
2801        spd = (*scontrol >> 4) & 0xf;
2802        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2803
2804        return spd != target;
2805}
2806
2807/**
2808 *      sata_set_spd_needed - is SATA spd configuration needed
2809 *      @link: Link in question
2810 *
2811 *      Test whether the spd limit in SControl matches
2812 *      @link->sata_spd_limit.  This function is used to determine
2813 *      whether hardreset is necessary to apply SATA spd
2814 *      configuration.
2815 *
2816 *      LOCKING:
2817 *      Inherited from caller.
2818 *
2819 *      RETURNS:
2820 *      1 if SATA spd configuration is needed, 0 otherwise.
2821 */
2822static int sata_set_spd_needed(struct ata_link *link)
2823{
2824        u32 scontrol;
2825
2826        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2827                return 1;
2828
2829        return __sata_set_spd_needed(link, &scontrol);
2830}
2831
2832/**
2833 *      sata_set_spd - set SATA spd according to spd limit
2834 *      @link: Link to set SATA spd for
2835 *
2836 *      Set SATA spd of @link according to sata_spd_limit.
2837 *
2838 *      LOCKING:
2839 *      Inherited from caller.
2840 *
2841 *      RETURNS:
2842 *      0 if spd doesn't need to be changed, 1 if spd has been
2843 *      changed.  Negative errno if SCR registers are inaccessible.
2844 */
2845int sata_set_spd(struct ata_link *link)
2846{
2847        u32 scontrol;
2848        int rc;
2849
2850        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2851                return rc;
2852
2853        if (!__sata_set_spd_needed(link, &scontrol))
2854                return 0;
2855
2856        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2857                return rc;
2858
2859        return 1;
2860}
2861
2862/*
2863 * This mode timing computation functionality is ported over from
2864 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2865 */
2866/*
2867 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2868 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2869 * for UDMA6, which is currently supported only by Maxtor drives.
2870 *
2871 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2872 */
2873
2874static const struct ata_timing ata_timing[] = {
2875/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2876        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2877        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2878        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2879        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2880        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2881        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2882        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2883
2884        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2885        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2886        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2887
2888        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2889        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2890        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2891        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2892        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2893
2894/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2895        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2896        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2897        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2898        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2899        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2900        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2901        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2902
2903        { 0xFF }
2904};
2905
2906#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2907#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2908
2909static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2910{
2911        q->setup        = EZ(t->setup      * 1000,  T);
2912        q->act8b        = EZ(t->act8b      * 1000,  T);
2913        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2914        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2915        q->active       = EZ(t->active     * 1000,  T);
2916        q->recover      = EZ(t->recover    * 1000,  T);
2917        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2918        q->cycle        = EZ(t->cycle      * 1000,  T);
2919        q->udma         = EZ(t->udma       * 1000, UT);
2920}
2921
2922void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2923                      struct ata_timing *m, unsigned int what)
2924{
2925        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2926        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2927        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2928        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2929        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2930        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2931        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2932        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2933        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2934}
2935
2936const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2937{
2938        const struct ata_timing *t = ata_timing;
2939
2940        while (xfer_mode > t->mode)
2941                t++;
2942
2943        if (xfer_mode == t->mode)
2944                return t;
2945
2946        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2947                        __func__, xfer_mode);
2948
2949        return NULL;
2950}
2951
2952int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2953                       struct ata_timing *t, int T, int UT)
2954{
2955        const u16 *id = adev->id;
2956        const struct ata_timing *s;
2957        struct ata_timing p;
2958
2959        /*
2960         * Find the mode.
2961         */
2962
2963        if (!(s = ata_timing_find_mode(speed)))
2964                return -EINVAL;
2965
2966        memcpy(t, s, sizeof(*s));
2967
2968        /*
2969         * If the drive is an EIDE drive, it can tell us it needs extended
2970         * PIO/MW_DMA cycle timing.
2971         */
2972
2973        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2974                memset(&p, 0, sizeof(p));
2975
2976                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2977                        if (speed <= XFER_PIO_2)
2978                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2979                        else if ((speed <= XFER_PIO_4) ||
2980                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2981                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2982                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2983                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2984
2985                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2986        }
2987
2988        /*
2989         * Convert the timing to bus clock counts.
2990         */
2991
2992        ata_timing_quantize(t, t, T, UT);
2993
2994        /*
2995         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2996         * S.M.A.R.T * and some other commands. We have to ensure that the
2997         * DMA cycle timing is slower/equal than the fastest PIO timing.
2998         */
2999
3000        if (speed > XFER_PIO_6) {
3001                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3002                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3003        }
3004
3005        /*
3006         * Lengthen active & recovery time so that cycle time is correct.
3007         */
3008
3009        if (t->act8b + t->rec8b < t->cyc8b) {
3010                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3011                t->rec8b = t->cyc8b - t->act8b;
3012        }
3013
3014        if (t->active + t->recover < t->cycle) {
3015                t->active += (t->cycle - (t->active + t->recover)) / 2;
3016                t->recover = t->cycle - t->active;
3017        }
3018
3019        /* In a few cases quantisation may produce enough errors to
3020           leave t->cycle too low for the sum of active and recovery
3021           if so we must correct this */
3022        if (t->active + t->recover > t->cycle)
3023                t->cycle = t->active + t->recover;
3024
3025        return 0;
3026}
3027
3028/**
3029 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3030 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3031 *      @cycle: cycle duration in ns
3032 *
3033 *      Return matching xfer mode for @cycle.  The returned mode is of
3034 *      the transfer type specified by @xfer_shift.  If @cycle is too
3035 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3036 *      than the fastest known mode, the fasted mode is returned.
3037 *
3038 *      LOCKING:
3039 *      None.
3040 *
3041 *      RETURNS:
3042 *      Matching xfer_mode, 0xff if no match found.
3043 */
3044u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3045{
3046        u8 base_mode = 0xff, last_mode = 0xff;
3047        const struct ata_xfer_ent *ent;
3048        const struct ata_timing *t;
3049
3050        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3051                if (ent->shift == xfer_shift)
3052                        base_mode = ent->base;
3053
3054        for (t = ata_timing_find_mode(base_mode);
3055             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3056                unsigned short this_cycle;
3057
3058                switch (xfer_shift) {
3059                case ATA_SHIFT_PIO:
3060                case ATA_SHIFT_MWDMA:
3061                        this_cycle = t->cycle;
3062                        break;
3063                case ATA_SHIFT_UDMA:
3064                        this_cycle = t->udma;
3065                        break;
3066                default:
3067                        return 0xff;
3068                }
3069
3070                if (cycle > this_cycle)
3071                        break;
3072
3073                last_mode = t->mode;
3074        }
3075
3076        return last_mode;
3077}
3078
3079/**
3080 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3081 *      @dev: Device to adjust xfer masks
3082 *      @sel: ATA_DNXFER_* selector
3083 *
3084 *      Adjust xfer masks of @dev downward.  Note that this function
3085 *      does not apply the change.  Invoking ata_set_mode() afterwards
3086 *      will apply the limit.
3087 *
3088 *      LOCKING:
3089 *      Inherited from caller.
3090 *
3091 *      RETURNS:
3092 *      0 on success, negative errno on failure
3093 */
3094int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3095{
3096        char buf[32];
3097        unsigned long orig_mask, xfer_mask;
3098        unsigned long pio_mask, mwdma_mask, udma_mask;
3099        int quiet, highbit;
3100
3101        quiet = !!(sel & ATA_DNXFER_QUIET);
3102        sel &= ~ATA_DNXFER_QUIET;
3103
3104        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3105                                                  dev->mwdma_mask,
3106                                                  dev->udma_mask);
3107        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3108
3109        switch (sel) {
3110        case ATA_DNXFER_PIO:
3111                highbit = fls(pio_mask) - 1;
3112                pio_mask &= ~(1 << highbit);
3113                break;
3114
3115        case ATA_DNXFER_DMA:
3116                if (udma_mask) {
3117                        highbit = fls(udma_mask) - 1;
3118                        udma_mask &= ~(1 << highbit);
3119                        if (!udma_mask)
3120                                return -ENOENT;
3121                } else if (mwdma_mask) {
3122                        highbit = fls(mwdma_mask) - 1;
3123                        mwdma_mask &= ~(1 << highbit);
3124                        if (!mwdma_mask)
3125                                return -ENOENT;
3126                }
3127                break;
3128
3129        case ATA_DNXFER_40C:
3130                udma_mask &= ATA_UDMA_MASK_40C;
3131                break;
3132
3133        case ATA_DNXFER_FORCE_PIO0:
3134                pio_mask &= 1;
3135        case ATA_DNXFER_FORCE_PIO:
3136                mwdma_mask = 0;
3137                udma_mask = 0;
3138                break;
3139
3140        default:
3141                BUG();
3142        }
3143
3144        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3145
3146        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3147                return -ENOENT;
3148
3149        if (!quiet) {
3150                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3151                        snprintf(buf, sizeof(buf), "%s:%s",
3152                                 ata_mode_string(xfer_mask),
3153                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3154                else
3155                        snprintf(buf, sizeof(buf), "%s",
3156                                 ata_mode_string(xfer_mask));
3157
3158                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3159        }
3160
3161        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3162                            &dev->udma_mask);
3163
3164        return 0;
3165}
3166
3167static int ata_dev_set_mode(struct ata_device *dev)
3168{
3169        struct ata_port *ap = dev->link->ap;
3170        struct ata_eh_context *ehc = &dev->link->eh_context;
3171        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3172        const char *dev_err_whine = "";
3173        int ign_dev_err = 0;
3174        unsigned int err_mask = 0;
3175        int rc;
3176
3177        dev->flags &= ~ATA_DFLAG_PIO;
3178        if (dev->xfer_shift == ATA_SHIFT_PIO)
3179                dev->flags |= ATA_DFLAG_PIO;
3180
3181        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3182                dev_err_whine = " (SET_XFERMODE skipped)";
3183        else {
3184                if (nosetxfer)
3185                        ata_dev_warn(dev,
3186                                     "NOSETXFER but PATA detected - can't "
3187                                     "skip SETXFER, might malfunction\n");
3188                err_mask = ata_dev_set_xfermode(dev);
3189        }
3190
3191        if (err_mask & ~AC_ERR_DEV)
3192                goto fail;
3193
3194        /* revalidate */
3195        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3196        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3197        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3198        if (rc)
3199                return rc;
3200
3201        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3202                /* Old CFA may refuse this command, which is just fine */
3203                if (ata_id_is_cfa(dev->id))
3204                        ign_dev_err = 1;
3205                /* Catch several broken garbage emulations plus some pre
3206                   ATA devices */
3207                if (ata_id_major_version(dev->id) == 0 &&
3208                                        dev->pio_mode <= XFER_PIO_2)
3209                        ign_dev_err = 1;
3210                /* Some very old devices and some bad newer ones fail
3211                   any kind of SET_XFERMODE request but support PIO0-2
3212                   timings and no IORDY */
3213                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3214                        ign_dev_err = 1;
3215        }
3216        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3217           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3218        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3219            dev->dma_mode == XFER_MW_DMA_0 &&
3220            (dev->id[63] >> 8) & 1)
3221                ign_dev_err = 1;
3222
3223        /* if the device is actually configured correctly, ignore dev err */
3224        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3225                ign_dev_err = 1;
3226
3227        if (err_mask & AC_ERR_DEV) {
3228                if (!ign_dev_err)
3229                        goto fail;
3230                else
3231                        dev_err_whine = " (device error ignored)";
3232        }
3233
3234        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3235                dev->xfer_shift, (int)dev->xfer_mode);
3236
3237        ata_dev_info(dev, "configured for %s%s\n",
3238                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3239                     dev_err_whine);
3240
3241        return 0;
3242
3243 fail:
3244        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3245        return -EIO;
3246}
3247
3248/**
3249 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3250 *      @link: link on which timings will be programmed
3251 *      @r_failed_dev: out parameter for failed device
3252 *
3253 *      Standard implementation of the function used to tune and set
3254 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3255 *      ata_dev_set_mode() fails, pointer to the failing device is
3256 *      returned in @r_failed_dev.
