linux/drivers/power/ab8500_fg.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) ST-Ericsson AB 2012
   3 *
   4 * Main and Back-up battery management driver.
   5 *
   6 * Note: Backup battery management is required in case of Li-Ion battery and not
   7 * for capacitive battery. HREF boards have capacitive battery and hence backup
   8 * battery management is not used and the supported code is available in this
   9 * driver.
  10 *
  11 * License Terms: GNU General Public License v2
  12 * Author:
  13 *      Johan Palsson <johan.palsson@stericsson.com>
  14 *      Karl Komierowski <karl.komierowski@stericsson.com>
  15 *      Arun R Murthy <arun.murthy@stericsson.com>
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/interrupt.h>
  22#include <linux/platform_device.h>
  23#include <linux/power_supply.h>
  24#include <linux/kobject.h>
  25#include <linux/mfd/abx500/ab8500.h>
  26#include <linux/mfd/abx500.h>
  27#include <linux/slab.h>
  28#include <linux/mfd/abx500/ab8500-bm.h>
  29#include <linux/delay.h>
  30#include <linux/mfd/abx500/ab8500-gpadc.h>
  31#include <linux/mfd/abx500.h>
  32#include <linux/time.h>
  33#include <linux/completion.h>
  34
  35#define MILLI_TO_MICRO                  1000
  36#define FG_LSB_IN_MA                    1627
  37#define QLSB_NANO_AMP_HOURS_X10         1129
  38#define INS_CURR_TIMEOUT                (3 * HZ)
  39
  40#define SEC_TO_SAMPLE(S)                (S * 4)
  41
  42#define NBR_AVG_SAMPLES                 20
  43
  44#define LOW_BAT_CHECK_INTERVAL          (2 * HZ)
  45
  46#define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
  47#define BATT_OK_MIN                     2360 /* mV */
  48#define BATT_OK_INCREMENT               50 /* mV */
  49#define BATT_OK_MAX_NR_INCREMENTS       0xE
  50
  51/* FG constants */
  52#define BATT_OVV                        0x01
  53
  54#define interpolate(x, x1, y1, x2, y2) \
  55        ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
  56
  57#define to_ab8500_fg_device_info(x) container_of((x), \
  58        struct ab8500_fg, fg_psy);
  59
  60/**
  61 * struct ab8500_fg_interrupts - ab8500 fg interupts
  62 * @name:       name of the interrupt
  63 * @isr         function pointer to the isr
  64 */
  65struct ab8500_fg_interrupts {
  66        char *name;
  67        irqreturn_t (*isr)(int irq, void *data);
  68};
  69
  70enum ab8500_fg_discharge_state {
  71        AB8500_FG_DISCHARGE_INIT,
  72        AB8500_FG_DISCHARGE_INITMEASURING,
  73        AB8500_FG_DISCHARGE_INIT_RECOVERY,
  74        AB8500_FG_DISCHARGE_RECOVERY,
  75        AB8500_FG_DISCHARGE_READOUT_INIT,
  76        AB8500_FG_DISCHARGE_READOUT,
  77        AB8500_FG_DISCHARGE_WAKEUP,
  78};
  79
  80static char *discharge_state[] = {
  81        "DISCHARGE_INIT",
  82        "DISCHARGE_INITMEASURING",
  83        "DISCHARGE_INIT_RECOVERY",
  84        "DISCHARGE_RECOVERY",
  85        "DISCHARGE_READOUT_INIT",
  86        "DISCHARGE_READOUT",
  87        "DISCHARGE_WAKEUP",
  88};
  89
  90enum ab8500_fg_charge_state {
  91        AB8500_FG_CHARGE_INIT,
  92        AB8500_FG_CHARGE_READOUT,
  93};
  94
  95static char *charge_state[] = {
  96        "CHARGE_INIT",
  97        "CHARGE_READOUT",
  98};
  99
 100enum ab8500_fg_calibration_state {
 101        AB8500_FG_CALIB_INIT,
 102        AB8500_FG_CALIB_WAIT,
 103        AB8500_FG_CALIB_END,
 104};
 105
 106struct ab8500_fg_avg_cap {
 107        int avg;
 108        int samples[NBR_AVG_SAMPLES];
 109        __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
 110        int pos;
 111        int nbr_samples;
 112        int sum;
 113};
 114
 115struct ab8500_fg_battery_capacity {
 116        int max_mah_design;
 117        int max_mah;
 118        int mah;
 119        int permille;
 120        int level;
 121        int prev_mah;
 122        int prev_percent;
 123        int prev_level;
 124        int user_mah;
 125};
 126
 127struct ab8500_fg_flags {
 128        bool fg_enabled;
 129        bool conv_done;
 130        bool charging;
 131        bool fully_charged;
 132        bool force_full;
 133        bool low_bat_delay;
 134        bool low_bat;
 135        bool bat_ovv;
 136        bool batt_unknown;
 137        bool calibrate;
 138        bool user_cap;
 139        bool batt_id_received;
 140};
 141
 142struct inst_curr_result_list {
 143        struct list_head list;
 144        int *result;
 145};
 146
 147/**
 148 * struct ab8500_fg - ab8500 FG device information
 149 * @dev:                Pointer to the structure device
 150 * @node:               a list of AB8500 FGs, hence prepared for reentrance
 151 * @irq                 holds the CCEOC interrupt number
 152 * @vbat:               Battery voltage in mV
 153 * @vbat_nom:           Nominal battery voltage in mV
 154 * @inst_curr:          Instantenous battery current in mA
 155 * @avg_curr:           Average battery current in mA
 156 * @bat_temp            battery temperature
 157 * @fg_samples:         Number of samples used in the FG accumulation
 158 * @accu_charge:        Accumulated charge from the last conversion
 159 * @recovery_cnt:       Counter for recovery mode
 160 * @high_curr_cnt:      Counter for high current mode
 161 * @init_cnt:           Counter for init mode
 162 * @recovery_needed:    Indicate if recovery is needed
 163 * @high_curr_mode:     Indicate if we're in high current mode
 164 * @init_capacity:      Indicate if initial capacity measuring should be done
 165 * @turn_off_fg:        True if fg was off before current measurement
 166 * @calib_state         State during offset calibration
 167 * @discharge_state:    Current discharge state
 168 * @charge_state:       Current charge state
 169 * @ab8500_fg_complete  Completion struct used for the instant current reading
 170 * @flags:              Structure for information about events triggered
 171 * @bat_cap:            Structure for battery capacity specific parameters
 172 * @avg_cap:            Average capacity filter
 173 * @parent:             Pointer to the struct ab8500
 174 * @gpadc:              Pointer to the struct gpadc
 175 * @pdata:              Pointer to the abx500_fg platform data
 176 * @bat:                Pointer to the abx500_bm platform data
 177 * @fg_psy:             Structure that holds the FG specific battery properties
 178 * @fg_wq:              Work queue for running the FG algorithm
 179 * @fg_periodic_work:   Work to run the FG algorithm periodically
 180 * @fg_low_bat_work:    Work to check low bat condition
 181 * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
 182 * @fg_work:            Work to run the FG algorithm instantly
 183 * @fg_acc_cur_work:    Work to read the FG accumulator
 184 * @fg_check_hw_failure_work:   Work for checking HW state
 185 * @cc_lock:            Mutex for locking the CC
 186 * @fg_kobject:         Structure of type kobject
 187 */
 188struct ab8500_fg {
 189        struct device *dev;
 190        struct list_head node;
 191        int irq;
 192        int vbat;
 193        int vbat_nom;
 194        int inst_curr;
 195        int avg_curr;
 196        int bat_temp;
 197        int fg_samples;
 198        int accu_charge;
 199        int recovery_cnt;
 200        int high_curr_cnt;
 201        int init_cnt;
 202        bool recovery_needed;
 203        bool high_curr_mode;
 204        bool init_capacity;
 205        bool turn_off_fg;
 206        enum ab8500_fg_calibration_state calib_state;
 207        enum ab8500_fg_discharge_state discharge_state;
 208        enum ab8500_fg_charge_state charge_state;
 209        struct completion ab8500_fg_complete;
 210        struct ab8500_fg_flags flags;
 211        struct ab8500_fg_battery_capacity bat_cap;
 212        struct ab8500_fg_avg_cap avg_cap;
 213        struct ab8500 *parent;
 214        struct ab8500_gpadc *gpadc;
 215        struct abx500_fg_platform_data *pdata;
 216        struct abx500_bm_data *bat;
 217        struct power_supply fg_psy;
 218        struct workqueue_struct *fg_wq;
 219        struct delayed_work fg_periodic_work;
 220        struct delayed_work fg_low_bat_work;
 221        struct delayed_work fg_reinit_work;
 222        struct work_struct fg_work;
 223        struct work_struct fg_acc_cur_work;
 224        struct delayed_work fg_check_hw_failure_work;
 225        struct mutex cc_lock;
 226        struct kobject fg_kobject;
 227};
 228static LIST_HEAD(ab8500_fg_list);
 229
 230/**
 231 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 232 * (i.e. the first fuel gauge in the instance list)
 233 */
 234struct ab8500_fg *ab8500_fg_get(void)
 235{
 236        struct ab8500_fg *fg;
 237
 238        if (list_empty(&ab8500_fg_list))
 239                return NULL;
 240
 241        fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
 242        return fg;
 243}
 244
 245/* Main battery properties */
 246static enum power_supply_property ab8500_fg_props[] = {
 247        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 248        POWER_SUPPLY_PROP_CURRENT_NOW,
 249        POWER_SUPPLY_PROP_CURRENT_AVG,
 250        POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 251        POWER_SUPPLY_PROP_ENERGY_FULL,
 252        POWER_SUPPLY_PROP_ENERGY_NOW,
 253        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 254        POWER_SUPPLY_PROP_CHARGE_FULL,
 255        POWER_SUPPLY_PROP_CHARGE_NOW,
 256        POWER_SUPPLY_PROP_CAPACITY,
 257        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 258};
 259
 260/*
 261 * This array maps the raw hex value to lowbat voltage used by the AB8500
 262 * Values taken from the UM0836
 263 */
 264static int ab8500_fg_lowbat_voltage_map[] = {
 265        2300 ,
 266        2325 ,
 267        2350 ,
 268        2375 ,
 269        2400 ,
 270        2425 ,
 271        2450 ,
 272        2475 ,
 273        2500 ,
 274        2525 ,
 275        2550 ,
 276        2575 ,
 277        2600 ,
 278        2625 ,
 279        2650 ,
 280        2675 ,
 281        2700 ,
 282        2725 ,
 283        2750 ,
 284        2775 ,
 285        2800 ,
 286        2825 ,
 287        2850 ,
 288        2875 ,
 289        2900 ,
 290        2925 ,
 291        2950 ,
 292        2975 ,
 293        3000 ,
 294        3025 ,
 295        3050 ,
 296        3075 ,
 297        3100 ,
 298        3125 ,
 299        3150 ,
 300        3175 ,
 301        3200 ,
 302        3225 ,
 303        3250 ,
 304        3275 ,
 305        3300 ,
 306        3325 ,
 307        3350 ,
 308        3375 ,
 309        3400 ,
 310        3425 ,
 311        3450 ,
 312        3475 ,
 313        3500 ,
 314        3525 ,
 315        3550 ,
 316        3575 ,
 317        3600 ,
 318        3625 ,
 319        3650 ,
 320        3675 ,
 321        3700 ,
 322        3725 ,
 323        3750 ,
 324        3775 ,
 325        3800 ,
 326        3825 ,
 327        3850 ,
 328        3850 ,
 329};
 330
 331static u8 ab8500_volt_to_regval(int voltage)
 332{
 333        int i;
 334
 335        if (voltage < ab8500_fg_lowbat_voltage_map[0])
 336                return 0;
 337
 338        for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 339                if (voltage < ab8500_fg_lowbat_voltage_map[i])
 340                        return (u8) i - 1;
 341        }
 342
 343        /* If not captured above, return index of last element */
 344        return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 345}
 346
 347/**
 348 * ab8500_fg_is_low_curr() - Low or high current mode
 349 * @di:         pointer to the ab8500_fg structure
 350 * @curr:       the current to base or our decision on
 351 *
 352 * Low current mode if the current consumption is below a certain threshold
 353 */
 354static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 355{
 356        /*
 357         * We want to know if we're in low current mode
 358         */
 359        if (curr > -di->bat->fg_params->high_curr_threshold)
 360                return true;
 361        else
 362                return false;
 363}
 364
 365/**
