linux/crypto/ansi_cprng.c
<<
>>
Prefs
   1/*
   2 * PRNG: Pseudo Random Number Generator
   3 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
   4 *       AES 128 cipher
   5 *
   6 *  (C) Neil Horman <nhorman@tuxdriver.com>
   7 *
   8 *  This program is free software; you can redistribute it and/or modify it
   9 *  under the terms of the GNU General Public License as published by the
  10 *  Free Software Foundation; either version 2 of the License, or (at your
  11 *  any later version.
  12 *
  13 *
  14 */
  15
  16#include <crypto/internal/rng.h>
  17#include <linux/err.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/moduleparam.h>
  21#include <linux/string.h>
  22
  23#include "internal.h"
  24
  25#define DEFAULT_PRNG_KEY "0123456789abcdef"
  26#define DEFAULT_PRNG_KSZ 16
  27#define DEFAULT_BLK_SZ 16
  28#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
  29
  30/*
  31 * Flags for the prng_context flags field
  32 */
  33
  34#define PRNG_FIXED_SIZE 0x1
  35#define PRNG_NEED_RESET 0x2
  36
  37/*
  38 * Note: DT is our counter value
  39 *       I is our intermediate value
  40 *       V is our seed vector
  41 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
  42 * for implementation details
  43 */
  44
  45
  46struct prng_context {
  47        spinlock_t prng_lock;
  48        unsigned char rand_data[DEFAULT_BLK_SZ];
  49        unsigned char last_rand_data[DEFAULT_BLK_SZ];
  50        unsigned char DT[DEFAULT_BLK_SZ];
  51        unsigned char I[DEFAULT_BLK_SZ];
  52        unsigned char V[DEFAULT_BLK_SZ];
  53        u32 rand_data_valid;
  54        struct crypto_cipher *tfm;
  55        u32 flags;
  56};
  57
  58static int dbg;
  59
  60static void hexdump(char *note, unsigned char *buf, unsigned int len)
  61{
  62        if (dbg) {
  63                printk(KERN_CRIT "%s", note);
  64                print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
  65                                16, 1,
  66                                buf, len, false);
  67        }
  68}
  69
  70#define dbgprint(format, args...) do {\
  71if (dbg)\
  72        printk(format, ##args);\
  73} while (0)
  74
  75static void xor_vectors(unsigned char *in1, unsigned char *in2,
  76                        unsigned char *out, unsigned int size)
  77{
  78        int i;
  79
  80        for (i = 0; i < size; i++)
  81                out[i] = in1[i] ^ in2[i];
  82
  83}
  84/*
  85 * Returns DEFAULT_BLK_SZ bytes of random data per call
  86 * returns 0 if generation succeeded, <0 if something went wrong
  87 */
  88static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
  89{
  90        int i;
  91        unsigned char tmp[DEFAULT_BLK_SZ];
  92        unsigned char *output = NULL;
  93
  94
  95        dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
  96                ctx);
  97
  98        hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
  99        hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
 100        hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
 101
 102        /*
 103         * This algorithm is a 3 stage state machine
 104         */
 105        for (i = 0; i < 3; i++) {
 106
 107                switch (i) {
 108                case 0:
 109                        /*
 110                         * Start by encrypting the counter value
 111                         * This gives us an intermediate value I
 112                         */
 113                        memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
 114                        output = ctx->I;
 115                        hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
 116                        break;
 117                case 1:
 118
 119                        /*
 120                         * Next xor I with our secret vector V
 121                         * encrypt that result to obtain our
 122                         * pseudo random data which we output
 123                         */
 124                        xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
 125                        hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
 126                        output = ctx->rand_data;
 127                        break;
 128                case 2:
 129                        /*
 130                         * First check that we didn't produce the same
 131                         * random data that we did last time around through this
 132                         */
 133                        if (!memcmp(ctx->rand_data, ctx->last_rand_data,
 134                                        DEFAULT_BLK_SZ)) {
 135                                if (cont_test) {
 136                                        panic("cprng %p Failed repetition check!\n",
 137                                                ctx);
 138                                }
 139
 140                                printk(KERN_ERR
 141                                        "ctx %p Failed repetition check!\n",
 142                                        ctx);
 143
 144                                ctx->flags |= PRNG_NEED_RESET;
 145                                return -EINVAL;
 146                        }
 147                        memcpy(ctx->last_rand_data, ctx->rand_data,
 148                                DEFAULT_BLK_SZ);
 149
 150                        /*
 151                         * Lastly xor the random data with I
 152                         * and encrypt that to obtain a new secret vector V
 153                         */
 154                        xor_vectors(ctx->rand_data, ctx->I, tmp,
 155                                DEFAULT_BLK_SZ);
 156                        output = ctx->V;
 157                        hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
