linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *      with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 *
  61 * USB requests are always queued to a given endpoint, identified by a
  62 * descriptor within an active interface in a given USB configuration.
  63 */
  64struct usb_host_endpoint {
  65        struct usb_endpoint_descriptor          desc;
  66        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  67        struct list_head                urb_list;
  68        void                            *hcpriv;
  69        struct ep_device                *ep_dev;        /* For sysfs info */
  70
  71        unsigned char *extra;   /* Extra descriptors */
  72        int extralen;
  73        int enabled;
  74};
  75
  76/* host-side wrapper for one interface setting's parsed descriptors */
  77struct usb_host_interface {
  78        struct usb_interface_descriptor desc;
  79
  80        int extralen;
  81        unsigned char *extra;   /* Extra descriptors */
  82
  83        /* array of desc.bNumEndpoint endpoints associated with this
  84         * interface setting.  these will be in no particular order.
  85         */
  86        struct usb_host_endpoint *endpoint;
  87
  88        char *string;           /* iInterface string, if present */
  89};
  90
  91enum usb_interface_condition {
  92        USB_INTERFACE_UNBOUND = 0,
  93        USB_INTERFACE_BINDING,
  94        USB_INTERFACE_BOUND,
  95        USB_INTERFACE_UNBINDING,
  96};
  97
  98/**
  99 * struct usb_interface - what usb device drivers talk to
 100 * @altsetting: array of interface structures, one for each alternate
 101 *      setting that may be selected.  Each one includes a set of
 102 *      endpoint configurations.  They will be in no particular order.
 103 * @cur_altsetting: the current altsetting.
 104 * @num_altsetting: number of altsettings defined.
 105 * @intf_assoc: interface association descriptor
 106 * @minor: the minor number assigned to this interface, if this
 107 *      interface is bound to a driver that uses the USB major number.
 108 *      If this interface does not use the USB major, this field should
 109 *      be unused.  The driver should set this value in the probe()
 110 *      function of the driver, after it has been assigned a minor
 111 *      number from the USB core by calling usb_register_dev().
 112 * @condition: binding state of the interface: not bound, binding
 113 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 114 * @sysfs_files_created: sysfs attributes exist
 115 * @ep_devs_created: endpoint child pseudo-devices exist
 116 * @unregistering: flag set when the interface is being unregistered
 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 118 *      capability during autosuspend.
 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 120 *      has been deferred.
 121 * @needs_binding: flag set when the driver should be re-probed or unbound
 122 *      following a reset or suspend operation it doesn't support.
 123 * @dev: driver model's view of this device
 124 * @usb_dev: if an interface is bound to the USB major, this will point
 125 *      to the sysfs representation for that device.
 126 * @pm_usage_cnt: PM usage counter for this interface
 127 * @reset_ws: Used for scheduling resets from atomic context.
 128 * @reset_running: set to 1 if the interface is currently running a
 129 *      queued reset so that usb_cancel_queued_reset() doesn't try to
 130 *      remove from the workqueue when running inside the worker
 131 *      thread. See __usb_queue_reset_device().
 132 * @resetting_device: USB core reset the device, so use alt setting 0 as
 133 *      current; needs bandwidth alloc after reset.
 134 *
 135 * USB device drivers attach to interfaces on a physical device.  Each
 136 * interface encapsulates a single high level function, such as feeding
 137 * an audio stream to a speaker or reporting a change in a volume control.
 138 * Many USB devices only have one interface.  The protocol used to talk to
 139 * an interface's endpoints can be defined in a usb "class" specification,
 140 * or by a product's vendor.  The (default) control endpoint is part of
 141 * every interface, but is never listed among the interface's descriptors.
 142 *
 143 * The driver that is bound to the interface can use standard driver model
 144 * calls such as dev_get_drvdata() on the dev member of this structure.
 145 *
 146 * Each interface may have alternate settings.  The initial configuration
 147 * of a device sets altsetting 0, but the device driver can change
 148 * that setting using usb_set_interface().  Alternate settings are often
 149 * used to control the use of periodic endpoints, such as by having
 150 * different endpoints use different amounts of reserved USB bandwidth.
 151 * All standards-conformant USB devices that use isochronous endpoints
 152 * will use them in non-default settings.
 153 *
 154 * The USB specification says that alternate setting numbers must run from
 155 * 0 to one less than the total number of alternate settings.  But some
 156 * devices manage to mess this up, and the structures aren't necessarily
 157 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 158 * look up an alternate setting in the altsetting array based on its number.
 159 */
 160struct usb_interface {
 161        /* array of alternate settings for this interface,
 162         * stored in no particular order */
 163        struct usb_host_interface *altsetting;
 164
 165        struct usb_host_interface *cur_altsetting;      /* the currently
 166                                         * active alternate setting */
 167        unsigned num_altsetting;        /* number of alternate settings */
 168
 169        /* If there is an interface association descriptor then it will list
 170         * the associated interfaces */
 171        struct usb_interface_assoc_descriptor *intf_assoc;
 172
 173        int minor;                      /* minor number this interface is
 174                                         * bound to */
 175        enum usb_interface_condition condition;         /* state of binding */
 176        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 177        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 178        unsigned unregistering:1;       /* unregistration is in progress */
 179        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 180        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 181        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 182        unsigned reset_running:1;
 183        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 184
 185        struct device dev;              /* interface specific device info */
 186        struct device *usb_dev;
 187        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 188        struct work_struct reset_ws;    /* for resets in atomic context */
 189};
 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 191
 192static inline void *usb_get_intfdata(struct usb_interface *intf)
 193{
 194        return dev_get_drvdata(&intf->dev);
 195}
 196
 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 198{
 199        dev_set_drvdata(&intf->dev, data);
 200}
 201
 202struct usb_interface *usb_get_intf(struct usb_interface *intf);
 203void usb_put_intf(struct usb_interface *intf);
 204
 205/* this maximum is arbitrary */
 206#define USB_MAXINTERFACES       32
 207#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 208
 209/**
 210 * struct usb_interface_cache - long-term representation of a device interface
 211 * @num_altsetting: number of altsettings defined.
 212 * @ref: reference counter.
 213 * @altsetting: variable-length array of interface structures, one for
 214 *      each alternate setting that may be selected.  Each one includes a
 215 *      set of endpoint configurations.  They will be in no particular order.
 216 *
 217 * These structures persist for the lifetime of a usb_device, unlike
 218 * struct usb_interface (which persists only as long as its configuration
 219 * is installed).  The altsetting arrays can be accessed through these
 220 * structures at any time, permitting comparison of configurations and
 221 * providing support for the /proc/bus/usb/devices pseudo-file.
 222 */
 223struct usb_interface_cache {
 224        unsigned num_altsetting;        /* number of alternate settings */
 225        struct kref ref;                /* reference counter */
 226
 227        /* variable-length array of alternate settings for this interface,
 228         * stored in no particular order */
 229        struct usb_host_interface altsetting[0];
 230};
 231#define ref_to_usb_interface_cache(r) \
 232                container_of(r, struct usb_interface_cache, ref)
 233#define altsetting_to_usb_interface_cache(a) \
 234                container_of(a, struct usb_interface_cache, altsetting[0])
 235
 236/**
 237 * struct usb_host_config - representation of a device's configuration
 238 * @desc: the device's configuration descriptor.
 239 * @string: pointer to the cached version of the iConfiguration string, if
 240 *      present for this configuration.
 241 * @intf_assoc: list of any interface association descriptors in this config
 242 * @interface: array of pointers to usb_interface structures, one for each
 243 *      interface in the configuration.  The number of interfaces is stored
 244 *      in desc.bNumInterfaces.  These pointers are valid only while the
 245 *      the configuration is active.
 246 * @intf_cache: array of pointers to usb_interface_cache structures, one
 247 *      for each interface in the configuration.  These structures exist
 248 *      for the entire life of the device.