3257 *
3258 *      LOCKING:
3259 *      PCI/etc. bus probe sem.
3260 *
3261 *      RETURNS:
3262 *      0 on success, negative errno otherwise
3263 */
3264
3265int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3266{
3267        struct ata_port *ap = link->ap;
3268        struct ata_device *dev;
3269        int rc = 0, used_dma = 0, found = 0;
3270
3271        /* step 1: calculate xfer_mask */
3272        ata_for_each_dev(dev, link, ENABLED) {
3273                unsigned long pio_mask, dma_mask;
3274                unsigned int mode_mask;
3275
3276                mode_mask = ATA_DMA_MASK_ATA;
3277                if (dev->class == ATA_DEV_ATAPI)
3278                        mode_mask = ATA_DMA_MASK_ATAPI;
3279                else if (ata_id_is_cfa(dev->id))
3280                        mode_mask = ATA_DMA_MASK_CFA;
3281
3282                ata_dev_xfermask(dev);
3283                ata_force_xfermask(dev);
3284
3285                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3286
3287                if (libata_dma_mask & mode_mask)
3288                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3289                                                     dev->udma_mask);
3290                else
3291                        dma_mask = 0;
3292
3293                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3294                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3295
3296                found = 1;
3297                if (ata_dma_enabled(dev))
3298                        used_dma = 1;
3299        }
3300        if (!found)
3301                goto out;
3302
3303        /* step 2: always set host PIO timings */
3304        ata_for_each_dev(dev, link, ENABLED) {
3305                if (dev->pio_mode == 0xff) {
3306                        ata_dev_warn(dev, "no PIO support\n");
3307                        rc = -EINVAL;
3308                        goto out;
3309                }
3310
3311                dev->xfer_mode = dev->pio_mode;
3312                dev->xfer_shift = ATA_SHIFT_PIO;
3313                if (ap->ops->set_piomode)
3314                        ap->ops->set_piomode(ap, dev);
3315        }
3316
3317        /* step 3: set host DMA timings */
3318        ata_for_each_dev(dev, link, ENABLED) {
3319                if (!ata_dma_enabled(dev))
3320                        continue;
3321
3322                dev->xfer_mode = dev->dma_mode;
3323                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3324                if (ap->ops->set_dmamode)
3325                        ap->ops->set_dmamode(ap, dev);
3326        }
3327
3328        /* step 4: update devices' xfer mode */
3329        ata_for_each_dev(dev, link, ENABLED) {
3330                rc = ata_dev_set_mode(dev);
3331                if (rc)
3332                        goto out;
3333        }
3334
3335        /* Record simplex status. If we selected DMA then the other
3336         * host channels are not permitted to do so.
3337         */
3338        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3339                ap->host->simplex_claimed = ap;
3340
3341 out:
3342        if (rc)
3343                *r_failed_dev = dev;
3344        return rc;
3345}
3346
3347/**
3348 *      ata_wait_ready - wait for link to become ready
3349 *      @link: link to be waited on
3350 *      @deadline: deadline jiffies for the operation
3351 *      @check_ready: callback to check link readiness
3352 *
3353 *      Wait for @link to become ready.  @check_ready should return
3354 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3355 *      link doesn't seem to be occupied, other errno for other error
3356 *      conditions.
3357 *
3358 *      Transient -ENODEV conditions are allowed for
3359 *      ATA_TMOUT_FF_WAIT.
3360 *
3361 *      LOCKING:
3362 *      EH context.
3363 *
3364 *      RETURNS:
3365 *      0 if @linke is ready before @deadline; otherwise, -errno.
3366 */
3367int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3368                   int (*check_ready)(struct ata_link *link))
3369{
3370        unsigned long start = jiffies;
3371        unsigned long nodev_deadline;
3372        int warned = 0;
3373
3374        /* choose which 0xff timeout to use, read comment in libata.h */
3375        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3376                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3377        else
3378                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3379
3380        /* Slave readiness can't be tested separately from master.  On
3381         * M/S emulation configuration, this function should be called
3382         * only on the master and it will handle both master and slave.
3383         */
3384        WARN_ON(link == link->ap->slave_link);
3385
3386        if (time_after(nodev_deadline, deadline))
3387                nodev_deadline = deadline;
3388
3389        while (1) {
3390                unsigned long now = jiffies;
3391                int ready, tmp;
3392
3393                ready = tmp = check_ready(link);
3394                if (ready > 0)
3395                        return 0;
3396
3397                /*
3398                 * -ENODEV could be transient.  Ignore -ENODEV if link
3399                 * is online.  Also, some SATA devices take a long
3400                 * time to clear 0xff after reset.  Wait for
3401                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3402                 * offline.
3403                 *
3404                 * Note that some PATA controllers (pata_ali) explode
3405                 * if status register is read more than once when
3406                 * there's no device attached.
3407                 */
3408                if (ready == -ENODEV) {
3409                        if (ata_link_online(link))
3410                                ready = 0;
3411                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3412                                 !ata_link_offline(link) &&
3413                                 time_before(now, nodev_deadline))
3414                                ready = 0;
3415                }
3416
3417                if (ready)
3418                        return ready;
3419                if (time_after(now, deadline))
3420                        return -EBUSY;
3421
3422                if (!warned && time_after(now, start + 5 * HZ) &&
3423                    (deadline - now > 3 * HZ)) {
3424                        ata_link_warn(link,
3425                                "link is slow to respond, please be patient "
3426                                "(ready=%d)\n", tmp);
3427                        warned = 1;
3428                }
3429
3430                ata_msleep(link->ap, 50);
3431        }
3432}
3433
3434/**
3435 *      ata_wait_after_reset - wait for link to become ready after reset
3436 *      @link: link to be waited on
3437 *      @deadline: deadline jiffies for the operation
3438 *      @check_ready: callback to check link readiness
3439 *
3440 *      Wait for @link to become ready after reset.
3441 *
3442 *      LOCKING:
3443 *      EH context.
3444 *
3445 *      RETURNS:
3446 *      0 if @linke is ready before @deadline; otherwise, -errno.
3447 */
3448int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3449                                int (*check_ready)(struct ata_link *link))
3450{
3451        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3452
3453        return ata_wait_ready(link, deadline, check_ready);
3454}
3455
3456/**
3457 *      sata_link_debounce - debounce SATA phy status
3458 *      @link: ATA link to debounce SATA phy status for
3459 *      @params: timing parameters { interval, duratinon, timeout } in msec
3460 *      @deadline: deadline jiffies for the operation
3461 *
3462 *      Make sure SStatus of @link reaches stable state, determined by
3463 *      holding the same value where DET is not 1 for @duration polled
3464 *      every @interval, before @timeout.  Timeout constraints the
3465 *      beginning of the stable state.  Because DET gets stuck at 1 on
3466 *      some controllers after hot unplugging, this functions waits
3467 *      until timeout then returns 0 if DET is stable at 1.
3468 *
3469 *      @timeout is further limited by @deadline.  The sooner of the
3470 *      two is used.
3471 *
3472 *      LOCKING:
3473 *      Kernel thread context (may sleep)
3474 *
3475 *      RETURNS:
3476 *      0 on success, -errno on failure.
3477 */
3478int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3479                       unsigned long deadline)
3480{
3481        unsigned long interval = params[0];
3482        unsigned long duration = params[1];
3483        unsigned long last_jiffies, t;
3484        u32 last, cur;
3485        int rc;
3486
3487        t = ata_deadline(jiffies, params[2]);
3488        if (time_before(t, deadline))
3489                deadline = t;
3490
3491        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3492                return rc;
3493        cur &= 0xf;
3494
3495        last = cur;
3496        last_jiffies = jiffies;
3497
3498        while (1) {
3499                ata_msleep(link->ap, interval);
3500                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3501                        return rc;
3502                cur &= 0xf;
3503
3504                /* DET stable? */
3505                if (cur == last) {
3506                        if (cur == 1 && time_before(jiffies, deadline))
3507                                continue;
3508                        if (time_after(jiffies,
3509                                       ata_deadline(last_jiffies, duration)))
3510                                return 0;
3511                        continue;
3512                }
3513
3514                /* unstable, start over */
3515                last = cur;
3516                last_jiffies = jiffies;
3517
3518                /* Check deadline.  If debouncing failed, return
3519                 * -EPIPE to tell upper layer to lower link speed.