 366 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 367 * @di:         pointer to the ab8500_fg structure
 368 * @sample:     the capacity in mAh to add to the filter
 369 *
 370 * A capacity is added to the filter and a new mean capacity is calculated and
 371 * returned
 372 */
 373static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 374{
 375        struct timespec ts;
 376        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 377
 378        getnstimeofday(&ts);
 379
 380        do {
 381                avg->sum += sample - avg->samples[avg->pos];
 382                avg->samples[avg->pos] = sample;
 383                avg->time_stamps[avg->pos] = ts.tv_sec;
 384                avg->pos++;
 385
 386                if (avg->pos == NBR_AVG_SAMPLES)
 387                        avg->pos = 0;
 388
 389                if (avg->nbr_samples < NBR_AVG_SAMPLES)
 390                        avg->nbr_samples++;
 391
 392                /*
 393                 * Check the time stamp for each sample. If too old,
 394                 * replace with latest sample
 395                 */
 396        } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 397
 398        avg->avg = avg->sum / avg->nbr_samples;
 399
 400        return avg->avg;
 401}
 402
 403/**
 404 * ab8500_fg_clear_cap_samples() - Clear average filter
 405 * @di:         pointer to the ab8500_fg structure
 406 *
 407 * The capacity filter is is reset to zero.
 408 */
 409static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 410{
 411        int i;
 412        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 413
 414        avg->pos = 0;
 415        avg->nbr_samples = 0;
 416        avg->sum = 0;
 417        avg->avg = 0;
 418
 419        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 420                avg->samples[i] = 0;
 421                avg->time_stamps[i] = 0;
 422        }
 423}
 424
 425/**
 426 * ab8500_fg_fill_cap_sample() - Fill average filter
 427 * @di:         pointer to the ab8500_fg structure
 428 * @sample:     the capacity in mAh to fill the filter with
 429 *
 430 * The capacity filter is filled with a capacity in mAh
 431 */
 432static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 433{
 434        int i;
 435        struct timespec ts;
 436        struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 437
 438        getnstimeofday(&ts);
 439
 440        for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 441                avg->samples[i] = sample;
 442                avg->time_stamps[i] = ts.tv_sec;
 443        }
 444
 445        avg->pos = 0;
 446        avg->nbr_samples = NBR_AVG_SAMPLES;
 447        avg->sum = sample * NBR_AVG_SAMPLES;
 448        avg->avg = sample;
 449}
 450
 451/**
 452 * ab8500_fg_coulomb_counter() - enable coulomb counter
 453 * @di:         pointer to the ab8500_fg structure
 454 * @enable:     enable/disable
 455 *
 456 * Enable/Disable coulomb counter.
 457 * On failure returns negative value.
 458 */
 459static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 460{
 461        int ret = 0;
 462        mutex_lock(&di->cc_lock);
 463        if (enable) {
 464                /* To be able to reprogram the number of samples, we have to
 465                 * first stop the CC and then enable it again */
 466                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 467                        AB8500_RTC_CC_CONF_REG, 0x00);
 468                if (ret)
 469                        goto cc_err;
 470
 471                /* Program the samples */
 472                ret = abx500_set_register_interruptible(di->dev,
 473                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 474                        di->fg_samples);
 475                if (ret)
 476                        goto cc_err;
 477
 478                /* Start the CC */
 479                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 480                        AB8500_RTC_CC_CONF_REG,
 481                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 482                if (ret)
 483                        goto cc_err;
 484
 485                di->flags.fg_enabled = true;
 486        } else {
 487                /* Clear any pending read requests */
 488                ret = abx500_set_register_interruptible(di->dev,
 489                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 490                if (ret)
 491                        goto cc_err;
 492
 493                ret = abx500_set_register_interruptible(di->dev,
 494                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 495                if (ret)
 496                        goto cc_err;
 497
 498                /* Stop the CC */
 499                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 500                        AB8500_RTC_CC_CONF_REG, 0);
 501                if (ret)
 502                        goto cc_err;
 503
 504                di->flags.fg_enabled = false;
 505
 506        }
 507        dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 508                enable, di->fg_samples);
 509
 510        mutex_unlock(&di->cc_lock);
 511
 512        return ret;
 513cc_err:
 514        dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 515        mutex_unlock(&di->cc_lock);
 516        return ret;
 517}
 518
 519/**
 520 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 521 * @di:         pointer to the ab8500_fg structure
 522 *
 523 * Returns 0 or error code
 524 * Note: This is part "one" and has to be called before
 525 * ab8500_fg_inst_curr_finalize()
 526 */
 527 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 528{
 529        u8 reg_val;
 530        int ret;
 531
 532        mutex_lock(&di->cc_lock);
 533
 534        ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 535                AB8500_RTC_CC_CONF_REG, &reg_val);
 536        if (ret < 0)
 537                goto fail;
 538
 539        if (!(reg_val & CC_PWR_UP_ENA)) {
 540                dev_dbg(di->dev, "%s Enable FG\n", __func__);
 541                di->turn_off_fg = true;
 542
 543                /* Program the samples */
 544                ret = abx500_set_register_interruptible(di->dev,
 545                        AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 546                        SEC_TO_SAMPLE(10));
 547                if (ret)
 548                        goto fail;
 549
 550                /* Start the CC */
 551                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 552                        AB8500_RTC_CC_CONF_REG,
 553                        (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 554                if (ret)
 555                        goto fail;
 556        } else {
 557                di->turn_off_fg = false;
 558        }
 559
 560        /* Return and WFI */
 561        INIT_COMPLETION(di->ab8500_fg_complete);
 562        enable_irq(di->irq);
 563
 564        /* Note: cc_lock is still locked */
 565        return 0;
 566fail:
 567        mutex_unlock(&di->cc_lock);
 568        return ret;
 569}
 570
 571/**
 572 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 573 * @di:         pointer to the ab8500_fg structure
 574 *
 575 * Returns 1 if conversion done, 0 if still waiting
 576 */
 577int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 578{
 579        return completion_done(&di->ab8500_fg_complete);
 580}
 581
 582/**
 583 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 584 * @di:         pointer to the ab8500_fg structure
 585 * @res:        battery instantenous current(on success)
 586 *
 587 * Returns 0 or an error code
 588 * Note: This is part "two" and has to be called at earliest 250 ms
 589 * after ab8500_fg_inst_curr_start()
 590 */
 591int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 592{
 593        u8 low, high;
 594        int val;
 595        int ret;
 596        int timeout;
 597
 598        if (!completion_done(&di->ab8500_fg_complete)) {
 599                timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
 600                        INS_CURR_TIMEOUT);
 601                dev_dbg(di->dev, "Finalize time: %d ms\n",
 602                        ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
 603                if (!timeout) {
 604                        ret = -ETIME;
 605                        disable_irq(di->irq);
 606                        dev_err(di->dev, "completion timed out [%d]\n",
 607                                __LINE__);
 608                        goto fail;
 609                }
 610        }
 611
 612        disable_irq(di->irq);
 613
 614        ret = abx500_mask_and_set_register_interruptible(di->dev,
 615                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 616                        READ_REQ, READ_REQ);
 617
 618        /* 100uS between read request and read is needed */
 619        usleep_range(100, 100);
 620
 621        /* Read CC Sample conversion value Low and high */
 622        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 623                AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 624        if (ret < 0)
 625                goto fail;
 626
 627        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 628                AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 629        if (ret < 0)
 630                goto fail;
 631
 632        /*
 633         * negative value for Discharging
 634         * convert 2's compliment into decimal
 635         */
 636        if (high & 0x10)
 637                val = (low | (high << 8) | 0xFFFFE000);
 638        else
 639                val = (low | (high << 8));
 640
 641        /*
 642         * Convert to unit value in mA
 643         * Full scale input voltage is
 644         * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
 645         * Given a 250ms conversion cycle time the LSB corresponds
 646         * to 112.9 nAh. Convert to current by dividing by the conversion
 647         * time in hours (250ms = 1 / (3600 * 4)h)
 648         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 649         */
 650        val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 651                (1000 * di->bat->fg_res);
 652
 653        if (di->turn_off_fg) {
 654                dev_dbg(di->dev, "%s Disable FG\n", __func__);
 655
 656                /* Clear any pending read requests */
 657                ret = abx500_set_register_interruptible(di->dev,
 658                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 659                if (ret)
 660                        goto fail;
 661
 662                /* Stop the CC */
 663                ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 664                        AB8500_RTC_CC_CONF_REG, 0);
 665                if (ret)
 666                        goto fail;
 667        }
 668        mutex_unlock(&di->cc_lock);
 669        (*res) = val;
 670
 671        return 0;
 672fail:
 673        mutex_unlock(&di->cc_lock);
 674        return ret;
 675}
 676
 677/**
 678 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 679 * @di:         pointer to the ab8500_fg structure
 680 * @res:        battery instantenous current(on success)
 681 *
 682 * Returns 0 else error code
 683 */
 684int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 685{
 686        int ret;
 687        int res = 0;
 688
 689        ret = ab8500_fg_inst_curr_start(di);
 690        if (ret) {
 691                dev_err(di->dev, "Failed to initialize fg_inst\n");
 692                return 0;
 693        }
 694
 695        ret = ab8500_fg_inst_curr_finalize(di, &res);
 696        if (ret) {
 697                dev_err(di->dev, "Failed to finalize fg_inst\n");
 698                return 0;
 699        }
 700
 701        return res;
 702}
 703
 704/**
 705 * ab8500_fg_acc_cur_work() - average battery current
 706 * @work:       pointer to the work_struct structure
 707 *
 708 * Updated the average battery current obtained from the
 709 * coulomb counter.