 249 * @extra: pointer to buffer containing all extra descriptors associated
 250 *      with this configuration (those preceding the first interface
 251 *      descriptor).
 252 * @extralen: length of the extra descriptors buffer.
 253 *
 254 * USB devices may have multiple configurations, but only one can be active
 255 * at any time.  Each encapsulates a different operational environment;
 256 * for example, a dual-speed device would have separate configurations for
 257 * full-speed and high-speed operation.  The number of configurations
 258 * available is stored in the device descriptor as bNumConfigurations.
 259 *
 260 * A configuration can contain multiple interfaces.  Each corresponds to
 261 * a different function of the USB device, and all are available whenever
 262 * the configuration is active.  The USB standard says that interfaces
 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 264 * of devices get this wrong.  In addition, the interface array is not
 265 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 266 * look up an interface entry based on its number.
 267 *
 268 * Device drivers should not attempt to activate configurations.  The choice
 269 * of which configuration to install is a policy decision based on such
 270 * considerations as available power, functionality provided, and the user's
 271 * desires (expressed through userspace tools).  However, drivers can call
 272 * usb_reset_configuration() to reinitialize the current configuration and
 273 * all its interfaces.
 274 */
 275struct usb_host_config {
 276        struct usb_config_descriptor    desc;
 277
 278        char *string;           /* iConfiguration string, if present */
 279
 280        /* List of any Interface Association Descriptors in this
 281         * configuration. */
 282        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 283
 284        /* the interfaces associated with this configuration,
 285         * stored in no particular order */
 286        struct usb_interface *interface[USB_MAXINTERFACES];
 287
 288        /* Interface information available even when this is not the
 289         * active configuration */
 290        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 291
 292        unsigned char *extra;   /* Extra descriptors */
 293        int extralen;
 294};
 295
 296/* USB2.0 and USB3.0 device BOS descriptor set */
 297struct usb_host_bos {
 298        struct usb_bos_descriptor       *desc;
 299
 300        /* wireless cap descriptor is handled by wusb */
 301        struct usb_ext_cap_descriptor   *ext_cap;
 302        struct usb_ss_cap_descriptor    *ss_cap;
 303        struct usb_ss_container_id_descriptor   *ss_id;
 304};
 305
 306int __usb_get_extra_descriptor(char *buffer, unsigned size,
 307        unsigned char type, void **ptr);
 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 309                                __usb_get_extra_descriptor((ifpoint)->extra, \
 310                                (ifpoint)->extralen, \
 311                                type, (void **)ptr)
 312
 313/* ----------------------------------------------------------------------- */
 314
 315/* USB device number allocation bitmap */
 316struct usb_devmap {
 317        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 318};
 319
 320/*
 321 * Allocated per bus (tree of devices) we have:
 322 */
 323struct usb_bus {
 324        struct device *controller;      /* host/master side hardware */
 325        int busnum;                     /* Bus number (in order of reg) */
 326        const char *bus_name;           /* stable id (PCI slot_name etc) */
 327        u8 uses_dma;                    /* Does the host controller use DMA? */
 328        u8 uses_pio_for_control;        /*
 329                                         * Does the host controller use PIO
 330                                         * for control transfers?
 331                                         */
 332        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 333        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 334        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 335        unsigned no_stop_on_short:1;    /*
 336                                         * Quirk: some controllers don't stop
 337                                         * the ep queue on a short transfer
 338                                         * with the URB_SHORT_NOT_OK flag set.
 339                                         */
 340        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 341
 342        int devnum_next;                /* Next open device number in
 343                                         * round-robin allocation */
 344
 345        struct usb_devmap devmap;       /* device address allocation map */
 346        struct usb_device *root_hub;    /* Root hub */
 347        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 348        struct list_head bus_list;      /* list of busses */
 349
 350        int bandwidth_allocated;        /* on this bus: how much of the time
 351                                         * reserved for periodic (intr/iso)
 352                                         * requests is used, on average?
 353                                         * Units: microseconds/frame.
 354                                         * Limits: Full/low speed reserve 90%,
 355                                         * while high speed reserves 80%.
 356                                         */
 357        int bandwidth_int_reqs;         /* number of Interrupt requests */
 358        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 359
 360#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 361        struct mon_bus *mon_bus;        /* non-null when associated */
 362        int monitored;                  /* non-zero when monitored */
 363#endif
 364};
 365
 366/* ----------------------------------------------------------------------- */
 367
 368/* This is arbitrary.
 369 * From USB 2.0 spec Table 11-13, offset 7, a hub can
 370 * have up to 255 ports. The most yet reported is 10.
 371 *
 372 * Current Wireless USB host hardware (Intel i1480 for example) allows
 373 * up to 22 devices to connect. Upcoming hardware might raise that
 374 * limit. Because the arrays need to add a bit for hub status data, we
 375 * do 31, so plus one evens out to four bytes.
 376 */
 377#define USB_MAXCHILDREN         (31)
 378
 379struct usb_tt;
 380
 381enum usb_device_removable {
 382        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 383        USB_DEVICE_REMOVABLE,
 384        USB_DEVICE_FIXED,
 385};
 386
 387/*
 388 * USB 3.0 Link Power Management (LPM) parameters.
 389 *
 390 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 391 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 392 * All three are stored in nanoseconds.
 393 */
 394struct usb3_lpm_parameters {
 395        /*
 396         * Maximum exit latency (MEL) for the host to send a packet to the
 397         * device (either a Ping for isoc endpoints, or a data packet for
 398         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 399         * in the path to transition the links to U0.
 400         */
 401        unsigned int mel;
 402        /*
 403         * Maximum exit latency for a device-initiated LPM transition to bring
 404         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 405         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 406         */
 407        unsigned int pel;
 408
 409        /*
 410         * The System Exit Latency (SEL) includes PEL, and three other
 411         * latencies.  After a device initiates a U0 transition, it will take
 412         * some time from when the device sends the ERDY to when it will finally
 413         * receive the data packet.  Basically, SEL should be the worse-case
 414         * latency from when a device starts initiating a U0 transition to when
 415         * it will get data.
 416         */
 417        unsigned int sel;
 418        /*
 419         * The idle timeout value that is currently programmed into the parent
 420         * hub for this device.  When the timer counts to zero, the parent hub
 421         * will initiate an LPM transition to either U1 or U2.
 422         */
 423        int timeout;
 424};
 425
 426/**
 427 * struct usb_device - kernel's representation of a USB device
 428 * @devnum: device number; address on a USB bus
 429 * @devpath: device ID string for use in messages (e.g., /port/...)
 430 * @route: tree topology hex string for use with xHCI
 431 * @state: device state: configured, not attached, etc.
 432 * @speed: device speed: high/full/low (or error)
 433 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 434 * @ttport: device port on that tt hub
 435 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 436 * @parent: our hub, unless we're the root
 437 * @bus: bus we're part of
 438 * @ep0: endpoint 0 data (default control pipe)
 439 * @dev: generic device interface
 440 * @descriptor: USB device descriptor
 441 * @bos: USB device BOS descriptor set
 442 * @config: all of the device's configs
 443 * @actconfig: the active configuration
 444 * @ep_in: array of IN endpoints
 445 * @ep_out: array of OUT endpoints
 446 * @rawdescriptors: raw descriptors for each config
 447 * @bus_mA: Current available from the bus
 448 * @portnum: parent port number (origin 1)
 449 * @level: number of USB hub ancestors
 450 * @can_submit: URBs may be submitted
 451 * @persist_enabled:  USB_PERSIST enabled for this device
 452 * @have_langid: whether string_langid is valid
 453 * @authorized: policy has said we can use it;
 454 *      (user space) policy determines if we authorize this device to be
 455 *      used or not. By default, wired USB devices are authorized.
