linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80        .prereset               = ata_std_prereset,
  81        .postreset              = ata_std_postreset,
  82        .error_handler          = ata_std_error_handler,
  83        .sched_eh               = ata_std_sched_eh,
  84        .end_eh                 = ata_std_end_eh,
  85};
  86
  87const struct ata_port_operations sata_port_ops = {
  88        .inherits               = &ata_base_port_ops,
  89
  90        .qc_defer               = ata_std_qc_defer,
  91        .hardreset              = sata_std_hardreset,
  92};
  93
  94static unsigned int ata_dev_init_params(struct ata_device *dev,
  95                                        u16 heads, u16 sectors);
  96static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  97static void ata_dev_xfermask(struct ata_device *dev);
  98static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  99
 100atomic_t ata_print_id = ATOMIC_INIT(0);
 101
 102struct ata_force_param {
 103        const char      *name;
 104        unsigned int    cbl;
 105        int             spd_limit;
 106        unsigned long   xfer_mask;
 107        unsigned int    horkage_on;
 108        unsigned int    horkage_off;
 109        unsigned int    lflags;
 110};
 111
 112struct ata_force_ent {
 113        int                     port;
 114        int                     device;
 115        struct ata_force_param  param;
 116};
 117
 118static struct ata_force_ent *ata_force_tbl;
 119static int ata_force_tbl_size;
 120
 121static char ata_force_param_buf[PAGE_SIZE] __initdata;
 122/* param_buf is thrown away after initialization, disallow read */
 123module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 124MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 125
 126static int atapi_enabled = 1;
 127module_param(atapi_enabled, int, 0444);
 128MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 129
 130static int atapi_dmadir = 0;
 131module_param(atapi_dmadir, int, 0444);
 132MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 133
 134int atapi_passthru16 = 1;
 135module_param(atapi_passthru16, int, 0444);
 136MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 137
 138int libata_fua = 0;
 139module_param_named(fua, libata_fua, int, 0444);
 140MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 141
 142static int ata_ignore_hpa;
 143module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 144MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 145
 146static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 147module_param_named(dma, libata_dma_mask, int, 0444);
 148MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 149
 150static int ata_probe_timeout;
 151module_param(ata_probe_timeout, int, 0444);
 152MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 153
 154int libata_noacpi = 0;
 155module_param_named(noacpi, libata_noacpi, int, 0444);
 156MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 157
 158int libata_allow_tpm = 0;
 159module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 160MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 161
 162static int atapi_an;
 163module_param(atapi_an, int, 0444);
 164MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 165
 166MODULE_AUTHOR("Jeff Garzik");
 167MODULE_DESCRIPTION("Library module for ATA devices");
 168MODULE_LICENSE("GPL");
 169MODULE_VERSION(DRV_VERSION);
 170
 171
 172static bool ata_sstatus_online(u32 sstatus)
 173{
 174        return (sstatus & 0xf) == 0x3;
 175}
 176
 177/**
 178 *      ata_link_next - link iteration helper
 179 *      @link: the previous link, NULL to start
 180 *      @ap: ATA port containing links to iterate
 181 *      @mode: iteration mode, one of ATA_LITER_*
 182 *
 183 *      LOCKING:
 184 *      Host lock or EH context.
 185 *
 186 *      RETURNS:
 187 *      Pointer to the next link.
 188 */
 189struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 190                               enum ata_link_iter_mode mode)
 191{
 192        BUG_ON(mode != ATA_LITER_EDGE &&
 193               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 194
 195        /* NULL link indicates start of iteration */
 196        if (!link)
 197                switch (mode) {
 198                case ATA_LITER_EDGE:
 199                case ATA_LITER_PMP_FIRST:
 200                        if (sata_pmp_attached(ap))
 201                                return ap->pmp_link;
 202                        /* fall through */
 203                case ATA_LITER_HOST_FIRST:
 204                        return &ap->link;
 205                }
 206
 207        /* we just iterated over the host link, what's next? */
 208        if (link == &ap->link)
 209                switch (mode) {
 210                case ATA_LITER_HOST_FIRST:
 211                        if (sata_pmp_attached(ap))
 212                                return ap->pmp_link;
 213                        /* fall through */
 214                case ATA_LITER_PMP_FIRST:
 215                        if (unlikely(ap->slave_link))
 216                                return ap->slave_link;
 217                        /* fall through */
 218                case ATA_LITER_EDGE:
 219                        return NULL;
 220                }
 221
 222        /* slave_link excludes PMP */
 223        if (unlikely(link == ap->slave_link))
 224                return NULL;
 225
 226        /* we were over a PMP link */
 227        if (++link < ap->pmp_link + ap->nr_pmp_links)
 228                return link;
 229
 230        if (mode == ATA_LITER_PMP_FIRST)
 231                return &ap->link;
 232
 233        return NULL;
 234}
 235
 236/**
 237 *      ata_dev_next - device iteration helper
 238 *      @dev: the previous device, NULL to start
 239 *      @link: ATA link containing devices to iterate
 240 *      @mode: iteration mode, one of ATA_DITER_*
 241 *
 242 *      LOCKING:
 243 *      Host lock or EH context.
 244 *
 245 *      RETURNS:
 246 *      Pointer to the next device.
 247 */
 248struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 249                                enum ata_dev_iter_mode mode)
 250{
 251        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 252               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 253
 254        /* NULL dev indicates start of iteration */
 255        if (!dev)
 256                switch (mode) {
 257                case ATA_DITER_ENABLED:
 258                case ATA_DITER_ALL:
 259                        dev = link->device;
 260                        goto check;
 261                case ATA_DITER_ENABLED_REVERSE:
 262                case ATA_DITER_ALL_REVERSE:
 263                        dev = link->device + ata_link_max_devices(link) - 1;
 264                        goto check;
 265                }
 266
 267 next:
 268        /* move to the next one */
 269        switch (mode) {
 270        case ATA_DITER_ENABLED:
 271        case ATA_DITER_ALL:
 272                if (++dev < link->device + ata_link_max_devices(link))
 273                        goto check;
 274                return NULL;
 275        case ATA_DITER_ENABLED_REVERSE:
 276        case ATA_DITER_ALL_REVERSE:
 277                if (--dev >= link->device)
 278                        goto check;
 279                return NULL;
 280        }
 281
 282 check:
 283        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 284            !ata_dev_enabled(dev))
 285                goto next;
 286        return dev;
 287}
 288
 289/**
 290 *      ata_dev_phys_link - find physical link for a device
 291 *      @dev: ATA device to look up physical link for
 292 *
 293 *      Look up physical link which @dev is attached to.  Note that
 294 *      this is different from @dev->link only when @dev is on slave
 295 *      link.  For all other cases, it's the same as @dev->link.
 296 *
 297 *      LOCKING:
 298 *      Don't care.
 299 *
 300 *      RETURNS:
 301 *      Pointer to the found physical link.
 302 */
 303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 304{
 305        struct ata_port *ap = dev->link->ap;
 306
 307        if (!ap->slave_link)
 308                return dev->link;
 309        if (!dev->devno)
 310                return &ap->link;
 311        return ap->slave_link;
 312}
 313
 314/**
 315 *      ata_force_cbl - force cable type according to libata.force
 316 *      @ap: ATA port of interest
 317 *
 318 *      Force cable type according to libata.force and whine about it.
 319 *      The last entry which has matching port number is used, so it
 320 *      can be specified as part of device force parameters.  For
 321 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 322 *      same effect.
 323 *
 324 *      LOCKING:
 325 *      EH context.
 326 */
 327void ata_force_cbl(struct ata_port *ap)
 328{
 329        int i;
 330
 331        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 332                const struct ata_force_ent *fe = &ata_force_tbl[i];
 333
 334                if (fe->port != -1 && fe->port != ap->print_id)
 335                        continue;
 336
 337                if (fe->param.cbl == ATA_CBL_NONE)
 338                        continue;
 339
 340                ap->cbl = fe->param.cbl;
 341                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 342                return;
 343        }
 344}
 345
 346/**
 347 *      ata_force_link_limits - force link limits according to libata.force
 348 *      @link: ATA link of interest
 349 *
 350 *      Force link flags and SATA spd limit according to libata.force
 351 *      and whine about it.  When only the port part is specified
 352 *      (e.g. 1:), the limit applies to all links connected to both
 353 *      the host link and all fan-out ports connected via PMP.  If the
 354 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 355 *      first fan-out link not the host link.  Device number 15 always
 356 *      points to the host link whether PMP is attached or not.  If the
 357 *      controller has slave link, device number 16 points to it.
 358 *
 359 *      LOCKING:
 360 *      EH context.
 361 */
 362static void ata_force_link_limits(struct ata_link *link)
 363{
 364        bool did_spd = false;
 365        int linkno = link->pmp;
 366        int i;
 367
 368        if (ata_is_host_link(link))
 369                linkno += 15;
 370
 371        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 372                const struct ata_force_ent *fe = &ata_force_tbl[i];
 373
 374                if (fe->port != -1 && fe->port != link->ap->print_id)
 375                        continue;
 376
 377                if (fe->device != -1 && fe->device != linkno)
 378                        continue;
 379
 380                /* only honor the first spd limit */
 381                if (!did_spd && fe->param.spd_limit) {
 382                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 383                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 384                                        fe->param.name);
 385                        did_spd = true;
 386                }
 387
 388                /* let lflags stack */
 389                if (fe->param.lflags) {
 390                        link->flags |= fe->param.lflags;
 391                        ata_link_notice(link,
 392                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 393                                        fe->param.lflags, link->flags);
 394                }
 395        }
 396}
 397
 398/**
 399 *      ata_force_xfermask - force xfermask according to libata.force
 400 *      @dev: ATA device of interest
 401 *
 402 *      Force xfer_mask according to libata.force and whine about it.
 403 *      For consistency with link selection, device number 15 selects
 404 *      the first device connected to the host link.
 405 *
 406 *      LOCKING:
 407 *      EH context.
 408 */
 409static void ata_force_xfermask(struct ata_device *dev)
 410{
 411        int devno = dev->link->pmp + dev->devno;
 412        int alt_devno = devno;
 413        int i;
 414
 415        /* allow n.15/16 for devices attached to host port */
 416        if (ata_is_host_link(dev->link))
 417                alt_devno += 15;
 418
 419        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 420                const struct ata_force_ent *fe = &ata_force_tbl[i];
 421                unsigned long pio_mask, mwdma_mask, udma_mask;
 422
 423                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 424                        continue;
 425
 426                if (fe->device != -1 && fe->device != devno &&
 427                    fe->device != alt_devno)
 428                        continue;
 429
 430                if (!fe->param.xfer_mask)
 431                        continue;
 432
 433                ata_unpack_xfermask(fe->param.xfer_mask,
 434                                    &pio_mask, &mwdma_mask, &udma_mask);
 435                if (udma_mask)
 436                        dev->udma_mask = udma_mask;
 437                else if (mwdma_mask) {
 438                        dev->udma_mask = 0;
 439                        dev->mwdma_mask = mwdma_mask;
 440                } else {
 441                        dev->udma_mask = 0;
 442                        dev->mwdma_mask = 0;
 443                        dev->pio_mask = pio_mask;
 444                }
 445
 446                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 447                               fe->param.name);
 448                return;
 449        }
 450}
 451
 452/**
 453 *      ata_force_horkage - force horkage according to libata.force
 454 *      @dev: ATA device of interest
 455 *
 456 *      Force horkage according to libata.force and whine about it.
 457 *      For consistency with link selection, device number 15 selects
 458 *      the first device connected to the host link.
 459 *
 460 *      LOCKING:
 461 *      EH context.