3520                 */
3521                if (time_after(jiffies, deadline))
3522                        return -EPIPE;
3523        }
3524}
3525
3526/**
3527 *      sata_link_resume - resume SATA link
3528 *      @link: ATA link to resume SATA
3529 *      @params: timing parameters { interval, duratinon, timeout } in msec
3530 *      @deadline: deadline jiffies for the operation
3531 *
3532 *      Resume SATA phy @link and debounce it.
3533 *
3534 *      LOCKING:
3535 *      Kernel thread context (may sleep)
3536 *
3537 *      RETURNS:
3538 *      0 on success, -errno on failure.
3539 */
3540int sata_link_resume(struct ata_link *link, const unsigned long *params,
3541                     unsigned long deadline)
3542{
3543        int tries = ATA_LINK_RESUME_TRIES;
3544        u32 scontrol, serror;
3545        int rc;
3546
3547        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3548                return rc;
3549
3550        /*
3551         * Writes to SControl sometimes get ignored under certain
3552         * controllers (ata_piix SIDPR).  Make sure DET actually is
3553         * cleared.
3554         */
3555        do {
3556                scontrol = (scontrol & 0x0f0) | 0x300;
3557                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3558                        return rc;
3559                /*
3560                 * Some PHYs react badly if SStatus is pounded
3561                 * immediately after resuming.  Delay 200ms before
3562                 * debouncing.
3563                 */
3564                ata_msleep(link->ap, 200);
3565
3566                /* is SControl restored correctly? */
3567                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3568                        return rc;
3569        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3570
3571        if ((scontrol & 0xf0f) != 0x300) {
3572                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3573                             scontrol);
3574                return 0;
3575        }
3576
3577        if (tries < ATA_LINK_RESUME_TRIES)
3578                ata_link_warn(link, "link resume succeeded after %d retries\n",
3579                              ATA_LINK_RESUME_TRIES - tries);
3580
3581        if ((rc = sata_link_debounce(link, params, deadline)))
3582                return rc;
3583
3584        /* clear SError, some PHYs require this even for SRST to work */
3585        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3586                rc = sata_scr_write(link, SCR_ERROR, serror);
3587
3588        return rc != -EINVAL ? rc : 0;
3589}
3590
3591/**
3592 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3593 *      @link: ATA link to manipulate SControl for
3594 *      @policy: LPM policy to configure
3595 *      @spm_wakeup: initiate LPM transition to active state
3596 *
3597 *      Manipulate the IPM field of the SControl register of @link
3598 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3599 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3600 *      the link.  This function also clears PHYRDY_CHG before
3601 *      returning.
3602 *
3603 *      LOCKING:
3604 *      EH context.
3605 *
3606 *      RETURNS:
3607 *      0 on succes, -errno otherwise.
3608 */
3609int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3610                      bool spm_wakeup)
3611{
3612        struct ata_eh_context *ehc = &link->eh_context;
3613        bool woken_up = false;
3614        u32 scontrol;
3615        int rc;
3616
3617        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3618        if (rc)
3619                return rc;
3620
3621        switch (policy) {
3622        case ATA_LPM_MAX_POWER:
3623                /* disable all LPM transitions */
3624                scontrol |= (0x7 << 8);
3625                /* initiate transition to active state */
3626                if (spm_wakeup) {
3627                        scontrol |= (0x4 << 12);
3628                        woken_up = true;
3629                }
3630                break;
3631        case ATA_LPM_MED_POWER:
3632                /* allow LPM to PARTIAL */
3633                scontrol &= ~(0x1 << 8);
3634                scontrol |= (0x6 << 8);
3635                break;
3636        case ATA_LPM_MIN_POWER:
3637                if (ata_link_nr_enabled(link) > 0)
3638                        /* no restrictions on LPM transitions */
3639                        scontrol &= ~(0x7 << 8);
3640                else {
3641                        /* empty port, power off */
3642                        scontrol &= ~0xf;
3643                        scontrol |= (0x1 << 2);
3644                }
3645                break;
3646        default:
3647                WARN_ON(1);
3648        }
3649
3650        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3651        if (rc)
3652                return rc;
3653
3654        /* give the link time to transit out of LPM state */
3655        if (woken_up)
3656                msleep(10);
3657
3658        /* clear PHYRDY_CHG from SError */
3659        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3660        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3661}
3662
3663/**
3664 *      ata_std_prereset - prepare for reset
3665 *      @link: ATA link to be reset
3666 *      @deadline: deadline jiffies for the operation
3667 *
3668 *      @link is about to be reset.  Initialize it.  Failure from
3669 *      prereset makes libata abort whole reset sequence and give up
3670 *      that port, so prereset should be best-effort.  It does its
3671 *      best to prepare for reset sequence but if things go wrong, it
3672 *      should just whine, not fail.
3673 *
3674 *      LOCKING:
3675 *      Kernel thread context (may sleep)
3676 *
3677 *      RETURNS:
3678 *      0 on success, -errno otherwise.
3679 */
3680int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3681{
3682        struct ata_port *ap = link->ap;
3683        struct ata_eh_context *ehc = &link->eh_context;
3684        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3685        int rc;
3686
3687        /* if we're about to do hardreset, nothing more to do */
3688        if (ehc->i.action & ATA_EH_HARDRESET)
3689                return 0;
3690
3691        /* if SATA, resume link */
3692        if (ap->flags & ATA_FLAG_SATA) {
3693                rc = sata_link_resume(link, timing, deadline);
3694                /* whine about phy resume failure but proceed */
3695                if (rc && rc != -EOPNOTSUPP)
3696                        ata_link_warn(link,
3697                                      "failed to resume link for reset (errno=%d)\n",
3698                                      rc);
3699        }
3700
3701        /* no point in trying softreset on offline link */
3702        if (ata_phys_link_offline(link))
3703                ehc->i.action &= ~ATA_EH_SOFTRESET;
3704
3705        return 0;
3706}
3707
3708/**
3709 *      sata_link_hardreset - reset link via SATA phy reset
3710 *      @link: link to reset
3711 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3712 *      @deadline: deadline jiffies for the operation
3713 *      @online: optional out parameter indicating link onlineness
3714 *      @check_ready: optional callback to check link readiness
3715 *
3716 *      SATA phy-reset @link using DET bits of SControl register.
3717 *      After hardreset, link readiness is waited upon using
3718 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3719 *      allowed to not specify @check_ready and wait itself after this
3720 *      function returns.  Device classification is LLD's
3721 *      responsibility.
3722 *
3723 *      *@online is set to one iff reset succeeded and @link is online
3724 *      after reset.
3725 *
3726 *      LOCKING:
3727 *      Kernel thread context (may sleep)
3728 *
3729 *      RETURNS:
3730 *      0 on success, -errno otherwise.
3731 */
3732int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3733                        unsigned long deadline,
3734                        bool *online, int (*check_ready)(struct ata_link *))
3735{
3736        u32 scontrol;
3737        int rc;
3738
3739        DPRINTK("ENTER\n");
3740
3741        if (online)
3742                *online = false;
3743
3744        if (sata_set_spd_needed(link)) {
3745                /* SATA spec says nothing about how to reconfigure
3746                 * spd.  To be on the safe side, turn off phy during
3747                 * reconfiguration.  This works for at least ICH7 AHCI
3748                 * and Sil3124.
3749                 */
3750                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3751                        goto out;
3752
3753                scontrol = (scontrol & 0x0f0) | 0x304;
3754
3755                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3756                        goto out;
3757
3758                sata_set_spd(link);
3759        }
3760
3761        /* issue phy wake/reset */
3762        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3763                goto out;
3764
3765        scontrol = (scontrol & 0x0f0) | 0x301;
3766
3767        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3768                goto out;
3769
3770        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3771         * 10.4.2 says at least 1 ms.
3772         */
3773        ata_msleep(link->ap, 1);
3774
3775        /* bring link back */
3776        rc = sata_link_resume(link, timing, deadline);
3777        if (rc)
3778                goto out;
3779        /* if link is offline nothing more to do */
3780        if (ata_phys_link_offline(link))
3781                goto out;
3782
3783        /* Link is online.  From this point, -ENODEV too is an error. */
3784        if (online)
3785                *online = true;
3786
3787        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3788                /* If PMP is supported, we have to do follow-up SRST.
3789                 * Some PMPs don't send D2H Reg FIS after hardreset if
3790                 * the first port is empty.  Wait only for
3791                 * ATA_TMOUT_PMP_SRST_WAIT.
3792                 */
3793                if (check_ready) {
3794                        unsigned long pmp_deadline;
3795
3796                        pmp_deadline = ata_deadline(jiffies,
3797                                                    ATA_TMOUT_PMP_SRST_WAIT);
3798                        if (time_after(pmp_deadline, deadline))
3799                                pmp_deadline = deadline;
3800                        ata_wait_ready(link, pmp_deadline, check_ready);
3801                }
3802                rc = -EAGAIN;
3803                goto out;
3804        }
3805
3806        rc = 0;
3807        if (check_ready)
3808                rc = ata_wait_ready(link, deadline, check_ready);
3809 out:
3810        if (rc && rc != -EAGAIN) {
3811                /* online is set iff link is online && reset succeeded */
3812                if (online)
3813                        *online = false;
3814                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3815        }
3816        DPRINTK("EXIT, rc=%d\n", rc);
3817        return rc;
3818}
3819
3820/**
3821 *      sata_std_hardreset - COMRESET w/o waiting or classification
3822 *      @link: link to reset
3823 *      @class: resulting class of attached device
3824 *      @deadline: deadline jiffies for the operation
3825 *
3826 *      Standard SATA COMRESET w/o waiting or classification.