 456 *      WUSB devices are not, until we authorize them from user space.
 457 *      FIXME -- complete doc
 458 * @authenticated: Crypto authentication passed
 459 * @wusb: device is Wireless USB
 460 * @lpm_capable: device supports LPM
 461 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 462 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
 463 * @string_langid: language ID for strings
 464 * @product: iProduct string, if present (static)
 465 * @manufacturer: iManufacturer string, if present (static)
 466 * @serial: iSerialNumber string, if present (static)
 467 * @filelist: usbfs files that are open to this device
 468 * @usb_classdev: USB class device that was created for usbfs device
 469 *      access from userspace
 470 * @usbfs_dentry: usbfs dentry entry for the device
 471 * @maxchild: number of ports if hub
 472 * @children: child devices - USB devices that are attached to this hub
 473 * @quirks: quirks of the whole device
 474 * @urbnum: number of URBs submitted for the whole device
 475 * @active_duration: total time device is not suspended
 476 * @connect_time: time device was first connected
 477 * @do_remote_wakeup:  remote wakeup should be enabled
 478 * @reset_resume: needs reset instead of resume
 479 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 480 *      specific data for the device.
 481 * @slot_id: Slot ID assigned by xHCI
 482 * @removable: Device can be physically removed from this port
 483 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 484 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 485 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 486 *      to keep track of the number of functions that require USB 3.0 Link Power
 487 *      Management to be disabled for this usb_device.  This count should only
 488 *      be manipulated by those functions, with the bandwidth_mutex is held.
 489 *
 490 * Notes:
 491 * Usbcore drivers should not set usbdev->state directly.  Instead use
 492 * usb_set_device_state().
 493 */
 494struct usb_device {
 495        int             devnum;
 496        char            devpath[16];
 497        u32             route;
 498        enum usb_device_state   state;
 499        enum usb_device_speed   speed;
 500
 501        struct usb_tt   *tt;
 502        int             ttport;
 503
 504        unsigned int toggle[2];
 505
 506        struct usb_device *parent;
 507        struct usb_bus *bus;
 508        struct usb_host_endpoint ep0;
 509
 510        struct device dev;
 511
 512        struct usb_device_descriptor descriptor;
 513        struct usb_host_bos *bos;
 514        struct usb_host_config *config;
 515
 516        struct usb_host_config *actconfig;
 517        struct usb_host_endpoint *ep_in[16];
 518        struct usb_host_endpoint *ep_out[16];
 519
 520        char **rawdescriptors;
 521
 522        unsigned short bus_mA;
 523        u8 portnum;
 524        u8 level;
 525
 526        unsigned can_submit:1;
 527        unsigned persist_enabled:1;
 528        unsigned have_langid:1;
 529        unsigned authorized:1;
 530        unsigned authenticated:1;
 531        unsigned wusb:1;
 532        unsigned lpm_capable:1;
 533        unsigned usb2_hw_lpm_capable:1;
 534        unsigned usb2_hw_lpm_enabled:1;
 535        unsigned usb3_lpm_enabled:1;
 536        int string_langid;
 537
 538        /* static strings from the device */
 539        char *product;
 540        char *manufacturer;
 541        char *serial;
 542
 543        struct list_head filelist;
 544
 545        int maxchild;
 546        struct usb_device **children;
 547
 548        u32 quirks;
 549        atomic_t urbnum;
 550
 551        unsigned long active_duration;
 552
 553#ifdef CONFIG_PM
 554        unsigned long connect_time;
 555
 556        unsigned do_remote_wakeup:1;
 557        unsigned reset_resume:1;
 558#endif
 559        struct wusb_dev *wusb_dev;
 560        int slot_id;
 561        enum usb_device_removable removable;
 562        struct usb3_lpm_parameters u1_params;
 563        struct usb3_lpm_parameters u2_params;
 564        unsigned lpm_disable_count;
 565};
 566#define to_usb_device(d) container_of(d, struct usb_device, dev)
 567
 568static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 569{
 570        return to_usb_device(intf->dev.parent);
 571}
 572
 573extern struct usb_device *usb_get_dev(struct usb_device *dev);
 574extern void usb_put_dev(struct usb_device *dev);
 575
 576/* USB device locking */
 577#define usb_lock_device(udev)           device_lock(&(udev)->dev)
 578#define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
 579#define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
 580extern int usb_lock_device_for_reset(struct usb_device *udev,
 581                                     const struct usb_interface *iface);
 582
 583/* USB port reset for device reinitialization */
 584extern int usb_reset_device(struct usb_device *dev);
 585extern void usb_queue_reset_device(struct usb_interface *dev);
 586
 587
 588/* USB autosuspend and autoresume */
 589#ifdef CONFIG_USB_SUSPEND
 590extern void usb_enable_autosuspend(struct usb_device *udev);
 591extern void usb_disable_autosuspend(struct usb_device *udev);
 592
 593extern int usb_autopm_get_interface(struct usb_interface *intf);
 594extern void usb_autopm_put_interface(struct usb_interface *intf);
 595extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 596extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 597extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 598extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 599
 600static inline void usb_mark_last_busy(struct usb_device *udev)
 601{
 602        pm_runtime_mark_last_busy(&udev->dev);
 603}
 604
 605#else
 606
 607static inline int usb_enable_autosuspend(struct usb_device *udev)
 608{ return 0; }
 609static inline int usb_disable_autosuspend(struct usb_device *udev)
 610{ return 0; }
 611
 612static inline int usb_autopm_get_interface(struct usb_interface *intf)
 613{ return 0; }
 614static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 615{ return 0; }
 616
 617static inline void usb_autopm_put_interface(struct usb_interface *intf)
 618{ }
 619static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 620{ }
 621static inline void usb_autopm_get_interface_no_resume(
 622                struct usb_interface *intf)
 623{ }
 624static inline void usb_autopm_put_interface_no_suspend(
 625                struct usb_interface *intf)
 626{ }
 627static inline void usb_mark_last_busy(struct usb_device *udev)
 628{ }
 629#endif
 630
 631extern int usb_disable_lpm(struct usb_device *udev);
 632extern void usb_enable_lpm(struct usb_device *udev);
 633/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 634extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 635extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 636
 637extern int usb_disable_ltm(struct usb_device *udev);
 638extern void usb_enable_ltm(struct usb_device *udev);
 639
 640static inline bool usb_device_supports_ltm(struct usb_device *udev)
 641{
 642        if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 643                return false;
 644        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 645}
 646
 647
 648/*-------------------------------------------------------------------------*/
 649
 650/* for drivers using iso endpoints */
 651extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 652
 653/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 654extern int usb_alloc_streams(struct usb_interface *interface,
 655                struct usb_host_endpoint **eps, unsigned int num_eps,
 656                unsigned int num_streams, gfp_t mem_flags);
 657
 658/* Reverts a group of bulk endpoints back to not using stream IDs. */
 659extern void usb_free_streams(struct usb_interface *interface,
 660                struct usb_host_endpoint **eps, unsigned int num_eps,
 661                gfp_t mem_flags);
 662
 663/* used these for multi-interface device registration */
 664extern int usb_driver_claim_interface(struct usb_driver *driver,
 665                        struct usb_interface *iface, void *priv);
 666
 667/**
 668 * usb_interface_claimed - returns true iff an interface is claimed
 669 * @iface: the interface being checked
 670 *
 671 * Returns true (nonzero) iff the interface is claimed, else false (zero).
 672 * Callers must own the driver model's usb bus readlock.  So driver
 673 * probe() entries don't need extra locking, but other call contexts
 674 * may need to explicitly claim that lock.
