linux/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41        switch (fmt) {
  42        case UBIFS_SIMPLE_KEY_FMT:
  43                return "simple";
  44        default:
  45                return "unknown/invalid format";
  46        }
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51        switch (hash) {
  52        case UBIFS_KEY_HASH_R5:
  53                return "R5";
  54        case UBIFS_KEY_HASH_TEST:
  55                return "test";
  56        default:
  57                return "unknown/invalid name hash";
  58        }
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63        switch (type) {
  64        case UBIFS_INO_KEY:
  65                return "inode";
  66        case UBIFS_DENT_KEY:
  67                return "direntry";
  68        case UBIFS_XENT_KEY:
  69                return "xentry";
  70        case UBIFS_DATA_KEY:
  71                return "data";
  72        case UBIFS_TRUN_KEY:
  73                return "truncate";
  74        default:
  75                return "unknown/invalid key";
  76        }
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81        switch (type) {
  82        case UBIFS_ITYPE_REG:
  83                return "file";
  84        case UBIFS_ITYPE_DIR:
  85                return "dir";
  86        case UBIFS_ITYPE_LNK:
  87                return "symlink";
  88        case UBIFS_ITYPE_BLK:
  89                return "blkdev";
  90        case UBIFS_ITYPE_CHR:
  91                return "char dev";
  92        case UBIFS_ITYPE_FIFO:
  93                return "fifo";
  94        case UBIFS_ITYPE_SOCK:
  95                return "socket";
  96        default:
  97                return "unknown/invalid type";
  98        }
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102                             const union ubifs_key *key, char *buffer, int len)
 103{
 104        char *p = buffer;
 105        int type = key_type(c, key);
 106
 107        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108                switch (type) {
 109                case UBIFS_INO_KEY:
 110                        len -= snprintf(p, len, "(%lu, %s)",
 111                                        (unsigned long)key_inum(c, key),
 112                                        get_key_type(type));
 113                        break;
 114                case UBIFS_DENT_KEY:
 115                case UBIFS_XENT_KEY:
 116                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117                                        (unsigned long)key_inum(c, key),
 118                                        get_key_type(type), key_hash(c, key));
 119                        break;
 120                case UBIFS_DATA_KEY:
 121                        len -= snprintf(p, len, "(%lu, %s, %u)",
 122                                        (unsigned long)key_inum(c, key),
 123                                        get_key_type(type), key_block(c, key));
 124                        break;
 125                case UBIFS_TRUN_KEY:
 126                        len -= snprintf(p, len, "(%lu, %s)",
 127                                        (unsigned long)key_inum(c, key),
 128                                        get_key_type(type));
 129                        break;
 130                default:
 131                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132                                        key->u32[0], key->u32[1]);
 133                }
 134        } else
 135                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136        ubifs_assert(len > 0);
 137        return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142        switch (type) {
 143        case UBIFS_PAD_NODE:
 144                return "padding node";
 145        case UBIFS_SB_NODE:
 146                return "superblock node";
 147        case UBIFS_MST_NODE:
 148                return "master node";
 149        case UBIFS_REF_NODE:
 150                return "reference node";
 151        case UBIFS_INO_NODE:
 152                return "inode node";
 153        case UBIFS_DENT_NODE:
 154                return "direntry node";
 155        case UBIFS_XENT_NODE:
 156                return "xentry node";
 157        case UBIFS_DATA_NODE:
 158                return "data node";
 159        case UBIFS_TRUN_NODE:
 160                return "truncate node";
 161        case UBIFS_IDX_NODE:
 162                return "indexing node";
 163        case UBIFS_CS_NODE:
 164                return "commit start node";
 165        case UBIFS_ORPH_NODE:
 166                return "orphan node";
 167        default:
 168                return "unknown node";
 169        }
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174        switch (type) {
 175        case UBIFS_NO_NODE_GROUP:
 176                return "no node group";
 177        case UBIFS_IN_NODE_GROUP:
 178                return "in node group";
 179        case UBIFS_LAST_OF_NODE_GROUP:
 180                return "last of node group";
 181        default:
 182                return "unknown";
 183        }
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188        switch (cmt_state) {
 189        case COMMIT_RESTING:
 190                return "commit resting";
 191        case COMMIT_BACKGROUND:
 192                return "background commit requested";
 193        case COMMIT_REQUIRED:
 194                return "commit required";
 195        case COMMIT_RUNNING_BACKGROUND:
 196                return "BACKGROUND commit running";
 197        case COMMIT_RUNNING_REQUIRED:
 198                return "commit running and required";
 199        case COMMIT_BROKEN:
 200                return "broken commit";
 201        default:
 202                return "unknown commit state";
 203        }
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208        switch (jhead) {
 209        case GCHD:
 210                return "0 (GC)";
 211        case BASEHD:
 212                return "1 (base)";
 213        case DATAHD:
 214                return "2 (data)";
 215        default:
 216                return "unknown journal head";
 217        }
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222        printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223        printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224        printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
 225               dbg_ntype(ch->node_type));
 226        printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
 227               dbg_gtype(ch->group_type));
 228        printk(KERN_ERR "\tsqnum          %llu\n",
 229               (unsigned long long)le64_to_cpu(ch->sqnum));
 230        printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235        const struct ubifs_inode *ui = ubifs_inode(inode);
 236        struct qstr nm = { .name = NULL };
 237        union ubifs_key key;
 238        struct ubifs_dent_node *dent, *pdent = NULL;
 239        int count = 2;
 240
 241        printk(KERN_ERR "Dump in-memory inode:");
 242        printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
 243        printk(KERN_ERR "\tsize           %llu\n",
 244               (unsigned long long)i_size_read(inode));
 245        printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
 246        printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
 247        printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
 248        printk(KERN_ERR "\tatime          %u.%u\n",
 249               (unsigned int)inode->i_atime.tv_sec,
 250               (unsigned int)inode->i_atime.tv_nsec);
 251        printk(KERN_ERR "\tmtime          %u.%u\n",
 252               (unsigned int)inode->i_mtime.tv_sec,
 253               (unsigned int)inode->i_mtime.tv_nsec);
 254        printk(KERN_ERR "\tctime          %u.%u\n",
 255               (unsigned int)inode->i_ctime.tv_sec,
 256               (unsigned int)inode->i_ctime.tv_nsec);
 257        printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258        printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
 259        printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
 260        printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
 261        printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
 262        printk(KERN_ERR "\txattr          %u\n", ui->xattr);
 263        printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
 264        printk(KERN_ERR "\tsynced_i_size  %llu\n",
 265               (unsigned long long)ui->synced_i_size);
 266        printk(KERN_ERR "\tui_size        %llu\n",
 267               (unsigned long long)ui->ui_size);
 268        printk(KERN_ERR "\tflags          %d\n", ui->flags);
 269        printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
 270        printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
 271        printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272        printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
 273
 274        if (!S_ISDIR(inode->i_mode))
 275                return;
 276
 277        printk(KERN_ERR "List of directory entries:\n");
 278        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280        lowest_dent_key(c, &key, inode->i_ino);
 281        while (1) {
 282                dent = ubifs_tnc_next_ent(c, &key, &nm);
 283                if (IS_ERR(dent)) {
 284                        if (PTR_ERR(dent) != -ENOENT)
 285                                printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
 286                        break;
 287                }
 288
 289                printk(KERN_ERR "\t%d: %s (%s)\n",
 290                       count++, dent->name, get_dent_type(dent->type));
 291
 292                nm.name = dent->name;
 293                nm.len = le16_to_cpu(dent->nlen);
 294                kfree(pdent);
 295                pdent = dent;
 296                key_read(c, &dent->key, &key);
 297        }
 298        kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303        int i, n;
 304        union ubifs_key key;
 305        const struct ubifs_ch *ch = node;
 306        char key_buf[DBG_KEY_BUF_LEN];
 307
 308        if (dbg_is_tst_rcvry(c))
 309                return;
 310
 311        /* If the magic is incorrect, just hexdump the first bytes */
 312        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313                printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314                print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 315                               (void *)node, UBIFS_CH_SZ, 1);
 316                return;
 317        }
 318
 319        spin_lock(&dbg_lock);
 320        dump_ch(node);
 321
 322        switch (ch->node_type) {
 323        case UBIFS_PAD_NODE:
 324        {
 325                const struct ubifs_pad_node *pad = node;
 326
 327                printk(KERN_ERR "\tpad_len        %u\n",
 328                       le32_to_cpu(pad->pad_len));
 329                break;
 330        }
 331        case UBIFS_SB_NODE:
 332        {
 333                const struct ubifs_sb_node *sup = node;
 334                unsigned int sup_flags = le32_to_cpu(sup->flags);
 335
 336                printk(KERN_ERR "\tkey_hash       %d (%s)\n",
 337                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 338                printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
 339                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 340                printk(KERN_ERR "\tflags          %#x\n", sup_flags);
 341                printk(KERN_ERR "\t  big_lpt      %u\n",
 342                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 343                printk(KERN_ERR "\t  space_fixup  %u\n",
 344                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 345                printk(KERN_ERR "\tmin_io_size    %u\n",
 346                       le32_to_cpu(sup->min_io_size));
 347                printk(KERN_ERR "\tleb_size       %u\n",
 348                       le32_to_cpu(sup->leb_size));
 349                printk(KERN_ERR "\tleb_cnt        %u\n",
 350                       le32_to_cpu(sup->leb_cnt));
 351                printk(KERN_ERR "\tmax_leb_cnt    %u\n",
 352                       le32_to_cpu(sup->max_leb_cnt));
 353                printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
 354                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 355                printk(KERN_ERR "\tlog_lebs       %u\n",
 356                       le32_to_cpu(sup->log_lebs));
 357                printk(KERN_ERR "\tlpt_lebs       %u\n",
 358                       le32_to_cpu(sup->lpt_lebs));
 359                printk(KERN_ERR "\torph_lebs      %u\n",
 360                       le32_to_cpu(sup->orph_lebs));
 361                printk(KERN_ERR "\tjhead_cnt      %u\n",
 362                       le32_to_cpu(sup->jhead_cnt));
 363                printk(KERN_ERR "\tfanout         %u\n",
 364                       le32_to_cpu(sup->fanout));
 365                printk(KERN_ERR "\tlsave_cnt      %u\n",
 366                       le32_to_cpu(sup->lsave_cnt));
 367                printk(KERN_ERR "\tdefault_compr  %u\n",
 368                       (int)le16_to_cpu(sup->default_compr));
 369                printk(KERN_ERR "\trp_size        %llu\n",
 370                       (unsigned long long)le64_to_cpu(sup->rp_size));
 371                printk(KERN_ERR "\trp_uid         %u\n",
 372                       le32_to_cpu(sup->rp_uid));
 373                printk(KERN_ERR "\trp_gid         %u\n",
 374                       le32_to_cpu(sup->rp_gid));
 375                printk(KERN_ERR "\tfmt_version    %u\n",
 376                       le32_to_cpu(sup->fmt_version));
 377                printk(KERN_ERR "\ttime_gran      %u\n",
 378                       le32_to_cpu(sup->time_gran));
 379                printk(KERN_ERR "\tUUID           %pUB\n",
 380                       sup->uuid);
 381                break;
 382        }
 383        case UBIFS_MST_NODE:
 384        {
 385                const struct ubifs_mst_node *mst = node;
 386
 387                printk(KERN_ERR "\thighest_inum   %llu\n",