 462 */
 463static void ata_force_horkage(struct ata_device *dev)
 464{
 465        int devno = dev->link->pmp + dev->devno;
 466        int alt_devno = devno;
 467        int i;
 468
 469        /* allow n.15/16 for devices attached to host port */
 470        if (ata_is_host_link(dev->link))
 471                alt_devno += 15;
 472
 473        for (i = 0; i < ata_force_tbl_size; i++) {
 474                const struct ata_force_ent *fe = &ata_force_tbl[i];
 475
 476                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 477                        continue;
 478
 479                if (fe->device != -1 && fe->device != devno &&
 480                    fe->device != alt_devno)
 481                        continue;
 482
 483                if (!(~dev->horkage & fe->param.horkage_on) &&
 484                    !(dev->horkage & fe->param.horkage_off))
 485                        continue;
 486
 487                dev->horkage |= fe->param.horkage_on;
 488                dev->horkage &= ~fe->param.horkage_off;
 489
 490                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 491                               fe->param.name);
 492        }
 493}
 494
 495/**
 496 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 497 *      @opcode: SCSI opcode
 498 *
 499 *      Determine ATAPI command type from @opcode.
 500 *
 501 *      LOCKING:
 502 *      None.
 503 *
 504 *      RETURNS:
 505 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 506 */
 507int atapi_cmd_type(u8 opcode)
 508{
 509        switch (opcode) {
 510        case GPCMD_READ_10:
 511        case GPCMD_READ_12:
 512                return ATAPI_READ;
 513
 514        case GPCMD_WRITE_10:
 515        case GPCMD_WRITE_12:
 516        case GPCMD_WRITE_AND_VERIFY_10:
 517                return ATAPI_WRITE;
 518
 519        case GPCMD_READ_CD:
 520        case GPCMD_READ_CD_MSF:
 521                return ATAPI_READ_CD;
 522
 523        case ATA_16:
 524        case ATA_12:
 525                if (atapi_passthru16)
 526                        return ATAPI_PASS_THRU;
 527                /* fall thru */
 528        default:
 529                return ATAPI_MISC;
 530        }
 531}
 532
 533/**
 534 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 535 *      @tf: Taskfile to convert
 536 *      @pmp: Port multiplier port
 537 *      @is_cmd: This FIS is for command
 538 *      @fis: Buffer into which data will output
 539 *
 540 *      Converts a standard ATA taskfile to a Serial ATA
 541 *      FIS structure (Register - Host to Device).
 542 *
 543 *      LOCKING:
 544 *      Inherited from caller.
 545 */
 546void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 547{
 548        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 549        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 550        if (is_cmd)
 551                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 552
 553        fis[2] = tf->command;
 554        fis[3] = tf->feature;
 555
 556        fis[4] = tf->lbal;
 557        fis[5] = tf->lbam;
 558        fis[6] = tf->lbah;
 559        fis[7] = tf->device;
 560
 561        fis[8] = tf->hob_lbal;
 562        fis[9] = tf->hob_lbam;
 563        fis[10] = tf->hob_lbah;
 564        fis[11] = tf->hob_feature;
 565
 566        fis[12] = tf->nsect;
 567        fis[13] = tf->hob_nsect;
 568        fis[14] = 0;
 569        fis[15] = tf->ctl;
 570
 571        fis[16] = 0;
 572        fis[17] = 0;
 573        fis[18] = 0;
 574        fis[19] = 0;
 575}
 576
 577/**
 578 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 579 *      @fis: Buffer from which data will be input
 580 *      @tf: Taskfile to output
 581 *
 582 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 583 *
 584 *      LOCKING:
 585 *      Inherited from caller.
 586 */
 587
 588void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 589{
 590        tf->command     = fis[2];       /* status */
 591        tf->feature     = fis[3];       /* error */
 592
 593        tf->lbal        = fis[4];
 594        tf->lbam        = fis[5];
 595        tf->lbah        = fis[6];
 596        tf->device      = fis[7];
 597
 598        tf->hob_lbal    = fis[8];
 599        tf->hob_lbam    = fis[9];
 600        tf->hob_lbah    = fis[10];
 601
 602        tf->nsect       = fis[12];
 603        tf->hob_nsect   = fis[13];
 604}
 605
 606static const u8 ata_rw_cmds[] = {
 607        /* pio multi */
 608        ATA_CMD_READ_MULTI,
 609        ATA_CMD_WRITE_MULTI,
 610        ATA_CMD_READ_MULTI_EXT,
 611        ATA_CMD_WRITE_MULTI_EXT,
 612        0,
 613        0,
 614        0,
 615        ATA_CMD_WRITE_MULTI_FUA_EXT,
 616        /* pio */
 617        ATA_CMD_PIO_READ,
 618        ATA_CMD_PIO_WRITE,
 619        ATA_CMD_PIO_READ_EXT,
 620        ATA_CMD_PIO_WRITE_EXT,
 621        0,
 622        0,
 623        0,
 624        0,
 625        /* dma */
 626        ATA_CMD_READ,
 627        ATA_CMD_WRITE,
 628        ATA_CMD_READ_EXT,
 629        ATA_CMD_WRITE_EXT,
 630        0,
 631        0,
 632        0,
 633        ATA_CMD_WRITE_FUA_EXT
 634};
 635
 636/**
 637 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 638 *      @tf: command to examine and configure
 639 *      @dev: device tf belongs to
 640 *
 641 *      Examine the device configuration and tf->flags to calculate
 642 *      the proper read/write commands and protocol to use.
 643 *
 644 *      LOCKING:
 645 *      caller.
 646 */
 647static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 648{
 649        u8 cmd;
 650
 651        int index, fua, lba48, write;
 652
 653        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 654        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 655        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 656
 657        if (dev->flags & ATA_DFLAG_PIO) {
 658                tf->protocol = ATA_PROT_PIO;
 659                index = dev->multi_count ? 0 : 8;
 660        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 661                /* Unable to use DMA due to host limitation */
 662                tf->protocol = ATA_PROT_PIO;
 663                index = dev->multi_count ? 0 : 8;
 664        } else {
 665                tf->protocol = ATA_PROT_DMA;
 666                index = 16;
 667        }
 668
 669        cmd = ata_rw_cmds[index + fua + lba48 + write];
 670        if (cmd) {
 671                tf->command = cmd;
 672                return 0;
 673        }
 674        return -1;
 675}
 676
 677/**
 678 *      ata_tf_read_block - Read block address from ATA taskfile
 679 *      @tf: ATA taskfile of interest
 680 *      @dev: ATA device @tf belongs to
 681 *
 682 *      LOCKING:
 683 *      None.
 684 *
 685 *      Read block address from @tf.  This function can handle all
 686 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 687 *      flags select the address format to use.
 688 *
 689 *      RETURNS:
 690 *      Block address read from @tf.
 691 */
 692u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 693{
 694        u64 block = 0;
 695
 696        if (tf->flags & ATA_TFLAG_LBA) {
 697                if (tf->flags & ATA_TFLAG_LBA48) {
 698                        block |= (u64)tf->hob_lbah << 40;
 699                        block |= (u64)tf->hob_lbam << 32;
 700                        block |= (u64)tf->hob_lbal << 24;
 701                } else
 702                        block |= (tf->device & 0xf) << 24;
 703
 704                block |= tf->lbah << 16;
 705                block |= tf->lbam << 8;
 706                block |= tf->lbal;
 707        } else {
 708                u32 cyl, head, sect;
 709
 710                cyl = tf->lbam | (tf->lbah << 8);
 711                head = tf->device & 0xf;
 712                sect = tf->lbal;
 713
 714                if (!sect) {
 715                        ata_dev_warn(dev,
 716                                     "device reported invalid CHS sector 0\n");
 717                        sect = 1; /* oh well */
 718                }
 719
 720                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 721        }
 722
 723        return block;
 724}
 725
 726/**
 727 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 728 *      @tf: Target ATA taskfile
 729 *      @dev: ATA device @tf belongs to
 730 *      @block: Block address
 731 *      @n_block: Number of blocks
 732 *      @tf_flags: RW/FUA etc...
 733 *      @tag: tag
 734 *
 735 *      LOCKING:
 736 *      None.
 737 *
 738 *      Build ATA taskfile @tf for read/write request described by
 739 *      @block, @n_block, @tf_flags and @tag on @dev.
 740 *
 741 *      RETURNS:
 742 *
 743 *      0 on success, -ERANGE if the request is too large for @dev,
 744 *      -EINVAL if the request is invalid.
 745 */
 746int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 747                    u64 block, u32 n_block, unsigned int tf_flags,
 748                    unsigned int tag)
 749{
 750        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 751        tf->flags |= tf_flags;
 752
 753        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 754                /* yay, NCQ */
 755                if (!lba_48_ok(block, n_block))
 756                        return -ERANGE;
 757
 758                tf->protocol = ATA_PROT_NCQ;
 759                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 760
 761                if (tf->flags & ATA_TFLAG_WRITE)
 762                        tf->command = ATA_CMD_FPDMA_WRITE;
 763                else
 764                        tf->command = ATA_CMD_FPDMA_READ;
 765
 766                tf->nsect = tag << 3;
 767                tf->hob_feature = (n_block >> 8) & 0xff;
 768                tf->feature = n_block & 0xff;
 769
 770                tf->hob_lbah = (block >> 40) & 0xff;
 771                tf->hob_lbam = (block >> 32) & 0xff;
 772                tf->hob_lbal = (block >> 24) & 0xff;
 773                tf->lbah = (block >> 16) & 0xff;
 774                tf->lbam = (block >> 8) & 0xff;
 775                tf->lbal = block & 0xff;
 776
 777                tf->device = 1 << 6;
 778                if (tf->flags & ATA_TFLAG_FUA)
 779                        tf->device |= 1 << 7;
 780        } else if (dev->flags & ATA_DFLAG_LBA) {
 781                tf->flags |= ATA_TFLAG_LBA;
 782
 783                if (lba_28_ok(block, n_block)) {
 784                        /* use LBA28 */
 785                        tf->device |= (block >> 24) & 0xf;
 786                } else if (lba_48_ok(block, n_block)) {
 787                        if (!(dev->flags & ATA_DFLAG_LBA48))
 788                                return -ERANGE;
 789
 790                        /* use LBA48 */
 791                        tf->flags |= ATA_TFLAG_LBA48;
 792
 793                        tf->hob_nsect = (n_block >> 8) & 0xff;
 794
 795                        tf->hob_lbah = (block >> 40) & 0xff;
 796                        tf->hob_lbam = (block >> 32) & 0xff;
 797                        tf->hob_lbal = (block >> 24) & 0xff;
 798                } else
 799                        /* request too large even for LBA48 */
 800                        return -ERANGE;
 801
 802                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 803                        return -EINVAL;
 804
 805                tf->nsect = n_block & 0xff;
 806
 807                tf->lbah = (block >> 16) & 0xff;
 808                tf->lbam = (block >> 8) & 0xff;
 809                tf->lbal = block & 0xff;
 810
 811                tf->device |= ATA_LBA;
 812        } else {
 813                /* CHS */
 814                u32 sect, head, cyl, track;
 815
 816                /* The request -may- be too large for CHS addressing. */
 817                if (!lba_28_ok(block, n_block))
 818                        return -ERANGE;
 819
 820                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 821                        return -EINVAL;
 822
 823                /* Convert LBA to CHS */
 824                track = (u32)block / dev->sectors;
 825                cyl   = track / dev->heads;
 826                head  = track % dev->heads;
 827                sect  = (u32)block % dev->sectors + 1;
 828
 829                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 830                        (u32)block, track, cyl, head, sect);
 831
 832                /* Check whether the converted CHS can fit.
 833                   Cylinder: 0-65535
 834                   Head: 0-15
 835                   Sector: 1-255*/
 836                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 837                        return -ERANGE;
 838
 839                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 840                tf->lbal = sect;
 841                tf->lbam = cyl;
 842                tf->lbah = cyl >> 8;
 843                tf->device |= head;
 844        }
 845
 846        return 0;
 847}
 848
 849/**
 850 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 851 *      @pio_mask: pio_mask
 852 *      @mwdma_mask: mwdma_mask
 853 *      @udma_mask: udma_mask
 854 *
 855 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 856 *      unsigned int xfer_mask.
 857 *
 858 *      LOCKING:
 859 *      None.
 860 *
 861 *      RETURNS:
 862 *      Packed xfer_mask.
 863 */
 864unsigned long ata_pack_xfermask(unsigned long pio_mask,
 865                                unsigned long mwdma_mask,
 866                                unsigned long udma_mask)
 867{
 868        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 869                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 870                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 871}
 872
 873/**
 874 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 875 *      @xfer_mask: xfer_mask to unpack
 876 *      @pio_mask: resulting pio_mask
 877 *      @mwdma_mask: resulting mwdma_mask
 878 *      @udma_mask: resulting udma_mask
 879 *
 880 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 881 *      Any NULL distination masks will be ignored.