 675 *
 676 */
 677static inline int usb_interface_claimed(struct usb_interface *iface)
 678{
 679        return (iface->dev.driver != NULL);
 680}
 681
 682extern void usb_driver_release_interface(struct usb_driver *driver,
 683                        struct usb_interface *iface);
 684const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 685                                         const struct usb_device_id *id);
 686extern int usb_match_one_id(struct usb_interface *interface,
 687                            const struct usb_device_id *id);
 688
 689extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 690                int minor);
 691extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 692                unsigned ifnum);
 693extern struct usb_host_interface *usb_altnum_to_altsetting(
 694                const struct usb_interface *intf, unsigned int altnum);
 695extern struct usb_host_interface *usb_find_alt_setting(
 696                struct usb_host_config *config,
 697                unsigned int iface_num,
 698                unsigned int alt_num);
 699
 700
 701/**
 702 * usb_make_path - returns stable device path in the usb tree
 703 * @dev: the device whose path is being constructed
 704 * @buf: where to put the string
 705 * @size: how big is "buf"?
 706 *
 707 * Returns length of the string (> 0) or negative if size was too small.
 708 *
 709 * This identifier is intended to be "stable", reflecting physical paths in
 710 * hardware such as physical bus addresses for host controllers or ports on
 711 * USB hubs.  That makes it stay the same until systems are physically
 712 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 713 * controllers.  Adding and removing devices, including virtual root hubs
 714 * in host controller driver modules, does not change these path identifiers;
 715 * neither does rebooting or re-enumerating.  These are more useful identifiers
 716 * than changeable ("unstable") ones like bus numbers or device addresses.
 717 *
 718 * With a partial exception for devices connected to USB 2.0 root hubs, these
 719 * identifiers are also predictable.  So long as the device tree isn't changed,
 720 * plugging any USB device into a given hub port always gives it the same path.
 721 * Because of the use of "companion" controllers, devices connected to ports on
 722 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 723 * high speed, and a different one if they are full or low speed.
 724 */
 725static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 726{
 727        int actual;
 728        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 729                          dev->devpath);
 730        return (actual >= (int)size) ? -1 : actual;
 731}
 732
 733/*-------------------------------------------------------------------------*/
 734
 735#define USB_DEVICE_ID_MATCH_DEVICE \
 736                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 737#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 738                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 739#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 740                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 741#define USB_DEVICE_ID_MATCH_DEV_INFO \
 742                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 743                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 744                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 745#define USB_DEVICE_ID_MATCH_INT_INFO \
 746                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 747                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 748                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 749
 750/**
 751 * USB_DEVICE - macro used to describe a specific usb device
 752 * @vend: the 16 bit USB Vendor ID
 753 * @prod: the 16 bit USB Product ID
 754 *
 755 * This macro is used to create a struct usb_device_id that matches a
 756 * specific device.
 757 */
 758#define USB_DEVICE(vend, prod) \
 759        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 760        .idVendor = (vend), \
 761        .idProduct = (prod)
 762/**
 763 * USB_DEVICE_VER - describe a specific usb device with a version range
 764 * @vend: the 16 bit USB Vendor ID
 765 * @prod: the 16 bit USB Product ID
 766 * @lo: the bcdDevice_lo value
 767 * @hi: the bcdDevice_hi value
 768 *
 769 * This macro is used to create a struct usb_device_id that matches a
 770 * specific device, with a version range.
 771 */
 772#define USB_DEVICE_VER(vend, prod, lo, hi) \
 773        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 774        .idVendor = (vend), \
 775        .idProduct = (prod), \
 776        .bcdDevice_lo = (lo), \
 777        .bcdDevice_hi = (hi)
 778
 779/**
 780 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 781 * @vend: the 16 bit USB Vendor ID
 782 * @prod: the 16 bit USB Product ID
 783 * @pr: bInterfaceProtocol value
 784 *
 785 * This macro is used to create a struct usb_device_id that matches a
 786 * specific interface protocol of devices.
 787 */
 788#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 789        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 790                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 791        .idVendor = (vend), \
 792        .idProduct = (prod), \
 793        .bInterfaceProtocol = (pr)
 794
 795/**
 796 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 797 * @vend: the 16 bit USB Vendor ID
 798 * @prod: the 16 bit USB Product ID
 799 * @num: bInterfaceNumber value
 800 *
 801 * This macro is used to create a struct usb_device_id that matches a
 802 * specific interface number of devices.
 803 */
 804#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 805        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 806                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 807        .idVendor = (vend), \
 808        .idProduct = (prod), \
 809        .bInterfaceNumber = (num)
 810
 811/**
 812 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 813 * @cl: bDeviceClass value
 814 * @sc: bDeviceSubClass value
 815 * @pr: bDeviceProtocol value
 816 *
 817 * This macro is used to create a struct usb_device_id that matches a
 818 * specific class of devices.
 819 */
 820#define USB_DEVICE_INFO(cl, sc, pr) \
 821        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 822        .bDeviceClass = (cl), \
 823        .bDeviceSubClass = (sc), \
 824        .bDeviceProtocol = (pr)
 825
 826/**
 827 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 828 * @cl: bInterfaceClass value
 829 * @sc: bInterfaceSubClass value
 830 * @pr: bInterfaceProtocol value
 831 *
 832 * This macro is used to create a struct usb_device_id that matches a
 833 * specific class of interfaces.
 834 */
 835#define USB_INTERFACE_INFO(cl, sc, pr) \
 836        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 837        .bInterfaceClass = (cl), \
 838        .bInterfaceSubClass = (sc), \
 839        .bInterfaceProtocol = (pr)
 840
 841/**
 842 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 843 * @vend: the 16 bit USB Vendor ID
 844 * @prod: the 16 bit USB Product ID
 845 * @cl: bInterfaceClass value
 846 * @sc: bInterfaceSubClass value
 847 * @pr: bInterfaceProtocol value
 848 *
 849 * This macro is used to create a struct usb_device_id that matches a
 850 * specific device with a specific class of interfaces.
 851 *
 852 * This is especially useful when explicitly matching devices that have
 853 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 854 */
 855#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 856        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 857                | USB_DEVICE_ID_MATCH_DEVICE, \
 858        .idVendor = (vend), \
 859        .idProduct = (prod), \
 860        .bInterfaceClass = (cl), \
 861        .bInterfaceSubClass = (sc), \
 862        .bInterfaceProtocol = (pr)
 863
 864/**
 865 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 866 * @vend: the 16 bit USB Vendor ID
 867 * @cl: bInterfaceClass value
 868 * @sc: bInterfaceSubClass value
 869 * @pr: bInterfaceProtocol value
 870 *
 871 * This macro is used to create a struct usb_device_id that matches a
 872 * specific vendor with a specific class of interfaces.
 873 *
 874 * This is especially useful when explicitly matching devices that have
 875 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 876 */
 877#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 878        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 879                | USB_DEVICE_ID_MATCH_VENDOR, \
 880        .idVendor = (vend), \
 881        .bInterfaceClass = (cl), \
 882        .bInterfaceSubClass = (sc), \
 883        .bInterfaceProtocol = (pr)
 884
 885/* ----------------------------------------------------------------------- */
 886
 887/* Stuff for dynamic usb ids */
 888struct usb_dynids {
 889        spinlock_t lock;
 890        struct list_head list;
 891};
 892
 893struct usb_dynid {
 894        struct list_head node;
 895        struct usb_device_id id;
 896};
 897
 898extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
 899                                struct device_driver *driver,
 900                                const char *buf, size_t count);
 901
 902extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
 903
 904/**
 905 * struct usbdrv_wrap - wrapper for driver-model structure
 906 * @driver: The driver-model core driver structure.
 907 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
 908 */
 909struct usbdrv_wrap {
 910        struct device_driver driver;
 911        int for_devices;
 912};
 913
 914/**
 915 * struct usb_driver - identifies USB interface driver to usbcore
 916 * @name: The driver name should be unique among USB drivers,
 917 *      and should normally be the same as the module name.