 710 */
 711static void ab8500_fg_acc_cur_work(struct work_struct *work)
 712{
 713        int val;
 714        int ret;
 715        u8 low, med, high;
 716
 717        struct ab8500_fg *di = container_of(work,
 718                struct ab8500_fg, fg_acc_cur_work);
 719
 720        mutex_lock(&di->cc_lock);
 721        ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 722                AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 723        if (ret)
 724                goto exit;
 725
 726        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 727                AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 728        if (ret < 0)
 729                goto exit;
 730
 731        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 732                AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 733        if (ret < 0)
 734                goto exit;
 735
 736        ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 737                AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 738        if (ret < 0)
 739                goto exit;
 740
 741        /* Check for sign bit in case of negative value, 2's compliment */
 742        if (high & 0x10)
 743                val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 744        else
 745                val = (low | (med << 8) | (high << 16));
 746
 747        /*
 748         * Convert to uAh
 749         * Given a 250ms conversion cycle time the LSB corresponds
 750         * to 112.9 nAh.
 751         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 752         */
 753        di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 754                (100 * di->bat->fg_res);
 755
 756        /*
 757         * Convert to unit value in mA
 758         * Full scale input voltage is
 759         * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
 760         * Given a 250ms conversion cycle time the LSB corresponds
 761         * to 112.9 nAh. Convert to current by dividing by the conversion
 762         * time in hours (= samples / (3600 * 4)h)
 763         * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 764         */
 765        di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 766                (1000 * di->bat->fg_res * (di->fg_samples / 4));
 767
 768        di->flags.conv_done = true;
 769
 770        mutex_unlock(&di->cc_lock);
 771
 772        queue_work(di->fg_wq, &di->fg_work);
 773
 774        return;
 775exit:
 776        dev_err(di->dev,
 777                "Failed to read or write gas gauge registers\n");
 778        mutex_unlock(&di->cc_lock);
 779        queue_work(di->fg_wq, &di->fg_work);
 780}
 781
 782/**
 783 * ab8500_fg_bat_voltage() - get battery voltage
 784 * @di:         pointer to the ab8500_fg structure
 785 *
 786 * Returns battery voltage(on success) else error code
 787 */
 788static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 789{
 790        int vbat;
 791        static int prev;
 792
 793        vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
 794        if (vbat < 0) {
 795                dev_err(di->dev,
 796                        "%s gpadc conversion failed, using previous value\n",
 797                        __func__);
 798                return prev;
 799        }
 800
 801        prev = vbat;
 802        return vbat;
 803}
 804
 805/**
 806 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 807 * @di:         pointer to the ab8500_fg structure
 808 * @voltage:    The voltage to convert to a capacity
 809 *
 810 * Returns battery capacity in per mille based on voltage
 811 */
 812static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 813{
 814        int i, tbl_size;
 815        struct abx500_v_to_cap *tbl;
 816        int cap = 0;
 817
 818        tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
 819        tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
 820
 821        for (i = 0; i < tbl_size; ++i) {
 822                if (voltage > tbl[i].voltage)
 823                        break;
 824        }
 825
 826        if ((i > 0) && (i < tbl_size)) {
 827                cap = interpolate(voltage,
 828                        tbl[i].voltage,
 829                        tbl[i].capacity * 10,
 830                        tbl[i-1].voltage,
 831                        tbl[i-1].capacity * 10);
 832        } else if (i == 0) {
 833                cap = 1000;
 834        } else {
 835                cap = 0;
 836        }
 837
 838        dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 839                __func__, voltage, cap);
 840
 841        return cap;
 842}
 843
 844/**
 845 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 846 * @di:         pointer to the ab8500_fg structure
 847 *
 848 * Returns battery capacity based on battery voltage that is not compensated
 849 * for the voltage drop due to the load
 850 */
 851static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 852{
 853        di->vbat = ab8500_fg_bat_voltage(di);
 854        return ab8500_fg_volt_to_capacity(di, di->vbat);
 855}
 856
 857/**
 858 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 859 * @di:         pointer to the ab8500_fg structure
 860 *
 861 * Returns battery inner resistance added with the fuel gauge resistor value
 862 * to get the total resistance in the whole link from gnd to bat+ node.
 863 */
 864static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 865{
 866        int i, tbl_size;
 867        struct batres_vs_temp *tbl;
 868        int resist = 0;
 869
 870        tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
 871        tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
 872
 873        for (i = 0; i < tbl_size; ++i) {
 874                if (di->bat_temp / 10 > tbl[i].temp)
 875                        break;
 876        }
 877
 878        if ((i > 0) && (i < tbl_size)) {
 879                resist = interpolate(di->bat_temp / 10,
 880                        tbl[i].temp,
 881                        tbl[i].resist,
 882                        tbl[i-1].temp,
 883                        tbl[i-1].resist);
 884        } else if (i == 0) {
 885                resist = tbl[0].resist;
 886        } else {
 887                resist = tbl[tbl_size - 1].resist;
 888        }
 889
 890        dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 891            " fg resistance %d, total: %d (mOhm)\n",
 892                __func__, di->bat_temp, resist, di->bat->fg_res / 10,
 893                (di->bat->fg_res / 10) + resist);
 894
 895        /* fg_res variable is in 0.1mOhm */
 896        resist += di->bat->fg_res / 10;
 897
 898        return resist;
 899}
 900
 901/**
 902 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 903 * @di:         pointer to the ab8500_fg structure
 904 *
 905 * Returns battery capacity based on battery voltage that is load compensated
 906 * for the voltage drop
 907 */
 908static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 909{
 910        int vbat_comp, res;
 911        int i = 0;
 912        int vbat = 0;
 913
 914        ab8500_fg_inst_curr_start(di);
 915
 916        do {
 917                vbat += ab8500_fg_bat_voltage(di);
 918                i++;
 919                msleep(5);
 920        } while (!ab8500_fg_inst_curr_done(di));
 921
 922        ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 923
 924        di->vbat = vbat / i;
 925        res = ab8500_fg_battery_resistance(di);
 926
 927        /* Use Ohms law to get the load compensated voltage */
 928        vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 929
 930        dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 931                "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 932                __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 933
 934        return ab8500_fg_volt_to_capacity(di, vbat_comp);
 935}
 936
 937/**
 938 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 939 * @di:         pointer to the ab8500_fg structure
 940 * @cap_mah:    capacity in mAh
 941 *
 942 * Converts capacity in mAh to capacity in permille
 943 */
 944static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 945{
 946        return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 947}
 948
 949/**
 950 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
 951 * @di:         pointer to the ab8500_fg structure
 952 * @cap_pm:     capacity in permille
 953 *
 954 * Converts capacity in permille to capacity in mAh
 955 */
 956static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
 957{
 958        return cap_pm * di->bat_cap.max_mah_design / 1000;
 959}
 960
 961/**
 962 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
 963 * @di:         pointer to the ab8500_fg structure
 964 * @cap_mah:    capacity in mAh
 965 *
 966 * Converts capacity in mAh to capacity in uWh
 967 */
 968static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
 969{
 970        u64 div_res;
 971        u32 div_rem;
 972
 973        div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
 974        div_rem = do_div(div_res, 1000);
 975
 976        /* Make sure to round upwards if necessary */
 977        if (div_rem >= 1000 / 2)
 978                div_res++;
 979
 980        return (int) div_res;
 981}
 982
 983/**
 984 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
 985 * @di:         pointer to the ab8500_fg structure
 986 *
 987 * Return the capacity in mAh based on previous calculated capcity and the FG
 988 * accumulator register value. The filter is filled with this capacity
 989 */
 990static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
 991{
 992        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
 993                __func__,
 994                di->bat_cap.mah,
 995                di->accu_charge);
 996
 997        /* Capacity should not be less than 0 */
 998        if (di->bat_cap.mah + di->accu_charge > 0)
 999                di->bat_cap.mah += di->accu_charge;
1000        else
1001                di->bat_cap.mah = 0;
1002        /*
1003         * We force capacity to 100% once when the algorithm
1004         * reports that it's full.
