linux/drivers/cpufreq/powernow-k8.c
<<
>>
Prefs
   1/*
   2 *   (c) 2003-2012 Advanced Micro Devices, Inc.
   3 *  Your use of this code is subject to the terms and conditions of the
   4 *  GNU general public license version 2. See "COPYING" or
   5 *  http://www.gnu.org/licenses/gpl.html
   6 *
   7 *  Maintainer:
   8 *  Andreas Herrmann <andreas.herrmann3@amd.com>
   9 *
  10 *  Based on the powernow-k7.c module written by Dave Jones.
  11 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  12 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  13 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
  14 *  Licensed under the terms of the GNU GPL License version 2.
  15 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  16 *
  17 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  18 *  Dominik Brodowski, Jacob Shin, and others.
  19 *  Originally developed by Paul Devriendt.
  20 *
  21 *  Processor information obtained from Chapter 9 (Power and Thermal
  22 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
  23 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
  24 *  Power Management" in BKDGs for newer AMD CPU families.
  25 *
  26 *  Tables for specific CPUs can be inferred from AMD's processor
  27 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
  28 */
  29
  30#include <linux/kernel.h>
  31#include <linux/smp.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/string.h>
  37#include <linux/cpumask.h>
  38#include <linux/io.h>
  39#include <linux/delay.h>
  40
  41#include <asm/msr.h>
  42#include <asm/cpu_device_id.h>
  43
  44#include <linux/acpi.h>
  45#include <linux/mutex.h>
  46#include <acpi/processor.h>
  47
  48#define PFX "powernow-k8: "
  49#define VERSION "version 2.20.00"
  50#include "powernow-k8.h"
  51#include "mperf.h"
  52
  53/* serialize freq changes  */
  54static DEFINE_MUTEX(fidvid_mutex);
  55
  56static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  57
  58static int cpu_family = CPU_OPTERON;
  59
  60/* array to map SW pstate number to acpi state */
  61static u32 ps_to_as[8];
  62
  63/* core performance boost */
  64static bool cpb_capable, cpb_enabled;
  65static struct msr __percpu *msrs;
  66
  67static struct cpufreq_driver cpufreq_amd64_driver;
  68
  69#ifndef CONFIG_SMP
  70static inline const struct cpumask *cpu_core_mask(int cpu)
  71{
  72        return cpumask_of(0);
  73}
  74#endif
  75
  76/* Return a frequency in MHz, given an input fid */
  77static u32 find_freq_from_fid(u32 fid)
  78{
  79        return 800 + (fid * 100);
  80}
  81
  82/* Return a frequency in KHz, given an input fid */
  83static u32 find_khz_freq_from_fid(u32 fid)
  84{
  85        return 1000 * find_freq_from_fid(fid);
  86}
  87
  88static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  89                                     u32 pstate)
  90{
  91        return data[ps_to_as[pstate]].frequency;
  92}
  93
  94/* Return the vco fid for an input fid
  95 *
  96 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  97 * only from corresponding high fids. This returns "high" fid corresponding to
  98 * "low" one.
  99 */
 100static u32 convert_fid_to_vco_fid(u32 fid)
 101{
 102        if (fid < HI_FID_TABLE_BOTTOM)
 103                return 8 + (2 * fid);
 104        else
 105                return fid;
 106}
 107
 108/*
 109 * Return 1 if the pending bit is set. Unless we just instructed the processor
 110 * to transition to a new state, seeing this bit set is really bad news.
 111 */
 112static int pending_bit_stuck(void)
 113{
 114        u32 lo, hi;
 115
 116        if (cpu_family == CPU_HW_PSTATE)
 117                return 0;
 118
 119        rdmsr(MSR_FIDVID_STATUS, lo, hi);
 120        return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
 121}
 122
 123/*
 124 * Update the global current fid / vid values from the status msr.
 125 * Returns 1 on error.
 126 */
 127static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 128{
 129        u32 lo, hi;
 130        u32 i = 0;
 131
 132        if (cpu_family == CPU_HW_PSTATE) {
 133                rdmsr(MSR_PSTATE_STATUS, lo, hi);
 134                i = lo & HW_PSTATE_MASK;
 135                data->currpstate = i;
 136
 137                /*
 138                 * a workaround for family 11h erratum 311 might cause
 139                 * an "out-of-range Pstate if the core is in Pstate-0
 140                 */
 141                if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
 142                        data->currpstate = HW_PSTATE_0;
 143
 144                return 0;
 145        }
 146        do {
 147                if (i++ > 10000) {
 148                        pr_debug("detected change pending stuck\n");
 149                        return 1;
 150                }
 151                rdmsr(MSR_FIDVID_STATUS, lo, hi);
 152        } while (lo & MSR_S_LO_CHANGE_PENDING);
 153
 154        data->currvid = hi & MSR_S_HI_CURRENT_VID;
 155        data->currfid = lo & MSR_S_LO_CURRENT_FID;
 156
 157        return 0;
 158}
 159
 160/* the isochronous relief time */
 161static void count_off_irt(struct powernow_k8_data *data)
 162{
 163        udelay((1 << data->irt) * 10);
 164        return;
 165}
 166
 167/* the voltage stabilization time */
 168static void count_off_vst(struct powernow_k8_data *data)
 169{
 170        udelay(data->vstable * VST_UNITS_20US);
 171        return;
 172}
 173
 174/* need to init the control msr to a safe value (for each cpu) */
 175static void fidvid_msr_init(void)
 176{
 177        u32 lo, hi;
 178        u8 fid, vid;
 179
 180        rdmsr(MSR_FIDVID_STATUS, lo, hi);
 181        vid = hi & MSR_S_HI_CURRENT_VID;
 182        fid = lo & MSR_S_LO_CURRENT_FID;
 183        lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 184        hi = MSR_C_HI_STP_GNT_BENIGN;
 185        pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 186        wrmsr(MSR_FIDVID_CTL, lo, hi);
 187}
 188
 189/* write the new fid value along with the other control fields to the msr */
 190static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 191{
 192        u32 lo;
 193        u32 savevid = data->currvid;
 194        u32 i = 0;
 195
 196        if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 197                printk(KERN_ERR PFX "internal error - overflow on fid write\n");
 198                return 1;
 199        }
 200
 201        lo = fid;
 202        lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 203        lo |= MSR_C_LO_INIT_FID_VID;
 204
 205        pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 206                fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 207
 208        do {
 209                wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 210                if (i++ > 100) {
 211                        printk(KERN_ERR PFX
 212                                "Hardware error - pending bit very stuck - "
 213                                "no further pstate changes possible\n");
 214                        return 1;
 215                }
 216        } while (query_current_values_with_pending_wait(data));
 217
 218        count_off_irt(data);
 219
 220        if (savevid != data->currvid) {
 221                printk(KERN_ERR PFX
 222                        "vid change on fid trans, old 0x%x, new 0x%x\n",
 223                        savevid, data->currvid);
 224                return 1;
 225        }
 226
 227        if (fid != data->currfid) {
 228                printk(KERN_ERR PFX
 229                        "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 230                        data->currfid);
 231                return 1;