 388                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 389                printk(KERN_ERR "\tcommit number  %llu\n",
 390                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 391                printk(KERN_ERR "\tflags          %#x\n",
 392                       le32_to_cpu(mst->flags));
 393                printk(KERN_ERR "\tlog_lnum       %u\n",
 394                       le32_to_cpu(mst->log_lnum));
 395                printk(KERN_ERR "\troot_lnum      %u\n",
 396                       le32_to_cpu(mst->root_lnum));
 397                printk(KERN_ERR "\troot_offs      %u\n",
 398                       le32_to_cpu(mst->root_offs));
 399                printk(KERN_ERR "\troot_len       %u\n",
 400                       le32_to_cpu(mst->root_len));
 401                printk(KERN_ERR "\tgc_lnum        %u\n",
 402                       le32_to_cpu(mst->gc_lnum));
 403                printk(KERN_ERR "\tihead_lnum     %u\n",
 404                       le32_to_cpu(mst->ihead_lnum));
 405                printk(KERN_ERR "\tihead_offs     %u\n",
 406                       le32_to_cpu(mst->ihead_offs));
 407                printk(KERN_ERR "\tindex_size     %llu\n",
 408                       (unsigned long long)le64_to_cpu(mst->index_size));
 409                printk(KERN_ERR "\tlpt_lnum       %u\n",
 410                       le32_to_cpu(mst->lpt_lnum));
 411                printk(KERN_ERR "\tlpt_offs       %u\n",
 412                       le32_to_cpu(mst->lpt_offs));
 413                printk(KERN_ERR "\tnhead_lnum     %u\n",
 414                       le32_to_cpu(mst->nhead_lnum));
 415                printk(KERN_ERR "\tnhead_offs     %u\n",
 416                       le32_to_cpu(mst->nhead_offs));
 417                printk(KERN_ERR "\tltab_lnum      %u\n",
 418                       le32_to_cpu(mst->ltab_lnum));
 419                printk(KERN_ERR "\tltab_offs      %u\n",
 420                       le32_to_cpu(mst->ltab_offs));
 421                printk(KERN_ERR "\tlsave_lnum     %u\n",
 422                       le32_to_cpu(mst->lsave_lnum));
 423                printk(KERN_ERR "\tlsave_offs     %u\n",
 424                       le32_to_cpu(mst->lsave_offs));
 425                printk(KERN_ERR "\tlscan_lnum     %u\n",
 426                       le32_to_cpu(mst->lscan_lnum));
 427                printk(KERN_ERR "\tleb_cnt        %u\n",
 428                       le32_to_cpu(mst->leb_cnt));
 429                printk(KERN_ERR "\tempty_lebs     %u\n",
 430                       le32_to_cpu(mst->empty_lebs));
 431                printk(KERN_ERR "\tidx_lebs       %u\n",
 432                       le32_to_cpu(mst->idx_lebs));
 433                printk(KERN_ERR "\ttotal_free     %llu\n",
 434                       (unsigned long long)le64_to_cpu(mst->total_free));
 435                printk(KERN_ERR "\ttotal_dirty    %llu\n",
 436                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 437                printk(KERN_ERR "\ttotal_used     %llu\n",
 438                       (unsigned long long)le64_to_cpu(mst->total_used));
 439                printk(KERN_ERR "\ttotal_dead     %llu\n",
 440                       (unsigned long long)le64_to_cpu(mst->total_dead));
 441                printk(KERN_ERR "\ttotal_dark     %llu\n",
 442                       (unsigned long long)le64_to_cpu(mst->total_dark));
 443                break;
 444        }
 445        case UBIFS_REF_NODE:
 446        {
 447                const struct ubifs_ref_node *ref = node;
 448
 449                printk(KERN_ERR "\tlnum           %u\n",
 450                       le32_to_cpu(ref->lnum));
 451                printk(KERN_ERR "\toffs           %u\n",
 452                       le32_to_cpu(ref->offs));
 453                printk(KERN_ERR "\tjhead          %u\n",
 454                       le32_to_cpu(ref->jhead));
 455                break;
 456        }
 457        case UBIFS_INO_NODE:
 458        {
 459                const struct ubifs_ino_node *ino = node;
 460
 461                key_read(c, &ino->key, &key);
 462                printk(KERN_ERR "\tkey            %s\n",
 463                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 464                printk(KERN_ERR "\tcreat_sqnum    %llu\n",
 465                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 466                printk(KERN_ERR "\tsize           %llu\n",
 467                       (unsigned long long)le64_to_cpu(ino->size));
 468                printk(KERN_ERR "\tnlink          %u\n",
 469                       le32_to_cpu(ino->nlink));
 470                printk(KERN_ERR "\tatime          %lld.%u\n",
 471                       (long long)le64_to_cpu(ino->atime_sec),
 472                       le32_to_cpu(ino->atime_nsec));
 473                printk(KERN_ERR "\tmtime          %lld.%u\n",
 474                       (long long)le64_to_cpu(ino->mtime_sec),
 475                       le32_to_cpu(ino->mtime_nsec));
 476                printk(KERN_ERR "\tctime          %lld.%u\n",
 477                       (long long)le64_to_cpu(ino->ctime_sec),
 478                       le32_to_cpu(ino->ctime_nsec));
 479                printk(KERN_ERR "\tuid            %u\n",
 480                       le32_to_cpu(ino->uid));
 481                printk(KERN_ERR "\tgid            %u\n",
 482                       le32_to_cpu(ino->gid));
 483                printk(KERN_ERR "\tmode           %u\n",
 484                       le32_to_cpu(ino->mode));
 485                printk(KERN_ERR "\tflags          %#x\n",
 486                       le32_to_cpu(ino->flags));
 487                printk(KERN_ERR "\txattr_cnt      %u\n",
 488                       le32_to_cpu(ino->xattr_cnt));
 489                printk(KERN_ERR "\txattr_size     %u\n",
 490                       le32_to_cpu(ino->xattr_size));
 491                printk(KERN_ERR "\txattr_names    %u\n",
 492                       le32_to_cpu(ino->xattr_names));
 493                printk(KERN_ERR "\tcompr_type     %#x\n",
 494                       (int)le16_to_cpu(ino->compr_type));
 495                printk(KERN_ERR "\tdata len       %u\n",
 496                       le32_to_cpu(ino->data_len));
 497                break;
 498        }
 499        case UBIFS_DENT_NODE:
 500        case UBIFS_XENT_NODE:
 501        {
 502                const struct ubifs_dent_node *dent = node;
 503                int nlen = le16_to_cpu(dent->nlen);
 504
 505                key_read(c, &dent->key, &key);
 506                printk(KERN_ERR "\tkey            %s\n",
 507                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 508                printk(KERN_ERR "\tinum           %llu\n",
 509                       (unsigned long long)le64_to_cpu(dent->inum));
 510                printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
 511                printk(KERN_ERR "\tnlen           %d\n", nlen);
 512                printk(KERN_ERR "\tname           ");
 513
 514                if (nlen > UBIFS_MAX_NLEN)
 515                        printk(KERN_ERR "(bad name length, not printing, "
 516                                          "bad or corrupted node)");
 517                else {
 518                        for (i = 0; i < nlen && dent->name[i]; i++)
 519                                printk(KERN_CONT "%c", dent->name[i]);
 520                }
 521                printk(KERN_CONT "\n");
 522
 523                break;
 524        }
 525        case UBIFS_DATA_NODE:
 526        {
 527                const struct ubifs_data_node *dn = node;
 528                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 529
 530                key_read(c, &dn->key, &key);
 531                printk(KERN_ERR "\tkey            %s\n",
 532                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 533                printk(KERN_ERR "\tsize           %u\n",
 534                       le32_to_cpu(dn->size));
 535                printk(KERN_ERR "\tcompr_typ      %d\n",
 536                       (int)le16_to_cpu(dn->compr_type));
 537                printk(KERN_ERR "\tdata size      %d\n",
 538                       dlen);
 539                printk(KERN_ERR "\tdata:\n");
 540                print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 541                               (void *)&dn->data, dlen, 0);
 542                break;
 543        }
 544        case UBIFS_TRUN_NODE:
 545        {
 546                const struct ubifs_trun_node *trun = node;
 547
 548                printk(KERN_ERR "\tinum           %u\n",
 549                       le32_to_cpu(trun->inum));
 550                printk(KERN_ERR "\told_size       %llu\n",
 551                       (unsigned long long)le64_to_cpu(trun->old_size));
 552                printk(KERN_ERR "\tnew_size       %llu\n",
 553                       (unsigned long long)le64_to_cpu(trun->new_size));
 554                break;
 555        }
 556        case UBIFS_IDX_NODE:
 557        {
 558                const struct ubifs_idx_node *idx = node;
 559
 560                n = le16_to_cpu(idx->child_cnt);
 561                printk(KERN_ERR "\tchild_cnt      %d\n", n);
 562                printk(KERN_ERR "\tlevel          %d\n",
 563                       (int)le16_to_cpu(idx->level));
 564                printk(KERN_ERR "\tBranches:\n");
 565
 566                for (i = 0; i < n && i < c->fanout - 1; i++) {
 567                        const struct ubifs_branch *br;
 568
 569                        br = ubifs_idx_branch(c, idx, i);
 570                        key_read(c, &br->key, &key);
 571                        printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
 572                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 573                               le32_to_cpu(br->len),
 574                               dbg_snprintf_key(c, &key, key_buf,
 575                                                DBG_KEY_BUF_LEN));
 576                }
 577                break;
 578        }
 579        case UBIFS_CS_NODE:
 580                break;
 581        case UBIFS_ORPH_NODE:
 582        {
 583                const struct ubifs_orph_node *orph = node;
 584
 585                printk(KERN_ERR "\tcommit number  %llu\n",
 586                       (unsigned long long)
 587                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 588                printk(KERN_ERR "\tlast node flag %llu\n",
 589                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 590                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 591                printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
 592                for (i = 0; i < n; i++)
 593                        printk(KERN_ERR "\t  ino %llu\n",
 594                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 595                break;
 596        }
 597        default:
 598                printk(KERN_ERR "node type %d was not recognized\n",
 599                       (int)ch->node_type);
 600        }
 601        spin_unlock(&dbg_lock);
 602}
 603
 604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 605{
 606        spin_lock(&dbg_lock);
 607        printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
 608               req->new_ino, req->dirtied_ino);
 609        printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 610               req->new_ino_d, req->dirtied_ino_d);
 611        printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
 612               req->new_page, req->dirtied_page);
 613        printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
 614               req->new_dent, req->mod_dent);
 615        printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
 616        printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
 617               req->data_growth, req->dd_growth);
 618        spin_unlock(&dbg_lock);
 619}
 620
 621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 622{
 623        spin_lock(&dbg_lock);
 624        printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
 625               "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 626        printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
 627               "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 628               lst->total_dirty);
 629        printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
 630               "total_dead %lld\n", lst->total_used, lst->total_dark,
 631               lst->total_dead);
 632        spin_unlock(&dbg_lock);
 633}
 634
 635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 636{
 637        int i;
 638        struct rb_node *rb;
 639        struct ubifs_bud *bud;
 640        struct ubifs_gced_idx_leb *idx_gc;
 641        long long available, outstanding, free;
 642
 643        spin_lock(&c->space_lock);
 644        spin_lock(&dbg_lock);
 645        printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
 646               "total budget sum %lld\n", current->pid,
 647               bi->data_growth + bi->dd_growth,
 648               bi->data_growth + bi->dd_growth + bi->idx_growth);
 649        printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 650               "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 651               bi->idx_growth);
 652        printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
 653               "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 654               bi->uncommitted_idx);
 655        printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 656               bi->page_budget, bi->inode_budget, bi->dent_budget);
 657        printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
 658               bi->nospace, bi->nospace_rp);
 659        printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 660               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 661
 662        if (bi != &c->bi)
 663                /*
 664                 * If we are dumping saved budgeting data, do not print
 665                 * additional information which is about the current state, not
 666                 * the old one which corresponded to the saved budgeting data.