1005         */
1006        if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1007                di->flags.force_full) {
1008                di->bat_cap.mah = di->bat_cap.max_mah_design;
1009        }
1010
1011        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1012        di->bat_cap.permille =
1013                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1014
1015        /* We need to update battery voltage and inst current when charging */
1016        di->vbat = ab8500_fg_bat_voltage(di);
1017        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1018
1019        return di->bat_cap.mah;
1020}
1021
1022/**
1023 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1024 * @di:         pointer to the ab8500_fg structure
1025 * @comp:       if voltage should be load compensated before capacity calc
1026 *
1027 * Return the capacity in mAh based on the battery voltage. The voltage can
1028 * either be load compensated or not. This value is added to the filter and a
1029 * new mean value is calculated and returned.
1030 */
1031static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1032{
1033        int permille, mah;
1034
1035        if (comp)
1036                permille = ab8500_fg_load_comp_volt_to_capacity(di);
1037        else
1038                permille = ab8500_fg_uncomp_volt_to_capacity(di);
1039
1040        mah = ab8500_fg_convert_permille_to_mah(di, permille);
1041
1042        di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1043        di->bat_cap.permille =
1044                ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1045
1046        return di->bat_cap.mah;
1047}
1048
1049/**
1050 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1051 * @di:         pointer to the ab8500_fg structure
1052 *
1053 * Return the capacity in mAh based on previous calculated capcity and the FG
1054 * accumulator register value. This value is added to the filter and a
1055 * new mean value is calculated and returned.
1056 */
1057static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1058{
1059        int permille_volt, permille;
1060
1061        dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1062                __func__,
1063                di->bat_cap.mah,
1064                di->accu_charge);
1065
1066        /* Capacity should not be less than 0 */
1067        if (di->bat_cap.mah + di->accu_charge > 0)
1068                di->bat_cap.mah += di->accu_charge;
1069        else
1070                di->bat_cap.mah = 0;
1071
1072        if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1073                di->bat_cap.mah = di->bat_cap.max_mah_design;
1074
1075        /*
1076         * Check against voltage based capacity. It can not be lower
1077         * than what the uncompensated voltage says
1078         */
1079        permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1080        permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1081
1082        if (permille < permille_volt) {
1083                di->bat_cap.permille = permille_volt;
1084                di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1085                        di->bat_cap.permille);
1086
1087                dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1088                        __func__,
1089                        permille,
1090                        permille_volt);
1091
1092                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1093        } else {
1094                ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1095                di->bat_cap.permille =
1096                        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1097        }
1098
1099        return di->bat_cap.mah;
1100}
1101
1102/**
1103 * ab8500_fg_capacity_level() - Get the battery capacity level
1104 * @di:         pointer to the ab8500_fg structure
1105 *
1106 * Get the battery capacity level based on the capacity in percent
1107 */
1108static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1109{
1110        int ret, percent;
1111
1112        percent = di->bat_cap.permille / 10;
1113
1114        if (percent <= di->bat->cap_levels->critical ||
1115                di->flags.low_bat)
1116                ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1117        else if (percent <= di->bat->cap_levels->low)
1118                ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1119        else if (percent <= di->bat->cap_levels->normal)
1120                ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1121        else if (percent <= di->bat->cap_levels->high)
1122                ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1123        else
1124                ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1125
1126        return ret;
1127}
1128
1129/**
1130 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1131 * @di:         pointer to the ab8500_fg structure
1132 * @init:       capacity is allowed to go up in init mode
1133 *
1134 * Check if capacity or capacity limit has changed and notify the system
1135 * about it using the power_supply framework
1136 */
1137static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1138{
1139        bool changed = false;
1140
1141        di->bat_cap.level = ab8500_fg_capacity_level(di);
1142
1143        if (di->bat_cap.level != di->bat_cap.prev_level) {
1144                /*
1145                 * We do not allow reported capacity level to go up
1146                 * unless we're charging or if we're in init
1147                 */
1148                if (!(!di->flags.charging && di->bat_cap.level >
1149                        di->bat_cap.prev_level) || init) {
1150                        dev_dbg(di->dev, "level changed from %d to %d\n",
1151                                di->bat_cap.prev_level,
1152                                di->bat_cap.level);
1153                        di->bat_cap.prev_level = di->bat_cap.level;
1154                        changed = true;
1155                } else {
1156                        dev_dbg(di->dev, "level not allowed to go up "
1157                                "since no charger is connected: %d to %d\n",
1158                                di->bat_cap.prev_level,
1159                                di->bat_cap.level);
1160                }
1161        }
1162
1163        /*
1164         * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1165         * shutdown
1166         */
1167        if (di->flags.low_bat) {
1168                dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1169                di->bat_cap.prev_percent = 0;
1170                di->bat_cap.permille = 0;
1171                di->bat_cap.prev_mah = 0;
1172                di->bat_cap.mah = 0;
1173                changed = true;
1174        } else if (di->flags.fully_charged) {
1175                /*
1176                 * We report 100% if algorithm reported fully charged
1177                 * unless capacity drops too much
1178                 */
1179                if (di->flags.force_full) {
1180                        di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1181                        di->bat_cap.prev_mah = di->bat_cap.mah;
1182                } else if (!di->flags.force_full &&
1183                        di->bat_cap.prev_percent !=
1184                        (di->bat_cap.permille) / 10 &&
1185                        (di->bat_cap.permille / 10) <
1186                        di->bat->fg_params->maint_thres) {
1187                        dev_dbg(di->dev,
1188                                "battery reported full "
1189                                "but capacity dropping: %d\n",
1190                                di->bat_cap.permille / 10);
1191                        di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1192                        di->bat_cap.prev_mah = di->bat_cap.mah;
1193
1194                        changed = true;
1195                }
1196        } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1197                if (di->bat_cap.permille / 10 == 0) {
1198                        /*
1199                         * We will not report 0% unless we've got
1200                         * the LOW_BAT IRQ, no matter what the FG
1201                         * algorithm says.
1202                         */
1203                        di->bat_cap.prev_percent = 1;
1204                        di->bat_cap.permille = 1;
1205                        di->bat_cap.prev_mah = 1;
1206                        di->bat_cap.mah = 1;
1207
1208                        changed = true;
1209                } else if (!(!di->flags.charging &&
1210                        (di->bat_cap.permille / 10) >
1211                        di->bat_cap.prev_percent) || init) {
1212                        /*
1213                         * We do not allow reported capacity to go up
1214                         * unless we're charging or if we're in init
1215                         */
1216                        dev_dbg(di->dev,
1217                                "capacity changed from %d to %d (%d)\n",
1218                                di->bat_cap.prev_percent,
1219                                di->bat_cap.permille / 10,
1220                                di->bat_cap.permille);
1221                        di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1222                        di->bat_cap.prev_mah = di->bat_cap.mah;
1223
1224                        changed = true;
1225                } else {
1226                        dev_dbg(di->dev, "capacity not allowed to go up since "
1227                                "no charger is connected: %d to %d (%d)\n",
1228                                di->bat_cap.prev_percent,
1229                                di->bat_cap.permille / 10,
1230                                di->bat_cap.permille);
1231                }
1232        }
1233
1234        if (changed) {
1235                power_supply_changed(&di->fg_psy);
1236                if (di->flags.fully_charged && di->flags.force_full) {
1237                        dev_dbg(di->dev, "Battery full, notifying.\n");
1238                        di->flags.force_full = false;
1239                        sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1240                }
1241                sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1242        }
1243}
1244
1245static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1246        enum ab8500_fg_charge_state new_state)
1247{
1248        dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1249                di->charge_state,
1250                charge_state[di->charge_state],
1251                new_state,
1252                charge_state[new_state]);
1253
1254        di->charge_state = new_state;
1255}
1256
1257static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1258        enum ab8500_fg_discharge_state new_state)
1259{
1260        dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1261                di->discharge_state,
1262                discharge_state[di->discharge_state],
1263                new_state,
1264                discharge_state[new_state]);
1265
1266        di->discharge_state = new_state;
1267}
1268
1269/**
1270 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1271 * @di:         pointer to the ab8500_fg structure
1272 *
1273 * Battery capacity calculation state machine for when we're charging
1274 */
1275static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1276{
1277        /*
1278         * If we change to discharge mode
1279         * we should start with recovery
1280         */
1281        if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1282                ab8500_fg_discharge_state_to(di,
1283                        AB8500_FG_DISCHARGE_INIT_RECOVERY);
1284
1285        switch (di->charge_state) {
1286        case AB8500_FG_CHARGE_INIT:
1287                di->fg_samples = SEC_TO_SAMPLE(
1288                        di->bat->fg_params->accu_charging);
1289
1290                ab8500_fg_coulomb_counter(di, true);
1291                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1292
1293                break;
1294
1295        case AB8500_FG_CHARGE_READOUT:
1296                /*
1297                 * Read the FG and calculate the new capacity
1298                 */
1299                mutex_lock(&di->cc_lock);
1300                if (!di->flags.conv_done) {
1301                        /* Wasn't the CC IRQ that got us here */
1302                        mutex_unlock(&di->cc_lock);
1303                        dev_dbg(di->dev, "%s CC conv not done\n",
1304                                __func__);
1305
1306                        break;
1307                }
1308                di->flags.conv_done = false;
1309                mutex_unlock(&di->cc_lock);
1310
1311                ab8500_fg_calc_cap_charging(di);
1312
1313                break;
1314
1315        default:
1316                break;
1317        }
1318
1319        /* Check capacity limits */
1320        ab8500_fg_check_capacity_limits(di, false);
1321}
1322
1323static void force_capacity(struct ab8500_fg *di)
1324{
1325        int cap;
1326
1327        ab8500_fg_clear_cap_samples(di);
1328        cap = di->bat_cap.user_mah;
1329        if (cap > di->bat_cap.max_mah_design) {
1330                dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1331                        " %d\n", cap, di->bat_cap.max_mah_design);
1332                cap = di->bat_cap.max_mah_design;
1333        }
1334        ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1335        di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1336        di->bat_cap.mah = cap;
1337        ab8500_fg_check_capacity_limits(di, true);
1338}
1339
1340static bool check_sysfs_capacity(struct ab8500_fg *di)
1341{
1342        int cap, lower, upper;
1343        int cap_permille;
1344
1345        cap = di->bat_cap.user_mah;
1346
1347        cap_permille = ab8500_fg_convert_mah_to_permille(di,
1348                di->bat_cap.user_mah);
1349
1350        lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
1351        upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
1352
1353        if (lower < 0)
1354                lower = 0;
1355        /* 1000 is permille, -> 100 percent */
1356        if (upper > 1000)
1357                upper = 1000;
1358
1359        dev_dbg(di->dev, "Capacity limits:"
1360                " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1361                lower, cap_permille, upper, cap, di->bat_cap.mah);
1362
1363        /* If within limits, use the saved capacity and exit estimation...*/
1364        if (cap_permille > lower && cap_permille < upper) {
1365                dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1366                force_capacity(di);
1367                return true;
1368        }
1369        dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1370        return false;
1371}
1372
1373/**
1374 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1375 * @di:         pointer to the ab8500_fg structure
1376 *
1377 * Battery capacity calculation state machine for when we're discharging
1378 */
1379static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1380{
1381        int sleep_time;
1382
1383        /* If we change to charge mode we should start with init */
1384        if (di->charge_state != AB8500_FG_CHARGE_INIT)
1385                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1386
1387        switch (di->discharge_state) {
1388        case AB8500_FG_DISCHARGE_INIT:
1389                /* We use the FG IRQ to work on */
1390                di->init_cnt = 0;
1391                di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
1392                ab8500_fg_coulomb_counter(di, true);
1393                ab8500_fg_discharge_state_to(di,
1394                        AB8500_FG_DISCHARGE_INITMEASURING);
1395
1396                /* Intentional fallthrough */
1397        case AB8500_FG_DISCHARGE_INITMEASURING:
1398                /*
1399                 * Discard a number of samples during startup.