 232        }
 233
 234        return 0;
 235}
 236
 237/* Write a new vid to the hardware */
 238static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 239{
 240        u32 lo;
 241        u32 savefid = data->currfid;
 242        int i = 0;
 243
 244        if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 245                printk(KERN_ERR PFX "internal error - overflow on vid write\n");
 246                return 1;
 247        }
 248
 249        lo = data->currfid;
 250        lo |= (vid << MSR_C_LO_VID_SHIFT);
 251        lo |= MSR_C_LO_INIT_FID_VID;
 252
 253        pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 254                vid, lo, STOP_GRANT_5NS);
 255
 256        do {
 257                wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 258                if (i++ > 100) {
 259                        printk(KERN_ERR PFX "internal error - pending bit "
 260                                        "very stuck - no further pstate "
 261                                        "changes possible\n");
 262                        return 1;
 263                }
 264        } while (query_current_values_with_pending_wait(data));
 265
 266        if (savefid != data->currfid) {
 267                printk(KERN_ERR PFX "fid changed on vid trans, old "
 268                        "0x%x new 0x%x\n",
 269                       savefid, data->currfid);
 270                return 1;
 271        }
 272
 273        if (vid != data->currvid) {
 274                printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
 275                                "curr 0x%x\n",
 276                                vid, data->currvid);
 277                return 1;
 278        }
 279
 280        return 0;
 281}
 282
 283/*
 284 * Reduce the vid by the max of step or reqvid.
 285 * Decreasing vid codes represent increasing voltages:
 286 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 287 */
 288static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 289                u32 reqvid, u32 step)
 290{
 291        if ((data->currvid - reqvid) > step)
 292                reqvid = data->currvid - step;
 293
 294        if (write_new_vid(data, reqvid))
 295                return 1;
 296
 297        count_off_vst(data);
 298
 299        return 0;
 300}
 301
 302/* Change hardware pstate by single MSR write */
 303static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
 304{
 305        wrmsr(MSR_PSTATE_CTRL, pstate, 0);
 306        data->currpstate = pstate;
 307        return 0;
 308}
 309
 310/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 311static int transition_fid_vid(struct powernow_k8_data *data,
 312                u32 reqfid, u32 reqvid)
 313{
 314        if (core_voltage_pre_transition(data, reqvid, reqfid))
 315                return 1;
 316
 317        if (core_frequency_transition(data, reqfid))
 318                return 1;
 319
 320        if (core_voltage_post_transition(data, reqvid))
 321                return 1;
 322
 323        if (query_current_values_with_pending_wait(data))
 324                return 1;
 325
 326        if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 327                printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
 328                                "curr 0x%x 0x%x\n",
 329                                smp_processor_id(),
 330                                reqfid, reqvid, data->currfid, data->currvid);
 331                return 1;
 332        }
 333
 334        pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 335                smp_processor_id(), data->currfid, data->currvid);
 336
 337        return 0;
 338}
 339
 340/* Phase 1 - core voltage transition ... setup voltage */
 341static int core_voltage_pre_transition(struct powernow_k8_data *data,
 342                u32 reqvid, u32 reqfid)
 343{
 344        u32 rvosteps = data->rvo;
 345        u32 savefid = data->currfid;
 346        u32 maxvid, lo, rvomult = 1;
 347
 348        pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
 349                "reqvid 0x%x, rvo 0x%x\n",
 350                smp_processor_id(),
 351                data->currfid, data->currvid, reqvid, data->rvo);
 352
 353        if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 354                rvomult = 2;
 355        rvosteps *= rvomult;
 356        rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 357        maxvid = 0x1f & (maxvid >> 16);
 358        pr_debug("ph1 maxvid=0x%x\n", maxvid);
 359        if (reqvid < maxvid) /* lower numbers are higher voltages */
 360                reqvid = maxvid;
 361
 362        while (data->currvid > reqvid) {
 363                pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
 364                        data->currvid, reqvid);
 365                if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 366                        return 1;
 367        }
 368
 369        while ((rvosteps > 0) &&
 370                        ((rvomult * data->rvo + data->currvid) > reqvid)) {
 371                if (data->currvid == maxvid) {
 372                        rvosteps = 0;
 373                } else {
 374                        pr_debug("ph1: changing vid for rvo, req 0x%x\n",
 375                                data->currvid - 1);
 376                        if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 377                                return 1;
 378                        rvosteps--;
 379                }
 380        }
 381
 382        if (query_current_values_with_pending_wait(data))
 383                return 1;
 384
 385        if (savefid != data->currfid) {
 386                printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
 387                                data->currfid);
 388                return 1;
 389        }
 390
 391        pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 392                data->currfid, data->currvid);
 393
 394        return 0;
 395}
 396
 397/* Phase 2 - core frequency transition */
 398static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 399{
 400        u32 vcoreqfid, vcocurrfid, vcofiddiff;
 401        u32 fid_interval, savevid = data->currvid;
 402
 403        if (data->currfid == reqfid) {
 404                printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
 405                                data->currfid);
 406                return 0;
 407        }
 408
 409        pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
 410                "reqfid 0x%x\n",
 411                smp_processor_id(),
 412                data->currfid, data->currvid, reqfid);
 413
 414        vcoreqfid = convert_fid_to_vco_fid(reqfid);
 415        vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 416        vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 417            : vcoreqfid - vcocurrfid;
 418
 419        if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 420                vcofiddiff = 0;
 421
 422        while (vcofiddiff > 2) {
 423                (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 424
 425                if (reqfid > data->currfid) {
 426                        if (data->currfid > LO_FID_TABLE_TOP) {
 427                                if (write_new_fid(data,
 428                                                data->currfid + fid_interval))
 429                                        return 1;
 430                        } else {
 431                                if (write_new_fid
 432                                    (data,
 433                                     2 + convert_fid_to_vco_fid(data->currfid)))
 434                                        return 1;