 918 * @probe: Called to see if the driver is willing to manage a particular
 919 *      interface on a device.  If it is, probe returns zero and uses
 920 *      usb_set_intfdata() to associate driver-specific data with the
 921 *      interface.  It may also use usb_set_interface() to specify the
 922 *      appropriate altsetting.  If unwilling to manage the interface,
 923 *      return -ENODEV, if genuine IO errors occurred, an appropriate
 924 *      negative errno value.
 925 * @disconnect: Called when the interface is no longer accessible, usually
 926 *      because its device has been (or is being) disconnected or the
 927 *      driver module is being unloaded.
 928 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
 929 *      the "usbfs" filesystem.  This lets devices provide ways to
 930 *      expose information to user space regardless of where they
 931 *      do (or don't) show up otherwise in the filesystem.
 932 * @suspend: Called when the device is going to be suspended by the system.
 933 * @resume: Called when the device is being resumed by the system.
 934 * @reset_resume: Called when the suspended device has been reset instead
 935 *      of being resumed.
 936 * @pre_reset: Called by usb_reset_device() when the device is about to be
 937 *      reset.  This routine must not return until the driver has no active
 938 *      URBs for the device, and no more URBs may be submitted until the
 939 *      post_reset method is called.
 940 * @post_reset: Called by usb_reset_device() after the device
 941 *      has been reset
 942 * @id_table: USB drivers use ID table to support hotplugging.
 943 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
 944 *      or your driver's probe function will never get called.
 945 * @dynids: used internally to hold the list of dynamically added device
 946 *      ids for this driver.
 947 * @drvwrap: Driver-model core structure wrapper.
 948 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
 949 *      added to this driver by preventing the sysfs file from being created.
 950 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
 951 *      for interfaces bound to this driver.
 952 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
 953 *      endpoints before calling the driver's disconnect method.
 954 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
 955 *      to initiate lower power link state transitions when an idle timeout
 956 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
 957 *
 958 * USB interface drivers must provide a name, probe() and disconnect()
 959 * methods, and an id_table.  Other driver fields are optional.
 960 *
 961 * The id_table is used in hotplugging.  It holds a set of descriptors,
 962 * and specialized data may be associated with each entry.  That table
 963 * is used by both user and kernel mode hotplugging support.
 964 *
 965 * The probe() and disconnect() methods are called in a context where
 966 * they can sleep, but they should avoid abusing the privilege.  Most
 967 * work to connect to a device should be done when the device is opened,
 968 * and undone at the last close.  The disconnect code needs to address
 969 * concurrency issues with respect to open() and close() methods, as
 970 * well as forcing all pending I/O requests to complete (by unlinking
 971 * them as necessary, and blocking until the unlinks complete).
 972 */
 973struct usb_driver {
 974        const char *name;
 975
 976        int (*probe) (struct usb_interface *intf,
 977                      const struct usb_device_id *id);
 978
 979        void (*disconnect) (struct usb_interface *intf);
 980
 981        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
 982                        void *buf);
 983
 984        int (*suspend) (struct usb_interface *intf, pm_message_t message);
 985        int (*resume) (struct usb_interface *intf);
 986        int (*reset_resume)(struct usb_interface *intf);
 987
 988        int (*pre_reset)(struct usb_interface *intf);
 989        int (*post_reset)(struct usb_interface *intf);
 990
 991        const struct usb_device_id *id_table;
 992
 993        struct usb_dynids dynids;
 994        struct usbdrv_wrap drvwrap;
 995        unsigned int no_dynamic_id:1;
 996        unsigned int supports_autosuspend:1;
 997        unsigned int disable_hub_initiated_lpm:1;
 998        unsigned int soft_unbind:1;
 999};
1000#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1001
1002/**
1003 * struct usb_device_driver - identifies USB device driver to usbcore
1004 * @name: The driver name should be unique among USB drivers,
1005 *      and should normally be the same as the module name.
1006 * @probe: Called to see if the driver is willing to manage a particular
1007 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1008 *      to associate driver-specific data with the device.  If unwilling
1009 *      to manage the device, return a negative errno value.
1010 * @disconnect: Called when the device is no longer accessible, usually
1011 *      because it has been (or is being) disconnected or the driver's
1012 *      module is being unloaded.
1013 * @suspend: Called when the device is going to be suspended by the system.
1014 * @resume: Called when the device is being resumed by the system.
1015 * @drvwrap: Driver-model core structure wrapper.
1016 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1017 *      for devices bound to this driver.
1018 *
1019 * USB drivers must provide all the fields listed above except drvwrap.
1020 */
1021struct usb_device_driver {
1022        const char *name;
1023
1024        int (*probe) (struct usb_device *udev);
1025        void (*disconnect) (struct usb_device *udev);
1026
1027        int (*suspend) (struct usb_device *udev, pm_message_t message);
1028        int (*resume) (struct usb_device *udev, pm_message_t message);
1029        struct usbdrv_wrap drvwrap;
1030        unsigned int supports_autosuspend:1;
1031};
1032#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1033                drvwrap.driver)
1034
1035extern struct bus_type usb_bus_type;
1036
1037/**
1038 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1039 * @name: the usb class device name for this driver.  Will show up in sysfs.
1040 * @devnode: Callback to provide a naming hint for a possible
1041 *      device node to create.
1042 * @fops: pointer to the struct file_operations of this driver.
1043 * @minor_base: the start of the minor range for this driver.
1044 *
1045 * This structure is used for the usb_register_dev() and
1046 * usb_unregister_dev() functions, to consolidate a number of the
1047 * parameters used for them.
1048 */
1049struct usb_class_driver {
1050        char *name;
1051        char *(*devnode)(struct device *dev, umode_t *mode);
1052        const struct file_operations *fops;
1053        int minor_base;
1054};
1055
1056/*
1057 * use these in module_init()/module_exit()
1058 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1059 */
1060extern int usb_register_driver(struct usb_driver *, struct module *,
1061                               const char *);
1062
1063/* use a define to avoid include chaining to get THIS_MODULE & friends */
1064#define usb_register(driver) \
1065        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1066
1067extern void usb_deregister(struct usb_driver *);
1068
1069/**
1070 * module_usb_driver() - Helper macro for registering a USB driver
1071 * @__usb_driver: usb_driver struct
1072 *
1073 * Helper macro for USB drivers which do not do anything special in module
1074 * init/exit. This eliminates a lot of boilerplate. Each module may only
1075 * use this macro once, and calling it replaces module_init() and module_exit()
1076 */
1077#define module_usb_driver(__usb_driver) \
1078        module_driver(__usb_driver, usb_register, \
1079                       usb_deregister)
1080
1081extern int usb_register_device_driver(struct usb_device_driver *,
1082                        struct module *);
1083extern void usb_deregister_device_driver(struct usb_device_driver *);
1084
1085extern int usb_register_dev(struct usb_interface *intf,
1086                            struct usb_class_driver *class_driver);
1087extern void usb_deregister_dev(struct usb_interface *intf,
1088                               struct usb_class_driver *class_driver);
1089
1090extern int usb_disabled(void);
1091
1092/* ----------------------------------------------------------------------- */
1093
1094/*
1095 * URB support, for asynchronous request completions
1096 */
1097
1098/*
1099 * urb->transfer_flags:
1100 *
1101 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1102 */
1103#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1104#define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame
1105                                         * ignored */
1106#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1107#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1108#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1109#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1110                                         * needed */
1111#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1112
1113/* The following flags are used internally by usbcore and HCDs */
1114#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1115#define URB_DIR_OUT             0
1116#define URB_DIR_MASK            URB_DIR_IN
1117
1118#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1119#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1120#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1121#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1122#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1123#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1124#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1125#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1126
1127struct usb_iso_packet_descriptor {
1128        unsigned int offset;
1129        unsigned int length;            /* expected length */
1130        unsigned int actual_length;
1131        int status;
1132};
1133
1134struct urb;
1135
1136struct usb_anchor {
1137        struct list_head urb_list;
1138        wait_queue_head_t wait;
1139        spinlock_t lock;
1140        unsigned int poisoned:1;
1141};
1142
1143static inline void init_usb_anchor(struct usb_anchor *anchor)
1144{
1145        INIT_LIST_HEAD(&anchor->urb_list);
1146        init_waitqueue_head(&anchor->wait);
1147        spin_lock_init(&anchor->lock);
1148}
1149
1150typedef void (*usb_complete_t)(struct urb *);
1151
1152/**
1153 * struct urb - USB Request Block
1154 * @urb_list: For use by current owner of the URB.