1400                 * After that, use compensated voltage for a few
1401                 * samples to get an initial capacity.
1402                 * Then go to READOUT
1403                 */
1404                sleep_time = di->bat->fg_params->init_timer;
1405
1406                /* Discard the first [x] seconds */
1407                if (di->init_cnt >
1408                        di->bat->fg_params->init_discard_time) {
1409                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1410
1411                        ab8500_fg_check_capacity_limits(di, true);
1412                }
1413
1414                di->init_cnt += sleep_time;
1415                if (di->init_cnt > di->bat->fg_params->init_total_time)
1416                        ab8500_fg_discharge_state_to(di,
1417                                AB8500_FG_DISCHARGE_READOUT_INIT);
1418
1419                break;
1420
1421        case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1422                di->recovery_cnt = 0;
1423                di->recovery_needed = true;
1424                ab8500_fg_discharge_state_to(di,
1425                        AB8500_FG_DISCHARGE_RECOVERY);
1426
1427                /* Intentional fallthrough */
1428
1429        case AB8500_FG_DISCHARGE_RECOVERY:
1430                sleep_time = di->bat->fg_params->recovery_sleep_timer;
1431
1432                /*
1433                 * We should check the power consumption
1434                 * If low, go to READOUT (after x min) or
1435                 * RECOVERY_SLEEP if time left.
1436                 * If high, go to READOUT
1437                 */
1438                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1439
1440                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1441                        if (di->recovery_cnt >
1442                                di->bat->fg_params->recovery_total_time) {
1443                                di->fg_samples = SEC_TO_SAMPLE(
1444                                        di->bat->fg_params->accu_high_curr);
1445                                ab8500_fg_coulomb_counter(di, true);
1446                                ab8500_fg_discharge_state_to(di,
1447                                        AB8500_FG_DISCHARGE_READOUT);
1448                                di->recovery_needed = false;
1449                        } else {
1450                                queue_delayed_work(di->fg_wq,
1451                                        &di->fg_periodic_work,
1452                                        sleep_time * HZ);
1453                        }
1454                        di->recovery_cnt += sleep_time;
1455                } else {
1456                        di->fg_samples = SEC_TO_SAMPLE(
1457                                di->bat->fg_params->accu_high_curr);
1458                        ab8500_fg_coulomb_counter(di, true);
1459                        ab8500_fg_discharge_state_to(di,
1460                                AB8500_FG_DISCHARGE_READOUT);
1461                }
1462                break;
1463
1464        case AB8500_FG_DISCHARGE_READOUT_INIT:
1465                di->fg_samples = SEC_TO_SAMPLE(
1466                        di->bat->fg_params->accu_high_curr);
1467                ab8500_fg_coulomb_counter(di, true);
1468                ab8500_fg_discharge_state_to(di,
1469                                AB8500_FG_DISCHARGE_READOUT);
1470                break;
1471
1472        case AB8500_FG_DISCHARGE_READOUT:
1473                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1474
1475                if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1476                        /* Detect mode change */
1477                        if (di->high_curr_mode) {
1478                                di->high_curr_mode = false;
1479                                di->high_curr_cnt = 0;
1480                        }
1481
1482                        if (di->recovery_needed) {
1483                                ab8500_fg_discharge_state_to(di,
1484                                        AB8500_FG_DISCHARGE_RECOVERY);
1485
1486                                queue_delayed_work(di->fg_wq,
1487                                        &di->fg_periodic_work, 0);
1488
1489                                break;
1490                        }
1491
1492                        ab8500_fg_calc_cap_discharge_voltage(di, true);
1493                } else {
1494                        mutex_lock(&di->cc_lock);
1495                        if (!di->flags.conv_done) {
1496                                /* Wasn't the CC IRQ that got us here */
1497                                mutex_unlock(&di->cc_lock);
1498                                dev_dbg(di->dev, "%s CC conv not done\n",
1499                                        __func__);
1500
1501                                break;
1502                        }
1503                        di->flags.conv_done = false;
1504                        mutex_unlock(&di->cc_lock);
1505
1506                        /* Detect mode change */
1507                        if (!di->high_curr_mode) {
1508                                di->high_curr_mode = true;
1509                                di->high_curr_cnt = 0;
1510                        }
1511
1512                        di->high_curr_cnt +=
1513                                di->bat->fg_params->accu_high_curr;
1514                        if (di->high_curr_cnt >
1515                                di->bat->fg_params->high_curr_time)
1516                                di->recovery_needed = true;
1517
1518                        ab8500_fg_calc_cap_discharge_fg(di);
1519                }
1520
1521                ab8500_fg_check_capacity_limits(di, false);
1522
1523                break;
1524
1525        case AB8500_FG_DISCHARGE_WAKEUP:
1526                ab8500_fg_coulomb_counter(di, true);
1527                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1528
1529                ab8500_fg_calc_cap_discharge_voltage(di, true);
1530
1531                di->fg_samples = SEC_TO_SAMPLE(
1532                        di->bat->fg_params->accu_high_curr);
1533                ab8500_fg_coulomb_counter(di, true);
1534                ab8500_fg_discharge_state_to(di,
1535                                AB8500_FG_DISCHARGE_READOUT);
1536
1537                ab8500_fg_check_capacity_limits(di, false);
1538
1539                break;
1540
1541        default:
1542                break;
1543        }
1544}
1545
1546/**
1547 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1548 * @di:         pointer to the ab8500_fg structure
1549 *
1550 */
1551static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1552{
1553        int ret;
1554
1555        switch (di->calib_state) {
1556        case AB8500_FG_CALIB_INIT:
1557                dev_dbg(di->dev, "Calibration ongoing...\n");
1558
1559                ret = abx500_mask_and_set_register_interruptible(di->dev,
1560                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1561                        CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1562                if (ret < 0)
1563                        goto err;
1564
1565                ret = abx500_mask_and_set_register_interruptible(di->dev,
1566                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1567                        CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1568                if (ret < 0)
1569                        goto err;
1570                di->calib_state = AB8500_FG_CALIB_WAIT;
1571                break;
1572        case AB8500_FG_CALIB_END:
1573                ret = abx500_mask_and_set_register_interruptible(di->dev,
1574                        AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1575                        CC_MUXOFFSET, CC_MUXOFFSET);
1576                if (ret < 0)
1577                        goto err;
1578                di->flags.calibrate = false;
1579                dev_dbg(di->dev, "Calibration done...\n");
1580                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1581                break;
1582        case AB8500_FG_CALIB_WAIT:
1583                dev_dbg(di->dev, "Calibration WFI\n");
1584        default:
1585                break;
1586        }
1587        return;
1588err:
1589        /* Something went wrong, don't calibrate then */
1590        dev_err(di->dev, "failed to calibrate the CC\n");
1591        di->flags.calibrate = false;
1592        di->calib_state = AB8500_FG_CALIB_INIT;
1593        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1594}
1595
1596/**
1597 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1598 * @di:         pointer to the ab8500_fg structure
1599 *
1600 * Entry point for the battery capacity calculation state machine
1601 */
1602static void ab8500_fg_algorithm(struct ab8500_fg *di)
1603{
1604        if (di->flags.calibrate)
1605                ab8500_fg_algorithm_calibrate(di);
1606        else {
1607                if (di->flags.charging)
1608                        ab8500_fg_algorithm_charging(di);
1609                else
1610                        ab8500_fg_algorithm_discharging(di);
1611        }
1612
1613        dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1614                "%d %d %d %d %d %d %d\n",
1615                di->bat_cap.max_mah_design,
1616                di->bat_cap.mah,
1617                di->bat_cap.permille,
1618                di->bat_cap.level,
1619                di->bat_cap.prev_mah,
1620                di->bat_cap.prev_percent,
1621                di->bat_cap.prev_level,
1622                di->vbat,
1623                di->inst_curr,
1624                di->avg_curr,
1625                di->accu_charge,
1626                di->flags.charging,
1627                di->charge_state,
1628                di->discharge_state,
1629                di->high_curr_mode,
1630                di->recovery_needed);
1631}
1632
1633/**
1634 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1635 * @work:       pointer to the work_struct structure
1636 *
1637 * Work queue function for periodic work
1638 */
1639static void ab8500_fg_periodic_work(struct work_struct *work)
1640{
1641        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1642                fg_periodic_work.work);
1643
1644        if (di->init_capacity) {
1645                /* A dummy read that will return 0 */
1646                di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1647                /* Get an initial capacity calculation */
1648                ab8500_fg_calc_cap_discharge_voltage(di, true);
1649                ab8500_fg_check_capacity_limits(di, true);
1650                di->init_capacity = false;
1651
1652                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1653        } else if (di->flags.user_cap) {
1654                if (check_sysfs_capacity(di)) {
1655                        ab8500_fg_check_capacity_limits(di, true);
1656                        if (di->flags.charging)
1657                                ab8500_fg_charge_state_to(di,
1658                                        AB8500_FG_CHARGE_INIT);
1659                        else
1660                                ab8500_fg_discharge_state_to(di,
1661                                        AB8500_FG_DISCHARGE_READOUT_INIT);
1662                }
1663                di->flags.user_cap = false;
1664                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1665        } else
1666                ab8500_fg_algorithm(di);
1667
1668}
1669
1670/**
1671 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1672 * @work:       pointer to the work_struct structure
1673 *
1674 * Work queue function for checking the OVV_BAT condition
1675 */
1676static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1677{
1678        int ret;
1679        u8 reg_value;
1680
1681        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1682                fg_check_hw_failure_work.work);
1683
1684        /*
1685         * If we have had a battery over-voltage situation,
1686         * check ovv-bit to see if it should be reset.