 435                        }
 436                } else {
 437                        if (write_new_fid(data, data->currfid - fid_interval))
 438                                return 1;
 439                }
 440
 441                vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 442                vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 443                    : vcoreqfid - vcocurrfid;
 444        }
 445
 446        if (write_new_fid(data, reqfid))
 447                return 1;
 448
 449        if (query_current_values_with_pending_wait(data))
 450                return 1;
 451
 452        if (data->currfid != reqfid) {
 453                printk(KERN_ERR PFX
 454                        "ph2: mismatch, failed fid transition, "
 455                        "curr 0x%x, req 0x%x\n",
 456                        data->currfid, reqfid);
 457                return 1;
 458        }
 459
 460        if (savevid != data->currvid) {
 461                printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
 462                        savevid, data->currvid);
 463                return 1;
 464        }
 465
 466        pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 467                data->currfid, data->currvid);
 468
 469        return 0;
 470}
 471
 472/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 473static int core_voltage_post_transition(struct powernow_k8_data *data,
 474                u32 reqvid)
 475{
 476        u32 savefid = data->currfid;
 477        u32 savereqvid = reqvid;
 478
 479        pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 480                smp_processor_id(),
 481                data->currfid, data->currvid);
 482
 483        if (reqvid != data->currvid) {
 484                if (write_new_vid(data, reqvid))
 485                        return 1;
 486
 487                if (savefid != data->currfid) {
 488                        printk(KERN_ERR PFX
 489                               "ph3: bad fid change, save 0x%x, curr 0x%x\n",
 490                               savefid, data->currfid);
 491                        return 1;
 492                }
 493
 494                if (data->currvid != reqvid) {
 495                        printk(KERN_ERR PFX
 496                               "ph3: failed vid transition\n, "
 497                               "req 0x%x, curr 0x%x",
 498                               reqvid, data->currvid);
 499                        return 1;
 500                }
 501        }
 502
 503        if (query_current_values_with_pending_wait(data))
 504                return 1;
 505
 506        if (savereqvid != data->currvid) {
 507                pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
 508                return 1;
 509        }
 510
 511        if (savefid != data->currfid) {
 512                pr_debug("ph3 failed, currfid changed 0x%x\n",
 513                        data->currfid);
 514                return 1;
 515        }
 516
 517        pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 518                data->currfid, data->currvid);
 519
 520        return 0;
 521}
 522
 523static const struct x86_cpu_id powernow_k8_ids[] = {
 524        /* IO based frequency switching */
 525        { X86_VENDOR_AMD, 0xf },
 526        /* MSR based frequency switching supported */
 527        X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
 528        {}
 529};
 530MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
 531
 532static void check_supported_cpu(void *_rc)
 533{
 534        u32 eax, ebx, ecx, edx;
 535        int *rc = _rc;
 536
 537        *rc = -ENODEV;
 538
 539        eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 540
 541        if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 542                if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 543                    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 544                        printk(KERN_INFO PFX
 545                                "Processor cpuid %x not supported\n", eax);
 546                        return;
 547                }
 548
 549                eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 550                if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 551                        printk(KERN_INFO PFX
 552                               "No frequency change capabilities detected\n");
 553                        return;
 554                }
 555
 556                cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 557                if ((edx & P_STATE_TRANSITION_CAPABLE)
 558                        != P_STATE_TRANSITION_CAPABLE) {
 559                        printk(KERN_INFO PFX
 560                                "Power state transitions not supported\n");
 561                        return;
 562                }
 563        } else { /* must be a HW Pstate capable processor */
 564                cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 565                if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
 566                        cpu_family = CPU_HW_PSTATE;
 567                else
 568                        return;
 569        }
 570
 571        *rc = 0;
 572}
 573
 574static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 575                u8 maxvid)
 576{
 577        unsigned int j;
 578        u8 lastfid = 0xff;
 579
 580        for (j = 0; j < data->numps; j++) {
 581                if (pst[j].vid > LEAST_VID) {
 582                        printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
 583                               j, pst[j].vid);
 584                        return -EINVAL;
 585                }
 586                if (pst[j].vid < data->rvo) {
 587                        /* vid + rvo >= 0 */
 588                        printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
 589                               " %d\n", j);
 590                        return -ENODEV;
 591                }
 592                if (pst[j].vid < maxvid + data->rvo) {
 593                        /* vid + rvo >= maxvid */
 594                        printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
 595                               " %d\n", j);
 596                        return -ENODEV;
 597                }
 598                if (pst[j].fid > MAX_FID) {
 599                        printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
 600                               " %d\n", j);
 601                        return -ENODEV;
 602                }
 603                if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 604                        /* Only first fid is allowed to be in "low" range */
 605                        printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
 606                               "0x%x\n", j, pst[j].fid);
 607                        return -EINVAL;
 608                }
 609                if (pst[j].fid < lastfid)
 610                        lastfid = pst[j].fid;
 611        }
 612        if (lastfid & 1) {
 613                printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
 614                return -EINVAL;
 615        }
 616        if (lastfid > LO_FID_TABLE_TOP)
 617                printk(KERN_INFO FW_BUG PFX
 618                        "first fid not from lo freq table\n");
 619
 620        return 0;
 621}
 622
 623static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 624                unsigned int entry)
 625{
 626        powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 627}
 628
 629static void print_basics(struct powernow_k8_data *data)
 630{