 882 */
 883void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 884                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 885{
 886        if (pio_mask)
 887                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 888        if (mwdma_mask)
 889                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 890        if (udma_mask)
 891                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 892}
 893
 894static const struct ata_xfer_ent {
 895        int shift, bits;
 896        u8 base;
 897} ata_xfer_tbl[] = {
 898        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 899        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 900        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 901        { -1, },
 902};
 903
 904/**
 905 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 906 *      @xfer_mask: xfer_mask of interest
 907 *
 908 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 909 *      bit of @xfer_mask is considered.
 910 *
 911 *      LOCKING:
 912 *      None.
 913 *
 914 *      RETURNS:
 915 *      Matching XFER_* value, 0xff if no match found.
 916 */
 917u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 918{
 919        int highbit = fls(xfer_mask) - 1;
 920        const struct ata_xfer_ent *ent;
 921
 922        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 923                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 924                        return ent->base + highbit - ent->shift;
 925        return 0xff;
 926}
 927
 928/**
 929 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 930 *      @xfer_mode: XFER_* of interest
 931 *
 932 *      Return matching xfer_mask for @xfer_mode.
 933 *
 934 *      LOCKING:
 935 *      None.
 936 *
 937 *      RETURNS:
 938 *      Matching xfer_mask, 0 if no match found.
 939 */
 940unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 941{
 942        const struct ata_xfer_ent *ent;
 943
 944        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 945                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 946                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 947                                & ~((1 << ent->shift) - 1);
 948        return 0;
 949}
 950
 951/**
 952 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 953 *      @xfer_mode: XFER_* of interest
 954 *
 955 *      Return matching xfer_shift for @xfer_mode.
 956 *
 957 *      LOCKING:
 958 *      None.
 959 *
 960 *      RETURNS:
 961 *      Matching xfer_shift, -1 if no match found.
 962 */
 963int ata_xfer_mode2shift(unsigned long xfer_mode)
 964{
 965        const struct ata_xfer_ent *ent;
 966
 967        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 968                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 969                        return ent->shift;
 970        return -1;
 971}
 972
 973/**
 974 *      ata_mode_string - convert xfer_mask to string
 975 *      @xfer_mask: mask of bits supported; only highest bit counts.
 976 *
 977 *      Determine string which represents the highest speed
 978 *      (highest bit in @modemask).
 979 *
 980 *      LOCKING:
 981 *      None.
 982 *
 983 *      RETURNS:
 984 *      Constant C string representing highest speed listed in
 985 *      @mode_mask, or the constant C string "<n/a>".
 986 */
 987const char *ata_mode_string(unsigned long xfer_mask)
 988{
 989        static const char * const xfer_mode_str[] = {
 990                "PIO0",
 991                "PIO1",
 992                "PIO2",
 993                "PIO3",
 994                "PIO4",
 995                "PIO5",
 996                "PIO6",
 997                "MWDMA0",
 998                "MWDMA1",
 999                "MWDMA2",
1000                "MWDMA3",
1001                "MWDMA4",
1002                "UDMA/16",
1003                "UDMA/25",
1004                "UDMA/33",
1005                "UDMA/44",
1006                "UDMA/66",
1007                "UDMA/100",
1008                "UDMA/133",
1009                "UDMA7",
1010        };
1011        int highbit;
1012
1013        highbit = fls(xfer_mask) - 1;
1014        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015                return xfer_mode_str[highbit];
1016        return "<n/a>";
1017}
1018
1019const char *sata_spd_string(unsigned int spd)
1020{
1021        static const char * const spd_str[] = {
1022                "1.5 Gbps",
1023                "3.0 Gbps",
1024                "6.0 Gbps",
1025        };
1026
1027        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028                return "<unknown>";
1029        return spd_str[spd - 1];
1030}
1031
1032/**
1033 *      ata_dev_classify - determine device type based on ATA-spec signature
1034 *      @tf: ATA taskfile register set for device to be identified
1035 *
1036 *      Determine from taskfile register contents whether a device is
1037 *      ATA or ATAPI, as per "Signature and persistence" section
1038 *      of ATA/PI spec (volume 1, sect 5.14).
1039 *
1040 *      LOCKING:
1041 *      None.
1042 *
1043 *      RETURNS:
1044 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045 *      %ATA_DEV_UNKNOWN the event of failure.
1046 */
1047unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048{
1049        /* Apple's open source Darwin code hints that some devices only
1050         * put a proper signature into the LBA mid/high registers,
1051         * So, we only check those.  It's sufficient for uniqueness.
1052         *
1053         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054         * signatures for ATA and ATAPI devices attached on SerialATA,
1055         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1056         * spec has never mentioned about using different signatures
1057         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1058         * Multiplier specification began to use 0x69/0x96 to identify
1059         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061         * 0x69/0x96 shortly and described them as reserved for
1062         * SerialATA.
1063         *
1064         * We follow the current spec and consider that 0x69/0x96
1065         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067         * SEMB signature.  This is worked around in
1068         * ata_dev_read_id().
1069         */
1070        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071                DPRINTK("found ATA device by sig\n");
1072                return ATA_DEV_ATA;
1073        }
1074
1075        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076                DPRINTK("found ATAPI device by sig\n");
1077                return ATA_DEV_ATAPI;
1078        }
1079
1080        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081                DPRINTK("found PMP device by sig\n");
1082                return ATA_DEV_PMP;
1083        }
1084
1085        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087                return ATA_DEV_SEMB;
1088        }
1089
1090        DPRINTK("unknown device\n");
1091        return ATA_DEV_UNKNOWN;
1092}
1093
1094/**
1095 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1096 *      @id: IDENTIFY DEVICE results we will examine
1097 *      @s: string into which data is output
1098 *      @ofs: offset into identify device page
1099 *      @len: length of string to return. must be an even number.
1100 *
1101 *      The strings in the IDENTIFY DEVICE page are broken up into
1102 *      16-bit chunks.  Run through the string, and output each
1103 *      8-bit chunk linearly, regardless of platform.
1104 *
1105 *      LOCKING:
1106 *      caller.
1107 */
1108
1109void ata_id_string(const u16 *id, unsigned char *s,
1110                   unsigned int ofs, unsigned int len)
1111{
1112        unsigned int c;
1113
1114        BUG_ON(len & 1);
1115
1116        while (len > 0) {
1117                c = id[ofs] >> 8;
1118                *s = c;
1119                s++;
1120
1121                c = id[ofs] & 0xff;
1122                *s = c;
1123                s++;
1124
1125                ofs++;
1126                len -= 2;
1127        }
1128}
1129
1130/**
1131 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132 *      @id: IDENTIFY DEVICE results we will examine
1133 *      @s: string into which data is output
1134 *      @ofs: offset into identify device page
1135 *      @len: length of string to return. must be an odd number.
1136 *
1137 *      This function is identical to ata_id_string except that it
1138 *      trims trailing spaces and terminates the resulting string with
1139 *      null.  @len must be actual maximum length (even number) + 1.
1140 *
1141 *      LOCKING:
1142 *      caller.
1143 */
1144void ata_id_c_string(const u16 *id, unsigned char *s,
1145                     unsigned int ofs, unsigned int len)
1146{
1147        unsigned char *p;
1148
1149        ata_id_string(id, s, ofs, len - 1);
1150
1151        p = s + strnlen(s, len - 1);
1152        while (p > s && p[-1] == ' ')
1153                p--;
1154        *p = '\0';
1155}
1156
1157static u64 ata_id_n_sectors(const u16 *id)
1158{
1159        if (ata_id_has_lba(id)) {
1160                if (ata_id_has_lba48(id))
1161                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162                else
1163                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164        } else {
1165                if (ata_id_current_chs_valid(id))
1166                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167                               id[ATA_ID_CUR_SECTORS];
1168                else
1169                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170                               id[ATA_ID_SECTORS];
1171        }
1172}
1173
1174u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175{
1176        u64 sectors = 0;
1177
1178        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181        sectors |= (tf->lbah & 0xff) << 16;
1182        sectors |= (tf->lbam & 0xff) << 8;
1183        sectors |= (tf->lbal & 0xff);
1184
1185        return sectors;
1186}
1187
1188u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189{
1190        u64 sectors = 0;
1191
1192        sectors |= (tf->device & 0x0f) << 24;
1193        sectors |= (tf->lbah & 0xff) << 16;
1194        sectors |= (tf->lbam & 0xff) << 8;
1195        sectors |= (tf->lbal & 0xff);
1196
1197        return sectors;
1198}
1199
1200/**
1201 *      ata_read_native_max_address - Read native max address
1202 *      @dev: target device
1203 *      @max_sectors: out parameter for the result native max address
1204 *
1205 *      Perform an LBA48 or LBA28 native size query upon the device in
1206 *      question.
1207 *
1208 *      RETURNS:
1209 *      0 on success, -EACCES if command is aborted by the drive.
1210 *      -EIO on other errors.
1211 */
1212static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213{
1214        unsigned int err_mask;
1215        struct ata_taskfile tf;
1216        int lba48 = ata_id_has_lba48(dev->id);
1217
1218        ata_tf_init(dev, &tf);
1219
1220        /* always clear all address registers */
1221        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223        if (lba48) {
1224                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225                tf.flags |= ATA_TFLAG_LBA48;
1226        } else
1227                tf.command = ATA_CMD_READ_NATIVE_MAX;
1228
1229        tf.protocol |= ATA_PROT_NODATA;
1230        tf.device |= ATA_LBA;
1231
1232        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233        if (err_mask) {
1234                ata_dev_warn(dev,
1235                             "failed to read native max address (err_mask=0x%x)\n",
1236                             err_mask);
1237                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238                        return -EACCES;
1239                return -EIO;
1240        }
1241
1242        if (lba48)
1243                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1244        else
1245                *max_sectors = ata_tf_to_lba(&tf) + 1;
1246        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247                (*max_sectors)--;
1248        return 0;
1249}
1250
1251/**
1252 *      ata_set_max_sectors - Set max sectors
1253 *      @dev: target device
1254 *      @new_sectors: new max sectors value to set for the device
1255 *
1256 *      Set max sectors of @dev to @new_sectors.
1257 *
1258 *      RETURNS:
1259 *      0 on success, -EACCES if command is aborted or denied (due to
1260 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1261 *      errors.
1262 */
1263static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264{
1265        unsigned int err_mask;
1266        struct ata_taskfile tf;
1267        int lba48 = ata_id_has_lba48(dev->id);
1268
1269        new_sectors--;
1270
1271        ata_tf_init(dev, &tf);
1272
1273        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274
1275        if (lba48) {
1276                tf.command = ATA_CMD_SET_MAX_EXT;
1277                tf.flags |= ATA_TFLAG_LBA48;
1278
1279                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282        } else {
1283                tf.command = ATA_CMD_SET_MAX;
1284
1285                tf.device |= (new_sectors >> 24) & 0xf;
1286        }
1287
1288        tf.protocol |= ATA_PROT_NODATA;
1289        tf.device |= ATA_LBA;
1290
1291        tf.lbal = (new_sectors >> 0) & 0xff;
1292        tf.lbam = (new_sectors >> 8) & 0xff;
1293        tf.lbah = (new_sectors >> 16) & 0xff;
1294
1295        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296        if (err_mask) {
1297                ata_dev_warn(dev,
1298                             "failed to set max address (err_mask=0x%x)\n",
1299                             err_mask);
1300                if (err_mask == AC_ERR_DEV &&
1301                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302                        return -EACCES;
1303                return -EIO;
1304        }
1305
1306        return 0;
1307}
1308
1309/**
1310 *      ata_hpa_resize          -       Resize a device with an HPA set
1311 *      @dev: Device to resize
1312 *
1313 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314 *      it if required to the full size of the media. The caller must check
1315 *      the drive has the HPA feature set enabled.
1316 *
1317 *      RETURNS:
1318 *      0 on success, -errno on failure.