1687         */
1688        if (di->flags.bat_ovv) {
1689                ret = abx500_get_register_interruptible(di->dev,
1690                        AB8500_CHARGER, AB8500_CH_STAT_REG,
1691                        &reg_value);
1692                if (ret < 0) {
1693                        dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1694                        return;
1695                }
1696                if ((reg_value & BATT_OVV) != BATT_OVV) {
1697                        dev_dbg(di->dev, "Battery recovered from OVV\n");
1698                        di->flags.bat_ovv = false;
1699                        power_supply_changed(&di->fg_psy);
1700                        return;
1701                }
1702
1703                /* Not yet recovered from ovv, reschedule this test */
1704                queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1705                                   round_jiffies(HZ));
1706        }
1707}
1708
1709/**
1710 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1711 * @work:       pointer to the work_struct structure
1712 *
1713 * Work queue function for checking the LOW_BAT condition
1714 */
1715static void ab8500_fg_low_bat_work(struct work_struct *work)
1716{
1717        int vbat;
1718
1719        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1720                fg_low_bat_work.work);
1721
1722        vbat = ab8500_fg_bat_voltage(di);
1723
1724        /* Check if LOW_BAT still fulfilled */
1725        if (vbat < di->bat->fg_params->lowbat_threshold) {
1726                di->flags.low_bat = true;
1727                dev_warn(di->dev, "Battery voltage still LOW\n");
1728
1729                /*
1730                 * We need to re-schedule this check to be able to detect
1731                 * if the voltage increases again during charging
1732                 */
1733                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1734                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
1735        } else {
1736                di->flags.low_bat = false;
1737                dev_warn(di->dev, "Battery voltage OK again\n");
1738        }
1739
1740        /* This is needed to dispatch LOW_BAT */
1741        ab8500_fg_check_capacity_limits(di, false);
1742
1743        /* Set this flag to check if LOW_BAT IRQ still occurs */
1744        di->flags.low_bat_delay = false;
1745}
1746
1747/**
1748 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1749 * to the target voltage.
1750 * @di:       pointer to the ab8500_fg structure
1751 * @target    target voltage
1752 *
1753 * Returns bit pattern closest to the target voltage
1754 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1755 */
1756
1757static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1758{
1759        if (target > BATT_OK_MIN +
1760                (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1761                return BATT_OK_MAX_NR_INCREMENTS;
1762        if (target < BATT_OK_MIN)
1763                return 0;
1764        return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1765}
1766
1767/**
1768 * ab8500_fg_battok_init_hw_register - init battok levels
1769 * @di:       pointer to the ab8500_fg structure
1770 *
1771 */
1772
1773static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1774{
1775        int selected;
1776        int sel0;
1777        int sel1;
1778        int cbp_sel0;
1779        int cbp_sel1;
1780        int ret;
1781        int new_val;
1782
1783        sel0 = di->bat->fg_params->battok_falling_th_sel0;
1784        sel1 = di->bat->fg_params->battok_raising_th_sel1;
1785
1786        cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1787        cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1788
1789        selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1790
1791        if (selected != sel0)
1792                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1793                        sel0, selected, cbp_sel0);
1794
1795        selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1796
1797        if (selected != sel1)
1798                dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1799                        sel1, selected, cbp_sel1);
1800
1801        new_val = cbp_sel0 | (cbp_sel1 << 4);
1802
1803        dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1804        ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1805                AB8500_BATT_OK_REG, new_val);
1806        return ret;
1807}
1808
1809/**
1810 * ab8500_fg_instant_work() - Run the FG state machine instantly
1811 * @work:       pointer to the work_struct structure
1812 *
1813 * Work queue function for instant work
1814 */
1815static void ab8500_fg_instant_work(struct work_struct *work)
1816{
1817        struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1818
1819        ab8500_fg_algorithm(di);
1820}
1821
1822/**
1823 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1824 * @irq:       interrupt number
1825 * @_di:       pointer to the ab8500_fg structure
1826 *
1827 * Returns IRQ status(IRQ_HANDLED)
1828 */
1829static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1830{
1831        struct ab8500_fg *di = _di;
1832        complete(&di->ab8500_fg_complete);
1833        return IRQ_HANDLED;
1834}
1835
1836/**
1837 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1838 * @irq:       interrupt number
1839 * @_di:       pointer to the ab8500_fg structure
1840 *
1841 * Returns IRQ status(IRQ_HANDLED)
1842 */
1843static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1844{
1845        struct ab8500_fg *di = _di;
1846        di->calib_state = AB8500_FG_CALIB_END;
1847        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1848        return IRQ_HANDLED;
1849}
1850
1851/**
1852 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1853 * @irq:       interrupt number
1854 * @_di:       pointer to the ab8500_fg structure
1855 *
1856 * Returns IRQ status(IRQ_HANDLED)
1857 */
1858static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1859{
1860        struct ab8500_fg *di = _di;
1861
1862        queue_work(di->fg_wq, &di->fg_acc_cur_work);
1863
1864        return IRQ_HANDLED;
1865}
1866
1867/**
1868 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1869 * @irq:       interrupt number
1870 * @_di:       pointer to the ab8500_fg structure
1871 *
1872 * Returns IRQ status(IRQ_HANDLED)
1873 */
1874static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1875{
1876        struct ab8500_fg *di = _di;
1877
1878        dev_dbg(di->dev, "Battery OVV\n");
1879        di->flags.bat_ovv = true;
1880        power_supply_changed(&di->fg_psy);
1881
1882        /* Schedule a new HW failure check */
1883        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1884
1885        return IRQ_HANDLED;
1886}
1887
1888/**
1889 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1890 * @irq:       interrupt number
1891 * @_di:       pointer to the ab8500_fg structure
1892 *
1893 * Returns IRQ status(IRQ_HANDLED)
1894 */
1895static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1896{
1897        struct ab8500_fg *di = _di;
1898
1899        if (!di->flags.low_bat_delay) {
1900                dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1901                di->flags.low_bat_delay = true;
1902                /*
1903                 * Start a timer to check LOW_BAT again after some time
1904                 * This is done to avoid shutdown on single voltage dips
1905                 */
1906                queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1907                        round_jiffies(LOW_BAT_CHECK_INTERVAL));
1908        }
1909        return IRQ_HANDLED;
1910}
1911
1912/**
1913 * ab8500_fg_get_property() - get the fg properties
1914 * @psy:        pointer to the power_supply structure
1915 * @psp:        pointer to the power_supply_property structure
1916 * @val:        pointer to the power_supply_propval union
1917 *
1918 * This function gets called when an application tries to get the
1919 * fg properties by reading the sysfs files.