 631        int j;
 632        for (j = 0; j < data->numps; j++) {
 633                if (data->powernow_table[j].frequency !=
 634                                CPUFREQ_ENTRY_INVALID) {
 635                        if (cpu_family == CPU_HW_PSTATE) {
 636                                printk(KERN_INFO PFX
 637                                        "   %d : pstate %d (%d MHz)\n", j,
 638                                        data->powernow_table[j].index,
 639                                        data->powernow_table[j].frequency/1000);
 640                        } else {
 641                                printk(KERN_INFO PFX
 642                                        "fid 0x%x (%d MHz), vid 0x%x\n",
 643                                        data->powernow_table[j].index & 0xff,
 644                                        data->powernow_table[j].frequency/1000,
 645                                        data->powernow_table[j].index >> 8);
 646                        }
 647                }
 648        }
 649        if (data->batps)
 650                printk(KERN_INFO PFX "Only %d pstates on battery\n",
 651                                data->batps);
 652}
 653
 654static u32 freq_from_fid_did(u32 fid, u32 did)
 655{
 656        u32 mhz = 0;
 657
 658        if (boot_cpu_data.x86 == 0x10)
 659                mhz = (100 * (fid + 0x10)) >> did;
 660        else if (boot_cpu_data.x86 == 0x11)
 661                mhz = (100 * (fid + 8)) >> did;
 662        else
 663                BUG();
 664
 665        return mhz * 1000;
 666}
 667
 668static int fill_powernow_table(struct powernow_k8_data *data,
 669                struct pst_s *pst, u8 maxvid)
 670{
 671        struct cpufreq_frequency_table *powernow_table;
 672        unsigned int j;
 673
 674        if (data->batps) {
 675                /* use ACPI support to get full speed on mains power */
 676                printk(KERN_WARNING PFX
 677                        "Only %d pstates usable (use ACPI driver for full "
 678                        "range\n", data->batps);
 679                data->numps = data->batps;
 680        }
 681
 682        for (j = 1; j < data->numps; j++) {
 683                if (pst[j-1].fid >= pst[j].fid) {
 684                        printk(KERN_ERR PFX "PST out of sequence\n");
 685                        return -EINVAL;
 686                }
 687        }
 688
 689        if (data->numps < 2) {
 690                printk(KERN_ERR PFX "no p states to transition\n");
 691                return -ENODEV;
 692        }
 693
 694        if (check_pst_table(data, pst, maxvid))
 695                return -EINVAL;
 696
 697        powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 698                * (data->numps + 1)), GFP_KERNEL);
 699        if (!powernow_table) {
 700                printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
 701                return -ENOMEM;
 702        }
 703
 704        for (j = 0; j < data->numps; j++) {
 705                int freq;
 706                powernow_table[j].index = pst[j].fid; /* lower 8 bits */
 707                powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
 708                freq = find_khz_freq_from_fid(pst[j].fid);
 709                powernow_table[j].frequency = freq;
 710        }
 711        powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 712        powernow_table[data->numps].index = 0;
 713
 714        if (query_current_values_with_pending_wait(data)) {
 715                kfree(powernow_table);
 716                return -EIO;
 717        }
 718
 719        pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 720        data->powernow_table = powernow_table;
 721        if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 722                print_basics(data);
 723
 724        for (j = 0; j < data->numps; j++)
 725                if ((pst[j].fid == data->currfid) &&
 726                    (pst[j].vid == data->currvid))
 727                        return 0;
 728
 729        pr_debug("currfid/vid do not match PST, ignoring\n");
 730        return 0;
 731}
 732
 733/* Find and validate the PSB/PST table in BIOS. */
 734static int find_psb_table(struct powernow_k8_data *data)
 735{
 736        struct psb_s *psb;
 737        unsigned int i;
 738        u32 mvs;
 739        u8 maxvid;
 740        u32 cpst = 0;
 741        u32 thiscpuid;
 742
 743        for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 744                /* Scan BIOS looking for the signature. */
 745                /* It can not be at ffff0 - it is too big. */
 746
 747                psb = phys_to_virt(i);
 748                if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 749                        continue;
 750
 751                pr_debug("found PSB header at 0x%p\n", psb);
 752
 753                pr_debug("table vers: 0x%x\n", psb->tableversion);
 754                if (psb->tableversion != PSB_VERSION_1_4) {
 755                        printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
 756                        return -ENODEV;
 757                }
 758
 759                pr_debug("flags: 0x%x\n", psb->flags1);
 760                if (psb->flags1) {
 761                        printk(KERN_ERR FW_BUG PFX "unknown flags\n");
 762                        return -ENODEV;
 763                }
 764
 765                data->vstable = psb->vstable;
 766                pr_debug("voltage stabilization time: %d(*20us)\n",
 767                                data->vstable);
 768
 769                pr_debug("flags2: 0x%x\n", psb->flags2);
 770                data->rvo = psb->flags2 & 3;
 771                data->irt = ((psb->flags2) >> 2) & 3;
 772                mvs = ((psb->flags2) >> 4) & 3;
 773                data->vidmvs = 1 << mvs;
 774                data->batps = ((psb->flags2) >> 6) & 3;
 775
 776                pr_debug("ramp voltage offset: %d\n", data->rvo);
 777                pr_debug("isochronous relief time: %d\n", data->irt);
 778                pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 779
 780                pr_debug("numpst: 0x%x\n", psb->num_tables);
 781                cpst = psb->num_tables;
 782                if ((psb->cpuid == 0x00000fc0) ||
 783                    (psb->cpuid == 0x00000fe0)) {
 784                        thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 785                        if ((thiscpuid == 0x00000fc0) ||
 786                            (thiscpuid == 0x00000fe0))
 787                                cpst = 1;
 788                }
 789                if (cpst != 1) {
 790                        printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
 791                        return -ENODEV;
 792                }
 793
 794                data->plllock = psb->plllocktime;
 795                pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 796                pr_debug("maxfid: 0x%x\n", psb->maxfid);
 797                pr_debug("maxvid: 0x%x\n", psb->maxvid);
 798                maxvid = psb->maxvid;
 799
 800                data->numps = psb->numps;
 801                pr_debug("numpstates: 0x%x\n", data->numps);
 802                return fill_powernow_table(data,
 803                                (struct pst_s *)(psb+1), maxvid);
 804        }
 805        /*
 806         * If you see this message, complain to BIOS manufacturer. If
 807         * he tells you "we do not support Linux" or some similar
 808         * nonsense, remember that Windows 2000 uses the same legacy
 809         * mechanism that the old Linux PSB driver uses. Tell them it
 810         * is broken with Windows 2000.