1155 * @anchor_list: membership in the list of an anchor
1156 * @anchor: to anchor URBs to a common mooring
1157 * @ep: Points to the endpoint's data structure.  Will eventually
1158 *      replace @pipe.
1159 * @pipe: Holds endpoint number, direction, type, and more.
1160 *      Create these values with the eight macros available;
1161 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1162 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1163 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1164 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1165 *      is a different endpoint (and pipe) from "out" endpoint two.
1166 *      The current configuration controls the existence, type, and
1167 *      maximum packet size of any given endpoint.
1168 * @stream_id: the endpoint's stream ID for bulk streams
1169 * @dev: Identifies the USB device to perform the request.
1170 * @status: This is read in non-iso completion functions to get the
1171 *      status of the particular request.  ISO requests only use it
1172 *      to tell whether the URB was unlinked; detailed status for
1173 *      each frame is in the fields of the iso_frame-desc.
1174 * @transfer_flags: A variety of flags may be used to affect how URB
1175 *      submission, unlinking, or operation are handled.  Different
1176 *      kinds of URB can use different flags.
1177 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1178 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1179 *      (however, do not leave garbage in transfer_buffer even then).
1180 *      This buffer must be suitable for DMA; allocate it with
1181 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1182 *      of this buffer will be modified.  This buffer is used for the data
1183 *      stage of control transfers.
1184 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1185 *      the device driver is saying that it provided this DMA address,
1186 *      which the host controller driver should use in preference to the
1187 *      transfer_buffer.
1188 * @sg: scatter gather buffer list
1189 * @num_mapped_sgs: (internal) number of mapped sg entries
1190 * @num_sgs: number of entries in the sg list
1191 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1192 *      be broken up into chunks according to the current maximum packet
1193 *      size for the endpoint, which is a function of the configuration
1194 *      and is encoded in the pipe.  When the length is zero, neither
1195 *      transfer_buffer nor transfer_dma is used.
1196 * @actual_length: This is read in non-iso completion functions, and
1197 *      it tells how many bytes (out of transfer_buffer_length) were
1198 *      transferred.  It will normally be the same as requested, unless
1199 *      either an error was reported or a short read was performed.
1200 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1201 *      short reads be reported as errors.
1202 * @setup_packet: Only used for control transfers, this points to eight bytes
1203 *      of setup data.  Control transfers always start by sending this data
1204 *      to the device.  Then transfer_buffer is read or written, if needed.
1205 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1206 *      this field; setup_packet must point to a valid buffer.
1207 * @start_frame: Returns the initial frame for isochronous transfers.
1208 * @number_of_packets: Lists the number of ISO transfer buffers.
1209 * @interval: Specifies the polling interval for interrupt or isochronous
1210 *      transfers.  The units are frames (milliseconds) for full and low
1211 *      speed devices, and microframes (1/8 millisecond) for highspeed
1212 *      and SuperSpeed devices.
1213 * @error_count: Returns the number of ISO transfers that reported errors.
1214 * @context: For use in completion functions.  This normally points to
1215 *      request-specific driver context.
1216 * @complete: Completion handler. This URB is passed as the parameter to the
1217 *      completion function.  The completion function may then do what
1218 *      it likes with the URB, including resubmitting or freeing it.
1219 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1220 *      collect the transfer status for each buffer.
1221 *
1222 * This structure identifies USB transfer requests.  URBs must be allocated by
1223 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1224 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1225 * are submitted using usb_submit_urb(), and pending requests may be canceled
1226 * using usb_unlink_urb() or usb_kill_urb().
1227 *
1228 * Data Transfer Buffers:
1229 *
1230 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1231 * taken from the general page pool.  That is provided by transfer_buffer
1232 * (control requests also use setup_packet), and host controller drivers
1233 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1234 * mapping operations can be expensive on some platforms (perhaps using a dma
1235 * bounce buffer or talking to an IOMMU),
1236 * although they're cheap on commodity x86 and ppc hardware.
1237 *
1238 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1239 * which tells the host controller driver that no such mapping is needed for
1240 * the transfer_buffer since
1241 * the device driver is DMA-aware.  For example, a device driver might
1242 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1243 * When this transfer flag is provided, host controller drivers will
1244 * attempt to use the dma address found in the transfer_dma
1245 * field rather than determining a dma address themselves.
1246 *
1247 * Note that transfer_buffer must still be set if the controller
1248 * does not support DMA (as indicated by bus.uses_dma) and when talking
1249 * to root hub. If you have to trasfer between highmem zone and the device
1250 * on such controller, create a bounce buffer or bail out with an error.
1251 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1252 * capable, assign NULL to it, so that usbmon knows not to use the value.
1253 * The setup_packet must always be set, so it cannot be located in highmem.
1254 *
1255 * Initialization:
1256 *
1257 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1258 * zero), and complete fields.  All URBs must also initialize
1259 * transfer_buffer and transfer_buffer_length.  They may provide the
1260 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1261 * to be treated as errors; that flag is invalid for write requests.
1262 *
1263 * Bulk URBs may
1264 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1265 * should always terminate with a short packet, even if it means adding an
1266 * extra zero length packet.
1267 *
1268 * Control URBs must provide a valid pointer in the setup_packet field.
1269 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1270 * beforehand.
1271 *
1272 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1273 * or, for highspeed devices, 125 microsecond units)
1274 * to poll for transfers.  After the URB has been submitted, the interval
1275 * field reflects how the transfer was actually scheduled.
1276 * The polling interval may be more frequent than requested.
1277 * For example, some controllers have a maximum interval of 32 milliseconds,
1278 * while others support intervals of up to 1024 milliseconds.
1279 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1280 * endpoints, as well as high speed interrupt endpoints, the encoding of
1281 * the transfer interval in the endpoint descriptor is logarithmic.
1282 * Device drivers must convert that value to linear units themselves.)
1283 *
1284 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1285 * the host controller to schedule the transfer as soon as bandwidth
1286 * utilization allows, and then set start_frame to reflect the actual frame
1287 * selected during submission.  Otherwise drivers must specify the start_frame
1288 * and handle the case where the transfer can't begin then.  However, drivers
1289 * won't know how bandwidth is currently allocated, and while they can
1290 * find the current frame using usb_get_current_frame_number () they can't
1291 * know the range for that frame number.  (Ranges for frame counter values
1292 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1293 *
1294 * Isochronous URBs have a different data transfer model, in part because
1295 * the quality of service is only "best effort".  Callers provide specially
1296 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1297 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1298 * URBs are normally queued, submitted by drivers to arrange that
1299 * transfers are at least double buffered, and then explicitly resubmitted
1300 * in completion handlers, so
1301 * that data (such as audio or video) streams at as constant a rate as the
1302 * host controller scheduler can support.
1303 *
1304 * Completion Callbacks:
1305 *
1306 * The completion callback is made in_interrupt(), and one of the first
1307 * things that a completion handler should do is check the status field.
1308 * The status field is provided for all URBs.  It is used to report
1309 * unlinked URBs, and status for all non-ISO transfers.  It should not
1310 * be examined before the URB is returned to the completion handler.