3827 *
3828 *      LOCKING:
3829 *      Kernel thread context (may sleep)
3830 *
3831 *      RETURNS:
3832 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3833 */
3834int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3835                       unsigned long deadline)
3836{
3837        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3838        bool online;
3839        int rc;
3840
3841        /* do hardreset */
3842        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3843        return online ? -EAGAIN : rc;
3844}
3845
3846/**
3847 *      ata_std_postreset - standard postreset callback
3848 *      @link: the target ata_link
3849 *      @classes: classes of attached devices
3850 *
3851 *      This function is invoked after a successful reset.  Note that
3852 *      the device might have been reset more than once using
3853 *      different reset methods before postreset is invoked.
3854 *
3855 *      LOCKING:
3856 *      Kernel thread context (may sleep)
3857 */
3858void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3859{
3860        u32 serror;
3861
3862        DPRINTK("ENTER\n");
3863
3864        /* reset complete, clear SError */
3865        if (!sata_scr_read(link, SCR_ERROR, &serror))
3866                sata_scr_write(link, SCR_ERROR, serror);
3867
3868        /* print link status */
3869        sata_print_link_status(link);
3870
3871        DPRINTK("EXIT\n");
3872}
3873
3874/**
3875 *      ata_dev_same_device - Determine whether new ID matches configured device
3876 *      @dev: device to compare against
3877 *      @new_class: class of the new device
3878 *      @new_id: IDENTIFY page of the new device
3879 *
3880 *      Compare @new_class and @new_id against @dev and determine
3881 *      whether @dev is the device indicated by @new_class and
3882 *      @new_id.
3883 *
3884 *      LOCKING:
3885 *      None.
3886 *
3887 *      RETURNS:
3888 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3889 */
3890static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3891                               const u16 *new_id)
3892{
3893        const u16 *old_id = dev->id;
3894        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3895        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3896
3897        if (dev->class != new_class) {
3898                ata_dev_info(dev, "class mismatch %d != %d\n",
3899                             dev->class, new_class);
3900                return 0;
3901        }
3902
3903        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3904        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3905        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3906        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3907
3908        if (strcmp(model[0], model[1])) {
3909                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3910                             model[0], model[1]);
3911                return 0;
3912        }
3913
3914        if (strcmp(serial[0], serial[1])) {
3915                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3916                             serial[0], serial[1]);
3917                return 0;
3918        }
3919
3920        return 1;
3921}
3922
3923/**
3924 *      ata_dev_reread_id - Re-read IDENTIFY data
3925 *      @dev: target ATA device
3926 *      @readid_flags: read ID flags
3927 *
3928 *      Re-read IDENTIFY page and make sure @dev is still attached to
3929 *      the port.
3930 *
3931 *      LOCKING:
3932 *      Kernel thread context (may sleep)
3933 *
3934 *      RETURNS:
3935 *      0 on success, negative errno otherwise
3936 */
3937int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3938{
3939        unsigned int class = dev->class;
3940        u16 *id = (void *)dev->link->ap->sector_buf;
3941        int rc;
3942
3943        /* read ID data */
3944        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3945        if (rc)
3946                return rc;
3947
3948        /* is the device still there? */
3949        if (!ata_dev_same_device(dev, class, id))
3950                return -ENODEV;
3951
3952        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3953        return 0;
3954}
3955
3956/**
3957 *      ata_dev_revalidate - Revalidate ATA device
3958 *      @dev: device to revalidate
3959 *      @new_class: new class code
3960 *      @readid_flags: read ID flags
3961 *
3962 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3963 *      port and reconfigure it according to the new IDENTIFY page.
3964 *
3965 *      LOCKING:
3966 *      Kernel thread context (may sleep)
3967 *
3968 *      RETURNS:
3969 *      0 on success, negative errno otherwise
3970 */
3971int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3972                       unsigned int readid_flags)
3973{
3974        u64 n_sectors = dev->n_sectors;
3975        u64 n_native_sectors = dev->n_native_sectors;
3976        int rc;
3977
3978        if (!ata_dev_enabled(dev))
3979                return -ENODEV;
3980
3981        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3982        if (ata_class_enabled(new_class) &&
3983            new_class != ATA_DEV_ATA &&
3984            new_class != ATA_DEV_ATAPI &&
3985            new_class != ATA_DEV_SEMB) {
3986                ata_dev_info(dev, "class mismatch %u != %u\n",
3987                             dev->class, new_class);
3988                rc = -ENODEV;
3989                goto fail;
3990        }
3991
3992        /* re-read ID */
3993        rc = ata_dev_reread_id(dev, readid_flags);
3994        if (rc)
3995                goto fail;
3996
3997        /* configure device according to the new ID */
3998        rc = ata_dev_configure(dev);
3999        if (rc)
4000                goto fail;
4001
4002        /* verify n_sectors hasn't changed */
4003        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4004            dev->n_sectors == n_sectors)
4005                return 0;
4006
4007        /* n_sectors has changed */
4008        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4009                     (unsigned long long)n_sectors,
4010                     (unsigned long long)dev->n_sectors);
4011
4012        /*
4013         * Something could have caused HPA to be unlocked
4014         * involuntarily.  If n_native_sectors hasn't changed and the
4015         * new size matches it, keep the device.
4016         */
4017        if (dev->n_native_sectors == n_native_sectors &&
4018            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4019                ata_dev_warn(dev,
4020                             "new n_sectors matches native, probably "
4021                             "late HPA unlock, n_sectors updated\n");
4022                /* use the larger n_sectors */
4023                return 0;
4024        }
4025
4026        /*
4027         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4028         * unlocking HPA in those cases.
4029         *
4030         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4031         */
4032        if (dev->n_native_sectors == n_native_sectors &&
4033            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4034            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4035                ata_dev_warn(dev,
4036                             "old n_sectors matches native, probably "
4037                             "late HPA lock, will try to unlock HPA\n");
4038                /* try unlocking HPA */
4039                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4040                rc = -EIO;
4041        } else
4042                rc = -ENODEV;
4043
4044        /* restore original n_[native_]sectors and fail */
4045        dev->n_native_sectors = n_native_sectors;
4046        dev->n_sectors = n_sectors;
4047 fail:
4048        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4049        return rc;
4050}
4051
4052struct ata_blacklist_entry {
4053        const char *model_num;
4054        const char *model_rev;
4055        unsigned long horkage;
4056};
4057
4058static const struct ata_blacklist_entry ata_device_blacklist [] = {
4059        /* Devices with DMA related problems under Linux */
4060        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4061        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4062        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4063        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4064        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4065        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4066        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4067        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4068        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4069        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4070        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4071        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4072        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4073        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4074        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4075        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4076        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4077        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4078        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4079        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4080        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4081        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4082        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4083        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4084        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4085        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4086        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4087        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4088        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4089        /* Odd clown on sil3726/4726 PMPs */
4090        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4091
4092        /* Weird ATAPI devices */
4093        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4094        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4095
4096        /* Devices we expect to fail diagnostics */
4097
4098        /* Devices where NCQ should be avoided */
4099        /* NCQ is slow */
4100        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4101        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4102        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4103        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4104        /* NCQ is broken */
4105        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4106        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4107        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4108        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4109        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4110
4111        /* Seagate NCQ + FLUSH CACHE firmware bug */
4112        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4113                                                ATA_HORKAGE_FIRMWARE_WARN },
4114
4115        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4116                                                ATA_HORKAGE_FIRMWARE_WARN },
4117
4118        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4119                                                ATA_HORKAGE_FIRMWARE_WARN },
4120
4121        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4122                                                ATA_HORKAGE_FIRMWARE_WARN },
4123
4124        /* Blacklist entries taken from Silicon Image 3124/3132
4125           Windows driver .inf file - also several Linux problem reports */
4126        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4127        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4128        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4129
4130        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4131        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4132
4133        /* devices which puke on READ_NATIVE_MAX */
4134        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4135        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4136        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4137        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4138
4139        /* this one allows HPA unlocking but fails IOs on the area */
4140        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4141
4142        /* Devices which report 1 sector over size HPA */
4143        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4144        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4145        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4146
4147        /* Devices which get the IVB wrong */
4148        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4149        /* Maybe we should just blacklist TSSTcorp... */
4150        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4151
4152        /* Devices that do not need bridging limits applied */
4153        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4154        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4155
4156        /* Devices which aren't very happy with higher link speeds */
4157        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4158        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4159
4160        /*
4161         * Devices which choke on SETXFER.  Applies only if both the
4162         * device and controller are SATA.
4163         */
4164        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4165        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4166        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4167        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4168        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4169
4170        /* End Marker */
4171        { }
4172};
4173
4174/**
4175 *      glob_match - match a text string against a glob-style pattern
4176 *      @text: the string to be examined
4177 *      @pattern: the glob-style pattern to be matched against
4178 *
4179 *      Either/both of text and pattern can be empty strings.
4180 *
4181 *      Match text against a glob-style pattern, with wildcards and simple sets:
4182 *
4183 *              ?       matches any single character.
4184 *              *       matches any run of characters.
4185 *              [xyz]   matches a single character from the set: x, y, or z.
4186 *              [a-d]   matches a single character from the range: a, b, c, or d.
4187 *              [a-d0-9] matches a single character from either range.
4188 *
4189 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4190 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4191 *
4192 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4193 *
4194 *      This function uses one level of recursion per '*' in pattern.
4195 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4196 *      this will not cause stack problems for any reasonable use here.
4197 *
4198 *      RETURNS:
4199 *      0 on match, 1 otherwise.