 811         *
 812         * The reference to the AMD documentation is chapter 9 in the
 813         * BIOS and Kernel Developer's Guide, which is available on
 814         * www.amd.com
 815         */
 816        printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
 817        printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
 818                " and Cool'N'Quiet support is enabled in BIOS setup\n");
 819        return -ENODEV;
 820}
 821
 822static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 823                unsigned int index)
 824{
 825        u64 control;
 826
 827        if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
 828                return;
 829
 830        control = data->acpi_data.states[index].control;
 831        data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 832        data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 833        data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 834        data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 835        data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 836        data->vstable = (control >> VST_SHIFT) & VST_MASK;
 837}
 838
 839static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 840{
 841        struct cpufreq_frequency_table *powernow_table;
 842        int ret_val = -ENODEV;
 843        u64 control, status;
 844
 845        if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 846                pr_debug("register performance failed: bad ACPI data\n");
 847                return -EIO;
 848        }
 849
 850        /* verify the data contained in the ACPI structures */
 851        if (data->acpi_data.state_count <= 1) {
 852                pr_debug("No ACPI P-States\n");
 853                goto err_out;
 854        }
 855
 856        control = data->acpi_data.control_register.space_id;
 857        status = data->acpi_data.status_register.space_id;
 858
 859        if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 860            (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 861                pr_debug("Invalid control/status registers (%llx - %llx)\n",
 862                        control, status);
 863                goto err_out;
 864        }
 865
 866        /* fill in data->powernow_table */
 867        powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 868                * (data->acpi_data.state_count + 1)), GFP_KERNEL);
 869        if (!powernow_table) {
 870                pr_debug("powernow_table memory alloc failure\n");
 871                goto err_out;
 872        }
 873
 874        /* fill in data */
 875        data->numps = data->acpi_data.state_count;
 876        powernow_k8_acpi_pst_values(data, 0);
 877
 878        if (cpu_family == CPU_HW_PSTATE)
 879                ret_val = fill_powernow_table_pstate(data, powernow_table);
 880        else
 881                ret_val = fill_powernow_table_fidvid(data, powernow_table);
 882        if (ret_val)
 883                goto err_out_mem;
 884
 885        powernow_table[data->acpi_data.state_count].frequency =
 886                CPUFREQ_TABLE_END;
 887        powernow_table[data->acpi_data.state_count].index = 0;
 888        data->powernow_table = powernow_table;
 889
 890        if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 891                print_basics(data);
 892
 893        /* notify BIOS that we exist */
 894        acpi_processor_notify_smm(THIS_MODULE);
 895
 896        if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 897                printk(KERN_ERR PFX
 898                                "unable to alloc powernow_k8_data cpumask\n");
 899                ret_val = -ENOMEM;
 900                goto err_out_mem;
 901        }
 902
 903        return 0;
 904
 905err_out_mem:
 906        kfree(powernow_table);
 907
 908err_out:
 909        acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
 910
 911        /* data->acpi_data.state_count informs us at ->exit()
 912         * whether ACPI was used */
 913        data->acpi_data.state_count = 0;
 914
 915        return ret_val;
 916}
 917
 918static int fill_powernow_table_pstate(struct powernow_k8_data *data,
 919                struct cpufreq_frequency_table *powernow_table)
 920{
 921        int i;
 922        u32 hi = 0, lo = 0;
 923        rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
 924        data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
 925
 926        for (i = 0; i < data->acpi_data.state_count; i++) {
 927                u32 index;
 928
 929                index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
 930                if (index > data->max_hw_pstate) {
 931                        printk(KERN_ERR PFX "invalid pstate %d - "
 932                                        "bad value %d.\n", i, index);
 933                        printk(KERN_ERR PFX "Please report to BIOS "
 934                                        "manufacturer\n");
 935                        invalidate_entry(powernow_table, i);
 936                        continue;
 937                }
 938
 939                ps_to_as[index] = i;
 940
 941                /* Frequency may be rounded for these */
 942                if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
 943                                 || boot_cpu_data.x86 == 0x11) {
 944
 945                        rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
 946                        if (!(hi & HW_PSTATE_VALID_MASK)) {
 947                                pr_debug("invalid pstate %d, ignoring\n", index);
 948                                invalidate_entry(powernow_table, i);
 949                                continue;
 950                        }
 951
 952                        powernow_table[i].frequency =
 953                                freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
 954                } else
 955                        powernow_table[i].frequency =
 956                                data->acpi_data.states[i].core_frequency * 1000;
 957
 958                powernow_table[i].index = index;
 959        }
 960        return 0;
 961}
 962
 963static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 964                struct cpufreq_frequency_table *powernow_table)
 965{
 966        int i;
 967
 968        for (i = 0; i < data->acpi_data.state_count; i++) {
 969                u32 fid;
 970                u32 vid;
 971                u32 freq, index;
 972                u64 status, control;
 973
 974                if (data->exttype) {
 975                        status =  data->acpi_data.states[i].status;
 976                        fid = status & EXT_FID_MASK;
 977                        vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 978                } else {
 979                        control =  data->acpi_data.states[i].control;
 980                        fid = control & FID_MASK;
 981                        vid = (control >> VID_SHIFT) & VID_MASK;
 982                }
 983
 984                pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 985
 986                index = fid | (vid<<8);
 987                powernow_table[i].index = index;
 988
 989                freq = find_khz_freq_from_fid(fid);
 990                powernow_table[i].frequency = freq;
 991
 992                /* verify frequency is OK */
 993                if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 994                        pr_debug("invalid freq %u kHz, ignoring\n", freq);
 995                        invalidate_entry(powernow_table, i);
 996                        continue;
 997                }
 998
 999                /* verify voltage is OK -
1000                 * BIOSs are using "off" to indicate invalid */
1001                if (vid == VID_OFF) {
1002                        pr_debug("invalid vid %u, ignoring\n", vid);
1003                        invalidate_entry(powernow_table, i);
1004                        continue;
1005                }
1006
1007                if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008                        printk(KERN_INFO PFX "invalid freq entries "
1009                                "%u kHz vs. %u kHz\n", freq,
1010                                (unsigned int)
1011                                (data->acpi_data.states[i].core_frequency
1012                                 * 1000));
1013                        invalidate_entry(powernow_table, i);
1014                        continue;
1015                }
1016        }
1017        return 0;
1018}
1019
1020static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1021{
1022        if (data->acpi_data.state_count)
1023                acpi_processor_unregister_performance(&data->acpi_data,
1024                                data->cpu);
1025        free_cpumask_var(data->acpi_data.shared_cpu_map);
1026}
1027
1028static int get_transition_latency(struct powernow_k8_data *data)
1029{
1030        int max_latency = 0;
1031        int i;
1032        for (i = 0; i < data->acpi_data.state_count; i++) {
1033                int cur_latency = data->acpi_data.states[i].transition_latency
1034                        + data->acpi_data.states[i].bus_master_latency;
1035                if (cur_latency > max_latency)
1036                        max_latency = cur_latency;
1037        }
1038        if (max_latency == 0) {
1039                /*
1040                 * Fam 11h and later may return 0 as transition latency. This
1041                 * is intended and means "very fast". While cpufreq core and
1042                 * governors currently can handle that gracefully, better set it
1043                 * to 1 to avoid problems in the future.