 667                 */
 668                goto out_unlock;
 669
 670        printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 671               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 672        printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 673               "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 674               atomic_long_read(&c->dirty_zn_cnt),
 675               atomic_long_read(&c->clean_zn_cnt));
 676        printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
 677               c->gc_lnum, c->ihead_lnum);
 678
 679        /* If we are in R/O mode, journal heads do not exist */
 680        if (c->jheads)
 681                for (i = 0; i < c->jhead_cnt; i++)
 682                        printk(KERN_ERR "\tjhead %s\t LEB %d\n",
 683                               dbg_jhead(c->jheads[i].wbuf.jhead),
 684                               c->jheads[i].wbuf.lnum);
 685        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 686                bud = rb_entry(rb, struct ubifs_bud, rb);
 687                printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
 688        }
 689        list_for_each_entry(bud, &c->old_buds, list)
 690                printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
 691        list_for_each_entry(idx_gc, &c->idx_gc, list)
 692                printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
 693                       idx_gc->lnum, idx_gc->unmap);
 694        printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
 695
 696        /* Print budgeting predictions */
 697        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 698        outstanding = c->bi.data_growth + c->bi.dd_growth;
 699        free = ubifs_get_free_space_nolock(c);
 700        printk(KERN_ERR "Budgeting predictions:\n");
 701        printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
 702               available, outstanding, free);
 703out_unlock:
 704        spin_unlock(&dbg_lock);
 705        spin_unlock(&c->space_lock);
 706}
 707
 708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 709{
 710        int i, spc, dark = 0, dead = 0;
 711        struct rb_node *rb;
 712        struct ubifs_bud *bud;
 713
 714        spc = lp->free + lp->dirty;
 715        if (spc < c->dead_wm)
 716                dead = spc;
 717        else
 718                dark = ubifs_calc_dark(c, spc);
 719
 720        if (lp->flags & LPROPS_INDEX)
 721                printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 722                       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 723                       lp->dirty, c->leb_size - spc, spc, lp->flags);
 724        else
 725                printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 726                       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 727                       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 728                       c->leb_size - spc, spc, dark, dead,
 729                       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 730
 731        if (lp->flags & LPROPS_TAKEN) {
 732                if (lp->flags & LPROPS_INDEX)
 733                        printk(KERN_CONT "index, taken");
 734                else
 735                        printk(KERN_CONT "taken");
 736        } else {
 737                const char *s;
 738
 739                if (lp->flags & LPROPS_INDEX) {
 740                        switch (lp->flags & LPROPS_CAT_MASK) {
 741                        case LPROPS_DIRTY_IDX:
 742                                s = "dirty index";
 743                                break;
 744                        case LPROPS_FRDI_IDX:
 745                                s = "freeable index";
 746                                break;
 747                        default:
 748                                s = "index";
 749                        }
 750                } else {
 751                        switch (lp->flags & LPROPS_CAT_MASK) {
 752                        case LPROPS_UNCAT:
 753                                s = "not categorized";
 754                                break;
 755                        case LPROPS_DIRTY:
 756                                s = "dirty";
 757                                break;
 758                        case LPROPS_FREE:
 759                                s = "free";
 760                                break;
 761                        case LPROPS_EMPTY:
 762                                s = "empty";
 763                                break;
 764                        case LPROPS_FREEABLE:
 765                                s = "freeable";
 766                                break;
 767                        default:
 768                                s = NULL;
 769                                break;
 770                        }
 771                }
 772                printk(KERN_CONT "%s", s);
 773        }
 774
 775        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 776                bud = rb_entry(rb, struct ubifs_bud, rb);
 777                if (bud->lnum == lp->lnum) {
 778                        int head = 0;
 779                        for (i = 0; i < c->jhead_cnt; i++) {
 780                                /*
 781                                 * Note, if we are in R/O mode or in the middle
 782                                 * of mounting/re-mounting, the write-buffers do
 783                                 * not exist.
 784                                 */
 785                                if (c->jheads &&
 786                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 787                                        printk(KERN_CONT ", jhead %s",
 788                                               dbg_jhead(i));
 789                                        head = 1;
 790                                }
 791                        }
 792                        if (!head)
 793                                printk(KERN_CONT ", bud of jhead %s",
 794                                       dbg_jhead(bud->jhead));
 795                }
 796        }
 797        if (lp->lnum == c->gc_lnum)
 798                printk(KERN_CONT ", GC LEB");
 799        printk(KERN_CONT ")\n");
 800}
 801
 802void ubifs_dump_lprops(struct ubifs_info *c)
 803{
 804        int lnum, err;
 805        struct ubifs_lprops lp;
 806        struct ubifs_lp_stats lst;
 807
 808        printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
 809               current->pid);
 810        ubifs_get_lp_stats(c, &lst);
 811        ubifs_dump_lstats(&lst);
 812
 813        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 814                err = ubifs_read_one_lp(c, lnum, &lp);
 815                if (err)
 816                        ubifs_err("cannot read lprops for LEB %d", lnum);
 817
 818                ubifs_dump_lprop(c, &lp);
 819        }
 820        printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
 821               current->pid);
 822}
 823
 824void ubifs_dump_lpt_info(struct ubifs_info *c)
 825{
 826        int i;
 827
 828        spin_lock(&dbg_lock);
 829        printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
 830        printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
 831        printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
 832        printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
 833        printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
 834        printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
 835        printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
 836        printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
 837        printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
 838        printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
 839        printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 840        printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 841        printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
 842        printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
 843        printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 844        printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 845        printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 846        printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
 847        printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
 848        printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 849        printk(KERN_ERR "\tLPT head is at %d:%d\n",
 850               c->nhead_lnum, c->nhead_offs);
 851        printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
 852               c->ltab_lnum, c->ltab_offs);
 853        if (c->big_lpt)
 854                printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
 855                       c->lsave_lnum, c->lsave_offs);
 856        for (i = 0; i < c->lpt_lebs; i++)
 857                printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
 858                       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 859                       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 860        spin_unlock(&dbg_lock);
 861}
 862
 863void ubifs_dump_sleb(const struct ubifs_info *c,
 864                     const struct ubifs_scan_leb *sleb, int offs)
 865{
 866        struct ubifs_scan_node *snod;
 867
 868        printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
 869               current->pid, sleb->lnum, offs);
 870
 871        list_for_each_entry(snod, &sleb->nodes, list) {
 872                cond_resched();
 873                printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
 874                       snod->offs, snod->len);
 875                ubifs_dump_node(c, snod->node);
 876        }
 877}
 878
 879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 880{
 881        struct ubifs_scan_leb *sleb;
 882        struct ubifs_scan_node *snod;
 883        void *buf;
 884
 885        if (dbg_is_tst_rcvry(c))
 886                return;
 887
 888        printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
 889               current->pid, lnum);
 890
 891        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 892        if (!buf) {
 893                ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 894                return;
 895        }
 896
 897        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 898        if (IS_ERR(sleb)) {
 899                ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 900                goto out;
 901        }
 902
 903        printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
 904               sleb->nodes_cnt, sleb->endpt);
 905
 906        list_for_each_entry(snod, &sleb->nodes, list) {
 907                cond_resched();
 908                printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
 909                       snod->offs, snod->len);
 910                ubifs_dump_node(c, snod->node);
 911        }
 912
 913        printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
 914               current->pid, lnum);
 915        ubifs_scan_destroy(sleb);
 916
 917out:
 918        vfree(buf);
 919        return;
 920}
 921
 922void ubifs_dump_znode(const struct ubifs_info *c,
 923                      const struct ubifs_znode *znode)
 924{
 925        int n;
 926        const struct ubifs_zbranch *zbr;
 927        char key_buf[DBG_KEY_BUF_LEN];
 928
 929        spin_lock(&dbg_lock);
 930        if (znode->parent)
 931                zbr = &znode->parent->zbranch[znode->iip];
 932        else
 933                zbr = &c->zroot;
 934
 935        printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 936               " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 937               zbr->len, znode->parent, znode->iip, znode->level,
 938               znode->child_cnt, znode->flags);
 939
 940        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 941                spin_unlock(&dbg_lock);
 942                return;
 943        }
 944
 945        printk(KERN_ERR "zbranches:\n");
 946        for (n = 0; n < znode->child_cnt; n++) {
 947                zbr = &znode->zbranch[n];
 948                if (znode->level > 0)
 949                        printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
 950                                          "%s\n", n, zbr->znode, zbr->lnum,
 951                                          zbr->offs, zbr->len,
 952                                          dbg_snprintf_key(c, &zbr->key,
 953                                                           key_buf,
 954                                                           DBG_KEY_BUF_LEN));
 955                else
 956                        printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
 957                                          "%s\n", n, zbr->znode, zbr->lnum,
 958                                          zbr->offs, zbr->len,
 959                                          dbg_snprintf_key(c, &zbr->key,
 960                                                           key_buf,
 961                                                           DBG_KEY_BUF_LEN));
 962        }
 963        spin_unlock(&dbg_lock);
 964}
 965
 966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 967{
 968        int i;
 969
 970        printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
 971               current->pid, cat, heap->cnt);
 972        for (i = 0; i < heap->cnt; i++) {
 973                struct ubifs_lprops *lprops = heap->arr[i];
 974
 975                printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
 976                       "flags %d\n", i, lprops->lnum, lprops->hpos,
 977                       lprops->free, lprops->dirty, lprops->flags);
 978        }
 979        printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
 980}
 981
 982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 983                      struct ubifs_nnode *parent, int iip)
 984{
 985        int i;
 986
 987        printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
 988        printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
 989               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 990        printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
 991               pnode->flags, iip, pnode->level, pnode->num);
 992        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 993                struct ubifs_lprops *lp = &pnode->lprops[i];
 994
 995                printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
 996                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 997        }
 998}
 999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002        struct ubifs_znode *znode;
1003        int level;
1004
1005        printk(KERN_ERR "\n");
1006        printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008        level = znode->level;
1009        printk(KERN_ERR "== Level %d ==\n", level);
1010        while (znode) {
1011                if (level != znode->level) {
1012                        level = znode->level;
1013                        printk(KERN_ERR "== Level %d ==\n", level);
1014                }
1015                ubifs_dump_znode(c, znode);
1016                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017        }
1018        printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022                      void *priv)
1023{
1024        ubifs_dump_znode(c, znode);
1025        return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037        dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049        struct ubifs_debug_info *d = c->dbg;
1050        int freeable_cnt;
1051
1052        spin_lock(&c->space_lock);
1053        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055        d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057        /*
1058         * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059         * affects the free space calculations, and UBIFS might not know about
1060         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061         * only when we read their lprops, and we do this only lazily, upon the
1062         * need. So at any given point of time @c->freeable_cnt might be not
1063         * exactly accurate.
1064         *
1065         * Just one example about the issue we hit when we did not zero
1066         * @c->freeable_cnt.
1067         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068         *    amount of free space in @d->saved_free
1069         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070         *    information from flash, where we cache LEBs from various
1071         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074         *    -> 'ubifs_add_to_cat()').
1075         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076         *    becomes %1.