4200 */
4201static int glob_match (const char *text, const char *pattern)
4202{
4203        do {
4204                /* Match single character or a '?' wildcard */
4205                if (*text == *pattern || *pattern == '?') {
4206                        if (!*pattern++)
4207                                return 0;  /* End of both strings: match */
4208                } else {
4209                        /* Match single char against a '[' bracketed ']' pattern set */
4210                        if (!*text || *pattern != '[')
4211                                break;  /* Not a pattern set */
4212                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4213                                if (*pattern == '-' && *(pattern - 1) != '[')
4214                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4215                                                ++pattern;
4216                                                break;
4217                                        }
4218                        }
4219                        if (!*pattern || *pattern == ']')
4220                                return 1;  /* No match */
4221                        while (*pattern && *pattern++ != ']');
4222                }
4223        } while (*++text && *pattern);
4224
4225        /* Match any run of chars against a '*' wildcard */
4226        if (*pattern == '*') {
4227                if (!*++pattern)
4228                        return 0;  /* Match: avoid recursion at end of pattern */
4229                /* Loop to handle additional pattern chars after the wildcard */
4230                while (*text) {
4231                        if (glob_match(text, pattern) == 0)
4232                                return 0;  /* Remainder matched */
4233                        ++text;  /* Absorb (match) this char and try again */
4234                }
4235        }
4236        if (!*text && !*pattern)
4237                return 0;  /* End of both strings: match */
4238        return 1;  /* No match */
4239}
4240
4241static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4242{
4243        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4244        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4245        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4246
4247        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4248        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4249
4250        while (ad->model_num) {
4251                if (!glob_match(model_num, ad->model_num)) {
4252                        if (ad->model_rev == NULL)
4253                                return ad->horkage;
4254                        if (!glob_match(model_rev, ad->model_rev))
4255                                return ad->horkage;
4256                }
4257                ad++;
4258        }
4259        return 0;
4260}
4261
4262static int ata_dma_blacklisted(const struct ata_device *dev)
4263{
4264        /* We don't support polling DMA.
4265         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4266         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4267         */
4268        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4269            (dev->flags & ATA_DFLAG_CDB_INTR))
4270                return 1;
4271        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4272}
4273
4274/**
4275 *      ata_is_40wire           -       check drive side detection
4276 *      @dev: device
4277 *
4278 *      Perform drive side detection decoding, allowing for device vendors
4279 *      who can't follow the documentation.
4280 */
4281
4282static int ata_is_40wire(struct ata_device *dev)
4283{
4284        if (dev->horkage & ATA_HORKAGE_IVB)
4285                return ata_drive_40wire_relaxed(dev->id);
4286        return ata_drive_40wire(dev->id);
4287}
4288
4289/**
4290 *      cable_is_40wire         -       40/80/SATA decider
4291 *      @ap: port to consider
4292 *
4293 *      This function encapsulates the policy for speed management
4294 *      in one place. At the moment we don't cache the result but
4295 *      there is a good case for setting ap->cbl to the result when
4296 *      we are called with unknown cables (and figuring out if it
4297 *      impacts hotplug at all).
4298 *
4299 *      Return 1 if the cable appears to be 40 wire.
4300 */
4301
4302static int cable_is_40wire(struct ata_port *ap)
4303{
4304        struct ata_link *link;
4305        struct ata_device *dev;
4306
4307        /* If the controller thinks we are 40 wire, we are. */
4308        if (ap->cbl == ATA_CBL_PATA40)
4309                return 1;
4310
4311        /* If the controller thinks we are 80 wire, we are. */
4312        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4313                return 0;
4314
4315        /* If the system is known to be 40 wire short cable (eg
4316         * laptop), then we allow 80 wire modes even if the drive
4317         * isn't sure.
4318         */
4319        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4320                return 0;
4321
4322        /* If the controller doesn't know, we scan.
4323         *
4324         * Note: We look for all 40 wire detects at this point.  Any
4325         *       80 wire detect is taken to be 80 wire cable because
4326         * - in many setups only the one drive (slave if present) will
4327         *   give a valid detect
4328         * - if you have a non detect capable drive you don't want it
4329         *   to colour the choice
4330         */
4331        ata_for_each_link(link, ap, EDGE) {
4332                ata_for_each_dev(dev, link, ENABLED) {
4333                        if (!ata_is_40wire(dev))
4334                                return 0;
4335                }
4336        }
4337        return 1;
4338}
4339
4340/**
4341 *      ata_dev_xfermask - Compute supported xfermask of the given device
4342 *      @dev: Device to compute xfermask for
4343 *
4344 *      Compute supported xfermask of @dev and store it in
4345 *      dev->*_mask.  This function is responsible for applying all
4346 *      known limits including host controller limits, device
4347 *      blacklist, etc...
4348 *
4349 *      LOCKING:
4350 *      None.
4351 */
4352static void ata_dev_xfermask(struct ata_device *dev)
4353{
4354        struct ata_link *link = dev->link;
4355        struct ata_port *ap = link->ap;
4356        struct ata_host *host = ap->host;
4357        unsigned long xfer_mask;
4358
4359        /* controller modes available */
4360        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4361                                      ap->mwdma_mask, ap->udma_mask);
4362
4363        /* drive modes available */
4364        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4365                                       dev->mwdma_mask, dev->udma_mask);
4366        xfer_mask &= ata_id_xfermask(dev->id);
4367
4368        /*
4369         *      CFA Advanced TrueIDE timings are not allowed on a shared
4370         *      cable
4371         */
4372        if (ata_dev_pair(dev)) {
4373                /* No PIO5 or PIO6 */
4374                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4375                /* No MWDMA3 or MWDMA 4 */
4376                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4377        }
4378
4379        if (ata_dma_blacklisted(dev)) {
4380                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4381                ata_dev_warn(dev,
4382                             "device is on DMA blacklist, disabling DMA\n");
4383        }
4384
4385        if ((host->flags & ATA_HOST_SIMPLEX) &&
4386            host->simplex_claimed && host->simplex_claimed != ap) {
4387                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4388                ata_dev_warn(dev,
4389                             "simplex DMA is claimed by other device, disabling DMA\n");
4390        }
4391
4392        if (ap->flags & ATA_FLAG_NO_IORDY)
4393                xfer_mask &= ata_pio_mask_no_iordy(dev);
4394
4395        if (ap->ops->mode_filter)
4396                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4397
4398        /* Apply cable rule here.  Don't apply it early because when
4399         * we handle hot plug the cable type can itself change.
4400         * Check this last so that we know if the transfer rate was
4401         * solely limited by the cable.
4402         * Unknown or 80 wire cables reported host side are checked
4403         * drive side as well. Cases where we know a 40wire cable
4404         * is used safely for 80 are not checked here.
4405         */
4406        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4407                /* UDMA/44 or higher would be available */
4408                if (cable_is_40wire(ap)) {
4409                        ata_dev_warn(dev,
4410                                     "limited to UDMA/33 due to 40-wire cable\n");
4411                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4412                }
4413
4414        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4415                            &dev->mwdma_mask, &dev->udma_mask);
4416}
4417
4418/**
4419 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4420 *      @dev: Device to which command will be sent
4421 *
4422 *      Issue SET FEATURES - XFER MODE command to device @dev
4423 *      on port @ap.
4424 *
4425 *      LOCKING:
4426 *      PCI/etc. bus probe sem.
4427 *
4428 *      RETURNS:
4429 *      0 on success, AC_ERR_* mask otherwise.
4430 */
4431
4432static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4433{
4434        struct ata_taskfile tf;
4435        unsigned int err_mask;
4436
4437        /* set up set-features taskfile */
4438        DPRINTK("set features - xfer mode\n");
4439
4440        /* Some controllers and ATAPI devices show flaky interrupt
4441         * behavior after setting xfer mode.  Use polling instead.
4442         */
4443        ata_tf_init(dev, &tf);
4444        tf.command = ATA_CMD_SET_FEATURES;
4445        tf.feature = SETFEATURES_XFER;
4446        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4447        tf.protocol = ATA_PROT_NODATA;
4448        /* If we are using IORDY we must send the mode setting command */
4449        if (ata_pio_need_iordy(dev))
4450                tf.nsect = dev->xfer_mode;
4451        /* If the device has IORDY and the controller does not - turn it off */
4452        else if (ata_id_has_iordy(dev->id))
4453                tf.nsect = 0x01;
4454        else /* In the ancient relic department - skip all of this */
4455                return 0;
4456
4457        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4458
4459        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4460        return err_mask;
4461}
4462
4463/**
4464 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4465 *      @dev: Device to which command will be sent
4466 *      @enable: Whether to enable or disable the feature
4467 *      @feature: The sector count represents the feature to set
4468 *
4469 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4470 *      on port @ap with sector count
4471 *
4472 *      LOCKING:
4473 *      PCI/etc. bus probe sem.
4474 *
4475 *      RETURNS:
4476 *      0 on success, AC_ERR_* mask otherwise.
4477 */
4478unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4479{
4480        struct ata_taskfile tf;
4481        unsigned int err_mask;
4482
4483        /* set up set-features taskfile */
4484        DPRINTK("set features - SATA features\n");
4485
4486        ata_tf_init(dev, &tf);
4487        tf.command = ATA_CMD_SET_FEATURES;
4488        tf.feature = enable;
4489        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4490        tf.protocol = ATA_PROT_NODATA;
4491        tf.nsect = feature;
4492
4493        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4494
4495        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4496        return err_mask;
4497}
4498EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4499
4500/**
4501 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4502 *      @dev: Device to which command will be sent
4503 *      @heads: Number of heads (taskfile parameter)
4504 *      @sectors: Number of sectors (taskfile parameter)
4505 *
4506 *      LOCKING:
4507 *      Kernel thread context (may sleep)
4508 *
4509 *      RETURNS:
4510 *      0 on success, AC_ERR_* mask otherwise.