1311 *
1312 * The context field is normally used to link URBs back to the relevant
1313 * driver or request state.
1314 *
1315 * When the completion callback is invoked for non-isochronous URBs, the
1316 * actual_length field tells how many bytes were transferred.  This field
1317 * is updated even when the URB terminated with an error or was unlinked.
1318 *
1319 * ISO transfer status is reported in the status and actual_length fields
1320 * of the iso_frame_desc array, and the number of errors is reported in
1321 * error_count.  Completion callbacks for ISO transfers will normally
1322 * (re)submit URBs to ensure a constant transfer rate.
1323 *
1324 * Note that even fields marked "public" should not be touched by the driver
1325 * when the urb is owned by the hcd, that is, since the call to
1326 * usb_submit_urb() till the entry into the completion routine.
1327 */
1328struct urb {
1329        /* private: usb core and host controller only fields in the urb */
1330        struct kref kref;               /* reference count of the URB */
1331        void *hcpriv;                   /* private data for host controller */
1332        atomic_t use_count;             /* concurrent submissions counter */
1333        atomic_t reject;                /* submissions will fail */
1334        int unlinked;                   /* unlink error code */
1335
1336        /* public: documented fields in the urb that can be used by drivers */
1337        struct list_head urb_list;      /* list head for use by the urb's
1338                                         * current owner */
1339        struct list_head anchor_list;   /* the URB may be anchored */
1340        struct usb_anchor *anchor;
1341        struct usb_device *dev;         /* (in) pointer to associated device */
1342        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1343        unsigned int pipe;              /* (in) pipe information */
1344        unsigned int stream_id;         /* (in) stream ID */
1345        int status;                     /* (return) non-ISO status */
1346        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1347        void *transfer_buffer;          /* (in) associated data buffer */
1348        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1349        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1350        int num_mapped_sgs;             /* (internal) mapped sg entries */
1351        int num_sgs;                    /* (in) number of entries in the sg list */
1352        u32 transfer_buffer_length;     /* (in) data buffer length */
1353        u32 actual_length;              /* (return) actual transfer length */
1354        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1355        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1356        int start_frame;                /* (modify) start frame (ISO) */
1357        int number_of_packets;          /* (in) number of ISO packets */
1358        int interval;                   /* (modify) transfer interval
1359                                         * (INT/ISO) */
1360        int error_count;                /* (return) number of ISO errors */
1361        void *context;                  /* (in) context for completion */
1362        usb_complete_t complete;        /* (in) completion routine */
1363        struct usb_iso_packet_descriptor iso_frame_desc[0];
1364                                        /* (in) ISO ONLY */
1365};
1366
1367/* ----------------------------------------------------------------------- */
1368
1369/**
1370 * usb_fill_control_urb - initializes a control urb
1371 * @urb: pointer to the urb to initialize.
1372 * @dev: pointer to the struct usb_device for this urb.
1373 * @pipe: the endpoint pipe
1374 * @setup_packet: pointer to the setup_packet buffer
1375 * @transfer_buffer: pointer to the transfer buffer
1376 * @buffer_length: length of the transfer buffer
1377 * @complete_fn: pointer to the usb_complete_t function
1378 * @context: what to set the urb context to.
1379 *
1380 * Initializes a control urb with the proper information needed to submit
1381 * it to a device.
1382 */
1383static inline void usb_fill_control_urb(struct urb *urb,
1384                                        struct usb_device *dev,
1385                                        unsigned int pipe,
1386                                        unsigned char *setup_packet,
1387                                        void *transfer_buffer,
1388                                        int buffer_length,
1389                                        usb_complete_t complete_fn,
1390                                        void *context)
1391{
1392        urb->dev = dev;
1393        urb->pipe = pipe;
1394        urb->setup_packet = setup_packet;
1395        urb->transfer_buffer = transfer_buffer;
1396        urb->transfer_buffer_length = buffer_length;
1397        urb->complete = complete_fn;
1398        urb->context = context;
1399}
1400
1401/**
1402 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1403 * @urb: pointer to the urb to initialize.
1404 * @dev: pointer to the struct usb_device for this urb.
1405 * @pipe: the endpoint pipe
1406 * @transfer_buffer: pointer to the transfer buffer
1407 * @buffer_length: length of the transfer buffer
1408 * @complete_fn: pointer to the usb_complete_t function
1409 * @context: what to set the urb context to.
1410 *
1411 * Initializes a bulk urb with the proper information needed to submit it
1412 * to a device.
1413 */
1414static inline void usb_fill_bulk_urb(struct urb *urb,
1415                                     struct usb_device *dev,
1416                                     unsigned int pipe,
1417                                     void *transfer_buffer,
1418                                     int buffer_length,
1419                                     usb_complete_t complete_fn,
1420                                     void *context)
1421{
1422        urb->dev = dev;
1423        urb->pipe = pipe;
1424        urb->transfer_buffer = transfer_buffer;
1425        urb->transfer_buffer_length = buffer_length;
1426        urb->complete = complete_fn;
1427        urb->context = context;
1428}
1429
1430/**
1431 * usb_fill_int_urb - macro to help initialize a interrupt urb
1432 * @urb: pointer to the urb to initialize.
1433 * @dev: pointer to the struct usb_device for this urb.
1434 * @pipe: the endpoint pipe
1435 * @transfer_buffer: pointer to the transfer buffer
1436 * @buffer_length: length of the transfer buffer
1437 * @complete_fn: pointer to the usb_complete_t function
1438 * @context: what to set the urb context to.
1439 * @interval: what to set the urb interval to, encoded like
1440 *      the endpoint descriptor's bInterval value.
1441 *
1442 * Initializes a interrupt urb with the proper information needed to submit
1443 * it to a device.
1444 *
1445 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1446 * encoding of the endpoint interval, and express polling intervals in
1447 * microframes (eight per millisecond) rather than in frames (one per
1448 * millisecond).
1449 *
1450 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1451 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1452 * through to the host controller, rather than being translated into microframe
1453 * units.
1454 */
1455static inline void usb_fill_int_urb(struct urb *urb,
1456                                    struct usb_device *dev,
1457                                    unsigned int pipe,
1458                                    void *transfer_buffer,
1459                                    int buffer_length,
1460                                    usb_complete_t complete_fn,
1461                                    void *context,
1462                                    int interval)
1463{
1464        urb->dev = dev;
1465        urb->pipe = pipe;
1466        urb->transfer_buffer = transfer_buffer;
1467        urb->transfer_buffer_length = buffer_length;
1468        urb->complete = complete_fn;
1469        urb->context = context;
1470        if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1471                urb->interval = 1 << (interval - 1);
1472        else
1473                urb->interval = interval;
1474        urb->start_frame = -1;
1475}
1476
1477extern void usb_init_urb(struct urb *urb);
1478extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1479extern void usb_free_urb(struct urb *urb);
1480#define usb_put_urb usb_free_urb
1481extern struct urb *usb_get_urb(struct urb *urb);
1482extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1483extern int usb_unlink_urb(struct urb *urb);
1484extern void usb_kill_urb(struct urb *urb);
1485extern void usb_poison_urb(struct urb *urb);
1486extern void usb_unpoison_urb(struct urb *urb);
1487extern void usb_block_urb(struct urb *urb);
1488extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1489extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1490extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1491extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1492extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1493extern void usb_unanchor_urb(struct urb *urb);
1494extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1495                                         unsigned int timeout);
1496extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1497extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1498extern int usb_anchor_empty(struct usb_anchor *anchor);
1499
1500#define usb_unblock_urb usb_unpoison_urb
1501
1502/**
1503 * usb_urb_dir_in - check if an URB describes an IN transfer
1504 * @urb: URB to be checked
1505 *
1506 * Returns 1 if @urb describes an IN transfer (device-to-host),
1507 * otherwise 0.