1077         * 4. We calculate the amount of free space when the re-mount is
1078         *    finished in 'dbg_check_space_info()' and it does not match
1079         *    @d->saved_free.
1080         */
1081        freeable_cnt = c->freeable_cnt;
1082        c->freeable_cnt = 0;
1083        d->saved_free = ubifs_get_free_space_nolock(c);
1084        c->freeable_cnt = freeable_cnt;
1085        spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099        struct ubifs_debug_info *d = c->dbg;
1100        struct ubifs_lp_stats lst;
1101        long long free;
1102        int freeable_cnt;
1103
1104        spin_lock(&c->space_lock);
1105        freeable_cnt = c->freeable_cnt;
1106        c->freeable_cnt = 0;
1107        free = ubifs_get_free_space_nolock(c);
1108        c->freeable_cnt = freeable_cnt;
1109        spin_unlock(&c->space_lock);
1110
1111        if (free != d->saved_free) {
1112                ubifs_err("free space changed from %lld to %lld",
1113                          d->saved_free, free);
1114                goto out;
1115        }
1116
1117        return 0;
1118
1119out:
1120        ubifs_msg("saved lprops statistics dump");
1121        ubifs_dump_lstats(&d->saved_lst);
1122        ubifs_msg("saved budgeting info dump");
1123        ubifs_dump_budg(c, &d->saved_bi);
1124        ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125        ubifs_msg("current lprops statistics dump");
1126        ubifs_get_lp_stats(c, &lst);
1127        ubifs_dump_lstats(&lst);
1128        ubifs_msg("current budgeting info dump");
1129        ubifs_dump_budg(c, &c->bi);
1130        dump_stack();
1131        return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146        int err = 0;
1147        struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149        if (!dbg_is_chk_gen(c))
1150                return 0;
1151        if (!S_ISREG(inode->i_mode))
1152                return 0;
1153
1154        mutex_lock(&ui->ui_mutex);
1155        spin_lock(&ui->ui_lock);
1156        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157                ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158                          "is clean", ui->ui_size, ui->synced_i_size);
1159                ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160                          inode->i_mode, i_size_read(inode));
1161                dump_stack();
1162                err = -EINVAL;
1163        }
1164        spin_unlock(&ui->ui_lock);
1165        mutex_unlock(&ui->ui_mutex);
1166        return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184        unsigned int nlink = 2;
1185        union ubifs_key key;
1186        struct ubifs_dent_node *dent, *pdent = NULL;
1187        struct qstr nm = { .name = NULL };
1188        loff_t size = UBIFS_INO_NODE_SZ;
1189
1190        if (!dbg_is_chk_gen(c))
1191                return 0;
1192
1193        if (!S_ISDIR(dir->i_mode))
1194                return 0;
1195
1196        lowest_dent_key(c, &key, dir->i_ino);
1197        while (1) {
1198                int err;
1199
1200                dent = ubifs_tnc_next_ent(c, &key, &nm);
1201                if (IS_ERR(dent)) {
1202                        err = PTR_ERR(dent);
1203                        if (err == -ENOENT)
1204                                break;
1205                        return err;
1206                }
1207
1208                nm.name = dent->name;
1209                nm.len = le16_to_cpu(dent->nlen);
1210                size += CALC_DENT_SIZE(nm.len);
1211                if (dent->type == UBIFS_ITYPE_DIR)
1212                        nlink += 1;
1213                kfree(pdent);
1214                pdent = dent;
1215                key_read(c, &dent->key, &key);
1216        }
1217        kfree(pdent);
1218
1219        if (i_size_read(dir) != size) {
1220                ubifs_err("directory inode %lu has size %llu, "
1221                          "but calculated size is %llu", dir->i_ino,
1222                          (unsigned long long)i_size_read(dir),
1223                          (unsigned long long)size);
1224                ubifs_dump_inode(c, dir);
1225                dump_stack();
1226                return -EINVAL;
1227        }
1228        if (dir->i_nlink != nlink) {
1229                ubifs_err("directory inode %lu has nlink %u, but calculated "
1230                          "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231                ubifs_dump_inode(c, dir);
1232                dump_stack();
1233                return -EINVAL;
1234        }
1235
1236        return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253                               struct ubifs_zbranch *zbr2)
1254{
1255        int err, nlen1, nlen2, cmp;
1256        struct ubifs_dent_node *dent1, *dent2;
1257        union ubifs_key key;
1258        char key_buf[DBG_KEY_BUF_LEN];
1259
1260        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262        if (!dent1)
1263                return -ENOMEM;
1264        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265        if (!dent2) {
1266                err = -ENOMEM;
1267                goto out_free;
1268        }
1269
1270        err = ubifs_tnc_read_node(c, zbr1, dent1);
1271        if (err)
1272                goto out_free;
1273        err = ubifs_validate_entry(c, dent1);
1274        if (err)
1275                goto out_free;
1276
1277        err = ubifs_tnc_read_node(c, zbr2, dent2);
1278        if (err)
1279                goto out_free;
1280        err = ubifs_validate_entry(c, dent2);
1281        if (err)
1282                goto out_free;
1283
1284        /* Make sure node keys are the same as in zbranch */
1285        err = 1;
1286        key_read(c, &dent1->key, &key);
1287        if (keys_cmp(c, &zbr1->key, &key)) {
1288                ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290                                                       DBG_KEY_BUF_LEN));
1291                ubifs_err("but it should have key %s according to tnc",
1292                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1293                                           DBG_KEY_BUF_LEN));
1294                ubifs_dump_node(c, dent1);
1295                goto out_free;
1296        }
1297
1298        key_read(c, &dent2->key, &key);
1299        if (keys_cmp(c, &zbr2->key, &key)) {
1300                ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302                                                       DBG_KEY_BUF_LEN));
1303                ubifs_err("but it should have key %s according to tnc",
1304                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1305                                           DBG_KEY_BUF_LEN));
1306                ubifs_dump_node(c, dent2);
1307                goto out_free;
1308        }
1309
1310        nlen1 = le16_to_cpu(dent1->nlen);
1311        nlen2 = le16_to_cpu(dent2->nlen);
1312
1313        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315                err = 0;
1316                goto out_free;
1317        }
1318        if (cmp == 0 && nlen1 == nlen2)
1319                ubifs_err("2 xent/dent nodes with the same name");
1320        else
1321                ubifs_err("bad order of colliding key %s",
1322                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324        ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325        ubifs_dump_node(c, dent1);
1326        ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327        ubifs_dump_node(c, dent2);
1328
1329out_free:
1330        kfree(dent2);
1331        kfree(dent1);
1332        return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345        struct ubifs_znode *znode = zbr->znode;
1346        struct ubifs_znode *zp = znode->parent;
1347        int n, err, cmp;
1348
1349        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350                err = 1;
1351                goto out;
1352        }
1353        if (znode->level < 0) {
1354                err = 2;
1355                goto out;
1356        }
1357        if (znode->iip < 0 || znode->iip >= c->fanout) {
1358                err = 3;
1359                goto out;
1360        }
1361
1362        if (zbr->len == 0)
1363                /* Only dirty zbranch may have no on-flash nodes */
1364                if (!ubifs_zn_dirty(znode)) {
1365                        err = 4;
1366                        goto out;
1367                }
1368
1369        if (ubifs_zn_dirty(znode)) {
1370                /*
1371                 * If znode is dirty, its parent has to be dirty as well. The
1372                 * order of the operation is important, so we have to have
1373                 * memory barriers.
1374                 */
1375                smp_mb();
1376                if (zp && !ubifs_zn_dirty(zp)) {
1377                        /*
1378                         * The dirty flag is atomic and is cleared outside the
1379                         * TNC mutex, so znode's dirty flag may now have
1380                         * been cleared. The child is always cleared before the
1381                         * parent, so we just need to check again.
1382                         */
1383                        smp_mb();
1384                        if (ubifs_zn_dirty(znode)) {
1385                                err = 5;
1386                                goto out;
1387                        }
1388                }
1389        }
1390
1391        if (zp) {
1392                const union ubifs_key *min, *max;
1393
1394                if (znode->level != zp->level - 1) {
1395                        err = 6;
1396                        goto out;
1397                }
1398
1399                /* Make sure the 'parent' pointer in our znode is correct */
1400                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401                if (!err) {
1402                        /* This zbranch does not exist in the parent */
1403                        err = 7;
1404                        goto out;
1405                }
1406
1407                if (znode->iip >= zp->child_cnt) {
1408                        err = 8;
1409                        goto out;
1410                }
1411
1412                if (znode->iip != n) {
1413                        /* This may happen only in case of collisions */
1414                        if (keys_cmp(c, &zp->zbranch[n].key,
1415                                     &zp->zbranch[znode->iip].key)) {
1416                                err = 9;
1417                                goto out;
1418                        }
1419                        n = znode->iip;
1420                }
1421
1422                /*
1423                 * Make sure that the first key in our znode is greater than or
1424                 * equal to the key in the pointing zbranch.
1425                 */
1426                min = &zbr->key;
1427                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428                if (cmp == 1) {
1429                        err = 10;
1430                        goto out;
1431                }
1432
1433                if (n + 1 < zp->child_cnt) {
1434                        max = &zp->zbranch[n + 1].key;
1435
1436                        /*
1437                         * Make sure the last key in our znode is less or
1438                         * equivalent than the key in the zbranch which goes
1439                         * after our pointing zbranch.
1440                         */
1441                        cmp = keys_cmp(c, max,
1442                                &znode->zbranch[znode->child_cnt - 1].key);
1443                        if (cmp == -1) {
1444                                err = 11;
1445                                goto out;
1446                        }
1447                }
1448        } else {
1449                /* This may only be root znode */
1450                if (zbr != &c->zroot) {
1451                        err = 12;
1452                        goto out;
1453                }
1454        }
1455
1456        /*
1457         * Make sure that next key is greater or equivalent then the previous
1458         * one.
1459         */
1460        for (n = 1; n < znode->child_cnt; n++) {
1461                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462                               &znode->zbranch[n].key);
1463                if (cmp > 0) {
1464                        err = 13;
1465                        goto out;
1466                }
1467                if (cmp == 0) {
1468                        /* This can only be keys with colliding hash */
1469                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470                                err = 14;
1471                                goto out;
1472                        }
1473
1474                        if (znode->level != 0 || c->replaying)
1475                                continue;
1476
1477                        /*
1478                         * Colliding keys should follow binary order of
1479                         * corresponding xentry/dentry names.