1920 * voltage_now:         battery voltage
1921 * current_now:         battery instant current
1922 * current_avg:         battery average current
1923 * charge_full_design:  capacity where battery is considered full
1924 * charge_now:          battery capacity in nAh
1925 * capacity:            capacity in percent
1926 * capacity_level:      capacity level
1927 *
1928 * Returns error code in case of failure else 0 on success
1929 */
1930static int ab8500_fg_get_property(struct power_supply *psy,
1931        enum power_supply_property psp,
1932        union power_supply_propval *val)
1933{
1934        struct ab8500_fg *di;
1935
1936        di = to_ab8500_fg_device_info(psy);
1937
1938        /*
1939         * If battery is identified as unknown and charging of unknown
1940         * batteries is disabled, we always report 100% capacity and
1941         * capacity level UNKNOWN, since we can't calculate
1942         * remaining capacity
1943         */
1944
1945        switch (psp) {
1946        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1947                if (di->flags.bat_ovv)
1948                        val->intval = BATT_OVV_VALUE * 1000;
1949                else
1950                        val->intval = di->vbat * 1000;
1951                break;
1952        case POWER_SUPPLY_PROP_CURRENT_NOW:
1953                val->intval = di->inst_curr * 1000;
1954                break;
1955        case POWER_SUPPLY_PROP_CURRENT_AVG:
1956                val->intval = di->avg_curr * 1000;
1957                break;
1958        case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1959                val->intval = ab8500_fg_convert_mah_to_uwh(di,
1960                                di->bat_cap.max_mah_design);
1961                break;
1962        case POWER_SUPPLY_PROP_ENERGY_FULL:
1963                val->intval = ab8500_fg_convert_mah_to_uwh(di,
1964                                di->bat_cap.max_mah);
1965                break;
1966        case POWER_SUPPLY_PROP_ENERGY_NOW:
1967                if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1968                                di->flags.batt_id_received)
1969                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
1970                                        di->bat_cap.max_mah);
1971                else
1972                        val->intval = ab8500_fg_convert_mah_to_uwh(di,
1973                                        di->bat_cap.prev_mah);
1974                break;
1975        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1976                val->intval = di->bat_cap.max_mah_design;
1977                break;
1978        case POWER_SUPPLY_PROP_CHARGE_FULL:
1979                val->intval = di->bat_cap.max_mah;
1980                break;
1981        case POWER_SUPPLY_PROP_CHARGE_NOW:
1982                if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1983                                di->flags.batt_id_received)
1984                        val->intval = di->bat_cap.max_mah;
1985                else
1986                        val->intval = di->bat_cap.prev_mah;
1987                break;
1988        case POWER_SUPPLY_PROP_CAPACITY:
1989                if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1990                                di->flags.batt_id_received)
1991                        val->intval = 100;
1992                else
1993                        val->intval = di->bat_cap.prev_percent;
1994                break;
1995        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1996                if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1997                                di->flags.batt_id_received)
1998                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1999                else
2000                        val->intval = di->bat_cap.prev_level;
2001                break;
2002        default:
2003                return -EINVAL;
2004        }
2005        return 0;
2006}
2007
2008static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2009{
2010        struct power_supply *psy;
2011        struct power_supply *ext;
2012        struct ab8500_fg *di;
2013        union power_supply_propval ret;
2014        int i, j;
2015        bool psy_found = false;
2016
2017        psy = (struct power_supply *)data;
2018        ext = dev_get_drvdata(dev);
2019        di = to_ab8500_fg_device_info(psy);
2020
2021        /*
2022         * For all psy where the name of your driver
2023         * appears in any supplied_to
2024         */
2025        for (i = 0; i < ext->num_supplicants; i++) {
2026                if (!strcmp(ext->supplied_to[i], psy->name))
2027                        psy_found = true;
2028        }
2029
2030        if (!psy_found)
2031                return 0;
2032
2033        /* Go through all properties for the psy */
2034        for (j = 0; j < ext->num_properties; j++) {
2035                enum power_supply_property prop;
2036                prop = ext->properties[j];
2037
2038                if (ext->get_property(ext, prop, &ret))
2039                        continue;
2040
2041                switch (prop) {
2042                case POWER_SUPPLY_PROP_STATUS:
2043                        switch (ext->type) {
2044                        case POWER_SUPPLY_TYPE_BATTERY:
2045                                switch (ret.intval) {
2046                                case POWER_SUPPLY_STATUS_UNKNOWN:
2047                                case POWER_SUPPLY_STATUS_DISCHARGING:
2048                                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2049                                        if (!di->flags.charging)
2050                                                break;
2051                                        di->flags.charging = false;
2052                                        di->flags.fully_charged = false;
2053                                        queue_work(di->fg_wq, &di->fg_work);
2054                                        break;
2055                                case POWER_SUPPLY_STATUS_FULL:
2056                                        if (di->flags.fully_charged)
2057                                                break;
2058                                        di->flags.fully_charged = true;
2059                                        di->flags.force_full = true;
2060                                        /* Save current capacity as maximum */
2061                                        di->bat_cap.max_mah = di->bat_cap.mah;
2062                                        queue_work(di->fg_wq, &di->fg_work);
2063                                        break;
2064                                case POWER_SUPPLY_STATUS_CHARGING:
2065                                        if (di->flags.charging)
2066                                                break;
2067                                        di->flags.charging = true;
2068                                        di->flags.fully_charged = false;
2069                                        queue_work(di->fg_wq, &di->fg_work);
2070                                        break;
2071                                };
2072                        default:
2073                                break;
2074                        };
2075                        break;
2076                case POWER_SUPPLY_PROP_TECHNOLOGY:
2077                        switch (ext->type) {
2078                        case POWER_SUPPLY_TYPE_BATTERY:
2079                                if (!di->flags.batt_id_received) {
2080                                        const struct abx500_battery_type *b;
2081
2082                                        b = &(di->bat->bat_type[di->bat->batt_id]);
2083
2084                                        di->flags.batt_id_received = true;
2085
2086                                        di->bat_cap.max_mah_design =
2087                                                MILLI_TO_MICRO *
2088                                                b->charge_full_design;
2089
2090                                        di->bat_cap.max_mah =
2091                                                di->bat_cap.max_mah_design;
2092
2093                                        di->vbat_nom = b->nominal_voltage;
2094                                }
2095
2096                                if (ret.intval)
2097                                        di->flags.batt_unknown = false;
2098                                else
2099                                        di->flags.batt_unknown = true;
2100                                break;
2101                        default:
2102                                break;
2103                        }
2104                        break;
2105                case POWER_SUPPLY_PROP_TEMP:
2106                        switch (ext->type) {
2107                        case POWER_SUPPLY_TYPE_BATTERY:
2108                            if (di->flags.batt_id_received)
2109                                di->bat_temp = ret.intval;
2110                                break;
2111                        default:
2112                                break;
2113                        }
2114                        break;
2115                default:
2116                        break;
2117                }
2118        }
2119        return 0;
2120}
2121
2122/**
2123 * ab8500_fg_init_hw_registers() - Set up FG related registers
2124 * @di:         pointer to the ab8500_fg structure
2125 *
2126 * Set up battery OVV, low battery voltage registers
2127 */
2128static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2129{
2130        int ret;
2131
2132        /* Set VBAT OVV threshold */
2133        ret = abx500_mask_and_set_register_interruptible(di->dev,
2134                AB8500_CHARGER,
2135                AB8500_BATT_OVV,
2136                BATT_OVV_TH_4P75,
2137                BATT_OVV_TH_4P75);
2138        if (ret) {
2139                dev_err(di->dev, "failed to set BATT_OVV\n");
2140                goto out;
2141        }
2142
2143        /* Enable VBAT OVV detection */
2144        ret = abx500_mask_and_set_register_interruptible(di->dev,
2145                AB8500_CHARGER,
2146                AB8500_BATT_OVV,
2147                BATT_OVV_ENA,
2148                BATT_OVV_ENA);
2149        if (ret) {
2150                dev_err(di->dev, "failed to enable BATT_OVV\n");
2151                goto out;
2152        }
2153
2154        /* Low Battery Voltage */
2155        ret = abx500_set_register_interruptible(di->dev,
2156                AB8500_SYS_CTRL2_BLOCK,
2157                AB8500_LOW_BAT_REG,
2158                ab8500_volt_to_regval(
2159                        di->bat->fg_params->lowbat_threshold) << 1 |
2160                LOW_BAT_ENABLE);
2161        if (ret) {
2162                dev_err(di->dev, "%s write failed\n", __func__);
2163                goto out;
2164        }
2165
2166        /* Battery OK threshold */
2167        ret = ab8500_fg_battok_init_hw_register(di);
2168        if (ret) {
2169                dev_err(di->dev, "BattOk init write failed.\n");
2170                goto out;
2171        }
2172out:
2173        return ret;
2174}
2175
2176/**
2177 * ab8500_fg_external_power_changed() - callback for power supply changes
2178 * @psy:       pointer to the structure power_supply
2179 *
2180 * This function is the entry point of the pointer external_power_changed
2181 * of the structure power_supply.
2182 * This function gets executed when there is a change in any external power
2183 * supply that this driver needs to be notified of.
2184 */
2185static void ab8500_fg_external_power_changed(struct power_supply *psy)
2186{
2187        struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2188
2189        class_for_each_device(power_supply_class, NULL,
2190                &di->fg_psy, ab8500_fg_get_ext_psy_data);
2191}
2192
2193/**
2194 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2195 * @work:       pointer to the work_struct structure
2196 *
2197 * Used to reset the current battery capacity to be able to
2198 * retrigger a new voltage base capacity calculation. For
2199 * test and verification purpose.
2200 */
2201static void ab8500_fg_reinit_work(struct work_struct *work)
2202{
2203        struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2204                fg_reinit_work.work);
2205
2206        if (di->flags.calibrate == false) {
2207                dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2208                ab8500_fg_clear_cap_samples(di);
2209                ab8500_fg_calc_cap_discharge_voltage(di, true);
2210                ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2211                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2212                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2213
2214        } else {
2215                dev_err(di->dev, "Residual offset calibration ongoing "
2216                        "retrying..\n");
2217                /* Wait one second until next try*/
2218                queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2219                        round_jiffies(1));
2220        }
2221}
2222
2223/**
2224 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2225 *
2226 * This function can be used to force the FG algorithm to recalculate a new
2227 * voltage based battery capacity.
2228 */
2229void ab8500_fg_reinit(void)
2230{
2231        struct ab8500_fg *di = ab8500_fg_get();
2232        /* User won't be notified if a null pointer returned. */
2233        if (di != NULL)
2234                queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2235}
2236
2237/* Exposure to the sysfs interface */
2238
2239struct ab8500_fg_sysfs_entry {
2240        struct attribute attr;
2241        ssize_t (*show)(struct ab8500_fg *, char *);
2242        ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2243};
2244
2245static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2246{
2247        return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2248}
2249
2250static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2251                                 size_t count)
2252{
2253        unsigned long charge_full;
2254        ssize_t ret = -EINVAL;
2255
2256        ret = strict_strtoul(buf, 10, &charge_full);
2257
2258        dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2259
2260        if (!ret) {
2261                di->bat_cap.max_mah = (int) charge_full;
2262                ret = count;
2263        }
2264        return ret;
2265}
2266
2267static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2268{
2269        return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2270}
2271
2272static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2273                                 size_t count)
2274{
2275        unsigned long charge_now;
2276        ssize_t ret;
2277
2278        ret = strict_strtoul(buf, 10, &charge_now);
2279
2280        dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2281                ret, charge_now, di->bat_cap.prev_mah);
2282
2283        if (!ret) {
2284                di->bat_cap.user_mah = (int) charge_now;
2285                di->flags.user_cap = true;
2286                ret = count;
2287                queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2288        }
2289        return ret;
2290}
2291
2292static struct ab8500_fg_sysfs_entry charge_full_attr =
2293        __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2294
2295static struct ab8500_fg_sysfs_entry charge_now_attr =
2296        __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2297
2298static ssize_t
2299ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2300{
2301        struct ab8500_fg_sysfs_entry *entry;
2302        struct ab8500_fg *di;
2303
2304        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2305        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2306
2307        if (!entry->show)
2308                return -EIO;
2309
2310        return entry->show(di, buf);
2311}
2312static ssize_t
2313ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2314                size_t count)
2315{
2316        struct ab8500_fg_sysfs_entry *entry;
2317        struct ab8500_fg *di;
2318
2319        entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2320        di = container_of(kobj, struct ab8500_fg, fg_kobject);
2321
2322        if (!entry->store)
2323                return -EIO;
2324
2325        return entry->store(di, buf, count);
2326}
2327
2328static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2329        .show = ab8500_fg_show,
2330        .store = ab8500_fg_store,
2331};
2332
2333static struct attribute *ab8500_fg_attrs[] = {
2334        &charge_full_attr.attr,
2335        &charge_now_attr.attr,
2336        NULL,
2337};
2338
2339static struct kobj_type ab8500_fg_ktype = {
2340        .sysfs_ops = &ab8500_fg_sysfs_ops,
2341        .default_attrs = ab8500_fg_attrs,
2342};
2343
2344/**
2345 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2346 * @di:                pointer to the struct ab8500_chargalg
2347 *
2348 * This function removes the entry in sysfs.