1319 */
1320static int ata_hpa_resize(struct ata_device *dev)
1321{
1322        struct ata_eh_context *ehc = &dev->link->eh_context;
1323        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325        u64 sectors = ata_id_n_sectors(dev->id);
1326        u64 native_sectors;
1327        int rc;
1328
1329        /* do we need to do it? */
1330        if (dev->class != ATA_DEV_ATA ||
1331            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333                return 0;
1334
1335        /* read native max address */
1336        rc = ata_read_native_max_address(dev, &native_sectors);
1337        if (rc) {
1338                /* If device aborted the command or HPA isn't going to
1339                 * be unlocked, skip HPA resizing.
1340                 */
1341                if (rc == -EACCES || !unlock_hpa) {
1342                        ata_dev_warn(dev,
1343                                     "HPA support seems broken, skipping HPA handling\n");
1344                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345
1346                        /* we can continue if device aborted the command */
1347                        if (rc == -EACCES)
1348                                rc = 0;
1349                }
1350
1351                return rc;
1352        }
1353        dev->n_native_sectors = native_sectors;
1354
1355        /* nothing to do? */
1356        if (native_sectors <= sectors || !unlock_hpa) {
1357                if (!print_info || native_sectors == sectors)
1358                        return 0;
1359
1360                if (native_sectors > sectors)
1361                        ata_dev_info(dev,
1362                                "HPA detected: current %llu, native %llu\n",
1363                                (unsigned long long)sectors,
1364                                (unsigned long long)native_sectors);
1365                else if (native_sectors < sectors)
1366                        ata_dev_warn(dev,
1367                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1368                                (unsigned long long)native_sectors,
1369                                (unsigned long long)sectors);
1370                return 0;
1371        }
1372
1373        /* let's unlock HPA */
1374        rc = ata_set_max_sectors(dev, native_sectors);
1375        if (rc == -EACCES) {
1376                /* if device aborted the command, skip HPA resizing */
1377                ata_dev_warn(dev,
1378                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379                             (unsigned long long)sectors,
1380                             (unsigned long long)native_sectors);
1381                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382                return 0;
1383        } else if (rc)
1384                return rc;
1385
1386        /* re-read IDENTIFY data */
1387        rc = ata_dev_reread_id(dev, 0);
1388        if (rc) {
1389                ata_dev_err(dev,
1390                            "failed to re-read IDENTIFY data after HPA resizing\n");
1391                return rc;
1392        }
1393
1394        if (print_info) {
1395                u64 new_sectors = ata_id_n_sectors(dev->id);
1396                ata_dev_info(dev,
1397                        "HPA unlocked: %llu -> %llu, native %llu\n",
1398                        (unsigned long long)sectors,
1399                        (unsigned long long)new_sectors,
1400                        (unsigned long long)native_sectors);
1401        }
1402
1403        return 0;
1404}
1405
1406/**
1407 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1408 *      @id: IDENTIFY DEVICE page to dump
1409 *
1410 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1411 *      page.
1412 *
1413 *      LOCKING:
1414 *      caller.
1415 */
1416
1417static inline void ata_dump_id(const u16 *id)
1418{
1419        DPRINTK("49==0x%04x  "
1420                "53==0x%04x  "
1421                "63==0x%04x  "
1422                "64==0x%04x  "
1423                "75==0x%04x  \n",
1424                id[49],
1425                id[53],
1426                id[63],
1427                id[64],
1428                id[75]);
1429        DPRINTK("80==0x%04x  "
1430                "81==0x%04x  "
1431                "82==0x%04x  "
1432                "83==0x%04x  "
1433                "84==0x%04x  \n",
1434                id[80],
1435                id[81],
1436                id[82],
1437                id[83],
1438                id[84]);
1439        DPRINTK("88==0x%04x  "
1440                "93==0x%04x\n",
1441                id[88],
1442                id[93]);
1443}
1444
1445/**
1446 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447 *      @id: IDENTIFY data to compute xfer mask from
1448 *
1449 *      Compute the xfermask for this device. This is not as trivial
1450 *      as it seems if we must consider early devices correctly.
1451 *
1452 *      FIXME: pre IDE drive timing (do we care ?).
1453 *
1454 *      LOCKING:
1455 *      None.
1456 *
1457 *      RETURNS:
1458 *      Computed xfermask
1459 */
1460unsigned long ata_id_xfermask(const u16 *id)
1461{
1462        unsigned long pio_mask, mwdma_mask, udma_mask;
1463
1464        /* Usual case. Word 53 indicates word 64 is valid */
1465        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467                pio_mask <<= 3;
1468                pio_mask |= 0x7;
1469        } else {
1470                /* If word 64 isn't valid then Word 51 high byte holds
1471                 * the PIO timing number for the maximum. Turn it into
1472                 * a mask.
1473                 */
1474                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475                if (mode < 5)   /* Valid PIO range */
1476                        pio_mask = (2 << mode) - 1;
1477                else
1478                        pio_mask = 1;
1479
1480                /* But wait.. there's more. Design your standards by
1481                 * committee and you too can get a free iordy field to
1482                 * process. However its the speeds not the modes that
1483                 * are supported... Note drivers using the timing API
1484                 * will get this right anyway
1485                 */
1486        }
1487
1488        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489
1490        if (ata_id_is_cfa(id)) {
1491                /*
1492                 *      Process compact flash extended modes
1493                 */
1494                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496
1497                if (pio)
1498                        pio_mask |= (1 << 5);
1499                if (pio > 1)
1500                        pio_mask |= (1 << 6);
1501                if (dma)
1502                        mwdma_mask |= (1 << 3);
1503                if (dma > 1)
1504                        mwdma_mask |= (1 << 4);
1505        }
1506
1507        udma_mask = 0;
1508        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510
1511        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512}
1513
1514static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515{
1516        struct completion *waiting = qc->private_data;
1517
1518        complete(waiting);
1519}
1520
1521/**
1522 *      ata_exec_internal_sg - execute libata internal command
1523 *      @dev: Device to which the command is sent
1524 *      @tf: Taskfile registers for the command and the result
1525 *      @cdb: CDB for packet command
1526 *      @dma_dir: Data tranfer direction of the command
1527 *      @sgl: sg list for the data buffer of the command
1528 *      @n_elem: Number of sg entries
1529 *      @timeout: Timeout in msecs (0 for default)
1530 *
1531 *      Executes libata internal command with timeout.  @tf contains
1532 *      command on entry and result on return.  Timeout and error
1533 *      conditions are reported via return value.  No recovery action
1534 *      is taken after a command times out.  It's caller's duty to
1535 *      clean up after timeout.
1536 *
1537 *      LOCKING:
1538 *      None.  Should be called with kernel context, might sleep.
1539 *
1540 *      RETURNS:
1541 *      Zero on success, AC_ERR_* mask on failure
1542 */
1543unsigned ata_exec_internal_sg(struct ata_device *dev,
1544                              struct ata_taskfile *tf, const u8 *cdb,
1545                              int dma_dir, struct scatterlist *sgl,
1546                              unsigned int n_elem, unsigned long timeout)
1547{
1548        struct ata_link *link = dev->link;
1549        struct ata_port *ap = link->ap;
1550        u8 command = tf->command;
1551        int auto_timeout = 0;
1552        struct ata_queued_cmd *qc;
1553        unsigned int tag, preempted_tag;
1554        u32 preempted_sactive, preempted_qc_active;
1555        int preempted_nr_active_links;
1556        DECLARE_COMPLETION_ONSTACK(wait);
1557        unsigned long flags;
1558        unsigned int err_mask;
1559        int rc;
1560
1561        spin_lock_irqsave(ap->lock, flags);
1562
1563        /* no internal command while frozen */
1564        if (ap->pflags & ATA_PFLAG_FROZEN) {
1565                spin_unlock_irqrestore(ap->lock, flags);
1566                return AC_ERR_SYSTEM;
1567        }
1568
1569        /* initialize internal qc */
1570
1571        /* XXX: Tag 0 is used for drivers with legacy EH as some
1572         * drivers choke if any other tag is given.  This breaks
1573         * ata_tag_internal() test for those drivers.  Don't use new
1574         * EH stuff without converting to it.
1575         */
1576        if (ap->ops->error_handler)
1577                tag = ATA_TAG_INTERNAL;
1578        else
1579                tag = 0;
1580
1581        if (test_and_set_bit(tag, &ap->qc_allocated))
1582                BUG();
1583        qc = __ata_qc_from_tag(ap, tag);
1584
1585        qc->tag = tag;
1586        qc->scsicmd = NULL;
1587        qc->ap = ap;
1588        qc->dev = dev;
1589        ata_qc_reinit(qc);
1590
1591        preempted_tag = link->active_tag;
1592        preempted_sactive = link->sactive;
1593        preempted_qc_active = ap->qc_active;
1594        preempted_nr_active_links = ap->nr_active_links;
1595        link->active_tag = ATA_TAG_POISON;
1596        link->sactive = 0;
1597        ap->qc_active = 0;
1598        ap->nr_active_links = 0;
1599
1600        /* prepare & issue qc */
1601        qc->tf = *tf;
1602        if (cdb)
1603                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604        qc->flags |= ATA_QCFLAG_RESULT_TF;
1605        qc->dma_dir = dma_dir;
1606        if (dma_dir != DMA_NONE) {
1607                unsigned int i, buflen = 0;
1608                struct scatterlist *sg;
1609
1610                for_each_sg(sgl, sg, n_elem, i)
1611                        buflen += sg->length;
1612
1613                ata_sg_init(qc, sgl, n_elem);
1614                qc->nbytes = buflen;
1615        }
1616
1617        qc->private_data = &wait;
1618        qc->complete_fn = ata_qc_complete_internal;
1619
1620        ata_qc_issue(qc);
1621
1622        spin_unlock_irqrestore(ap->lock, flags);
1623
1624        if (!timeout) {
1625                if (ata_probe_timeout)
1626                        timeout = ata_probe_timeout * 1000;
1627                else {
1628                        timeout = ata_internal_cmd_timeout(dev, command);
1629                        auto_timeout = 1;
1630                }
1631        }
1632
1633        if (ap->ops->error_handler)
1634                ata_eh_release(ap);
1635
1636        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637
1638        if (ap->ops->error_handler)
1639                ata_eh_acquire(ap);
1640
1641        ata_sff_flush_pio_task(ap);
1642
1643        if (!rc) {
1644                spin_lock_irqsave(ap->lock, flags);
1645
1646                /* We're racing with irq here.  If we lose, the
1647                 * following test prevents us from completing the qc
1648                 * twice.  If we win, the port is frozen and will be
1649                 * cleaned up by ->post_internal_cmd().
1650                 */
1651                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652                        qc->err_mask |= AC_ERR_TIMEOUT;
1653
1654                        if (ap->ops->error_handler)
1655                                ata_port_freeze(ap);
1656                        else
1657                                ata_qc_complete(qc);
1658
1659                        if (ata_msg_warn(ap))
1660                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661                                             command);
1662                }
1663
1664                spin_unlock_irqrestore(ap->lock, flags);
1665        }
1666
1667        /* do post_internal_cmd */
1668        if (ap->ops->post_internal_cmd)
1669                ap->ops->post_internal_cmd(qc);
1670
1671        /* perform minimal error analysis */
1672        if (qc->flags & ATA_QCFLAG_FAILED) {
1673                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674                        qc->err_mask |= AC_ERR_DEV;
1675
1676                if (!qc->err_mask)
1677                        qc->err_mask |= AC_ERR_OTHER;
1678
1679                if (qc->err_mask & ~AC_ERR_OTHER)
1680                        qc->err_mask &= ~AC_ERR_OTHER;
1681        }
1682
1683        /* finish up */
1684        spin_lock_irqsave(ap->lock, flags);
1685
1686        *tf = qc->result_tf;
1687        err_mask = qc->err_mask;
1688
1689        ata_qc_free(qc);
1690        link->active_tag = preempted_tag;
1691        link->sactive = preempted_sactive;
1692        ap->qc_active = preempted_qc_active;
1693        ap->nr_active_links = preempted_nr_active_links;
1694
1695        spin_unlock_irqrestore(ap->lock, flags);
1696
1697        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698                ata_internal_cmd_timed_out(dev, command);
1699
1700        return err_mask;
1701}
1702
1703/**
1704 *      ata_exec_internal - execute libata internal command
1705 *      @dev: Device to which the command is sent
1706 *      @tf: Taskfile registers for the command and the result
1707 *      @cdb: CDB for packet command
1708 *      @dma_dir: Data tranfer direction of the command
1709 *      @buf: Data buffer of the command
1710 *      @buflen: Length of data buffer
1711 *      @timeout: Timeout in msecs (0 for default)
1712 *
1713 *      Wrapper around ata_exec_internal_sg() which takes simple
1714 *      buffer instead of sg list.