1044                 */
1045                if (boot_cpu_data.x86 < 0x11)
1046                        printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047                                "latency\n");
1048                max_latency = 1;
1049        }
1050        /* value in usecs, needs to be in nanoseconds */
1051        return 1000 * max_latency;
1052}
1053
1054/* Take a frequency, and issue the fid/vid transition command */
1055static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056                unsigned int index)
1057{
1058        u32 fid = 0;
1059        u32 vid = 0;
1060        int res, i;
1061        struct cpufreq_freqs freqs;
1062
1063        pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1064
1065        /* fid/vid correctness check for k8 */
1066        /* fid are the lower 8 bits of the index we stored into
1067         * the cpufreq frequency table in find_psb_table, vid
1068         * are the upper 8 bits.
1069         */
1070        fid = data->powernow_table[index].index & 0xFF;
1071        vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1072
1073        pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1074
1075        if (query_current_values_with_pending_wait(data))
1076                return 1;
1077
1078        if ((data->currvid == vid) && (data->currfid == fid)) {
1079                pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080                        fid, vid);
1081                return 0;
1082        }
1083
1084        pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085                smp_processor_id(), fid, vid);
1086        freqs.old = find_khz_freq_from_fid(data->currfid);
1087        freqs.new = find_khz_freq_from_fid(fid);
1088
1089        for_each_cpu(i, data->available_cores) {
1090                freqs.cpu = i;
1091                cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1092        }
1093
1094        res = transition_fid_vid(data, fid, vid);
1095        if (res)
1096                return res;
1097
1098        freqs.new = find_khz_freq_from_fid(data->currfid);
1099
1100        for_each_cpu(i, data->available_cores) {
1101                freqs.cpu = i;
1102                cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1103        }
1104        return res;
1105}
1106
1107/* Take a frequency, and issue the hardware pstate transition command */
1108static int transition_frequency_pstate(struct powernow_k8_data *data,
1109                unsigned int index)
1110{
1111        u32 pstate = 0;
1112        int res, i;
1113        struct cpufreq_freqs freqs;
1114
1115        pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1116
1117        /* get MSR index for hardware pstate transition */
1118        pstate = index & HW_PSTATE_MASK;
1119        if (pstate > data->max_hw_pstate)
1120                return -EINVAL;
1121
1122        freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123                        data->currpstate);
1124        freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1125
1126        for_each_cpu(i, data->available_cores) {
1127                freqs.cpu = i;
1128                cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1129        }
1130
1131        res = transition_pstate(data, pstate);
1132        freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1133
1134        for_each_cpu(i, data->available_cores) {
1135                freqs.cpu = i;
1136                cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1137        }
1138        return res;
1139}
1140
1141struct powernowk8_target_arg {
1142        struct cpufreq_policy           *pol;
1143        unsigned                        targfreq;
1144        unsigned                        relation;
1145};
1146
1147static long powernowk8_target_fn(void *arg)
1148{
1149        struct powernowk8_target_arg *pta = arg;
1150        struct cpufreq_policy *pol = pta->pol;
1151        unsigned targfreq = pta->targfreq;
1152        unsigned relation = pta->relation;
1153        struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154        u32 checkfid;
1155        u32 checkvid;
1156        unsigned int newstate;
1157        int ret;
1158
1159        if (!data)
1160                return -EINVAL;
1161
1162        checkfid = data->currfid;
1163        checkvid = data->currvid;
1164
1165        if (pending_bit_stuck()) {
1166                printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167                return -EIO;
1168        }
1169
1170        pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171                pol->cpu, targfreq, pol->min, pol->max, relation);
1172
1173        if (query_current_values_with_pending_wait(data))
1174                return -EIO;
1175
1176        if (cpu_family != CPU_HW_PSTATE) {
1177                pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178                data->currfid, data->currvid);
1179
1180                if ((checkvid != data->currvid) ||
1181                    (checkfid != data->currfid)) {
1182                        printk(KERN_INFO PFX
1183                                "error - out of sync, fix 0x%x 0x%x, "
1184                                "vid 0x%x 0x%x\n",
1185                                checkfid, data->currfid,
1186                                checkvid, data->currvid);
1187                }
1188        }
1189
1190        if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191                                targfreq, relation, &newstate))
1192                return -EIO;
1193
1194        mutex_lock(&fidvid_mutex);
1195
1196        powernow_k8_acpi_pst_values(data, newstate);
1197
1198        if (cpu_family == CPU_HW_PSTATE)
1199                ret = transition_frequency_pstate(data,
1200                        data->powernow_table[newstate].index);
1201        else
1202                ret = transition_frequency_fidvid(data, newstate);
1203        if (ret) {
1204                printk(KERN_ERR PFX "transition frequency failed\n");
1205                mutex_unlock(&fidvid_mutex);
1206                return 1;
1207        }
1208        mutex_unlock(&fidvid_mutex);
1209
1210        if (cpu_family == CPU_HW_PSTATE)
1211                pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212                                data->powernow_table[newstate].index);
1213        else
1214                pol->cur = find_khz_freq_from_fid(data->currfid);
1215
1216        return 0;
1217}
1218
1219/* Driver entry point to switch to the target frequency */
1220static int powernowk8_target(struct cpufreq_policy *pol,
1221                unsigned targfreq, unsigned relation)
1222{
1223        struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224                                             .relation = relation };
1225
1226        return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1227}
1228
1229/* Driver entry point to verify the policy and range of frequencies */
1230static int powernowk8_verify(struct cpufreq_policy *pol)
1231{
1232        struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1233
1234        if (!data)
1235                return -EINVAL;
1236
1237        return cpufreq_frequency_table_verify(pol, data->powernow_table);