 158                        break;
 159                }
 160
 161
 162                /* do the encryption */
 163                crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
 164
 165        }
 166
 167        /*
 168         * Now update our DT value
 169         */
 170        for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
 171                ctx->DT[i] += 1;
 172                if (ctx->DT[i] != 0)
 173                        break;
 174        }
 175
 176        dbgprint("Returning new block for context %p\n", ctx);
 177        ctx->rand_data_valid = 0;
 178
 179        hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
 180        hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
 181        hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
 182        hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
 183
 184        return 0;
 185}
 186
 187/* Our exported functions */
 188static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
 189                                int do_cont_test)
 190{
 191        unsigned char *ptr = buf;
 192        unsigned int byte_count = (unsigned int)nbytes;
 193        int err;
 194
 195
 196        spin_lock_bh(&ctx->prng_lock);
 197
 198        err = -EINVAL;
 199        if (ctx->flags & PRNG_NEED_RESET)
 200                goto done;
 201
 202        /*
 203         * If the FIXED_SIZE flag is on, only return whole blocks of
 204         * pseudo random data
 205         */
 206        err = -EINVAL;
 207        if (ctx->flags & PRNG_FIXED_SIZE) {
 208                if (nbytes < DEFAULT_BLK_SZ)
 209                        goto done;
 210                byte_count = DEFAULT_BLK_SZ;
 211        }
 212
 213        err = byte_count;
 214
 215        dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
 216                byte_count, ctx);
 217
 218
 219remainder:
 220        if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
 221                if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
 222                        memset(buf, 0, nbytes);
 223                        err = -EINVAL;
 224                        goto done;
 225                }
 226        }
 227
 228        /*
 229         * Copy any data less than an entire block
 230         */
 231        if (byte_count < DEFAULT_BLK_SZ) {
 232empty_rbuf:
 233                for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
 234                        ctx->rand_data_valid++) {
 235                        *ptr = ctx->rand_data[ctx->rand_data_valid];
 236                        ptr++;
 237                        byte_count--;
 238                        if (byte_count == 0)
 239                                goto done;
 240                }
 241        }
 242
 243        /*
 244         * Now copy whole blocks
 245         */
 246        for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
 247                if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
 248                        if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
 249                                memset(buf, 0, nbytes);
 250                                err = -EINVAL;
 251                                goto done;
 252                        }
 253                }
 254                if (ctx->rand_data_valid > 0)
 255                        goto empty_rbuf;
 256                memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
 257                ctx->rand_data_valid += DEFAULT_BLK_SZ;
 258                ptr += DEFAULT_BLK_SZ;
 259        }
 260
 261        /*
 262         * Now go back and get any remaining partial block
 263         */
 264        if (byte_count)
 265                goto remainder;
 266
 267done:
 268        spin_unlock_bh(&ctx->prng_lock);
 269        dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
 270                err, ctx);
 271        return err;
 272}
 273
 274static void free_prng_context(struct prng_context *ctx)
 275{
 276        crypto_free_cipher(ctx->tfm);
 277}
 278
 279static int reset_prng_context(struct prng_context *ctx,
 280                              unsigned char *key, size_t klen,
 281                              unsigned char *V, unsigned char *DT)
 282{
 283        int ret;
 284        unsigned char *prng_key;
 285
 286        spin_lock_bh(&ctx->prng_lock);
 287        ctx->flags |= PRNG_NEED_RESET;
 288
 289        prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
 290
 291        if (!key)
 292                klen = DEFAULT_PRNG_KSZ;
 293
 294        if (V)
 295                memcpy(ctx->V, V, DEFAULT_BLK_SZ);
 296        else
 297                memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
 298
 299        if (DT)
 300                memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
 301        else
 302                memset(ctx->DT, 0, DEFAULT_BLK_SZ);
 303
 304        memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
 305        memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
 306
 307        ctx->rand_data_valid = DEFAULT_BLK_SZ;
 308
 309        ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
 310        if (ret) {
 311                dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
 312                        crypto_cipher_get_flags(ctx->tfm));
 313                goto out;
 314        }
 315
 316        ret = 0;
 317        ctx->flags &= ~PRNG_NEED_RESET;
 318out:
 319        spin_unlock_bh(&ctx->prng_lock);
 320        return ret;
 321}
 322
 323static int cprng_init(struct crypto_tfm *tfm)
 324{
 325        struct prng_context *ctx = crypto_tfm_ctx(tfm);
 326
 327        spin_lock_init(&ctx->prng_lock);
 328        ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
 329        if (IS_ERR(ctx->tfm)) {