1715 *
1716 *      LOCKING:
1717 *      None.  Should be called with kernel context, might sleep.
1718 *
1719 *      RETURNS:
1720 *      Zero on success, AC_ERR_* mask on failure
1721 */
1722unsigned ata_exec_internal(struct ata_device *dev,
1723                           struct ata_taskfile *tf, const u8 *cdb,
1724                           int dma_dir, void *buf, unsigned int buflen,
1725                           unsigned long timeout)
1726{
1727        struct scatterlist *psg = NULL, sg;
1728        unsigned int n_elem = 0;
1729
1730        if (dma_dir != DMA_NONE) {
1731                WARN_ON(!buf);
1732                sg_init_one(&sg, buf, buflen);
1733                psg = &sg;
1734                n_elem++;
1735        }
1736
1737        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738                                    timeout);
1739}
1740
1741/**
1742 *      ata_do_simple_cmd - execute simple internal command
1743 *      @dev: Device to which the command is sent
1744 *      @cmd: Opcode to execute
1745 *
1746 *      Execute a 'simple' command, that only consists of the opcode
1747 *      'cmd' itself, without filling any other registers
1748 *
1749 *      LOCKING:
1750 *      Kernel thread context (may sleep).
1751 *
1752 *      RETURNS:
1753 *      Zero on success, AC_ERR_* mask on failure
1754 */
1755unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756{
1757        struct ata_taskfile tf;
1758
1759        ata_tf_init(dev, &tf);
1760
1761        tf.command = cmd;
1762        tf.flags |= ATA_TFLAG_DEVICE;
1763        tf.protocol = ATA_PROT_NODATA;
1764
1765        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766}
1767
1768/**
1769 *      ata_pio_need_iordy      -       check if iordy needed
1770 *      @adev: ATA device
1771 *
1772 *      Check if the current speed of the device requires IORDY. Used
1773 *      by various controllers for chip configuration.
1774 */
1775unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776{
1777        /* Don't set IORDY if we're preparing for reset.  IORDY may
1778         * lead to controller lock up on certain controllers if the
1779         * port is not occupied.  See bko#11703 for details.
1780         */
1781        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782                return 0;
1783        /* Controller doesn't support IORDY.  Probably a pointless
1784         * check as the caller should know this.
1785         */
1786        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787                return 0;
1788        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1789        if (ata_id_is_cfa(adev->id)
1790            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791                return 0;
1792        /* PIO3 and higher it is mandatory */
1793        if (adev->pio_mode > XFER_PIO_2)
1794                return 1;
1795        /* We turn it on when possible */
1796        if (ata_id_has_iordy(adev->id))
1797                return 1;
1798        return 0;
1799}
1800
1801/**
1802 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1803 *      @adev: ATA device
1804 *
1805 *      Compute the highest mode possible if we are not using iordy. Return
1806 *      -1 if no iordy mode is available.
1807 */
1808static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809{
1810        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1811        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1812                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813                /* Is the speed faster than the drive allows non IORDY ? */
1814                if (pio) {
1815                        /* This is cycle times not frequency - watch the logic! */
1816                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1817                                return 3 << ATA_SHIFT_PIO;
1818                        return 7 << ATA_SHIFT_PIO;
1819                }
1820        }
1821        return 3 << ATA_SHIFT_PIO;
1822}
1823
1824/**
1825 *      ata_do_dev_read_id              -       default ID read method
1826 *      @dev: device
1827 *      @tf: proposed taskfile
1828 *      @id: data buffer
1829 *
1830 *      Issue the identify taskfile and hand back the buffer containing
1831 *      identify data. For some RAID controllers and for pre ATA devices
1832 *      this function is wrapped or replaced by the driver
1833 */
1834unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835                                        struct ata_taskfile *tf, u16 *id)
1836{
1837        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839}
1840
1841/**
1842 *      ata_dev_read_id - Read ID data from the specified device
1843 *      @dev: target device
1844 *      @p_class: pointer to class of the target device (may be changed)
1845 *      @flags: ATA_READID_* flags
1846 *      @id: buffer to read IDENTIFY data into
1847 *
1848 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1849 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1851 *      for pre-ATA4 drives.
1852 *
1853 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854 *      now we abort if we hit that case.
1855 *
1856 *      LOCKING:
1857 *      Kernel thread context (may sleep)
1858 *
1859 *      RETURNS:
1860 *      0 on success, -errno otherwise.
1861 */
1862int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863                    unsigned int flags, u16 *id)
1864{
1865        struct ata_port *ap = dev->link->ap;
1866        unsigned int class = *p_class;
1867        struct ata_taskfile tf;
1868        unsigned int err_mask = 0;
1869        const char *reason;
1870        bool is_semb = class == ATA_DEV_SEMB;
1871        int may_fallback = 1, tried_spinup = 0;
1872        int rc;
1873
1874        if (ata_msg_ctl(ap))
1875                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876
1877retry:
1878        ata_tf_init(dev, &tf);
1879
1880        switch (class) {
1881        case ATA_DEV_SEMB:
1882                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1883        case ATA_DEV_ATA:
1884                tf.command = ATA_CMD_ID_ATA;
1885                break;
1886        case ATA_DEV_ATAPI:
1887                tf.command = ATA_CMD_ID_ATAPI;
1888                break;
1889        default:
1890                rc = -ENODEV;
1891                reason = "unsupported class";
1892                goto err_out;
1893        }
1894
1895        tf.protocol = ATA_PROT_PIO;
1896
1897        /* Some devices choke if TF registers contain garbage.  Make
1898         * sure those are properly initialized.
1899         */
1900        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902        /* Device presence detection is unreliable on some
1903         * controllers.  Always poll IDENTIFY if available.
1904         */
1905        tf.flags |= ATA_TFLAG_POLLING;
1906
1907        if (ap->ops->read_id)
1908                err_mask = ap->ops->read_id(dev, &tf, id);
1909        else
1910                err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912        if (err_mask) {
1913                if (err_mask & AC_ERR_NODEV_HINT) {
1914                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1915                        return -ENOENT;
1916                }
1917
1918                if (is_semb) {
1919                        ata_dev_info(dev,
1920                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921                        /* SEMB is not supported yet */
1922                        *p_class = ATA_DEV_SEMB_UNSUP;
1923                        return 0;
1924                }
1925
1926                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927                        /* Device or controller might have reported
1928                         * the wrong device class.  Give a shot at the
1929                         * other IDENTIFY if the current one is
1930                         * aborted by the device.
1931                         */
1932                        if (may_fallback) {
1933                                may_fallback = 0;
1934
1935                                if (class == ATA_DEV_ATA)
1936                                        class = ATA_DEV_ATAPI;
1937                                else
1938                                        class = ATA_DEV_ATA;
1939                                goto retry;
1940                        }
1941
1942                        /* Control reaches here iff the device aborted
1943                         * both flavors of IDENTIFYs which happens
1944                         * sometimes with phantom devices.
1945                         */
1946                        ata_dev_dbg(dev,
1947                                    "both IDENTIFYs aborted, assuming NODEV\n");
1948                        return -ENOENT;
1949                }
1950
1951                rc = -EIO;
1952                reason = "I/O error";
1953                goto err_out;
1954        }
1955
1956        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958                            "class=%d may_fallback=%d tried_spinup=%d\n",
1959                            class, may_fallback, tried_spinup);
1960                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962        }
1963
1964        /* Falling back doesn't make sense if ID data was read
1965         * successfully at least once.
1966         */
1967        may_fallback = 0;
1968
1969        swap_buf_le16(id, ATA_ID_WORDS);
1970
1971        /* sanity check */
1972        rc = -EINVAL;
1973        reason = "device reports invalid type";
1974
1975        if (class == ATA_DEV_ATA) {
1976                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977                        goto err_out;
1978                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979                                                        ata_id_is_ata(id)) {
1980                        ata_dev_dbg(dev,
1981                                "host indicates ignore ATA devices, ignored\n");
1982                        return -ENOENT;
1983                }
1984        } else {
1985                if (ata_id_is_ata(id))
1986                        goto err_out;
1987        }
1988
1989        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990                tried_spinup = 1;
1991                /*
1992                 * Drive powered-up in standby mode, and requires a specific
1993                 * SET_FEATURES spin-up subcommand before it will accept
1994                 * anything other than the original IDENTIFY command.
1995                 */
1996                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997                if (err_mask && id[2] != 0x738c) {
1998                        rc = -EIO;
1999                        reason = "SPINUP failed";
2000                        goto err_out;
2001                }
2002                /*
2003                 * If the drive initially returned incomplete IDENTIFY info,
2004                 * we now must reissue the IDENTIFY command.
2005                 */
2006                if (id[2] == 0x37c8)
2007                        goto retry;
2008        }
2009
2010        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011                /*
2012                 * The exact sequence expected by certain pre-ATA4 drives is:
2013                 * SRST RESET
2014                 * IDENTIFY (optional in early ATA)
2015                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016                 * anything else..
2017                 * Some drives were very specific about that exact sequence.
2018                 *
2019                 * Note that ATA4 says lba is mandatory so the second check
2020                 * should never trigger.
2021                 */
2022                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024                        if (err_mask) {
2025                                rc = -EIO;
2026                                reason = "INIT_DEV_PARAMS failed";
2027                                goto err_out;
2028                        }
2029
2030                        /* current CHS translation info (id[53-58]) might be
2031                         * changed. reread the identify device info.
2032                         */
2033                        flags &= ~ATA_READID_POSTRESET;
2034                        goto retry;
2035                }
2036        }
2037
2038        *p_class = class;
2039
2040        return 0;
2041
2042 err_out:
2043        if (ata_msg_warn(ap))
2044                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045                             reason, err_mask);
2046        return rc;
2047}
2048
2049static int ata_do_link_spd_horkage(struct ata_device *dev)
2050{
2051        struct ata_link *plink = ata_dev_phys_link(dev);
2052        u32 target, target_limit;
2053
2054        if (!sata_scr_valid(plink))
2055                return 0;
2056
2057        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058                target = 1;
2059        else
2060                return 0;
2061
2062        target_limit = (1 << target) - 1;
2063
2064        /* if already on stricter limit, no need to push further */
2065        if (plink->sata_spd_limit <= target_limit)
2066                return 0;
2067
2068        plink->sata_spd_limit = target_limit;
2069
2070        /* Request another EH round by returning -EAGAIN if link is
2071         * going faster than the target speed.  Forward progress is
2072         * guaranteed by setting sata_spd_limit to target_limit above.
2073         */
2074        if (plink->sata_spd > target) {
2075                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076                             sata_spd_string(target));
2077                return -EAGAIN;
2078        }
2079        return 0;
2080}
2081
2082static inline u8 ata_dev_knobble(struct ata_device *dev)
2083{
2084        struct ata_port *ap = dev->link->ap;
2085
2086        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087                return 0;
2088
2089        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090}
2091
2092static int ata_dev_config_ncq(struct ata_device *dev,
2093                               char *desc, size_t desc_sz)
2094{
2095        struct ata_port *ap = dev->link->ap;
2096        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097        unsigned int err_mask;
2098        char *aa_desc = "";
2099
2100        if (!ata_id_has_ncq(dev->id)) {
2101                desc[0] = '\0';
2102                return 0;
2103        }
2104        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105                snprintf(desc, desc_sz, "NCQ (not used)");
2106                return 0;
2107        }
2108        if (ap->flags & ATA_FLAG_NCQ) {
2109                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110                dev->flags |= ATA_DFLAG_NCQ;
2111        }
2112
2113        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2115                ata_id_has_fpdma_aa(dev->id)) {
2116                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117                        SATA_FPDMA_AA);
2118                if (err_mask) {
2119                        ata_dev_err(dev,
2120                                    "failed to enable AA (error_mask=0x%x)\n",
2121                                    err_mask);
2122                        if (err_mask != AC_ERR_DEV) {
2123                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124                                return -EIO;
2125                        }
2126                } else
2127                        aa_desc = ", AA";
2128        }
2129
2130        if (hdepth >= ddepth)
2131                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132        else
2133                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134                        ddepth, aa_desc);
2135        return 0;
2136}
2137
2138/**
2139 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2140 *      @dev: Target device to configure
2141 *
2142 *      Configure @dev according to @dev->id.  Generic and low-level
2143 *      driver specific fixups are also applied.