1238}
1239
1240struct init_on_cpu {
1241        struct powernow_k8_data *data;
1242        int rc;
1243};
1244
1245static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1246{
1247        struct init_on_cpu *init_on_cpu = _init_on_cpu;
1248
1249        if (pending_bit_stuck()) {
1250                printk(KERN_ERR PFX "failing init, change pending bit set\n");
1251                init_on_cpu->rc = -ENODEV;
1252                return;
1253        }
1254
1255        if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1256                init_on_cpu->rc = -ENODEV;
1257                return;
1258        }
1259
1260        if (cpu_family == CPU_OPTERON)
1261                fidvid_msr_init();
1262
1263        init_on_cpu->rc = 0;
1264}
1265
1266/* per CPU init entry point to the driver */
1267static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1268{
1269        static const char ACPI_PSS_BIOS_BUG_MSG[] =
1270                KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1271                FW_BUG PFX "Try again with latest BIOS.\n";
1272        struct powernow_k8_data *data;
1273        struct init_on_cpu init_on_cpu;
1274        int rc;
1275        struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1276
1277        if (!cpu_online(pol->cpu))
1278                return -ENODEV;
1279
1280        smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1281        if (rc)
1282                return -ENODEV;
1283
1284        data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1285        if (!data) {
1286                printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1287                return -ENOMEM;
1288        }
1289
1290        data->cpu = pol->cpu;
1291        data->currpstate = HW_PSTATE_INVALID;
1292
1293        if (powernow_k8_cpu_init_acpi(data)) {
1294                /*
1295                 * Use the PSB BIOS structure. This is only available on
1296                 * an UP version, and is deprecated by AMD.
1297                 */
1298                if (num_online_cpus() != 1) {
1299                        printk_once(ACPI_PSS_BIOS_BUG_MSG);
1300                        goto err_out;
1301                }
1302                if (pol->cpu != 0) {
1303                        printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1304                               "CPU other than CPU0. Complain to your BIOS "
1305                               "vendor.\n");
1306                        goto err_out;
1307                }
1308                rc = find_psb_table(data);
1309                if (rc)
1310                        goto err_out;
1311
1312                /* Take a crude guess here.
1313                 * That guess was in microseconds, so multiply with 1000 */
1314                pol->cpuinfo.transition_latency = (
1315                         ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1316                         ((1 << data->irt) * 30)) * 1000;
1317        } else /* ACPI _PSS objects available */
1318                pol->cpuinfo.transition_latency = get_transition_latency(data);
1319
1320        /* only run on specific CPU from here on */
1321        init_on_cpu.data = data;
1322        smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1323                                 &init_on_cpu, 1);
1324        rc = init_on_cpu.rc;
1325        if (rc != 0)
1326                goto err_out_exit_acpi;
1327
1328        if (cpu_family == CPU_HW_PSTATE)
1329                cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1330        else
1331                cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1332        data->available_cores = pol->cpus;
1333
1334        if (cpu_family == CPU_HW_PSTATE)
1335                pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1336                                data->currpstate);
1337        else
1338                pol->cur = find_khz_freq_from_fid(data->currfid);
1339        pr_debug("policy current frequency %d kHz\n", pol->cur);
1340
1341        /* min/max the cpu is capable of */
1342        if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1343                printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1344                powernow_k8_cpu_exit_acpi(data);
1345                kfree(data->powernow_table);
1346                kfree(data);
1347                return -EINVAL;
1348        }
1349
1350        /* Check for APERF/MPERF support in hardware */
1351        if (cpu_has(c, X86_FEATURE_APERFMPERF))
1352                cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1353
1354        cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1355
1356        if (cpu_family == CPU_HW_PSTATE)
1357                pr_debug("cpu_init done, current pstate 0x%x\n",
1358                                data->currpstate);
1359        else
1360                pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1361                        data->currfid, data->currvid);
1362
1363        per_cpu(powernow_data, pol->cpu) = data;
1364
1365        return 0;
1366
1367err_out_exit_acpi:
1368        powernow_k8_cpu_exit_acpi(data);
1369
1370err_out:
1371        kfree(data);
1372        return -ENODEV;
1373}
1374
1375static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1376{
1377        struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1378
1379        if (!data)
1380                return -EINVAL;
1381
1382        powernow_k8_cpu_exit_acpi(data);
1383
1384        cpufreq_frequency_table_put_attr(pol->cpu);
1385
1386        kfree(data->powernow_table);
1387        kfree(data);
1388        per_cpu(powernow_data, pol->cpu) = NULL;
1389
1390        return 0;
1391}
1392
1393static void query_values_on_cpu(void *_err)
1394{
1395        int *err = _err;
1396        struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1397
1398        *err = query_current_values_with_pending_wait(data);
1399}
1400
1401static unsigned int powernowk8_get(unsigned int cpu)
1402{
1403        struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1404        unsigned int khz = 0;
1405        int err;
1406
1407        if (!data)
1408                return 0;
1409
1410        smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1411        if (err)
1412                goto out;
1413
1414        if (cpu_family == CPU_HW_PSTATE)
1415                khz = find_khz_freq_from_pstate(data->powernow_table,
1416                                                data->currpstate);
1417        else
1418                khz = find_khz_freq_from_fid(data->currfid);
1419
1420
1421out:
1422        return khz;
1423}
1424
1425static void _cpb_toggle_msrs(bool t)
1426{
1427        int cpu;
1428
1429        get_online_cpus();
1430
1431        rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1432
1433        for_each_cpu(cpu, cpu_online_mask) {
1434                struct msr *reg = per_cpu_ptr(msrs, cpu);
1435                if (t)
1436                        reg->l &= ~BIT(25);
1437                else
1438                        reg->l |= BIT(25);
1439        }
1440        wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1441
1442        put_online_cpus();
1443}
1444
1445/*
1446 * Switch on/off core performance boosting.