1508 */
1509static inline int usb_urb_dir_in(struct urb *urb)
1510{
1511        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1512}
1513
1514/**
1515 * usb_urb_dir_out - check if an URB describes an OUT transfer
1516 * @urb: URB to be checked
1517 *
1518 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1519 * otherwise 0.
1520 */
1521static inline int usb_urb_dir_out(struct urb *urb)
1522{
1523        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1524}
1525
1526void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1527        gfp_t mem_flags, dma_addr_t *dma);
1528void usb_free_coherent(struct usb_device *dev, size_t size,
1529        void *addr, dma_addr_t dma);
1530
1531#if 0
1532struct urb *usb_buffer_map(struct urb *urb);
1533void usb_buffer_dmasync(struct urb *urb);
1534void usb_buffer_unmap(struct urb *urb);
1535#endif
1536
1537struct scatterlist;
1538int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1539                      struct scatterlist *sg, int nents);
1540#if 0
1541void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1542                           struct scatterlist *sg, int n_hw_ents);
1543#endif
1544void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1545                         struct scatterlist *sg, int n_hw_ents);
1546
1547/*-------------------------------------------------------------------*
1548 *                         SYNCHRONOUS CALL SUPPORT                  *
1549 *-------------------------------------------------------------------*/
1550
1551extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1552        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1553        void *data, __u16 size, int timeout);
1554extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1555        void *data, int len, int *actual_length, int timeout);
1556extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1557        void *data, int len, int *actual_length,
1558        int timeout);
1559
1560/* wrappers around usb_control_msg() for the most common standard requests */
1561extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1562        unsigned char descindex, void *buf, int size);
1563extern int usb_get_status(struct usb_device *dev,
1564        int type, int target, void *data);
1565extern int usb_string(struct usb_device *dev, int index,
1566        char *buf, size_t size);
1567
1568/* wrappers that also update important state inside usbcore */
1569extern int usb_clear_halt(struct usb_device *dev, int pipe);
1570extern int usb_reset_configuration(struct usb_device *dev);
1571extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1572extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1573
1574/* this request isn't really synchronous, but it belongs with the others */
1575extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1576
1577/*
1578 * timeouts, in milliseconds, used for sending/receiving control messages
1579 * they typically complete within a few frames (msec) after they're issued
1580 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1581 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1582 */
1583#define USB_CTRL_GET_TIMEOUT    5000
1584#define USB_CTRL_SET_TIMEOUT    5000
1585
1586
1587/**
1588 * struct usb_sg_request - support for scatter/gather I/O
1589 * @status: zero indicates success, else negative errno
1590 * @bytes: counts bytes transferred.
1591 *
1592 * These requests are initialized using usb_sg_init(), and then are used
1593 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1594 * members of the request object aren't for driver access.
1595 *
1596 * The status and bytecount values are valid only after usb_sg_wait()
1597 * returns.  If the status is zero, then the bytecount matches the total
1598 * from the request.
1599 *
1600 * After an error completion, drivers may need to clear a halt condition
1601 * on the endpoint.
1602 */
1603struct usb_sg_request {
1604        int                     status;
1605        size_t                  bytes;
1606
1607        /* private:
1608         * members below are private to usbcore,
1609         * and are not provided for driver access!
1610         */
1611        spinlock_t              lock;
1612
1613        struct usb_device       *dev;
1614        int                     pipe;
1615
1616        int                     entries;
1617        struct urb              **urbs;
1618
1619        int                     count;
1620        struct completion       complete;
1621};
1622
1623int usb_sg_init(
1624        struct usb_sg_request   *io,
1625        struct usb_device       *dev,
1626        unsigned                pipe,
1627        unsigned                period,
1628        struct scatterlist      *sg,
1629        int                     nents,
1630        size_t                  length,
1631        gfp_t                   mem_flags
1632);
1633void usb_sg_cancel(struct usb_sg_request *io);
1634void usb_sg_wait(struct usb_sg_request *io);
1635
1636
1637/* ----------------------------------------------------------------------- */
1638
1639/*
1640 * For various legacy reasons, Linux has a small cookie that's paired with
1641 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1642 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1643 * an unsigned int encoded as:
1644 *
1645 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1646 *                                       1 = Device-to-Host [In] ...
1647 *                                      like endpoint bEndpointAddress)
1648 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1649 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1650 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1651 *                                       10 = control, 11 = bulk)
1652 *
1653 * Given the device address and endpoint descriptor, pipes are redundant.
1654 */
1655
1656/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1657/* (yet ... they're the values used by usbfs) */
1658#define PIPE_ISOCHRONOUS                0
1659#define PIPE_INTERRUPT                  1
1660#define PIPE_CONTROL                    2
1661#define PIPE_BULK                       3
1662
1663#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1664#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1665
1666#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1667#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1668
1669#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1670#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1671#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1672#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1673#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1674
1675static inline unsigned int __create_pipe(struct usb_device *dev,
1676                unsigned int endpoint)
1677{
1678        return (dev->devnum << 8) | (endpoint << 15);
1679}
1680
1681/* Create various pipes... */
1682#define usb_sndctrlpipe(dev, endpoint)  \
1683        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1684#define usb_rcvctrlpipe(dev, endpoint)  \
1685        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1686#define usb_sndisocpipe(dev, endpoint)  \
1687        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1688#define usb_rcvisocpipe(dev, endpoint)  \
1689        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1690#define usb_sndbulkpipe(dev, endpoint)  \
1691        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1692#define usb_rcvbulkpipe(dev, endpoint)  \
1693        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1694#define usb_sndintpipe(dev, endpoint)   \
1695        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1696#define usb_rcvintpipe(dev, endpoint)   \
1697        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1698
1699static inline struct usb_host_endpoint *
1700usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1701{
1702        struct usb_host_endpoint **eps;
1703        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1704        return eps[usb_pipeendpoint(pipe)];
1705}
1706
1707/*-------------------------------------------------------------------------*/
1708
1709static inline __u16
1710usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1711{
1712        struct usb_host_endpoint        *ep;
1713        unsigned                        epnum = usb_pipeendpoint(pipe);
1714
1715        if (is_out) {
1716                WARN_ON(usb_pipein(pipe));
1717                ep = udev->ep_out[epnum];
1718        } else {
1719                WARN_ON(usb_pipeout(pipe));
1720                ep = udev->ep_in[epnum];
1721        }
1722        if (!ep)
1723                return 0;
1724
1725        /* NOTE:  only 0x07ff bits are for packet size... */
1726        return usb_endpoint_maxp(&ep->desc);
1727}
1728
1729/* ----------------------------------------------------------------------- */
1730
1731/* translate USB error codes to codes user space understands */
1732static inline int usb_translate_errors(int error_code)
1733{
1734        switch (error_code) {
1735        case 0:
1736        case -ENOMEM:
1737        case -ENODEV:
1738        case -EOPNOTSUPP:
1739                return error_code;
1740        default:
1741                return -EIO;
1742        }
1743}
1744
1745/* Events from the usb core */
1746#define USB_DEVICE_ADD          0x0001
1747#define USB_DEVICE_REMOVE       0x0002
1748#define USB_BUS_ADD             0x0003
1749#define USB_BUS_REMOVE          0x0004
1750extern void usb_register_notify(struct notifier_block *nb);
1751extern void usb_unregister_notify(struct notifier_block *nb);
1752
1753#ifdef DEBUG
1754#define dbg(format, arg...)                                             \
1755        printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1756#else
1757#define dbg(format, arg...)                                             \
1758do {                                                                    \
1759        if (0)                                                          \
1760                printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1761} while (0)
1762#endif
1763
1764/* debugfs stuff */
1765extern struct dentry *usb_debug_root;
1766
1767#endif  /* __KERNEL__ */
1768
1769#endif
1770
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.