 330                dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
 331                                ctx);
 332                return PTR_ERR(ctx->tfm);
 333        }
 334
 335        if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
 336                return -EINVAL;
 337
 338        /*
 339         * after allocation, we should always force the user to reset
 340         * so they don't inadvertently use the insecure default values
 341         * without specifying them intentially
 342         */
 343        ctx->flags |= PRNG_NEED_RESET;
 344        return 0;
 345}
 346
 347static void cprng_exit(struct crypto_tfm *tfm)
 348{
 349        free_prng_context(crypto_tfm_ctx(tfm));
 350}
 351
 352static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
 353                            unsigned int dlen)
 354{
 355        struct prng_context *prng = crypto_rng_ctx(tfm);
 356
 357        return get_prng_bytes(rdata, dlen, prng, 0);
 358}
 359
 360/*
 361 *  This is the cprng_registered reset method the seed value is
 362 *  interpreted as the tuple { V KEY DT}
 363 *  V and KEY are required during reset, and DT is optional, detected
 364 *  as being present by testing the length of the seed
 365 */
 366static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 367{
 368        struct prng_context *prng = crypto_rng_ctx(tfm);
 369        u8 *key = seed + DEFAULT_BLK_SZ;
 370        u8 *dt = NULL;
 371
 372        if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
 373                return -EINVAL;
 374
 375        if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
 376                dt = key + DEFAULT_PRNG_KSZ;
 377
 378        reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
 379
 380        if (prng->flags & PRNG_NEED_RESET)
 381                return -EINVAL;
 382        return 0;
 383}
 384
 385static struct crypto_alg rng_alg = {
 386        .cra_name               = "stdrng",
 387        .cra_driver_name        = "ansi_cprng",
 388        .cra_priority           = 100,
 389        .cra_flags              = CRYPTO_ALG_TYPE_RNG,
 390        .cra_ctxsize            = sizeof(struct prng_context),
 391        .cra_type               = &crypto_rng_type,
 392        .cra_module             = THIS_MODULE,
 393        .cra_list               = LIST_HEAD_INIT(rng_alg.cra_list),
 394        .cra_init               = cprng_init,
 395        .cra_exit               = cprng_exit,
 396        .cra_u                  = {
 397                .rng = {
 398                        .rng_make_random        = cprng_get_random,
 399                        .rng_reset              = cprng_reset,
 400                        .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
 401                }
 402        }
 403};
 404
 405#ifdef CONFIG_CRYPTO_FIPS
 406static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
 407                            unsigned int dlen)
 408{
 409        struct prng_context *prng = crypto_rng_ctx(tfm);
 410
 411        return get_prng_bytes(rdata, dlen, prng, 1);
 412}
 413
 414static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 415{
 416        u8 rdata[DEFAULT_BLK_SZ];
 417        u8 *key = seed + DEFAULT_BLK_SZ;
 418        int rc;
 419
 420        struct prng_context *prng = crypto_rng_ctx(tfm);
 421
 422        if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
 423                return -EINVAL;
 424
 425        /* fips strictly requires seed != key */
 426        if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
 427                return -EINVAL;
 428
 429        rc = cprng_reset(tfm, seed, slen);
 430
 431        if (!rc)
 432                goto out;
 433
 434        /* this primes our continuity test */
 435        rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
 436        prng->rand_data_valid = DEFAULT_BLK_SZ;
 437
 438out:
 439        return rc;
 440}
 441
 442static struct crypto_alg fips_rng_alg = {
 443        .cra_name               = "fips(ansi_cprng)",
 444        .cra_driver_name        = "fips_ansi_cprng",
 445        .cra_priority           = 300,
 446        .cra_flags              = CRYPTO_ALG_TYPE_RNG,
 447        .cra_ctxsize            = sizeof(struct prng_context),
 448        .cra_type               = &crypto_rng_type,
 449        .cra_module             = THIS_MODULE,
 450        .cra_list               = LIST_HEAD_INIT(rng_alg.cra_list),
 451        .cra_init               = cprng_init,
 452        .cra_exit               = cprng_exit,
 453        .cra_u                  = {
 454                .rng = {
 455                        .rng_make_random        = fips_cprng_get_random,
 456                        .rng_reset              = fips_cprng_reset,
 457                        .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
 458                }
 459        }
 460};
 461#endif
 462
 463/* Module initalization */
 464static int __init prng_mod_init(void)
 465{
 466        int rc = 0;
 467
 468        rc = crypto_register_alg(&rng_alg);
 469#ifdef CONFIG_CRYPTO_FIPS
 470        if (rc)
 471                goto out;
 472
 473        rc = crypto_register_alg(&fips_rng_alg);
 474
 475out:
 476#endif
 477        return rc;
 478}
 479
 480static void __exit prng_mod_fini(void)
 481{
 482        crypto_unregister_alg(&rng_alg);
 483#ifdef CONFIG_CRYPTO_FIPS
 484        crypto_unregister_alg(&fips_rng_alg);
 485#endif
 486        return;
 487}
 488
 489MODULE_LICENSE("GPL");
 490MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
 491MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
 492module_param(dbg, int, 0);
 493MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
 494module_init(prng_mod_init);
 495module_exit(prng_mod_fini);
 496MODULE_ALIAS("stdrng");
 497
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.