2144 *
2145 *      LOCKING:
2146 *      Kernel thread context (may sleep)
2147 *
2148 *      RETURNS:
2149 *      0 on success, -errno otherwise
2150 */
2151int ata_dev_configure(struct ata_device *dev)
2152{
2153        struct ata_port *ap = dev->link->ap;
2154        struct ata_eh_context *ehc = &dev->link->eh_context;
2155        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156        const u16 *id = dev->id;
2157        unsigned long xfer_mask;
2158        char revbuf[7];         /* XYZ-99\0 */
2159        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2160        char modelbuf[ATA_ID_PROD_LEN+1];
2161        int rc;
2162
2163        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2164                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2165                return 0;
2166        }
2167
2168        if (ata_msg_probe(ap))
2169                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2170
2171        /* set horkage */
2172        dev->horkage |= ata_dev_blacklisted(dev);
2173        ata_force_horkage(dev);
2174
2175        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2176                ata_dev_info(dev, "unsupported device, disabling\n");
2177                ata_dev_disable(dev);
2178                return 0;
2179        }
2180
2181        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2182            dev->class == ATA_DEV_ATAPI) {
2183                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2184                             atapi_enabled ? "not supported with this driver"
2185                             : "disabled");
2186                ata_dev_disable(dev);
2187                return 0;
2188        }
2189
2190        rc = ata_do_link_spd_horkage(dev);
2191        if (rc)
2192                return rc;
2193
2194        /* let ACPI work its magic */
2195        rc = ata_acpi_on_devcfg(dev);
2196        if (rc)
2197                return rc;
2198
2199        /* massage HPA, do it early as it might change IDENTIFY data */
2200        rc = ata_hpa_resize(dev);
2201        if (rc)
2202                return rc;
2203
2204        /* print device capabilities */
2205        if (ata_msg_probe(ap))
2206                ata_dev_dbg(dev,
2207                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2208                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2209                            __func__,
2210                            id[49], id[82], id[83], id[84],
2211                            id[85], id[86], id[87], id[88]);
2212
2213        /* initialize to-be-configured parameters */
2214        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2215        dev->max_sectors = 0;
2216        dev->cdb_len = 0;
2217        dev->n_sectors = 0;
2218        dev->cylinders = 0;
2219        dev->heads = 0;
2220        dev->sectors = 0;
2221        dev->multi_count = 0;
2222
2223        /*
2224         * common ATA, ATAPI feature tests
2225         */
2226
2227        /* find max transfer mode; for printk only */
2228        xfer_mask = ata_id_xfermask(id);
2229
2230        if (ata_msg_probe(ap))
2231                ata_dump_id(id);
2232
2233        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2234        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2235                        sizeof(fwrevbuf));
2236
2237        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2238                        sizeof(modelbuf));
2239
2240        /* ATA-specific feature tests */
2241        if (dev->class == ATA_DEV_ATA) {
2242                if (ata_id_is_cfa(id)) {
2243                        /* CPRM may make this media unusable */
2244                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2245                                ata_dev_warn(dev,
2246        "supports DRM functions and may not be fully accessible\n");
2247                        snprintf(revbuf, 7, "CFA");
2248                } else {
2249                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2250                        /* Warn the user if the device has TPM extensions */
2251                        if (ata_id_has_tpm(id))
2252                                ata_dev_warn(dev,
2253        "supports DRM functions and may not be fully accessible\n");
2254                }
2255
2256                dev->n_sectors = ata_id_n_sectors(id);
2257
2258                /* get current R/W Multiple count setting */
2259                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2260                        unsigned int max = dev->id[47] & 0xff;
2261                        unsigned int cnt = dev->id[59] & 0xff;
2262                        /* only recognize/allow powers of two here */
2263                        if (is_power_of_2(max) && is_power_of_2(cnt))
2264                                if (cnt <= max)
2265                                        dev->multi_count = cnt;
2266                }
2267
2268                if (ata_id_has_lba(id)) {
2269                        const char *lba_desc;
2270                        char ncq_desc[24];
2271
2272                        lba_desc = "LBA";
2273                        dev->flags |= ATA_DFLAG_LBA;
2274                        if (ata_id_has_lba48(id)) {
2275                                dev->flags |= ATA_DFLAG_LBA48;
2276                                lba_desc = "LBA48";
2277
2278                                if (dev->n_sectors >= (1UL << 28) &&
2279                                    ata_id_has_flush_ext(id))
2280                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2281                        }
2282
2283                        /* config NCQ */
2284                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2285                        if (rc)
2286                                return rc;
2287
2288                        /* print device info to dmesg */
2289                        if (ata_msg_drv(ap) && print_info) {
2290                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2291                                             revbuf, modelbuf, fwrevbuf,
2292                                             ata_mode_string(xfer_mask));
2293                                ata_dev_info(dev,
2294                                             "%llu sectors, multi %u: %s %s\n",
2295                                        (unsigned long long)dev->n_sectors,
2296                                        dev->multi_count, lba_desc, ncq_desc);
2297                        }
2298                } else {
2299                        /* CHS */
2300
2301                        /* Default translation */
2302                        dev->cylinders  = id[1];
2303                        dev->heads      = id[3];
2304                        dev->sectors    = id[6];
2305
2306                        if (ata_id_current_chs_valid(id)) {
2307                                /* Current CHS translation is valid. */
2308                                dev->cylinders = id[54];
2309                                dev->heads     = id[55];
2310                                dev->sectors   = id[56];
2311                        }
2312
2313                        /* print device info to dmesg */
2314                        if (ata_msg_drv(ap) && print_info) {
2315                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2316                                             revbuf,    modelbuf, fwrevbuf,
2317                                             ata_mode_string(xfer_mask));
2318                                ata_dev_info(dev,
2319                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2320                                             (unsigned long long)dev->n_sectors,
2321                                             dev->multi_count, dev->cylinders,
2322                                             dev->heads, dev->sectors);
2323                        }
2324                }
2325
2326                dev->cdb_len = 16;
2327        }
2328
2329        /* ATAPI-specific feature tests */
2330        else if (dev->class == ATA_DEV_ATAPI) {
2331                const char *cdb_intr_string = "";
2332                const char *atapi_an_string = "";
2333                const char *dma_dir_string = "";
2334                u32 sntf;
2335
2336                rc = atapi_cdb_len(id);
2337                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2338                        if (ata_msg_warn(ap))
2339                                ata_dev_warn(dev, "unsupported CDB len\n");
2340                        rc = -EINVAL;
2341                        goto err_out_nosup;
2342                }
2343                dev->cdb_len = (unsigned int) rc;
2344
2345                /* Enable ATAPI AN if both the host and device have
2346                 * the support.  If PMP is attached, SNTF is required
2347                 * to enable ATAPI AN to discern between PHY status
2348                 * changed notifications and ATAPI ANs.
2349                 */
2350                if (atapi_an &&
2351                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2352                    (!sata_pmp_attached(ap) ||
2353                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2354                        unsigned int err_mask;
2355
2356                        /* issue SET feature command to turn this on */
2357                        err_mask = ata_dev_set_feature(dev,
2358                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2359                        if (err_mask)
2360                                ata_dev_err(dev,
2361                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2362                                            err_mask);
2363                        else {
2364                                dev->flags |= ATA_DFLAG_AN;
2365                                atapi_an_string = ", ATAPI AN";
2366                        }
2367                }
2368
2369                if (ata_id_cdb_intr(dev->id)) {
2370                        dev->flags |= ATA_DFLAG_CDB_INTR;
2371                        cdb_intr_string = ", CDB intr";
2372                }
2373
2374                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2375                        dev->flags |= ATA_DFLAG_DMADIR;
2376                        dma_dir_string = ", DMADIR";
2377                }
2378
2379                if (ata_id_has_da(dev->id))
2380                        dev->flags |= ATA_DFLAG_DA;
2381
2382                /* print device info to dmesg */
2383                if (ata_msg_drv(ap) && print_info)
2384                        ata_dev_info(dev,
2385                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2386                                     modelbuf, fwrevbuf,
2387                                     ata_mode_string(xfer_mask),
2388                                     cdb_intr_string, atapi_an_string,
2389                                     dma_dir_string);
2390        }
2391
2392        /* determine max_sectors */
2393        dev->max_sectors = ATA_MAX_SECTORS;
2394        if (dev->flags & ATA_DFLAG_LBA48)
2395                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2396
2397        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2398           200 sectors */
2399        if (ata_dev_knobble(dev)) {
2400                if (ata_msg_drv(ap) && print_info)
2401                        ata_dev_info(dev, "applying bridge limits\n");
2402                dev->udma_mask &= ATA_UDMA5;
2403                dev->max_sectors = ATA_MAX_SECTORS;
2404        }
2405
2406        if ((dev->class == ATA_DEV_ATAPI) &&
2407            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2408                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2409                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2410        }
2411
2412        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2413                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2414                                         dev->max_sectors);
2415
2416        if (ap->ops->dev_config)
2417                ap->ops->dev_config(dev);
2418
2419        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2420                /* Let the user know. We don't want to disallow opens for
2421                   rescue purposes, or in case the vendor is just a blithering
2422                   idiot. Do this after the dev_config call as some controllers
2423                   with buggy firmware may want to avoid reporting false device
2424                   bugs */
2425
2426                if (print_info) {
2427                        ata_dev_warn(dev,
2428"Drive reports diagnostics failure. This may indicate a drive\n");
2429                        ata_dev_warn(dev,
2430"fault or invalid emulation. Contact drive vendor for information.\n");
2431                }
2432        }
2433
2434        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2435                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2436                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2437        }
2438
2439        return 0;
2440
2441err_out_nosup:
2442        if (ata_msg_probe(ap))
2443                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2444        return rc;
2445}
2446
2447/**
2448 *      ata_cable_40wire        -       return 40 wire cable type
2449 *      @ap: port
2450 *
2451 *      Helper method for drivers which want to hardwire 40 wire cable
2452 *      detection.
2453 */
2454
2455int ata_cable_40wire(struct ata_port *ap)
2456{
2457        return ATA_CBL_PATA40;
2458}
2459
2460/**
2461 *      ata_cable_80wire        -       return 80 wire cable type
2462 *      @ap: port
2463 *
2464 *      Helper method for drivers which want to hardwire 80 wire cable
2465 *      detection.
2466 */
2467
2468int ata_cable_80wire(struct ata_port *ap)
2469{
2470        return ATA_CBL_PATA80;
2471}
2472
2473/**
2474 *      ata_cable_unknown       -       return unknown PATA cable.
2475 *      @ap: port
2476 *
2477 *      Helper method for drivers which have no PATA cable detection.
2478 */
2479
2480int ata_cable_unknown(struct ata_port *ap)
2481{
2482        return ATA_CBL_PATA_UNK;
2483}
2484
2485/**
2486 *      ata_cable_ignore        -       return ignored PATA cable.
2487 *      @ap: port
2488 *
2489 *      Helper method for drivers which don't use cable type to limit
2490 *      transfer mode.
2491 */
2492int ata_cable_ignore(struct ata_port *ap)
2493{
2494        return ATA_CBL_PATA_IGN;
2495}
2496
2497/**
2498 *      ata_cable_sata  -       return SATA cable type
2499 *      @ap: port
2500 *
2501 *      Helper method for drivers which have SATA cables
2502 */
2503
2504int ata_cable_sata(struct ata_port *ap)
2505{
2506        return ATA_CBL_SATA;
2507}
2508
2509/**
2510 *      ata_bus_probe - Reset and probe ATA bus
2511 *      @ap: Bus to probe
2512 *
2513 *      Master ATA bus probing function.  Initiates a hardware-dependent
2514 *      bus reset, then attempts to identify any devices found on
2515 *      the bus.