1480                         */
1481                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482                                                  &znode->zbranch[n]);
1483                        if (err < 0)
1484                                return err;
1485                        if (err) {
1486                                err = 15;
1487                                goto out;
1488                        }
1489                }
1490        }
1491
1492        for (n = 0; n < znode->child_cnt; n++) {
1493                if (!znode->zbranch[n].znode &&
1494                    (znode->zbranch[n].lnum == 0 ||
1495                     znode->zbranch[n].len == 0)) {
1496                        err = 16;
1497                        goto out;
1498                }
1499
1500                if (znode->zbranch[n].lnum != 0 &&
1501                    znode->zbranch[n].len == 0) {
1502                        err = 17;
1503                        goto out;
1504                }
1505
1506                if (znode->zbranch[n].lnum == 0 &&
1507                    znode->zbranch[n].len != 0) {
1508                        err = 18;
1509                        goto out;
1510                }
1511
1512                if (znode->zbranch[n].lnum == 0 &&
1513                    znode->zbranch[n].offs != 0) {
1514                        err = 19;
1515                        goto out;
1516                }
1517
1518                if (znode->level != 0 && znode->zbranch[n].znode)
1519                        if (znode->zbranch[n].znode->parent != znode) {
1520                                err = 20;
1521                                goto out;
1522                        }
1523        }
1524
1525        return 0;
1526
1527out:
1528        ubifs_err("failed, error %d", err);
1529        ubifs_msg("dump of the znode");
1530        ubifs_dump_znode(c, znode);
1531        if (zp) {
1532                ubifs_msg("dump of the parent znode");
1533                ubifs_dump_znode(c, zp);
1534        }
1535        dump_stack();
1536        return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549        struct ubifs_znode *znode;
1550        long clean_cnt = 0, dirty_cnt = 0;
1551        int err, last;
1552
1553        if (!dbg_is_chk_index(c))
1554                return 0;
1555
1556        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557        if (!c->zroot.znode)
1558                return 0;
1559
1560        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561        while (1) {
1562                struct ubifs_znode *prev;
1563                struct ubifs_zbranch *zbr;
1564
1565                if (!znode->parent)
1566                        zbr = &c->zroot;
1567                else
1568                        zbr = &znode->parent->zbranch[znode->iip];
1569
1570                err = dbg_check_znode(c, zbr);
1571                if (err)
1572                        return err;
1573
1574                if (extra) {
1575                        if (ubifs_zn_dirty(znode))
1576                                dirty_cnt += 1;
1577                        else
1578                                clean_cnt += 1;
1579                }
1580
1581                prev = znode;
1582                znode = ubifs_tnc_postorder_next(znode);
1583                if (!znode)
1584                        break;
1585
1586                /*
1587                 * If the last key of this znode is equivalent to the first key
1588                 * of the next znode (collision), then check order of the keys.
1589                 */
1590                last = prev->child_cnt - 1;
1591                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592                    !keys_cmp(c, &prev->zbranch[last].key,
1593                              &znode->zbranch[0].key)) {
1594                        err = dbg_check_key_order(c, &prev->zbranch[last],
1595                                                  &znode->zbranch[0]);
1596                        if (err < 0)
1597                                return err;
1598                        if (err) {
1599                                ubifs_msg("first znode");
1600                                ubifs_dump_znode(c, prev);
1601                                ubifs_msg("second znode");
1602                                ubifs_dump_znode(c, znode);
1603                                return -EINVAL;
1604                        }
1605                }
1606        }
1607
1608        if (extra) {
1609                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610                        ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611                                  atomic_long_read(&c->clean_zn_cnt),
1612                                  clean_cnt);
1613                        return -EINVAL;
1614                }
1615                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616                        ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617                                  atomic_long_read(&c->dirty_zn_cnt),
1618                                  dirty_cnt);
1619                        return -EINVAL;
1620                }
1621        }
1622
1623        return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642                   dbg_znode_callback znode_cb, void *priv)
1643{
1644        int err;
1645        struct ubifs_zbranch *zbr;
1646        struct ubifs_znode *znode, *child;
1647
1648        mutex_lock(&c->tnc_mutex);
1649        /* If the root indexing node is not in TNC - pull it */
1650        if (!c->zroot.znode) {
1651                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652                if (IS_ERR(c->zroot.znode)) {
1653                        err = PTR_ERR(c->zroot.znode);
1654                        c->zroot.znode = NULL;
1655                        goto out_unlock;
1656                }
1657        }
1658
1659        /*
1660         * We are going to traverse the indexing tree in the postorder manner.
1661         * Go down and find the leftmost indexing node where we are going to
1662         * start from.
1663         */
1664        znode = c->zroot.znode;
1665        while (znode->level > 0) {
1666                zbr = &znode->zbranch[0];
1667                child = zbr->znode;
1668                if (!child) {
1669                        child = ubifs_load_znode(c, zbr, znode, 0);
1670                        if (IS_ERR(child)) {
1671                                err = PTR_ERR(child);
1672                                goto out_unlock;
1673                        }
1674                        zbr->znode = child;
1675                }
1676
1677                znode = child;
1678        }
1679
1680        /* Iterate over all indexing nodes */
1681        while (1) {
1682                int idx;
1683
1684                cond_resched();
1685
1686                if (znode_cb) {
1687                        err = znode_cb(c, znode, priv);
1688                        if (err) {
1689                                ubifs_err("znode checking function returned "
1690                                          "error %d", err);
1691                                ubifs_dump_znode(c, znode);
1692                                goto out_dump;
1693                        }
1694                }
1695                if (leaf_cb && znode->level == 0) {
1696                        for (idx = 0; idx < znode->child_cnt; idx++) {
1697                                zbr = &znode->zbranch[idx];
1698                                err = leaf_cb(c, zbr, priv);
1699                                if (err) {
1700                                        ubifs_err("leaf checking function "
1701                                                  "returned error %d, for leaf "
1702                                                  "at LEB %d:%d",
1703                                                  err, zbr->lnum, zbr->offs);
1704                                        goto out_dump;
1705                                }
1706                        }
1707                }
1708
1709                if (!znode->parent)
1710                        break;
1711
1712                idx = znode->iip + 1;
1713                znode = znode->parent;
1714                if (idx < znode->child_cnt) {
1715                        /* Switch to the next index in the parent */
1716                        zbr = &znode->zbranch[idx];
1717                        child = zbr->znode;
1718                        if (!child) {
1719                                child = ubifs_load_znode(c, zbr, znode, idx);
1720                                if (IS_ERR(child)) {
1721                                        err = PTR_ERR(child);
1722                                        goto out_unlock;
1723                                }
1724                                zbr->znode = child;
1725                        }
1726                        znode = child;
1727                } else
1728                        /*
1729                         * This is the last child, switch to the parent and
1730                         * continue.
1731                         */
1732                        continue;
1733
1734                /* Go to the lowest leftmost znode in the new sub-tree */
1735                while (znode->level > 0) {
1736                        zbr = &znode->zbranch[0];
1737                        child = zbr->znode;
1738                        if (!child) {
1739                                child = ubifs_load_znode(c, zbr, znode, 0);
1740                                if (IS_ERR(child)) {
1741                                        err = PTR_ERR(child);
1742                                        goto out_unlock;
1743                                }
1744                                zbr->znode = child;
1745                        }
1746                        znode = child;
1747                }
1748        }
1749
1750        mutex_unlock(&c->tnc_mutex);
1751        return 0;
1752
1753out_dump:
1754        if (znode->parent)
1755                zbr = &znode->parent->zbranch[znode->iip];
1756        else
1757                zbr = &c->zroot;
1758        ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759        ubifs_dump_znode(c, znode);
1760out_unlock:
1761        mutex_unlock(&c->tnc_mutex);
1762        return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777        long long *idx_size = priv;
1778        int add;
1779
1780        add = ubifs_idx_node_sz(c, znode->child_cnt);
1781        add = ALIGN(add, 8);
1782        *idx_size += add;
1783        return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797        int err;
1798        long long calc = 0;
1799
1800        if (!dbg_is_chk_index(c))
1801                return 0;
1802
1803        err = dbg_walk_index(c, NULL, add_size, &calc);
1804        if (err) {
1805                ubifs_err("error %d while walking the index", err);
1806                return err;
1807        }
1808
1809        if (calc != idx_size) {
1810                ubifs_err("index size check failed: calculated size is %lld, "
1811                          "should be %lld", calc, idx_size);
1812                dump_stack();
1813                return -EINVAL;
1814        }
1815
1816        return 0;
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 *              while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 *            inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 *             inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840        struct rb_node rb;
1841        ino_t inum;
1842        umode_t mode;
1843        unsigned int nlink;
1844        unsigned int xattr_cnt;
1845        int references;
1846        int calc_cnt;
1847        long long size;
1848        unsigned int xattr_sz;
1849        long long calc_sz;
1850        long long calc_xcnt;
1851        long long calc_xsz;
1852        unsigned int xattr_nms;
1853        long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861        struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875                                    struct fsck_data *fsckd,
1876                                    struct ubifs_ino_node *ino)
1877{
1878        struct rb_node **p, *parent = NULL;
1879        struct fsck_inode *fscki;
1880        ino_t inum = key_inum_flash(c, &ino->key);
1881        struct inode *inode;
1882        struct ubifs_inode *ui;
1883
1884        p = &fsckd->inodes.rb_node;
1885        while (*p) {
1886                parent = *p;
1887                fscki = rb_entry(parent, struct fsck_inode, rb);
1888                if (inum < fscki->inum)
1889                        p = &(*p)->rb_left;
1890                else if (inum > fscki->inum)
1891                        p = &(*p)->rb_right;
1892                else
1893                        return fscki;
1894        }
1895
1896        if (inum > c->highest_inum) {
1897                ubifs_err("too high inode number, max. is %lu",
1898                          (unsigned long)c->highest_inum);
1899                return ERR_PTR(-EINVAL);
1900        }
1901
1902        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903        if (!fscki)
1904                return ERR_PTR(-ENOMEM);
1905
1906        inode = ilookup(c->vfs_sb, inum);
1907
1908        fscki->inum = inum;
1909        /*
1910         * If the inode is present in the VFS inode cache, use it instead of
1911         * the on-flash inode which might be out-of-date. E.g., the size might
1912         * be out-of-date. If we do not do this, the following may happen, for
1913         * example:
1914         *   1. A power cut happens
1915         *   2. We mount the file-system R/O, the replay process fixes up the
1916         *      inode size in the VFS cache, but on on-flash.
1917         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918         *      size.