4511 */
4512static unsigned int ata_dev_init_params(struct ata_device *dev,
4513                                        u16 heads, u16 sectors)
4514{
4515        struct ata_taskfile tf;
4516        unsigned int err_mask;
4517
4518        /* Number of sectors per track 1-255. Number of heads 1-16 */
4519        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4520                return AC_ERR_INVALID;
4521
4522        /* set up init dev params taskfile */
4523        DPRINTK("init dev params \n");
4524
4525        ata_tf_init(dev, &tf);
4526        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4527        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4528        tf.protocol = ATA_PROT_NODATA;
4529        tf.nsect = sectors;
4530        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4531
4532        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4533        /* A clean abort indicates an original or just out of spec drive
4534           and we should continue as we issue the setup based on the
4535           drive reported working geometry */
4536        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4537                err_mask = 0;
4538
4539        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4540        return err_mask;
4541}
4542
4543/**
4544 *      ata_sg_clean - Unmap DMA memory associated with command
4545 *      @qc: Command containing DMA memory to be released
4546 *
4547 *      Unmap all mapped DMA memory associated with this command.
4548 *
4549 *      LOCKING:
4550 *      spin_lock_irqsave(host lock)
4551 */
4552void ata_sg_clean(struct ata_queued_cmd *qc)
4553{
4554        struct ata_port *ap = qc->ap;
4555        struct scatterlist *sg = qc->sg;
4556        int dir = qc->dma_dir;
4557
4558        WARN_ON_ONCE(sg == NULL);
4559
4560        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4561
4562        if (qc->n_elem)
4563                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4564
4565        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4566        qc->sg = NULL;
4567}
4568
4569/**
4570 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4571 *      @qc: Metadata associated with taskfile to check
4572 *
4573 *      Allow low-level driver to filter ATA PACKET commands, returning
4574 *      a status indicating whether or not it is OK to use DMA for the
4575 *      supplied PACKET command.
4576 *
4577 *      LOCKING:
4578 *      spin_lock_irqsave(host lock)
4579 *
4580 *      RETURNS: 0 when ATAPI DMA can be used
4581 *               nonzero otherwise
4582 */
4583int atapi_check_dma(struct ata_queued_cmd *qc)
4584{
4585        struct ata_port *ap = qc->ap;
4586
4587        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4588         * few ATAPI devices choke on such DMA requests.
4589         */
4590        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4591            unlikely(qc->nbytes & 15))
4592                return 1;
4593
4594        if (ap->ops->check_atapi_dma)
4595                return ap->ops->check_atapi_dma(qc);
4596
4597        return 0;
4598}
4599
4600/**
4601 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4602 *      @qc: ATA command in question
4603 *
4604 *      Non-NCQ commands cannot run with any other command, NCQ or
4605 *      not.  As upper layer only knows the queue depth, we are
4606 *      responsible for maintaining exclusion.  This function checks
4607 *      whether a new command @qc can be issued.
4608 *
4609 *      LOCKING:
4610 *      spin_lock_irqsave(host lock)
4611 *
4612 *      RETURNS:
4613 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4614 */
4615int ata_std_qc_defer(struct ata_queued_cmd *qc)
4616{
4617        struct ata_link *link = qc->dev->link;
4618
4619        if (qc->tf.protocol == ATA_PROT_NCQ) {
4620                if (!ata_tag_valid(link->active_tag))
4621                        return 0;
4622        } else {
4623                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4624                        return 0;
4625        }
4626
4627        return ATA_DEFER_LINK;
4628}
4629
4630void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4631
4632/**
4633 *      ata_sg_init - Associate command with scatter-gather table.
4634 *      @qc: Command to be associated
4635 *      @sg: Scatter-gather table.
4636 *      @n_elem: Number of elements in s/g table.
4637 *
4638 *      Initialize the data-related elements of queued_cmd @qc
4639 *      to point to a scatter-gather table @sg, containing @n_elem
4640 *      elements.
4641 *
4642 *      LOCKING:
4643 *      spin_lock_irqsave(host lock)
4644 */
4645void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4646                 unsigned int n_elem)
4647{
4648        qc->sg = sg;
4649        qc->n_elem = n_elem;
4650        qc->cursg = qc->sg;
4651}
4652
4653/**
4654 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4655 *      @qc: Command with scatter-gather table to be mapped.
4656 *
4657 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4658 *
4659 *      LOCKING:
4660 *      spin_lock_irqsave(host lock)
4661 *
4662 *      RETURNS:
4663 *      Zero on success, negative on error.
4664 *
4665 */
4666static int ata_sg_setup(struct ata_queued_cmd *qc)
4667{
4668        struct ata_port *ap = qc->ap;
4669        unsigned int n_elem;
4670
4671        VPRINTK("ENTER, ata%u\n", ap->print_id);
4672
4673        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4674        if (n_elem < 1)
4675                return -1;
4676
4677        DPRINTK("%d sg elements mapped\n", n_elem);
4678        qc->orig_n_elem = qc->n_elem;
4679        qc->n_elem = n_elem;
4680        qc->flags |= ATA_QCFLAG_DMAMAP;
4681
4682        return 0;
4683}
4684
4685/**
4686 *      swap_buf_le16 - swap halves of 16-bit words in place
4687 *      @buf:  Buffer to swap
4688 *      @buf_words:  Number of 16-bit words in buffer.
4689 *
4690 *      Swap halves of 16-bit words if needed to convert from
4691 *      little-endian byte order to native cpu byte order, or
4692 *      vice-versa.
4693 *
4694 *      LOCKING:
4695 *      Inherited from caller.
4696 */
4697void swap_buf_le16(u16 *buf, unsigned int buf_words)
4698{
4699#ifdef __BIG_ENDIAN
4700        unsigned int i;
4701
4702        for (i = 0; i < buf_words; i++)
4703                buf[i] = le16_to_cpu(buf[i]);
4704#endif /* __BIG_ENDIAN */
4705}
4706
4707/**
4708 *      ata_qc_new - Request an available ATA command, for queueing
4709 *      @ap: target port
4710 *
4711 *      LOCKING:
4712 *      None.
4713 */
4714
4715static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4716{
4717        struct ata_queued_cmd *qc = NULL;
4718        unsigned int i;
4719
4720        /* no command while frozen */
4721        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4722                return NULL;
4723
4724        /* the last tag is reserved for internal command. */
4725        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4726                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4727                        qc = __ata_qc_from_tag(ap, i);
4728                        break;
4729                }
4730
4731        if (qc)
4732                qc->tag = i;
4733
4734        return qc;
4735}
4736
4737/**
4738 *      ata_qc_new_init - Request an available ATA command, and initialize it
4739 *      @dev: Device from whom we request an available command structure
4740 *
4741 *      LOCKING:
4742 *      None.
4743 */
4744
4745struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4746{
4747        struct ata_port *ap = dev->link->ap;
4748        struct ata_queued_cmd *qc;
4749
4750        qc = ata_qc_new(ap);
4751        if (qc) {
4752                qc->scsicmd = NULL;
4753                qc->ap = ap;
4754                qc->dev = dev;
4755
4756                ata_qc_reinit(qc);
4757        }
4758
4759        return qc;
4760}
4761
4762/**
4763 *      ata_qc_free - free unused ata_queued_cmd
4764 *      @qc: Command to complete
4765 *
4766 *      Designed to free unused ata_queued_cmd object
4767 *      in case something prevents using it.
4768 *
4769 *      LOCKING:
4770 *      spin_lock_irqsave(host lock)
4771 */
4772void ata_qc_free(struct ata_queued_cmd *qc)
4773{
4774        struct ata_port *ap;
4775        unsigned int tag;
4776
4777        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4778        ap = qc->ap;
4779
4780        qc->flags = 0;
4781        tag = qc->tag;
4782        if (likely(ata_tag_valid(tag))) {
4783                qc->tag = ATA_TAG_POISON;
4784                clear_bit(tag, &ap->qc_allocated);
4785        }
4786}
4787
4788void __ata_qc_complete(struct ata_queued_cmd *qc)
4789{
4790        struct ata_port *ap;
4791        struct ata_link *link;
4792
4793        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4794        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4795        ap = qc->ap;
4796        link = qc->dev->link;
4797
4798        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4799                ata_sg_clean(qc);
4800
4801        /* command should be marked inactive atomically with qc completion */
4802        if (qc->tf.protocol == ATA_PROT_NCQ) {
4803                link->sactive &= ~(1 << qc->tag);
4804                if (!link->sactive)
4805                        ap->nr_active_links--;
4806        } else {
4807                link->active_tag = ATA_TAG_POISON;
4808                ap->nr_active_links--;
4809        }
4810
4811        /* clear exclusive status */
4812        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4813                     ap->excl_link == link))
4814                ap->excl_link = NULL;
4815
4816        /* atapi: mark qc as inactive to prevent the interrupt handler
4817         * from completing the command twice later, before the error handler
4818         * is called. (when rc != 0 and atapi request sense is needed)
4819         */
4820        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4821        ap->qc_active &= ~(1 << qc->tag);
4822
4823        /* call completion callback */
4824        qc->complete_fn(qc);
4825}
4826
4827static void fill_result_tf(struct ata_queued_cmd *qc)
4828{
4829        struct ata_port *ap = qc->ap;
4830
4831        qc->result_tf.flags = qc->tf.flags;
4832        ap->ops->qc_fill_rtf(qc);
4833}
4834
4835static void ata_verify_xfer(struct ata_queued_cmd *qc)
4836{
4837        struct ata_device *dev = qc->dev;
4838
4839        if (ata_is_nodata(qc->tf.protocol))
4840                return;
4841
4842        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4843                return;
4844
4845        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4846}
4847
4848/**
4849 *      ata_qc_complete - Complete an active ATA command
4850 *      @qc: Command to complete
4851 *
4852 *      Indicate to the mid and upper layers that an ATA command has
4853 *      completed, with either an ok or not-ok status.
4854 *
4855 *      Refrain from calling this function multiple times when
4856 *      successfully completing multiple NCQ commands.
4857 *      ata_qc_complete_multiple() should be used instead, which will
4858 *      properly update IRQ expect state.
4859 *
4860 *      LOCKING:
4861 *      spin_lock_irqsave(host lock)
4862 */
4863void ata_qc_complete(struct ata_queued_cmd *qc)
4864{
4865        struct ata_port *ap = qc->ap;
4866
4867        /* XXX: New EH and old EH use different mechanisms to
4868         * synchronize EH with regular execution path.