2349 */
2350static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2351{
2352        kobject_del(&di->fg_kobject);
2353}
2354
2355/**
2356 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2357 * @di:                pointer to the struct ab8500_chargalg
2358 *
2359 * This function adds an entry in sysfs.
2360 * Returns error code in case of failure else 0(on success)
2361 */
2362static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2363{
2364        int ret = 0;
2365
2366        ret = kobject_init_and_add(&di->fg_kobject,
2367                &ab8500_fg_ktype,
2368                NULL, "battery");
2369        if (ret < 0)
2370                dev_err(di->dev, "failed to create sysfs entry\n");
2371
2372        return ret;
2373}
2374/* Exposure to the sysfs interface <<END>> */
2375
2376#if defined(CONFIG_PM)
2377static int ab8500_fg_resume(struct platform_device *pdev)
2378{
2379        struct ab8500_fg *di = platform_get_drvdata(pdev);
2380
2381        /*
2382         * Change state if we're not charging. If we're charging we will wake
2383         * up on the FG IRQ
2384         */
2385        if (!di->flags.charging) {
2386                ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2387                queue_work(di->fg_wq, &di->fg_work);
2388        }
2389
2390        return 0;
2391}
2392
2393static int ab8500_fg_suspend(struct platform_device *pdev,
2394        pm_message_t state)
2395{
2396        struct ab8500_fg *di = platform_get_drvdata(pdev);
2397
2398        flush_delayed_work(&di->fg_periodic_work);
2399
2400        /*
2401         * If the FG is enabled we will disable it before going to suspend
2402         * only if we're not charging
2403         */
2404        if (di->flags.fg_enabled && !di->flags.charging)
2405                ab8500_fg_coulomb_counter(di, false);
2406
2407        return 0;
2408}
2409#else
2410#define ab8500_fg_suspend      NULL
2411#define ab8500_fg_resume       NULL
2412#endif
2413
2414static int __devexit ab8500_fg_remove(struct platform_device *pdev)
2415{
2416        int ret = 0;
2417        struct ab8500_fg *di = platform_get_drvdata(pdev);
2418
2419        list_del(&di->node);
2420
2421        /* Disable coulomb counter */
2422        ret = ab8500_fg_coulomb_counter(di, false);
2423        if (ret)
2424                dev_err(di->dev, "failed to disable coulomb counter\n");
2425
2426        destroy_workqueue(di->fg_wq);
2427        ab8500_fg_sysfs_exit(di);
2428
2429        flush_scheduled_work();
2430        power_supply_unregister(&di->fg_psy);
2431        platform_set_drvdata(pdev, NULL);
2432        kfree(di);
2433        return ret;
2434}
2435
2436/* ab8500 fg driver interrupts and their respective isr */
2437static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2438        {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2439        {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2440        {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2441        {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2442        {"CCEOC", ab8500_fg_cc_data_end_handler},
2443};
2444
2445static int __devinit ab8500_fg_probe(struct platform_device *pdev)
2446{
2447        int i, irq;
2448        int ret = 0;
2449        struct abx500_bm_plat_data *plat_data = pdev->dev.platform_data;
2450        struct ab8500_fg *di;
2451
2452        if (!plat_data) {
2453                dev_err(&pdev->dev, "No platform data\n");
2454                return -EINVAL;
2455        }
2456
2457        di = kzalloc(sizeof(*di), GFP_KERNEL);
2458        if (!di)
2459                return -ENOMEM;
2460
2461        mutex_init(&di->cc_lock);
2462
2463        /* get parent data */
2464        di->dev = &pdev->dev;
2465        di->parent = dev_get_drvdata(pdev->dev.parent);
2466        di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2467
2468        /* get fg specific platform data */
2469        di->pdata = plat_data->fg;
2470        if (!di->pdata) {
2471                dev_err(di->dev, "no fg platform data supplied\n");
2472                ret = -EINVAL;
2473                goto free_device_info;
2474        }
2475
2476        /* get battery specific platform data */
2477        di->bat = plat_data->battery;
2478        if (!di->bat) {
2479                dev_err(di->dev, "no battery platform data supplied\n");
2480                ret = -EINVAL;
2481                goto free_device_info;
2482        }
2483
2484        di->fg_psy.name = "ab8500_fg";
2485        di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2486        di->fg_psy.properties = ab8500_fg_props;
2487        di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2488        di->fg_psy.get_property = ab8500_fg_get_property;
2489        di->fg_psy.supplied_to = di->pdata->supplied_to;
2490        di->fg_psy.num_supplicants = di->pdata->num_supplicants;
2491        di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2492
2493        di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2494                di->bat->bat_type[di->bat->batt_id].charge_full_design;
2495
2496        di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2497
2498        di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
2499
2500        di->init_capacity = true;
2501
2502        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2503        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2504
2505        /* Create a work queue for running the FG algorithm */
2506        di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2507        if (di->fg_wq == NULL) {
2508                dev_err(di->dev, "failed to create work queue\n");
2509                goto free_device_info;
2510        }
2511
2512        /* Init work for running the fg algorithm instantly */
2513        INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2514
2515        /* Init work for getting the battery accumulated current */
2516        INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2517
2518        /* Init work for reinitialising the fg algorithm */
2519        INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work,
2520                ab8500_fg_reinit_work);
2521
2522        /* Work delayed Queue to run the state machine */
2523        INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work,
2524                ab8500_fg_periodic_work);
2525
2526        /* Work to check low battery condition */
2527        INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work,
2528                ab8500_fg_low_bat_work);
2529
2530        /* Init work for HW failure check */
2531        INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work,
2532                ab8500_fg_check_hw_failure_work);
2533
2534        /* Initialize OVV, and other registers */
2535        ret = ab8500_fg_init_hw_registers(di);
2536        if (ret) {
2537                dev_err(di->dev, "failed to initialize registers\n");
2538                goto free_inst_curr_wq;
2539        }
2540
2541        /* Consider battery unknown until we're informed otherwise */
2542        di->flags.batt_unknown = true;
2543        di->flags.batt_id_received = false;
2544
2545        /* Register FG power supply class */
2546        ret = power_supply_register(di->dev, &di->fg_psy);
2547        if (ret) {
2548                dev_err(di->dev, "failed to register FG psy\n");
2549                goto free_inst_curr_wq;
2550        }
2551
2552        di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
2553        ab8500_fg_coulomb_counter(di, true);
2554
2555        /* Initialize completion used to notify completion of inst current */
2556        init_completion(&di->ab8500_fg_complete);
2557
2558        /* Register interrupts */
2559        for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2560                irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2561                ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2562                        IRQF_SHARED | IRQF_NO_SUSPEND,
2563                        ab8500_fg_irq[i].name, di);
2564
2565                if (ret != 0) {
2566                        dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2567                                , ab8500_fg_irq[i].name, irq, ret);
2568                        goto free_irq;
2569                }
2570                dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2571                        ab8500_fg_irq[i].name, irq, ret);
2572        }
2573        di->irq = platform_get_irq_byname(pdev, "CCEOC");
2574        disable_irq(di->irq);
2575
2576        platform_set_drvdata(pdev, di);
2577
2578        ret = ab8500_fg_sysfs_init(di);
2579        if (ret) {
2580                dev_err(di->dev, "failed to create sysfs entry\n");
2581                goto free_irq;
2582        }
2583
2584        /* Calibrate the fg first time */
2585        di->flags.calibrate = true;
2586        di->calib_state = AB8500_FG_CALIB_INIT;
2587
2588        /* Use room temp as default value until we get an update from driver. */
2589        di->bat_temp = 210;
2590
2591        /* Run the FG algorithm */
2592        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2593
2594        list_add_tail(&di->node, &ab8500_fg_list);
2595
2596        return ret;
2597
2598free_irq:
2599        power_supply_unregister(&di->fg_psy);
2600
2601        /* We also have to free all successfully registered irqs */
2602        for (i = i - 1; i >= 0; i--) {
2603                irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2604                free_irq(irq, di);
2605        }
2606free_inst_curr_wq:
2607        destroy_workqueue(di->fg_wq);
2608free_device_info:
2609        kfree(di);
2610
2611        return ret;
2612}
2613
2614static struct platform_driver ab8500_fg_driver = {
2615        .probe = ab8500_fg_probe,
2616        .remove = __devexit_p(ab8500_fg_remove),
2617        .suspend = ab8500_fg_suspend,
2618        .resume = ab8500_fg_resume,
2619        .driver = {
2620                .name = "ab8500-fg",
2621                .owner = THIS_MODULE,
2622        },
2623};
2624
2625static int __init ab8500_fg_init(void)
2626{
2627        return platform_driver_register(&ab8500_fg_driver);
2628}
2629
2630static void __exit ab8500_fg_exit(void)
2631{
2632        platform_driver_unregister(&ab8500_fg_driver);
2633}
2634
2635subsys_initcall_sync(ab8500_fg_init);
2636module_exit(ab8500_fg_exit);
2637
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2640MODULE_ALIAS("platform:ab8500-fg");
2641MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
2642
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.