1919         */
1920        if (!inode) {
1921                fscki->nlink = le32_to_cpu(ino->nlink);
1922                fscki->size = le64_to_cpu(ino->size);
1923                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926                fscki->mode = le32_to_cpu(ino->mode);
1927        } else {
1928                ui = ubifs_inode(inode);
1929                fscki->nlink = inode->i_nlink;
1930                fscki->size = inode->i_size;
1931                fscki->xattr_cnt = ui->xattr_cnt;
1932                fscki->xattr_sz = ui->xattr_size;
1933                fscki->xattr_nms = ui->xattr_names;
1934                fscki->mode = inode->i_mode;
1935                iput(inode);
1936        }
1937
1938        if (S_ISDIR(fscki->mode)) {
1939                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940                fscki->calc_cnt = 2;
1941        }
1942
1943        rb_link_node(&fscki->rb, parent, p);
1944        rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946        return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960        struct rb_node *p;
1961        struct fsck_inode *fscki;
1962
1963        p = fsckd->inodes.rb_node;
1964        while (p) {
1965                fscki = rb_entry(p, struct fsck_inode, rb);
1966                if (inum < fscki->inum)
1967                        p = p->rb_left;
1968                else if (inum > fscki->inum)
1969                        p = p->rb_right;
1970                else
1971                        return fscki;
1972        }
1973        return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988                                         struct fsck_data *fsckd, ino_t inum)
1989{
1990        int n, err;
1991        union ubifs_key key;
1992        struct ubifs_znode *znode;
1993        struct ubifs_zbranch *zbr;
1994        struct ubifs_ino_node *ino;
1995        struct fsck_inode *fscki;
1996
1997        fscki = search_inode(fsckd, inum);
1998        if (fscki)
1999                return fscki;
2000
2001        ino_key_init(c, &key, inum);
2002        err = ubifs_lookup_level0(c, &key, &znode, &n);
2003        if (!err) {
2004                ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005                return ERR_PTR(-ENOENT);
2006        } else if (err < 0) {
2007                ubifs_err("error %d while looking up inode %lu",
2008                          err, (unsigned long)inum);
2009                return ERR_PTR(err);
2010        }
2011
2012        zbr = &znode->zbranch[n];
2013        if (zbr->len < UBIFS_INO_NODE_SZ) {
2014                ubifs_err("bad node %lu node length %d",
2015                          (unsigned long)inum, zbr->len);
2016                return ERR_PTR(-EINVAL);
2017        }
2018
2019        ino = kmalloc(zbr->len, GFP_NOFS);
2020        if (!ino)
2021                return ERR_PTR(-ENOMEM);
2022
2023        err = ubifs_tnc_read_node(c, zbr, ino);
2024        if (err) {
2025                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026                          zbr->lnum, zbr->offs, err);
2027                kfree(ino);
2028                return ERR_PTR(err);
2029        }
2030
2031        fscki = add_inode(c, fsckd, ino);
2032        kfree(ino);
2033        if (IS_ERR(fscki)) {
2034                ubifs_err("error %ld while adding inode %lu node",
2035                          PTR_ERR(fscki), (unsigned long)inum);
2036                return fscki;
2037        }
2038
2039        return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059                      void *priv)
2060{
2061        ino_t inum;
2062        void *node;
2063        struct ubifs_ch *ch;
2064        int err, type = key_type(c, &zbr->key);
2065        struct fsck_inode *fscki;
2066
2067        if (zbr->len < UBIFS_CH_SZ) {
2068                ubifs_err("bad leaf length %d (LEB %d:%d)",
2069                          zbr->len, zbr->lnum, zbr->offs);
2070                return -EINVAL;
2071        }
2072
2073        node = kmalloc(zbr->len, GFP_NOFS);
2074        if (!node)
2075                return -ENOMEM;
2076
2077        err = ubifs_tnc_read_node(c, zbr, node);
2078        if (err) {
2079                ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080                          zbr->lnum, zbr->offs, err);
2081                goto out_free;
2082        }
2083
2084        /* If this is an inode node, add it to RB-tree of inodes */
2085        if (type == UBIFS_INO_KEY) {
2086                fscki = add_inode(c, priv, node);
2087                if (IS_ERR(fscki)) {
2088                        err = PTR_ERR(fscki);
2089                        ubifs_err("error %d while adding inode node", err);
2090                        goto out_dump;
2091                }
2092                goto out;
2093        }
2094
2095        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096            type != UBIFS_DATA_KEY) {
2097                ubifs_err("unexpected node type %d at LEB %d:%d",
2098                          type, zbr->lnum, zbr->offs);
2099                err = -EINVAL;
2100                goto out_free;
2101        }
2102
2103        ch = node;
2104        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105                ubifs_err("too high sequence number, max. is %llu",
2106                          c->max_sqnum);
2107                err = -EINVAL;
2108                goto out_dump;
2109        }
2110
2111        if (type == UBIFS_DATA_KEY) {
2112                long long blk_offs;
2113                struct ubifs_data_node *dn = node;
2114
2115                /*
2116                 * Search the inode node this data node belongs to and insert
2117                 * it to the RB-tree of inodes.
2118                 */
2119                inum = key_inum_flash(c, &dn->key);
2120                fscki = read_add_inode(c, priv, inum);
2121                if (IS_ERR(fscki)) {
2122                        err = PTR_ERR(fscki);
2123                        ubifs_err("error %d while processing data node and "
2124                                  "trying to find inode node %lu",
2125                                  err, (unsigned long)inum);
2126                        goto out_dump;
2127                }
2128
2129                /* Make sure the data node is within inode size */
2130                blk_offs = key_block_flash(c, &dn->key);
2131                blk_offs <<= UBIFS_BLOCK_SHIFT;
2132                blk_offs += le32_to_cpu(dn->size);
2133                if (blk_offs > fscki->size) {
2134                        ubifs_err("data node at LEB %d:%d is not within inode "
2135                                  "size %lld", zbr->lnum, zbr->offs,
2136                                  fscki->size);
2137                        err = -EINVAL;
2138                        goto out_dump;
2139                }
2140        } else {
2141                int nlen;
2142                struct ubifs_dent_node *dent = node;
2143                struct fsck_inode *fscki1;
2144
2145                err = ubifs_validate_entry(c, dent);
2146                if (err)
2147                        goto out_dump;
2148
2149                /*
2150                 * Search the inode node this entry refers to and the parent
2151                 * inode node and insert them to the RB-tree of inodes.
2152                 */
2153                inum = le64_to_cpu(dent->inum);
2154                fscki = read_add_inode(c, priv, inum);
2155                if (IS_ERR(fscki)) {
2156                        err = PTR_ERR(fscki);
2157                        ubifs_err("error %d while processing entry node and "
2158                                  "trying to find inode node %lu",
2159                                  err, (unsigned long)inum);
2160                        goto out_dump;
2161                }
2162
2163                /* Count how many direntries or xentries refers this inode */
2164                fscki->references += 1;
2165
2166                inum = key_inum_flash(c, &dent->key);
2167                fscki1 = read_add_inode(c, priv, inum);
2168                if (IS_ERR(fscki1)) {
2169                        err = PTR_ERR(fscki1);
2170                        ubifs_err("error %d while processing entry node and "
2171                                  "trying to find parent inode node %lu",
2172                                  err, (unsigned long)inum);
2173                        goto out_dump;
2174                }
2175
2176                nlen = le16_to_cpu(dent->nlen);
2177                if (type == UBIFS_XENT_KEY) {
2178                        fscki1->calc_xcnt += 1;
2179                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181                        fscki1->calc_xnms += nlen;
2182                } else {
2183                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184                        if (dent->type == UBIFS_ITYPE_DIR)
2185                                fscki1->calc_cnt += 1;
2186                }
2187        }
2188
2189out:
2190        kfree(node);
2191        return 0;
2192
2193out_dump:
2194        ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195        ubifs_dump_node(c, node);
2196out_free:
2197        kfree(node);
2198        return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207        struct rb_node *this = fsckd->inodes.rb_node;
2208        struct fsck_inode *fscki;
2209
2210        while (this) {
2211                if (this->rb_left)
2212                        this = this->rb_left;
2213                else if (this->rb_right)
2214                        this = this->rb_right;
2215                else {
2216                        fscki = rb_entry(this, struct fsck_inode, rb);
2217                        this = rb_parent(this);
2218                        if (this) {
2219                                if (this->rb_left == &fscki->rb)
2220                                        this->rb_left = NULL;
2221                                else
2222                                        this->rb_right = NULL;
2223                        }
2224                        kfree(fscki);
2225                }
2226        }
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241        int n, err;
2242        union ubifs_key key;
2243        struct ubifs_znode *znode;
2244        struct ubifs_zbranch *zbr;
2245        struct ubifs_ino_node *ino;
2246        struct fsck_inode *fscki;
2247        struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249        while (this) {
2250                fscki = rb_entry(this, struct fsck_inode, rb);
2251                this = rb_next(this);
2252
2253                if (S_ISDIR(fscki->mode)) {
2254                        /*
2255                         * Directories have to have exactly one reference (they
2256                         * cannot have hardlinks), although root inode is an
2257                         * exception.
2258                         */
2259                        if (fscki->inum != UBIFS_ROOT_INO &&
2260                            fscki->references != 1) {
2261                                ubifs_err("directory inode %lu has %d "
2262                                          "direntries which refer it, but "
2263                                          "should be 1",
2264                                          (unsigned long)fscki->inum,
2265                                          fscki->references);
2266                                goto out_dump;
2267                        }
2268                        if (fscki->inum == UBIFS_ROOT_INO &&
2269                            fscki->references != 0) {
2270                                ubifs_err("root inode %lu has non-zero (%d) "
2271                                          "direntries which refer it",
2272                                          (unsigned long)fscki->inum,
2273                                          fscki->references);
2274                                goto out_dump;
2275                        }
2276                        if (fscki->calc_sz != fscki->size) {
2277                                ubifs_err("directory inode %lu size is %lld, "
2278                                          "but calculated size is %lld",
2279                                          (unsigned long)fscki->inum,
2280                                          fscki->size, fscki->calc_sz);
2281                                goto out_dump;
2282                        }
2283                        if (fscki->calc_cnt != fscki->nlink) {
2284                                ubifs_err("directory inode %lu nlink is %d, "
2285                                          "but calculated nlink is %d",
2286                                          (unsigned long)fscki->inum,
2287                                          fscki->nlink, fscki->calc_cnt);
2288                                goto out_dump;
2289                        }
2290                } else {
2291                        if (fscki->references != fscki->nlink) {
2292                                ubifs_err("inode %lu nlink is %d, but "
2293                                          "calculated nlink is %d",
2294                                          (unsigned long)fscki->inum,
2295                                          fscki->nlink, fscki->references);
2296                                goto out_dump;
2297                        }
2298                }
2299                if (fscki->xattr_sz != fscki->calc_xsz) {
2300                        ubifs_err("inode %lu has xattr size %u, but "
2301                                  "calculated size is %lld",
2302                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2303                                  fscki->calc_xsz);
2304                        goto out_dump;
2305                }
2306                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307                        ubifs_err("inode %lu has %u xattrs, but "
2308                                  "calculated count is %lld",
2309                                  (unsigned long)fscki->inum,
2310                                  fscki->xattr_cnt, fscki->calc_xcnt);
2311                        goto out_dump;
2312                }
2313                if (fscki->xattr_nms != fscki->calc_xnms) {
2314                        ubifs_err("inode %lu has xattr names' size %u, but "
2315                                  "calculated names' size is %lld",
2316                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2317                                  fscki->calc_xnms);
2318                        goto out_dump;
2319                }
2320        }
2321
2322        return 0;
2323
2324out_dump:
2325        /* Read the bad inode and dump it */
2326        ino_key_init(c, &key, fscki->inum);
2327        err = ubifs_lookup_level0(c, &key, &znode, &n);
2328        if (!err) {
2329                ubifs_err("inode %lu not found in index",
2330                          (unsigned long)fscki->inum);
2331                return -ENOENT;
2332        } else if (err < 0) {
2333                ubifs_err("error %d while looking up inode %lu",
2334                          err, (unsigned long)fscki->inum);
2335                return err;
2336        }
2337
2338        zbr = &znode->zbranch[n];
2339        ino = kmalloc(zbr->len, GFP_NOFS);
2340        if (!ino)
2341                return -ENOMEM;
2342
2343        err = ubifs_tnc_read_node(c, zbr, ino);
2344        if (err) {
2345                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346                          zbr->lnum, zbr->offs, err);
2347                kfree(ino);
2348                return err;
2349        }
2350
2351        ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353        ubifs_dump_node(c, ino);
2354        kfree(ino);
2355        return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 *   inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373        int err;
2374        struct fsck_data fsckd;
2375
2376        if (!dbg_is_chk_fs(c))
2377                return 0;
2378
2379        fsckd.inodes = RB_ROOT;
2380        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381        if (err)
2382                goto out_free;
2383
2384        err = check_inodes(c, &fsckd);
2385        if (err)
2386                goto out_free;
2387
2388        free_inodes(&fsckd);
2389        return 0;
2390
2391out_free:
2392        ubifs_err("file-system check failed with error %d", err);
2393        dump_stack();
2394        free_inodes(&fsckd);
2395        return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408        struct list_head *cur;
2409        struct ubifs_scan_node *sa, *sb;
2410
2411        if (!dbg_is_chk_gen(c))
2412                return 0;
2413
2414        for (cur = head->next; cur->next != head; cur = cur->next) {
2415                ino_t inuma, inumb;
2416                uint32_t blka, blkb;
2417
2418                cond_resched();
2419                sa = container_of(cur, struct ubifs_scan_node, list);
2420                sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422                if (sa->type != UBIFS_DATA_NODE) {
2423                        ubifs_err("bad node type %d", sa->type);
2424                        ubifs_dump_node(c, sa->node);
2425                        return -EINVAL;
2426                }
2427                if (sb->type != UBIFS_DATA_NODE) {
2428                        ubifs_err("bad node type %d", sb->type);
2429                        ubifs_dump_node(c, sb->node);
2430                        return -EINVAL;
2431                }
2432
2433                inuma = key_inum(c, &sa->key);
2434                inumb = key_inum(c, &sb->key);
2435
2436                if (inuma < inumb)
2437                        continue;
2438                if (inuma > inumb) {
2439                        ubifs_err("larger inum %lu goes before inum %lu",
2440                                  (unsigned long)inuma, (unsigned long)inumb);
2441                        goto error_dump;
2442                }
2443
2444                blka = key_block(c, &sa->key);
2445                blkb = key_block(c, &sb->key);
2446
2447                if (blka > blkb) {
2448                        ubifs_err("larger block %u goes before %u", blka, blkb);
2449                        goto error_dump;
2450                }
2451                if (blka == blkb) {
2452                        ubifs_err("two data nodes for the same block");
2453                        goto error_dump;
2454                }
2455        }
2456
2457        return 0;
2458
2459error_dump:
2460        ubifs_dump_node(c, sa->node);
2461        ubifs_dump_node(c, sb->node);
2462        return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475        struct list_head *cur;
2476        struct ubifs_scan_node *sa, *sb;
2477
2478        if (!dbg_is_chk_gen(c))
2479                return 0;
2480
2481        for (cur = head->next; cur->next != head; cur = cur->next) {
2482                ino_t inuma, inumb;
2483                uint32_t hasha, hashb;
2484
2485                cond_resched();
2486                sa = container_of(cur, struct ubifs_scan_node, list);
2487                sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490                    sa->type != UBIFS_XENT_NODE) {
2491                        ubifs_err("bad node type %d", sa->type);
2492                        ubifs_dump_node(c, sa->node);
2493                        return -EINVAL;
2494                }
2495                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496                    sa->type != UBIFS_XENT_NODE) {
2497                        ubifs_err("bad node type %d", sb->type);
2498                        ubifs_dump_node(c, sb->node);
2499                        return -EINVAL;
2500                }
2501
2502                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503                        ubifs_err("non-inode node goes before inode node");
2504                        goto error_dump;
2505                }
2506
2507                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508                        continue;
2509
2510                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511                        /* Inode nodes are sorted in descending size order */
2512                        if (sa->len < sb->len) {
2513                                ubifs_err("smaller inode node goes first");
2514                                goto error_dump;
2515                        }
2516                        continue;
2517                }
2518
2519                /*
2520                 * This is either a dentry or xentry, which should be sorted in
2521                 * ascending (parent ino, hash) order.