4869         *
4870         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4871         * Normal execution path is responsible for not accessing a
4872         * failed qc.  libata core enforces the rule by returning NULL
4873         * from ata_qc_from_tag() for failed qcs.
4874         *
4875         * Old EH depends on ata_qc_complete() nullifying completion
4876         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4877         * not synchronize with interrupt handler.  Only PIO task is
4878         * taken care of.
4879         */
4880        if (ap->ops->error_handler) {
4881                struct ata_device *dev = qc->dev;
4882                struct ata_eh_info *ehi = &dev->link->eh_info;
4883
4884                if (unlikely(qc->err_mask))
4885                        qc->flags |= ATA_QCFLAG_FAILED;
4886
4887                /*
4888                 * Finish internal commands without any further processing
4889                 * and always with the result TF filled.
4890                 */
4891                if (unlikely(ata_tag_internal(qc->tag))) {
4892                        fill_result_tf(qc);
4893                        __ata_qc_complete(qc);
4894                        return;
4895                }
4896
4897                /*
4898                 * Non-internal qc has failed.  Fill the result TF and
4899                 * summon EH.
4900                 */
4901                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4902                        fill_result_tf(qc);
4903                        ata_qc_schedule_eh(qc);
4904                        return;
4905                }
4906
4907                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4908
4909                /* read result TF if requested */
4910                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4911                        fill_result_tf(qc);
4912
4913                /* Some commands need post-processing after successful
4914                 * completion.
4915                 */
4916                switch (qc->tf.command) {
4917                case ATA_CMD_SET_FEATURES:
4918                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4919                            qc->tf.feature != SETFEATURES_WC_OFF)
4920                                break;
4921                        /* fall through */
4922                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4923                case ATA_CMD_SET_MULTI: /* multi_count changed */
4924                        /* revalidate device */
4925                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4926                        ata_port_schedule_eh(ap);
4927                        break;
4928
4929                case ATA_CMD_SLEEP:
4930                        dev->flags |= ATA_DFLAG_SLEEPING;
4931                        break;
4932                }
4933
4934                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4935                        ata_verify_xfer(qc);
4936
4937                __ata_qc_complete(qc);
4938        } else {
4939                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4940                        return;
4941
4942                /* read result TF if failed or requested */
4943                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4944                        fill_result_tf(qc);
4945
4946                __ata_qc_complete(qc);
4947        }
4948}
4949
4950/**
4951 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4952 *      @ap: port in question
4953 *      @qc_active: new qc_active mask
4954 *
4955 *      Complete in-flight commands.  This functions is meant to be
4956 *      called from low-level driver's interrupt routine to complete
4957 *      requests normally.  ap->qc_active and @qc_active is compared
4958 *      and commands are completed accordingly.
4959 *
4960 *      Always use this function when completing multiple NCQ commands
4961 *      from IRQ handlers instead of calling ata_qc_complete()
4962 *      multiple times to keep IRQ expect status properly in sync.
4963 *
4964 *      LOCKING:
4965 *      spin_lock_irqsave(host lock)
4966 *
4967 *      RETURNS:
4968 *      Number of completed commands on success, -errno otherwise.
4969 */
4970int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4971{
4972        int nr_done = 0;
4973        u32 done_mask;
4974
4975        done_mask = ap->qc_active ^ qc_active;
4976
4977        if (unlikely(done_mask & qc_active)) {
4978                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4979                             ap->qc_active, qc_active);
4980                return -EINVAL;
4981        }
4982
4983        while (done_mask) {
4984                struct ata_queued_cmd *qc;
4985                unsigned int tag = __ffs(done_mask);
4986
4987                qc = ata_qc_from_tag(ap, tag);
4988                if (qc) {
4989                        ata_qc_complete(qc);
4990                        nr_done++;
4991                }
4992                done_mask &= ~(1 << tag);
4993        }
4994
4995        return nr_done;
4996}
4997
4998/**
4999 *      ata_qc_issue - issue taskfile to device
5000 *      @qc: command to issue to device
5001 *
5002 *      Prepare an ATA command to submission to device.
5003 *      This includes mapping the data into a DMA-able
5004 *      area, filling in the S/G table, and finally
5005 *      writing the taskfile to hardware, starting the command.
5006 *
5007 *      LOCKING:
5008 *      spin_lock_irqsave(host lock)
5009 */
5010void ata_qc_issue(struct ata_queued_cmd *qc)
5011{
5012        struct ata_port *ap = qc->ap;
5013        struct ata_link *link = qc->dev->link;
5014        u8 prot = qc->tf.protocol;
5015
5016        /* Make sure only one non-NCQ command is outstanding.  The
5017         * check is skipped for old EH because it reuses active qc to
5018         * request ATAPI sense.
5019         */
5020        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5021
5022        if (ata_is_ncq(prot)) {
5023                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5024
5025                if (!link->sactive)
5026                        ap->nr_active_links++;
5027                link->sactive |= 1 << qc->tag;
5028        } else {
5029                WARN_ON_ONCE(link->sactive);
5030
5031                ap->nr_active_links++;
5032                link->active_tag = qc->tag;
5033        }
5034
5035        qc->flags |= ATA_QCFLAG_ACTIVE;
5036        ap->qc_active |= 1 << qc->tag;
5037
5038        /*
5039         * We guarantee to LLDs that they will have at least one
5040         * non-zero sg if the command is a data command.
5041         */
5042        if (WARN_ON_ONCE(ata_is_data(prot) &&
5043                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5044                goto sys_err;
5045
5046        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5047                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5048                if (ata_sg_setup(qc))
5049                        goto sys_err;
5050
5051        /* if device is sleeping, schedule reset and abort the link */
5052        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5053                link->eh_info.action |= ATA_EH_RESET;
5054                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5055                ata_link_abort(link);
5056                return;
5057        }
5058
5059        ap->ops->qc_prep(qc);
5060
5061        qc->err_mask |= ap->ops->qc_issue(qc);
5062        if (unlikely(qc->err_mask))
5063                goto err;
5064        return;
5065
5066sys_err:
5067        qc->err_mask |= AC_ERR_SYSTEM;
5068err:
5069        ata_qc_complete(qc);
5070}
5071
5072/**
5073 *      sata_scr_valid - test whether SCRs are accessible
5074 *      @link: ATA link to test SCR accessibility for
5075 *
5076 *      Test whether SCRs are accessible for @link.
5077 *
5078 *      LOCKING:
5079 *      None.
5080 *
5081 *      RETURNS:
5082 *      1 if SCRs are accessible, 0 otherwise.
5083 */
5084int sata_scr_valid(struct ata_link *link)
5085{
5086        struct ata_port *ap = link->ap;
5087
5088        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5089}
5090
5091/**
5092 *      sata_scr_read - read SCR register of the specified port
5093 *      @link: ATA link to read SCR for
5094 *      @reg: SCR to read
5095 *      @val: Place to store read value
5096 *
5097 *      Read SCR register @reg of @link into *@val.  This function is
5098 *      guaranteed to succeed if @link is ap->link, the cable type of
5099 *      the port is SATA and the port implements ->scr_read.
5100 *
5101 *      LOCKING:
5102 *      None if @link is ap->link.  Kernel thread context otherwise.
5103 *
5104 *      RETURNS:
5105 *      0 on success, negative errno on failure.
5106 */
5107int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5108{
5109        if (ata_is_host_link(link)) {
5110                if (sata_scr_valid(link))
5111                        return link->ap->ops->scr_read(link, reg, val);
5112                return -EOPNOTSUPP;
5113        }
5114
5115        return sata_pmp_scr_read(link, reg, val);
5116}
5117
5118/**
5119 *      sata_scr_write - write SCR register of the specified port
5120 *      @link: ATA link to write SCR for
5121 *      @reg: SCR to write
5122 *      @val: value to write
5123 *
5124 *      Write @val to SCR register @reg of @link.  This function is
5125 *      guaranteed to succeed if @link is ap->link, the cable type of
5126 *      the port is SATA and the port implements ->scr_read.
5127 *
5128 *      LOCKING:
5129 *      None if @link is ap->link.  Kernel thread context otherwise.
5130 *
5131 *      RETURNS:
5132 *      0 on success, negative errno on failure.
5133 */
5134int sata_scr_write(struct ata_link *link, int reg, u32 val)
5135{
5136        if (ata_is_host_link(link)) {
5137                if (sata_scr_valid(link))
5138                        return link->ap->ops->scr_write(link, reg, val);
5139                return -EOPNOTSUPP;
5140        }
5141
5142        return sata_pmp_scr_write(link, reg, val);
5143}
5144
5145/**
5146 *      sata_scr_write_flush - write SCR register of the specified port and flush
5147 *      @link: ATA link to write SCR for
5148 *      @reg: SCR to write
5149 *      @val: value to write
5150 *
5151 *      This function is identical to sata_scr_write() except that this
5152 *      function performs flush after writing to the register.
5153 *
5154 *      LOCKING:
5155 *      None if @link is ap->link.  Kernel thread context otherwise.
5156 *
5157 *      RETURNS:
5158 *      0 on success, negative errno on failure.
5159 */
5160int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5161{
5162        if (ata_is_host_link(link)) {
5163                int rc;
5164
5165                if (sata_scr_valid(link)) {
5166                        rc = link->ap->ops->scr_write(link, reg, val);
5167                        if (rc == 0)
5168                                rc = link->ap->ops->scr_read(link, reg, &val);
5169                        return rc;
5170                }
5171                return -EOPNOTSUPP;
5172        }
5173
5174        return sata_pmp_scr_write(link, reg, val);
5175}
5176
5177/**
5178 *      ata_phys_link_online - test whether the given link is online
5179 *      @link: ATA link to test
5180 *
5181 *      Test whether @link is online.  Note that this function returns
5182 *      0 if online status of @link cannot be obtained, so
5183 *      ata_link_online(link) != !ata_link_offline(link).
5184 *
5185 *      LOCKING:
5186 *      None.