2516 *
2517 *      LOCKING:
2518 *      PCI/etc. bus probe sem.
2519 *
2520 *      RETURNS:
2521 *      Zero on success, negative errno otherwise.
2522 */
2523
2524int ata_bus_probe(struct ata_port *ap)
2525{
2526        unsigned int classes[ATA_MAX_DEVICES];
2527        int tries[ATA_MAX_DEVICES];
2528        int rc;
2529        struct ata_device *dev;
2530
2531        ata_for_each_dev(dev, &ap->link, ALL)
2532                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2533
2534 retry:
2535        ata_for_each_dev(dev, &ap->link, ALL) {
2536                /* If we issue an SRST then an ATA drive (not ATAPI)
2537                 * may change configuration and be in PIO0 timing. If
2538                 * we do a hard reset (or are coming from power on)
2539                 * this is true for ATA or ATAPI. Until we've set a
2540                 * suitable controller mode we should not touch the
2541                 * bus as we may be talking too fast.
2542                 */
2543                dev->pio_mode = XFER_PIO_0;
2544
2545                /* If the controller has a pio mode setup function
2546                 * then use it to set the chipset to rights. Don't
2547                 * touch the DMA setup as that will be dealt with when
2548                 * configuring devices.
2549                 */
2550                if (ap->ops->set_piomode)
2551                        ap->ops->set_piomode(ap, dev);
2552        }
2553
2554        /* reset and determine device classes */
2555        ap->ops->phy_reset(ap);
2556
2557        ata_for_each_dev(dev, &ap->link, ALL) {
2558                if (dev->class != ATA_DEV_UNKNOWN)
2559                        classes[dev->devno] = dev->class;
2560                else
2561                        classes[dev->devno] = ATA_DEV_NONE;
2562
2563                dev->class = ATA_DEV_UNKNOWN;
2564        }
2565
2566        /* read IDENTIFY page and configure devices. We have to do the identify
2567           specific sequence bass-ackwards so that PDIAG- is released by
2568           the slave device */
2569
2570        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2571                if (tries[dev->devno])
2572                        dev->class = classes[dev->devno];
2573
2574                if (!ata_dev_enabled(dev))
2575                        continue;
2576
2577                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2578                                     dev->id);
2579                if (rc)
2580                        goto fail;
2581        }
2582
2583        /* Now ask for the cable type as PDIAG- should have been released */
2584        if (ap->ops->cable_detect)
2585                ap->cbl = ap->ops->cable_detect(ap);
2586
2587        /* We may have SATA bridge glue hiding here irrespective of
2588         * the reported cable types and sensed types.  When SATA
2589         * drives indicate we have a bridge, we don't know which end
2590         * of the link the bridge is which is a problem.
2591         */
2592        ata_for_each_dev(dev, &ap->link, ENABLED)
2593                if (ata_id_is_sata(dev->id))
2594                        ap->cbl = ATA_CBL_SATA;
2595
2596        /* After the identify sequence we can now set up the devices. We do
2597           this in the normal order so that the user doesn't get confused */
2598
2599        ata_for_each_dev(dev, &ap->link, ENABLED) {
2600                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2601                rc = ata_dev_configure(dev);
2602                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2603                if (rc)
2604                        goto fail;
2605        }
2606
2607        /* configure transfer mode */
2608        rc = ata_set_mode(&ap->link, &dev);
2609        if (rc)
2610                goto fail;
2611
2612        ata_for_each_dev(dev, &ap->link, ENABLED)
2613                return 0;
2614
2615        return -ENODEV;
2616
2617 fail:
2618        tries[dev->devno]--;
2619
2620        switch (rc) {
2621        case -EINVAL:
2622                /* eeek, something went very wrong, give up */
2623                tries[dev->devno] = 0;
2624                break;
2625
2626        case -ENODEV:
2627                /* give it just one more chance */
2628                tries[dev->devno] = min(tries[dev->devno], 1);
2629        case -EIO:
2630                if (tries[dev->devno] == 1) {
2631                        /* This is the last chance, better to slow
2632                         * down than lose it.
2633                         */
2634                        sata_down_spd_limit(&ap->link, 0);
2635                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2636                }
2637        }
2638
2639        if (!tries[dev->devno])
2640                ata_dev_disable(dev);
2641
2642        goto retry;
2643}
2644
2645/**
2646 *      sata_print_link_status - Print SATA link status
2647 *      @link: SATA link to printk link status about
2648 *
2649 *      This function prints link speed and status of a SATA link.
2650 *
2651 *      LOCKING:
2652 *      None.
2653 */
2654static void sata_print_link_status(struct ata_link *link)
2655{
2656        u32 sstatus, scontrol, tmp;
2657
2658        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2659                return;
2660        sata_scr_read(link, SCR_CONTROL, &scontrol);
2661
2662        if (ata_phys_link_online(link)) {
2663                tmp = (sstatus >> 4) & 0xf;
2664                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2665                              sata_spd_string(tmp), sstatus, scontrol);
2666        } else {
2667                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2668                              sstatus, scontrol);
2669        }
2670}
2671
2672/**
2673 *      ata_dev_pair            -       return other device on cable
2674 *      @adev: device
2675 *
2676 *      Obtain the other device on the same cable, or if none is
2677 *      present NULL is returned
2678 */
2679
2680struct ata_device *ata_dev_pair(struct ata_device *adev)
2681{
2682        struct ata_link *link = adev->link;
2683        struct ata_device *pair = &link->device[1 - adev->devno];
2684        if (!ata_dev_enabled(pair))
2685                return NULL;
2686        return pair;
2687}
2688
2689/**
2690 *      sata_down_spd_limit - adjust SATA spd limit downward
2691 *      @link: Link to adjust SATA spd limit for
2692 *      @spd_limit: Additional limit
2693 *
2694 *      Adjust SATA spd limit of @link downward.  Note that this
2695 *      function only adjusts the limit.  The change must be applied
2696 *      using sata_set_spd().
2697 *
2698 *      If @spd_limit is non-zero, the speed is limited to equal to or
2699 *      lower than @spd_limit if such speed is supported.  If
2700 *      @spd_limit is slower than any supported speed, only the lowest
2701 *      supported speed is allowed.
2702 *
2703 *      LOCKING:
2704 *      Inherited from caller.
2705 *
2706 *      RETURNS:
2707 *      0 on success, negative errno on failure
2708 */
2709int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2710{
2711        u32 sstatus, spd, mask;
2712        int rc, bit;
2713
2714        if (!sata_scr_valid(link))
2715                return -EOPNOTSUPP;
2716
2717        /* If SCR can be read, use it to determine the current SPD.
2718         * If not, use cached value in link->sata_spd.
2719         */
2720        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2721        if (rc == 0 && ata_sstatus_online(sstatus))
2722                spd = (sstatus >> 4) & 0xf;
2723        else
2724                spd = link->sata_spd;
2725
2726        mask = link->sata_spd_limit;
2727        if (mask <= 1)
2728                return -EINVAL;
2729
2730        /* unconditionally mask off the highest bit */
2731        bit = fls(mask) - 1;
2732        mask &= ~(1 << bit);
2733
2734        /* Mask off all speeds higher than or equal to the current
2735         * one.  Force 1.5Gbps if current SPD is not available.
2736         */
2737        if (spd > 1)
2738                mask &= (1 << (spd - 1)) - 1;
2739        else
2740                mask &= 1;
2741
2742        /* were we already at the bottom? */
2743        if (!mask)
2744                return -EINVAL;
2745
2746        if (spd_limit) {
2747                if (mask & ((1 << spd_limit) - 1))
2748                        mask &= (1 << spd_limit) - 1;
2749                else {
2750                        bit = ffs(mask) - 1;
2751                        mask = 1 << bit;
2752                }
2753        }
2754
2755        link->sata_spd_limit = mask;
2756
2757        ata_link_warn(link, "limiting SATA link speed to %s\n",
2758                      sata_spd_string(fls(mask)));
2759
2760        return 0;
2761}
2762
2763static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2764{
2765        struct ata_link *host_link = &link->ap->link;
2766        u32 limit, target, spd;
2767
2768        limit = link->sata_spd_limit;
2769
2770        /* Don't configure downstream link faster than upstream link.
2771         * It doesn't speed up anything and some PMPs choke on such
2772         * configuration.
2773         */
2774        if (!ata_is_host_link(link) && host_link->sata_spd)
2775                limit &= (1 << host_link->sata_spd) - 1;
2776
2777        if (limit == UINT_MAX)
2778                target = 0;
2779        else
2780                target = fls(limit);
2781
2782        spd = (*scontrol >> 4) & 0xf;
2783        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2784
2785        return spd != target;
2786}
2787
2788/**
2789 *      sata_set_spd_needed - is SATA spd configuration needed
2790 *      @link: Link in question
2791 *
2792 *      Test whether the spd limit in SControl matches
2793 *      @link->sata_spd_limit.  This function is used to determine
2794 *      whether hardreset is necessary to apply SATA spd
2795 *      configuration.
2796 *
2797 *      LOCKING:
2798 *      Inherited from caller.
2799 *
2800 *      RETURNS:
2801 *      1 if SATA spd configuration is needed, 0 otherwise.
2802 */
2803static int sata_set_spd_needed(struct ata_link *link)
2804{
2805        u32 scontrol;
2806
2807        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2808                return 1;
2809
2810        return __sata_set_spd_needed(link, &scontrol);
2811}
2812
2813/**
2814 *      sata_set_spd - set SATA spd according to spd limit
2815 *      @link: Link to set SATA spd for
2816 *
2817 *      Set SATA spd of @link according to sata_spd_limit.
2818 *
2819 *      LOCKING:
2820 *      Inherited from caller.
2821 *
2822 *      RETURNS:
2823 *      0 if spd doesn't need to be changed, 1 if spd has been
2824 *      changed.  Negative errno if SCR registers are inaccessible.
2825 */
2826int sata_set_spd(struct ata_link *link)
2827{
2828        u32 scontrol;
2829        int rc;
2830
2831        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2832                return rc;
2833
2834        if (!__sata_set_spd_needed(link, &scontrol))
2835                return 0;
2836
2837        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2838                return rc;
2839
2840        return 1;
2841}
2842
2843/*
2844 * This mode timing computation functionality is ported over from
2845 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2846 */
2847/*
2848 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2849 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2850 * for UDMA6, which is currently supported only by Maxtor drives.
2851 *
2852 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2853 */
2854
2855static const struct ata_timing ata_timing[] = {
2856/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2857        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2858        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2859        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2860        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2861        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2862        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2863        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2864
2865        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2866        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2867        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2868
2869        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2870        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2871        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2872        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2873        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2874
2875/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2876        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2877        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2878        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2879        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2880        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2881        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2882        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2883
2884        { 0xFF }
2885};
2886
2887#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2888#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2889
2890static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2891{
2892        q->setup        = EZ(t->setup      * 1000,  T);
2893        q->act8b        = EZ(t->act8b      * 1000,  T);
2894        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2895        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2896        q->active       = EZ(t->active     * 1000,  T);
2897        q->recover      = EZ(t->recover    * 1000,  T);
2898        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2899        q->cycle        = EZ(t->cycle      * 1000,  T);
2900        q->udma         = EZ(t->udma       * 1000, UT);
2901}
2902
2903void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2904                      struct ata_timing *m, unsigned int what)
2905{
2906        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2907        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2908        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2909        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2910        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2911        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2912        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2913        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2914        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2915}
2916
2917const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2918{
2919        const struct ata_timing *t = ata_timing;
2920
2921        while (xfer_mode > t->mode)
2922                t++;
2923
2924        if (xfer_mode == t->mode)
2925                return t;
2926        return NULL;
2927}
2928
2929int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2930                       struct ata_timing *t, int T, int UT)
2931{
2932        const u16 *id = adev->id;
2933        const struct ata_timing *s;
2934        struct ata_timing p;
2935
2936        /*
2937         * Find the mode.