2522                 */
2523                inuma = key_inum(c, &sa->key);
2524                inumb = key_inum(c, &sb->key);
2525
2526                if (inuma < inumb)
2527                        continue;
2528                if (inuma > inumb) {
2529                        ubifs_err("larger inum %lu goes before inum %lu",
2530                                  (unsigned long)inuma, (unsigned long)inumb);
2531                        goto error_dump;
2532                }
2533
2534                hasha = key_block(c, &sa->key);
2535                hashb = key_block(c, &sb->key);
2536
2537                if (hasha > hashb) {
2538                        ubifs_err("larger hash %u goes before %u",
2539                                  hasha, hashb);
2540                        goto error_dump;
2541                }
2542        }
2543
2544        return 0;
2545
2546error_dump:
2547        ubifs_msg("dumping first node");
2548        ubifs_dump_node(c, sa->node);
2549        ubifs_msg("dumping second node");
2550        ubifs_dump_node(c, sb->node);
2551        return -EINVAL;
2552        return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557        return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563        struct ubifs_debug_info *d = c->dbg;
2564
2565        ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567        if (!d->pc_cnt) {
2568                /* First call - decide delay to the power cut */
2569                if (chance(1, 2)) {
2570                        unsigned long delay;
2571
2572                        if (chance(1, 2)) {
2573                                d->pc_delay = 1;
2574                                /* Fail withing 1 minute */
2575                                delay = random32() % 60000;
2576                                d->pc_timeout = jiffies;
2577                                d->pc_timeout += msecs_to_jiffies(delay);
2578                                ubifs_warn("failing after %lums", delay);
2579                        } else {
2580                                d->pc_delay = 2;
2581                                delay = random32() % 10000;
2582                                /* Fail within 10000 operations */
2583                                d->pc_cnt_max = delay;
2584                                ubifs_warn("failing after %lu calls", delay);
2585                        }
2586                }
2587
2588                d->pc_cnt += 1;
2589        }
2590
2591        /* Determine if failure delay has expired */
2592        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593                        return 0;
2594        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595                        return 0;
2596
2597        if (lnum == UBIFS_SB_LNUM) {
2598                if (write && chance(1, 2))
2599                        return 0;
2600                if (chance(19, 20))
2601                        return 0;
2602                ubifs_warn("failing in super block LEB %d", lnum);
2603        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604                if (chance(19, 20))
2605                        return 0;
2606                ubifs_warn("failing in master LEB %d", lnum);
2607        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608                if (write && chance(99, 100))
2609                        return 0;
2610                if (chance(399, 400))
2611                        return 0;
2612                ubifs_warn("failing in log LEB %d", lnum);
2613        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614                if (write && chance(7, 8))
2615                        return 0;
2616                if (chance(19, 20))
2617                        return 0;
2618                ubifs_warn("failing in LPT LEB %d", lnum);
2619        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620                if (write && chance(1, 2))
2621                        return 0;
2622                if (chance(9, 10))
2623                        return 0;
2624                ubifs_warn("failing in orphan LEB %d", lnum);
2625        } else if (lnum == c->ihead_lnum) {
2626                if (chance(99, 100))
2627                        return 0;
2628                ubifs_warn("failing in index head LEB %d", lnum);
2629        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630                if (chance(9, 10))
2631                        return 0;
2632                ubifs_warn("failing in GC head LEB %d", lnum);
2633        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634                   !ubifs_search_bud(c, lnum)) {
2635                if (chance(19, 20))
2636                        return 0;
2637                ubifs_warn("failing in non-bud LEB %d", lnum);
2638        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640                if (chance(999, 1000))
2641                        return 0;
2642                ubifs_warn("failing in bud LEB %d commit running", lnum);
2643        } else {
2644                if (chance(9999, 10000))
2645                        return 0;
2646                ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647        }
2648
2649        d->pc_happened = 1;
2650        ubifs_warn("========== Power cut emulated ==========");
2651        dump_stack();
2652        return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
2656{
2657        unsigned int from, to, i, ffs = chance(1, 2);
2658        unsigned char *p = (void *)buf;
2659
2660        from = random32() % (len + 1);
2661        if (chance(1, 2))
2662                to = random32() % (len - from + 1);
2663        else
2664                to = len;
2665
2666        if (from < to)
2667                ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668                           ffs ? "0xFFs" : "random data");
2669
2670        if (ffs)
2671                for (i = from; i < to; i++)
2672                        p[i] = 0xFF;
2673        else
2674                for (i = from; i < to; i++)
2675                        p[i] = random32() % 0x100;
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679                  int offs, int len)
2680{
2681        int err, failing;
2682
2683        if (c->dbg->pc_happened)
2684                return -EROFS;
2685
2686        failing = power_cut_emulated(c, lnum, 1);
2687        if (failing)
2688                cut_data(buf, len);
2689        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690        if (err)
2691                return err;
2692        if (failing)
2693                return -EROFS;
2694        return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698                   int len)
2699{
2700        int err;
2701
2702        if (c->dbg->pc_happened)
2703                return -EROFS;
2704        if (power_cut_emulated(c, lnum, 1))
2705                return -EROFS;
2706        err = ubi_leb_change(c->ubi, lnum, buf, len);
2707        if (err)
2708                return err;
2709        if (power_cut_emulated(c, lnum, 1))
2710                return -EROFS;
2711        return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716        int err;
2717
2718        if (c->dbg->pc_happened)
2719                return -EROFS;
2720        if (power_cut_emulated(c, lnum, 0))
2721                return -EROFS;
2722        err = ubi_leb_unmap(c->ubi, lnum);
2723        if (err)
2724                return err;
2725        if (power_cut_emulated(c, lnum, 0))
2726                return -EROFS;
2727        return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732        int err;
2733
2734        if (c->dbg->pc_happened)
2735                return -EROFS;
2736        if (power_cut_emulated(c, lnum, 0))
2737                return -EROFS;
2738        err = ubi_leb_map(c->ubi, lnum);
2739        if (err)
2740                return err;
2741        if (power_cut_emulated(c, lnum, 0))
2742                return -EROFS;
2743        return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754        file->private_data = inode->i_private;
2755        return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771                               loff_t *ppos)
2772{
2773        char buf[3];
2774
2775        if (val)
2776                buf[0] = '1';
2777        else
2778                buf[0] = '0';
2779        buf[1] = '\n';
2780        buf[2] = 0x00;
2781
2782        return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786                             loff_t *ppos)
2787{
2788        struct dentry *dent = file->f_path.dentry;
2789        struct ubifs_info *c = file->private_data;
2790        struct ubifs_debug_info *d = c->dbg;
2791        int val;
2792
2793        if (dent == d->dfs_chk_gen)
2794                val = d->chk_gen;
2795        else if (dent == d->dfs_chk_index)
2796                val = d->chk_index;
2797        else if (dent == d->dfs_chk_orph)
2798                val = d->chk_orph;
2799        else if (dent == d->dfs_chk_lprops)
2800                val = d->chk_lprops;
2801        else if (dent == d->dfs_chk_fs)
2802                val = d->chk_fs;
2803        else if (dent == d->dfs_tst_rcvry)
2804                val = d->tst_rcvry;
2805        else if (dent == d->dfs_ro_error)
2806                val = c->ro_error;
2807        else
2808                return -EINVAL;
2809
2810        return provide_user_output(val, u, count, ppos);
2811}
2812
2813/**
2814 * interpret_user_input - interpret user debugfs file input.
2815 * @u: user-provided buffer with the input
2816 * @count: buffer size
2817 *
2818 * This is a helper function which interpret user input to a boolean UBIFS
2819 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820 * in case of failure.
2821 */
2822static int interpret_user_input(const char __user *u, size_t count)
2823{
2824        size_t buf_size;
2825        char buf[8];
2826
2827        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828        if (copy_from_user(buf, u, buf_size))
2829                return -EFAULT;
2830
2831        if (buf[0] == '1')
2832                return 1;
2833        else if (buf[0] == '0')
2834                return 0;
2835
2836        return -EINVAL;
2837}
2838
2839static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840                              size_t count, loff_t *ppos)
2841{
2842        struct ubifs_info *c = file->private_data;
2843        struct ubifs_debug_info *d = c->dbg;
2844        struct dentry *dent = file->f_path.dentry;
2845        int val;
2846
2847        /*
2848         * TODO: this is racy - the file-system might have already been
2849         * unmounted and we'd oops in this case. The plan is to fix it with
2850         * help of 'iterate_supers_type()' which we should have in v3.0: when
2851         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853         * superblocks and fine the one with the same UUID, and take the
2854         * locking right.