5187 *
5188 *      RETURNS:
5189 *      True if the port online status is available and online.
5190 */
5191bool ata_phys_link_online(struct ata_link *link)
5192{
5193        u32 sstatus;
5194
5195        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5196            ata_sstatus_online(sstatus))
5197                return true;
5198        return false;
5199}
5200
5201/**
5202 *      ata_phys_link_offline - test whether the given link is offline
5203 *      @link: ATA link to test
5204 *
5205 *      Test whether @link is offline.  Note that this function
5206 *      returns 0 if offline status of @link cannot be obtained, so
5207 *      ata_link_online(link) != !ata_link_offline(link).
5208 *
5209 *      LOCKING:
5210 *      None.
5211 *
5212 *      RETURNS:
5213 *      True if the port offline status is available and offline.
5214 */
5215bool ata_phys_link_offline(struct ata_link *link)
5216{
5217        u32 sstatus;
5218
5219        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5220            !ata_sstatus_online(sstatus))
5221                return true;
5222        return false;
5223}
5224
5225/**
5226 *      ata_link_online - test whether the given link is online
5227 *      @link: ATA link to test
5228 *
5229 *      Test whether @link is online.  This is identical to
5230 *      ata_phys_link_online() when there's no slave link.  When
5231 *      there's a slave link, this function should only be called on
5232 *      the master link and will return true if any of M/S links is
5233 *      online.
5234 *
5235 *      LOCKING:
5236 *      None.
5237 *
5238 *      RETURNS:
5239 *      True if the port online status is available and online.
5240 */
5241bool ata_link_online(struct ata_link *link)
5242{
5243        struct ata_link *slave = link->ap->slave_link;
5244
5245        WARN_ON(link == slave); /* shouldn't be called on slave link */
5246
5247        return ata_phys_link_online(link) ||
5248                (slave && ata_phys_link_online(slave));
5249}
5250
5251/**
5252 *      ata_link_offline - test whether the given link is offline
5253 *      @link: ATA link to test
5254 *
5255 *      Test whether @link is offline.  This is identical to
5256 *      ata_phys_link_offline() when there's no slave link.  When
5257 *      there's a slave link, this function should only be called on
5258 *      the master link and will return true if both M/S links are
5259 *      offline.
5260 *
5261 *      LOCKING:
5262 *      None.
5263 *
5264 *      RETURNS:
5265 *      True if the port offline status is available and offline.
5266 */
5267bool ata_link_offline(struct ata_link *link)
5268{
5269        struct ata_link *slave = link->ap->slave_link;
5270
5271        WARN_ON(link == slave); /* shouldn't be called on slave link */
5272
5273        return ata_phys_link_offline(link) &&
5274                (!slave || ata_phys_link_offline(slave));
5275}
5276
5277#ifdef CONFIG_PM
5278static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5279                               unsigned int action, unsigned int ehi_flags,
5280                               int *async)
5281{
5282        struct ata_link *link;
5283        unsigned long flags;
5284        int rc = 0;
5285
5286        /* Previous resume operation might still be in
5287         * progress.  Wait for PM_PENDING to clear.
5288         */
5289        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5290                if (async) {
5291                        *async = -EAGAIN;
5292                        return 0;
5293                }
5294                ata_port_wait_eh(ap);
5295                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5296        }
5297
5298        /* request PM ops to EH */
5299        spin_lock_irqsave(ap->lock, flags);
5300
5301        ap->pm_mesg = mesg;
5302        if (async)
5303                ap->pm_result = async;
5304        else
5305                ap->pm_result = &rc;
5306
5307        ap->pflags |= ATA_PFLAG_PM_PENDING;
5308        ata_for_each_link(link, ap, HOST_FIRST) {
5309                link->eh_info.action |= action;
5310                link->eh_info.flags |= ehi_flags;
5311        }
5312
5313        ata_port_schedule_eh(ap);
5314
5315        spin_unlock_irqrestore(ap->lock, flags);
5316
5317        /* wait and check result */
5318        if (!async) {
5319                ata_port_wait_eh(ap);
5320                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5321        }
5322
5323        return rc;
5324}
5325
5326static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5327{
5328        unsigned int ehi_flags = ATA_EHI_QUIET;
5329        int rc;
5330
5331        /*
5332         * On some hardware, device fails to respond after spun down
5333         * for suspend.  As the device won't be used before being
5334         * resumed, we don't need to touch the device.  Ask EH to skip
5335         * the usual stuff and proceed directly to suspend.
5336         *
5337         * http://thread.gmane.org/gmane.linux.ide/46764
5338         */
5339        if (mesg.event == PM_EVENT_SUSPEND)
5340                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5341
5342        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5343        return rc;
5344}
5345
5346static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5347{
5348        struct ata_port *ap = to_ata_port(dev);
5349
5350        return __ata_port_suspend_common(ap, mesg, NULL);
5351}
5352
5353static int ata_port_suspend(struct device *dev)
5354{
5355        if (pm_runtime_suspended(dev))
5356                return 0;
5357
5358        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5359}
5360
5361static int ata_port_do_freeze(struct device *dev)
5362{
5363        if (pm_runtime_suspended(dev))
5364                pm_runtime_resume(dev);
5365
5366        return ata_port_suspend_common(dev, PMSG_FREEZE);
5367}
5368
5369static int ata_port_poweroff(struct device *dev)
5370{
5371        if (pm_runtime_suspended(dev))
5372                return 0;
5373
5374        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5375}
5376
5377static int __ata_port_resume_common(struct ata_port *ap, int *async)
5378{
5379        int rc;
5380
5381        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5382                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5383        return rc;
5384}
5385
5386static int ata_port_resume_common(struct device *dev)
5387{
5388        struct ata_port *ap = to_ata_port(dev);
5389
5390        return __ata_port_resume_common(ap, NULL);
5391}
5392
5393static int ata_port_resume(struct device *dev)
5394{
5395        int rc;
5396
5397        rc = ata_port_resume_common(dev);
5398        if (!rc) {
5399                pm_runtime_disable(dev);
5400                pm_runtime_set_active(dev);
5401                pm_runtime_enable(dev);
5402        }
5403
5404        return rc;
5405}
5406
5407static int ata_port_runtime_idle(struct device *dev)
5408{
5409        return pm_runtime_suspend(dev);
5410}
5411
5412static const struct dev_pm_ops ata_port_pm_ops = {
5413        .suspend = ata_port_suspend,
5414        .resume = ata_port_resume,
5415        .freeze = ata_port_do_freeze,
5416        .thaw = ata_port_resume,
5417        .poweroff = ata_port_poweroff,
5418        .restore = ata_port_resume,
5419
5420        .runtime_suspend = ata_port_suspend,
5421        .runtime_resume = ata_port_resume_common,
5422        .runtime_idle = ata_port_runtime_idle,
5423};
5424
5425/* sas ports don't participate in pm runtime management of ata_ports,
5426 * and need to resume ata devices at the domain level, not the per-port
5427 * level. sas suspend/resume is async to allow parallel port recovery
5428 * since sas has multiple ata_port instances per Scsi_Host.
5429 */
5430int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5431{
5432        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5433}
5434EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5435
5436int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5437{
5438        return __ata_port_resume_common(ap, async);
5439}
5440EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5441
5442
5443/**
5444 *      ata_host_suspend - suspend host
5445 *      @host: host to suspend
5446 *      @mesg: PM message
5447 *
5448 *      Suspend @host.  Actual operation is performed by port suspend.
5449 */
5450int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5451{
5452        host->dev->power.power_state = mesg;
5453        return 0;
5454}
5455
5456/**
5457 *      ata_host_resume - resume host
5458 *      @host: host to resume
5459 *
5460 *      Resume @host.  Actual operation is performed by port resume.
5461 */
5462void ata_host_resume(struct ata_host *host)
5463{
5464        host->dev->power.power_state = PMSG_ON;
5465}
5466#endif
5467
5468struct device_type ata_port_type = {
5469        .name = "ata_port",
5470#ifdef CONFIG_PM
5471        .pm = &ata_port_pm_ops,
5472#endif
5473};
5474
5475/**
5476 *      ata_dev_init - Initialize an ata_device structure
5477 *      @dev: Device structure to initialize
5478 *
5479 *      Initialize @dev in preparation for probing.
5480 *
5481 *      LOCKING:
5482 *      Inherited from caller.
5483 */
5484void ata_dev_init(struct ata_device *dev)
5485{
5486        struct ata_link *link = ata_dev_phys_link(dev);
5487        struct ata_port *ap = link->ap;
5488        unsigned long flags;
5489
5490        /* SATA spd limit is bound to the attached device, reset together */
5491        link->sata_spd_limit = link->hw_sata_spd_limit;
5492        link->sata_spd = 0;
5493
5494        /* High bits of dev->flags are used to record warm plug
5495         * requests which occur asynchronously.  Synchronize using
5496         * host lock.
5497         */
5498        spin_lock_irqsave(ap->lock, flags);
5499        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5500        dev->horkage = 0;
5501        spin_unlock_irqrestore(ap->lock, flags);
5502
5503        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5504               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5505        dev->pio_mask = UINT_MAX;
5506        dev->mwdma_mask = UINT_MAX;
5507        dev->udma_mask = UINT_MAX;
5508}
5509
5510/**
5511 *      ata_link_init - Initialize an ata_link structure
5512 *      @ap: ATA port link is attached to
5513 *      @link: Link structure to initialize
5514 *      @pmp: Port multiplier port number
5515 *
5516 *      Initialize @link.
5517 *
5518 *      LOCKING:
5519 *      Kernel thread context (may sleep)
5520 */
5521void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5522{
5523        int i;
5524
5525        /* clear everything except for devices */
5526        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5527               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5528
5529        link->ap = ap;
5530        link->pmp = pmp;
5531        link->active_tag = ATA_TAG_POISON;
5532        link->hw_sata_spd_limit = UINT_MAX;
5533
5534        /* can't use iterator, ap isn't initialized yet */
5535        for (i = 0; i < ATA_MAX_DEVICES; i++) {