1447 *
1448 * 0=disable
1449 * 1=enable.
1450 */
1451static void cpb_toggle(bool t)
1452{
1453        if (!cpb_capable)
1454                return;
1455
1456        if (t && !cpb_enabled) {
1457                cpb_enabled = true;
1458                _cpb_toggle_msrs(t);
1459                printk(KERN_INFO PFX "Core Boosting enabled.\n");
1460        } else if (!t && cpb_enabled) {
1461                cpb_enabled = false;
1462                _cpb_toggle_msrs(t);
1463                printk(KERN_INFO PFX "Core Boosting disabled.\n");
1464        }
1465}
1466
1467static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1468                                 size_t count)
1469{
1470        int ret = -EINVAL;
1471        unsigned long val = 0;
1472
1473        ret = strict_strtoul(buf, 10, &val);
1474        if (!ret && (val == 0 || val == 1) && cpb_capable)
1475                cpb_toggle(val);
1476        else
1477                return -EINVAL;
1478
1479        return count;
1480}
1481
1482static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1483{
1484        return sprintf(buf, "%u\n", cpb_enabled);
1485}
1486
1487#define define_one_rw(_name) \
1488static struct freq_attr _name = \
1489__ATTR(_name, 0644, show_##_name, store_##_name)
1490
1491define_one_rw(cpb);
1492
1493static struct freq_attr *powernow_k8_attr[] = {
1494        &cpufreq_freq_attr_scaling_available_freqs,
1495        &cpb,
1496        NULL,
1497};
1498
1499static struct cpufreq_driver cpufreq_amd64_driver = {
1500        .verify         = powernowk8_verify,
1501        .target         = powernowk8_target,
1502        .bios_limit     = acpi_processor_get_bios_limit,
1503        .init           = powernowk8_cpu_init,
1504        .exit           = __devexit_p(powernowk8_cpu_exit),
1505        .get            = powernowk8_get,
1506        .name           = "powernow-k8",
1507        .owner          = THIS_MODULE,
1508        .attr           = powernow_k8_attr,
1509};
1510
1511/*
1512 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1513 * cannot block the remaining ones from boosting. On the CPU_UP path we
1514 * simply keep the boost-disable flag in sync with the current global
1515 * state.
1516 */
1517static int cpb_notify(struct notifier_block *nb, unsigned long action,
1518                      void *hcpu)
1519{
1520        unsigned cpu = (long)hcpu;
1521        u32 lo, hi;
1522
1523        switch (action) {
1524        case CPU_UP_PREPARE:
1525        case CPU_UP_PREPARE_FROZEN:
1526
1527                if (!cpb_enabled) {
1528                        rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1529                        lo |= BIT(25);
1530                        wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1531                }
1532                break;
1533
1534        case CPU_DOWN_PREPARE:
1535        case CPU_DOWN_PREPARE_FROZEN:
1536                rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1537                lo &= ~BIT(25);
1538                wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1539                break;
1540
1541        default:
1542                break;
1543        }
1544
1545        return NOTIFY_OK;
1546}
1547
1548static struct notifier_block cpb_nb = {
1549        .notifier_call          = cpb_notify,
1550};
1551
1552/* driver entry point for init */
1553static int __cpuinit powernowk8_init(void)
1554{
1555        unsigned int i, supported_cpus = 0, cpu;
1556        int rv;
1557
1558        if (!x86_match_cpu(powernow_k8_ids))
1559                return -ENODEV;
1560
1561        for_each_online_cpu(i) {
1562                int rc;
1563                smp_call_function_single(i, check_supported_cpu, &rc, 1);
1564                if (rc == 0)
1565                        supported_cpus++;
1566        }
1567
1568        if (supported_cpus != num_online_cpus())
1569                return -ENODEV;
1570
1571        printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1572                num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1573
1574        if (boot_cpu_has(X86_FEATURE_CPB)) {
1575
1576                cpb_capable = true;
1577
1578                msrs = msrs_alloc();
1579                if (!msrs) {
1580                        printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1581                        return -ENOMEM;
1582                }
1583
1584                register_cpu_notifier(&cpb_nb);
1585
1586                rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1587
1588                for_each_cpu(cpu, cpu_online_mask) {
1589                        struct msr *reg = per_cpu_ptr(msrs, cpu);
1590                        cpb_enabled |= !(!!(reg->l & BIT(25)));
1591                }
1592
1593                printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1594                        (cpb_enabled ? "on" : "off"));
1595        }
1596
1597        rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1598        if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1599                unregister_cpu_notifier(&cpb_nb);
1600                msrs_free(msrs);
1601                msrs = NULL;
1602        }
1603        return rv;
1604}
1605
1606/* driver entry point for term */
1607static void __exit powernowk8_exit(void)
1608{
1609        pr_debug("exit\n");
1610
1611        if (boot_cpu_has(X86_FEATURE_CPB)) {
1612                msrs_free(msrs);
1613                msrs = NULL;
1614
1615                unregister_cpu_notifier(&cpb_nb);
1616        }
1617
1618        cpufreq_unregister_driver(&cpufreq_amd64_driver);
1619}
1620
1621MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1622                "Mark Langsdorf <mark.langsdorf@amd.com>");
1623MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1624MODULE_LICENSE("GPL");
1625
1626late_initcall(powernowk8_init);
1627module_exit(powernowk8_exit);
1628
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.