2855         *
2856         * The other way to go suggested by Al Viro is to create a separate
2857         * 'ubifs-debug' file-system instead.
2858         */
2859        if (file->f_path.dentry == d->dfs_dump_lprops) {
2860                ubifs_dump_lprops(c);
2861                return count;
2862        }
2863        if (file->f_path.dentry == d->dfs_dump_budg) {
2864                ubifs_dump_budg(c, &c->bi);
2865                return count;
2866        }
2867        if (file->f_path.dentry == d->dfs_dump_tnc) {
2868                mutex_lock(&c->tnc_mutex);
2869                ubifs_dump_tnc(c);
2870                mutex_unlock(&c->tnc_mutex);
2871                return count;
2872        }
2873
2874        val = interpret_user_input(u, count);
2875        if (val < 0)
2876                return val;
2877
2878        if (dent == d->dfs_chk_gen)
2879                d->chk_gen = val;
2880        else if (dent == d->dfs_chk_index)
2881                d->chk_index = val;
2882        else if (dent == d->dfs_chk_orph)
2883                d->chk_orph = val;
2884        else if (dent == d->dfs_chk_lprops)
2885                d->chk_lprops = val;
2886        else if (dent == d->dfs_chk_fs)
2887                d->chk_fs = val;
2888        else if (dent == d->dfs_tst_rcvry)
2889                d->tst_rcvry = val;
2890        else if (dent == d->dfs_ro_error)
2891                c->ro_error = !!val;
2892        else
2893                return -EINVAL;
2894
2895        return count;
2896}
2897
2898static const struct file_operations dfs_fops = {
2899        .open = dfs_file_open,
2900        .read = dfs_file_read,
2901        .write = dfs_file_write,
2902        .owner = THIS_MODULE,
2903        .llseek = no_llseek,
2904};
2905
2906/**
2907 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2908 * @c: UBIFS file-system description object
2909 *
2910 * This function creates all debugfs files for this instance of UBIFS. Returns
2911 * zero in case of success and a negative error code in case of failure.
2912 *
2913 * Note, the only reason we have not merged this function with the
2914 * 'ubifs_debugging_init()' function is because it is better to initialize
2915 * debugfs interfaces at the very end of the mount process, and remove them at
2916 * the very beginning of the mount process.
2917 */
2918int dbg_debugfs_init_fs(struct ubifs_info *c)
2919{
2920        int err, n;
2921        const char *fname;
2922        struct dentry *dent;
2923        struct ubifs_debug_info *d = c->dbg;
2924
2925        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2926                return 0;
2927
2928        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2929                     c->vi.ubi_num, c->vi.vol_id);
2930        if (n == UBIFS_DFS_DIR_LEN) {
2931                /* The array size is too small */
2932                fname = UBIFS_DFS_DIR_NAME;
2933                dent = ERR_PTR(-EINVAL);
2934                goto out;
2935        }
2936
2937        fname = d->dfs_dir_name;
2938        dent = debugfs_create_dir(fname, dfs_rootdir);
2939        if (IS_ERR_OR_NULL(dent))
2940                goto out;
2941        d->dfs_dir = dent;
2942
2943        fname = "dump_lprops";
2944        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2945        if (IS_ERR_OR_NULL(dent))
2946                goto out_remove;
2947        d->dfs_dump_lprops = dent;
2948
2949        fname = "dump_budg";
2950        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2951        if (IS_ERR_OR_NULL(dent))
2952                goto out_remove;
2953        d->dfs_dump_budg = dent;
2954
2955        fname = "dump_tnc";
2956        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2957        if (IS_ERR_OR_NULL(dent))
2958                goto out_remove;
2959        d->dfs_dump_tnc = dent;
2960
2961        fname = "chk_general";
2962        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2963                                   &dfs_fops);
2964        if (IS_ERR_OR_NULL(dent))
2965                goto out_remove;
2966        d->dfs_chk_gen = dent;
2967
2968        fname = "chk_index";
2969        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2970                                   &dfs_fops);
2971        if (IS_ERR_OR_NULL(dent))
2972                goto out_remove;
2973        d->dfs_chk_index = dent;
2974
2975        fname = "chk_orphans";
2976        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2977                                   &dfs_fops);
2978        if (IS_ERR_OR_NULL(dent))
2979                goto out_remove;
2980        d->dfs_chk_orph = dent;
2981
2982        fname = "chk_lprops";
2983        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2984                                   &dfs_fops);
2985        if (IS_ERR_OR_NULL(dent))
2986                goto out_remove;
2987        d->dfs_chk_lprops = dent;
2988
2989        fname = "chk_fs";
2990        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2991                                   &dfs_fops);
2992        if (IS_ERR_OR_NULL(dent))
2993                goto out_remove;
2994        d->dfs_chk_fs = dent;
2995
2996        fname = "tst_recovery";
2997        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2998                                   &dfs_fops);
2999        if (IS_ERR_OR_NULL(dent))
3000                goto out_remove;
3001        d->dfs_tst_rcvry = dent;
3002
3003        fname = "ro_error";
3004        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3005                                   &dfs_fops);
3006        if (IS_ERR_OR_NULL(dent))
3007                goto out_remove;
3008        d->dfs_ro_error = dent;
3009
3010        return 0;
3011
3012out_remove:
3013        debugfs_remove_recursive(d->dfs_dir);
3014out:
3015        err = dent ? PTR_ERR(dent) : -ENODEV;
3016        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3017                  fname, err);
3018        return err;
3019}
3020
3021/**
3022 * dbg_debugfs_exit_fs - remove all debugfs files.
3023 * @c: UBIFS file-system description object
3024 */
3025void dbg_debugfs_exit_fs(struct ubifs_info *c)
3026{
3027        if (IS_ENABLED(CONFIG_DEBUG_FS))
3028                debugfs_remove_recursive(c->dbg->dfs_dir);
3029}
3030
3031struct ubifs_global_debug_info ubifs_dbg;
3032
3033static struct dentry *dfs_chk_gen;
3034static struct dentry *dfs_chk_index;
3035static struct dentry *dfs_chk_orph;
3036static struct dentry *dfs_chk_lprops;
3037static struct dentry *dfs_chk_fs;
3038static struct dentry *dfs_tst_rcvry;
3039
3040static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3041                                    size_t count, loff_t *ppos)
3042{
3043        struct dentry *dent = file->f_path.dentry;
3044        int val;
3045
3046        if (dent == dfs_chk_gen)
3047                val = ubifs_dbg.chk_gen;
3048        else if (dent == dfs_chk_index)
3049                val = ubifs_dbg.chk_index;
3050        else if (dent == dfs_chk_orph)
3051                val = ubifs_dbg.chk_orph;
3052        else if (dent == dfs_chk_lprops)
3053                val = ubifs_dbg.chk_lprops;
3054        else if (dent == dfs_chk_fs)
3055                val = ubifs_dbg.chk_fs;
3056        else if (dent == dfs_tst_rcvry)
3057                val = ubifs_dbg.tst_rcvry;
3058        else
3059                return -EINVAL;
3060
3061        return provide_user_output(val, u, count, ppos);
3062}
3063
3064static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3065                                     size_t count, loff_t *ppos)
3066{
3067        struct dentry *dent = file->f_path.dentry;
3068        int val;
3069
3070        val = interpret_user_input(u, count);
3071        if (val < 0)
3072                return val;
3073
3074        if (dent == dfs_chk_gen)
3075                ubifs_dbg.chk_gen = val;
3076        else if (dent == dfs_chk_index)
3077                ubifs_dbg.chk_index = val;
3078        else if (dent == dfs_chk_orph)
3079                ubifs_dbg.chk_orph = val;
3080        else if (dent == dfs_chk_lprops)
3081                ubifs_dbg.chk_lprops = val;
3082        else if (dent == dfs_chk_fs)
3083                ubifs_dbg.chk_fs = val;
3084        else if (dent == dfs_tst_rcvry)
3085                ubifs_dbg.tst_rcvry = val;
3086        else
3087                return -EINVAL;
3088
3089        return count;
3090}
3091
3092static const struct file_operations dfs_global_fops = {
3093        .read = dfs_global_file_read,
3094        .write = dfs_global_file_write,
3095        .owner = THIS_MODULE,
3096        .llseek = no_llseek,
3097};
3098
3099/**
3100 * dbg_debugfs_init - initialize debugfs file-system.
3101 *
3102 * UBIFS uses debugfs file-system to expose various debugging knobs to
3103 * user-space. This function creates "ubifs" directory in the debugfs
3104 * file-system. Returns zero in case of success and a negative error code in
3105 * case of failure.
3106 */
3107int dbg_debugfs_init(void)
3108{
3109        int err;
3110        const char *fname;
3111        struct dentry *dent;
3112
3113        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3114                return 0;
3115
3116        fname = "ubifs";
3117        dent = debugfs_create_dir(fname, NULL);
3118        if (IS_ERR_OR_NULL(dent))
3119                goto out;
3120        dfs_rootdir = dent;
3121
3122        fname = "chk_general";
3123        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3124                                   &dfs_global_fops);
3125        if (IS_ERR_OR_NULL(dent))
3126                goto out_remove;
3127        dfs_chk_gen = dent;
3128
3129        fname = "chk_index";
3130        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3131                                   &dfs_global_fops);
3132        if (IS_ERR_OR_NULL(dent))
3133                goto out_remove;
3134        dfs_chk_index = dent;
3135
3136        fname = "chk_orphans";
3137        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3138                                   &dfs_global_fops);
3139        if (IS_ERR_OR_NULL(dent))
3140                goto out_remove;
3141        dfs_chk_orph = dent;
3142
3143        fname = "chk_lprops";
3144        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3145                                   &dfs_global_fops);
3146        if (IS_ERR_OR_NULL(dent))
3147                goto out_remove;
3148        dfs_chk_lprops = dent;
3149
3150        fname = "chk_fs";
3151        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3152                                   &dfs_global_fops);
3153        if (IS_ERR_OR_NULL(dent))
3154                goto out_remove;
3155        dfs_chk_fs = dent;
3156
3157        fname = "tst_recovery";
3158        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3159                                   &dfs_global_fops);
3160        if (IS_ERR_OR_NULL(dent))
3161                goto out_remove;
3162        dfs_tst_rcvry = dent;
3163
3164        return 0;
3165
3166out_remove:
3167        debugfs_remove_recursive(dfs_rootdir);
3168out:
3169        err = dent ? PTR_ERR(dent) : -ENODEV;
3170        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3171                  fname, err);
3172        return err;
3173}
3174
3175/**
3176 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3177 */
3178void dbg_debugfs_exit(void)
3179{
3180        if (IS_ENABLED(CONFIG_DEBUG_FS))
3181                debugfs_remove_recursive(dfs_rootdir);
3182}
3183
3184/**
3185 * ubifs_debugging_init - initialize UBIFS debugging.
3186 * @c: UBIFS file-system description object
3187 *
3188 * This function initializes debugging-related data for the file system.
3189 * Returns zero in case of success and a negative error code in case of
3190 * failure.
3191 */
3192int ubifs_debugging_init(struct ubifs_info *c)
3193{
3194        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3195        if (!c->dbg)
3196                return -ENOMEM;
3197
3198        return 0;
3199}
3200
3201/**
3202 * ubifs_debugging_exit - free debugging data.
3203 * @c: UBIFS file-system description object
3204 */
3205void ubifs_debugging_exit(struct ubifs_info *c)
3206{
3207        kfree(c->dbg);
3208}
3209
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.