2938         */
2939
2940        if (!(s = ata_timing_find_mode(speed)))
2941                return -EINVAL;
2942
2943        memcpy(t, s, sizeof(*s));
2944
2945        /*
2946         * If the drive is an EIDE drive, it can tell us it needs extended
2947         * PIO/MW_DMA cycle timing.
2948         */
2949
2950        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2951                memset(&p, 0, sizeof(p));
2952
2953                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2954                        if (speed <= XFER_PIO_2)
2955                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2956                        else if ((speed <= XFER_PIO_4) ||
2957                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2958                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2959                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2960                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2961
2962                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2963        }
2964
2965        /*
2966         * Convert the timing to bus clock counts.
2967         */
2968
2969        ata_timing_quantize(t, t, T, UT);
2970
2971        /*
2972         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2973         * S.M.A.R.T * and some other commands. We have to ensure that the
2974         * DMA cycle timing is slower/equal than the fastest PIO timing.
2975         */
2976
2977        if (speed > XFER_PIO_6) {
2978                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2979                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2980        }
2981
2982        /*
2983         * Lengthen active & recovery time so that cycle time is correct.
2984         */
2985
2986        if (t->act8b + t->rec8b < t->cyc8b) {
2987                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2988                t->rec8b = t->cyc8b - t->act8b;
2989        }
2990
2991        if (t->active + t->recover < t->cycle) {
2992                t->active += (t->cycle - (t->active + t->recover)) / 2;
2993                t->recover = t->cycle - t->active;
2994        }
2995
2996        /* In a few cases quantisation may produce enough errors to
2997           leave t->cycle too low for the sum of active and recovery
2998           if so we must correct this */
2999        if (t->active + t->recover > t->cycle)
3000                t->cycle = t->active + t->recover;
3001
3002        return 0;
3003}
3004
3005/**
3006 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3007 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3008 *      @cycle: cycle duration in ns
3009 *
3010 *      Return matching xfer mode for @cycle.  The returned mode is of
3011 *      the transfer type specified by @xfer_shift.  If @cycle is too
3012 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3013 *      than the fastest known mode, the fasted mode is returned.
3014 *
3015 *      LOCKING:
3016 *      None.
3017 *
3018 *      RETURNS:
3019 *      Matching xfer_mode, 0xff if no match found.
3020 */
3021u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3022{
3023        u8 base_mode = 0xff, last_mode = 0xff;
3024        const struct ata_xfer_ent *ent;
3025        const struct ata_timing *t;
3026
3027        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3028                if (ent->shift == xfer_shift)
3029                        base_mode = ent->base;
3030
3031        for (t = ata_timing_find_mode(base_mode);
3032             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3033                unsigned short this_cycle;
3034
3035                switch (xfer_shift) {
3036                case ATA_SHIFT_PIO:
3037                case ATA_SHIFT_MWDMA:
3038                        this_cycle = t->cycle;
3039                        break;
3040                case ATA_SHIFT_UDMA:
3041                        this_cycle = t->udma;
3042                        break;
3043                default:
3044                        return 0xff;
3045                }
3046
3047                if (cycle > this_cycle)
3048                        break;
3049
3050                last_mode = t->mode;
3051        }
3052
3053        return last_mode;
3054}
3055
3056/**
3057 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3058 *      @dev: Device to adjust xfer masks
3059 *      @sel: ATA_DNXFER_* selector
3060 *
3061 *      Adjust xfer masks of @dev downward.  Note that this function
3062 *      does not apply the change.  Invoking ata_set_mode() afterwards
3063 *      will apply the limit.
3064 *
3065 *      LOCKING:
3066 *      Inherited from caller.
3067 *
3068 *      RETURNS:
3069 *      0 on success, negative errno on failure
3070 */
3071int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3072{
3073        char buf[32];
3074        unsigned long orig_mask, xfer_mask;
3075        unsigned long pio_mask, mwdma_mask, udma_mask;
3076        int quiet, highbit;
3077
3078        quiet = !!(sel & ATA_DNXFER_QUIET);
3079        sel &= ~ATA_DNXFER_QUIET;
3080
3081        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3082                                                  dev->mwdma_mask,
3083                                                  dev->udma_mask);
3084        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3085
3086        switch (sel) {
3087        case ATA_DNXFER_PIO:
3088                highbit = fls(pio_mask) - 1;
3089                pio_mask &= ~(1 << highbit);
3090                break;
3091
3092        case ATA_DNXFER_DMA:
3093                if (udma_mask) {
3094                        highbit = fls(udma_mask) - 1;
3095                        udma_mask &= ~(1 << highbit);
3096                        if (!udma_mask)
3097                                return -ENOENT;
3098                } else if (mwdma_mask) {
3099                        highbit = fls(mwdma_mask) - 1;
3100                        mwdma_mask &= ~(1 << highbit);
3101                        if (!mwdma_mask)
3102                                return -ENOENT;
3103                }
3104                break;
3105
3106        case ATA_DNXFER_40C:
3107                udma_mask &= ATA_UDMA_MASK_40C;
3108                break;
3109
3110        case ATA_DNXFER_FORCE_PIO0:
3111                pio_mask &= 1;
3112        case ATA_DNXFER_FORCE_PIO:
3113                mwdma_mask = 0;
3114                udma_mask = 0;
3115                break;
3116
3117        default:
3118                BUG();
3119        }
3120
3121        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3122
3123        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3124                return -ENOENT;
3125
3126        if (!quiet) {
3127                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3128                        snprintf(buf, sizeof(buf), "%s:%s",
3129                                 ata_mode_string(xfer_mask),
3130                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3131                else
3132                        snprintf(buf, sizeof(buf), "%s",
3133                                 ata_mode_string(xfer_mask));
3134
3135                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3136        }
3137
3138        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3139                            &dev->udma_mask);
3140
3141        return 0;
3142}
3143
3144static int ata_dev_set_mode(struct ata_device *dev)
3145{
3146        struct ata_port *ap = dev->link->ap;
3147        struct ata_eh_context *ehc = &dev->link->eh_context;
3148        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3149        const char *dev_err_whine = "";
3150        int ign_dev_err = 0;
3151        unsigned int err_mask = 0;
3152        int rc;
3153
3154        dev->flags &= ~ATA_DFLAG_PIO;
3155        if (dev->xfer_shift == ATA_SHIFT_PIO)
3156                dev->flags |= ATA_DFLAG_PIO;
3157
3158        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3159                dev_err_whine = " (SET_XFERMODE skipped)";
3160        else {
3161                if (nosetxfer)
3162                        ata_dev_warn(dev,
3163                                     "NOSETXFER but PATA detected - can't "
3164                                     "skip SETXFER, might malfunction\n");
3165                err_mask = ata_dev_set_xfermode(dev);
3166        }
3167
3168        if (err_mask & ~AC_ERR_DEV)
3169                goto fail;
3170
3171        /* revalidate */
3172        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3173        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3174        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3175        if (rc)
3176                return rc;
3177
3178        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3179                /* Old CFA may refuse this command, which is just fine */
3180                if (ata_id_is_cfa(dev->id))
3181                        ign_dev_err = 1;
3182                /* Catch several broken garbage emulations plus some pre
3183                   ATA devices */
3184                if (ata_id_major_version(dev->id) == 0 &&
3185                                        dev->pio_mode <= XFER_PIO_2)
3186                        ign_dev_err = 1;
3187                /* Some very old devices and some bad newer ones fail
3188                   any kind of SET_XFERMODE request but support PIO0-2
3189                   timings and no IORDY */
3190                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3191                        ign_dev_err = 1;
3192        }
3193        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3194           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3195        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3196            dev->dma_mode == XFER_MW_DMA_0 &&
3197            (dev->id[63] >> 8) & 1)
3198                ign_dev_err = 1;
3199
3200        /* if the device is actually configured correctly, ignore dev err */
3201        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3202                ign_dev_err = 1;
3203
3204        if (err_mask & AC_ERR_DEV) {
3205                if (!ign_dev_err)
3206                        goto fail;
3207                else
3208                        dev_err_whine = " (device error ignored)";
3209        }
3210
3211        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3212                dev->xfer_shift, (int)dev->xfer_mode);
3213
3214        ata_dev_info(dev, "configured for %s%s\n",
3215                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3216                     dev_err_whine);
3217
3218        return 0;
3219
3220 fail:
3221        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3222        return -EIO;
3223}
3224
3225/**
3226 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3227 *      @link: link on which timings will be programmed
3228 *      @r_failed_dev: out parameter for failed device
3229 *
3230 *      Standard implementation of the function used to tune and set
3231 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3232 *      ata_dev_set_mode() fails, pointer to the failing device is
3233 *      returned in @r_failed_dev.
3234 *
3235 *      LOCKING:
3236 *      PCI/etc. bus probe sem.
3237 *
3238 *      RETURNS:
3239 *      0 on success, negative errno otherwise
3240 */
3241
3242int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3243{
3244        struct ata_port *ap = link->ap;
3245        struct ata_device *dev;
3246        int rc = 0, used_dma = 0, found = 0;
3247
3248        /* step 1: calculate xfer_mask */
3249        ata_for_each_dev(dev, link, ENABLED) {
3250                unsigned long pio_mask, dma_mask;
3251                unsigned int mode_mask;
3252
3253                mode_mask = ATA_DMA_MASK_ATA;
3254                if (dev->class == ATA_DEV_ATAPI)
3255                        mode_mask = ATA_DMA_MASK_ATAPI;
3256                else if (ata_id_is_cfa(dev->id))
3257                        mode_mask = ATA_DMA_MASK_CFA;
3258
3259                ata_dev_xfermask(dev);
3260                ata_force_xfermask(dev);
3261
3262                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3263
3264                if (libata_dma_mask & mode_mask)
3265                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3266                                                     dev->udma_mask);
3267                else
3268                        dma_mask = 0;
3269
3270                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3271                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3272
3273                found = 1;
3274                if (ata_dma_enabled(dev))
3275                        used_dma = 1;
3276        }
3277        if (!found)
3278                goto out;
3279
3280        /* step 2: always set host PIO timings */
3281        ata_for_each_dev(dev, link, ENABLED) {
3282                if (dev->pio_mode == 0xff) {
3283                        ata_dev_warn(dev, "no PIO support\n");
3284                        rc = -EINVAL;
3285                        goto out;
3286                }
3287
3288                dev->xfer_mode = dev->pio_mode;
3289                dev->xfer_shift = ATA_SHIFT_PIO;
3290                if (ap->ops->set_piomode)
3291                        ap->ops->set_piomode(ap, dev);
3292        }
3293
3294        /* step 3: set host DMA timings */
3295        ata_for_each_dev(dev, link, ENABLED) {
3296                if (!ata_dma_enabled(dev))
3297                        continue;
3298
3299                dev->xfer_mode = dev->dma_mode;
3300                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3301                if (ap->ops->set_dmamode)
3302                        ap->ops->set_dmamode(ap, dev);
3303        }
3304
3305        /* step 4: update devices' xfer mode */
3306        ata_for_each_dev(dev, link, ENABLED) {
3307                rc = ata_dev_set_mode(dev);
3308                if (rc)
3309                        goto out;
3310        }
3311
3312        /* Record simplex status. If we selected DMA then the other
3313         * host channels are not permitted to do so.
3314         */
3315        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3316                ap->host->simplex_claimed = ap;
3317
3318 out:
3319        if (rc)
3320                *r_failed_dev = dev;
3321        return rc;
3322}
3323
3324/**
3325 *      ata_wait_ready - wait for link to become ready
3326 *      @link: link to be waited on
3327 *      @deadline: deadline jiffies for the operation
3328 *      @check_ready: callback to check link readiness
3329 *
3330 *      Wait for @link to become ready.  @check_ready should return
3331 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3332 *      link doesn't seem to be occupied, other errno for other error
3333 *      conditions.
3334 *
3335 *      Transient -ENODEV conditions are allowed for
3336 *      ATA_TMOUT_FF_WAIT.
3337 *
3338 *      LOCKING:
3339 *      EH context.
3340 *
3341 *      RETURNS:
3342 *      0 if @linke is ready before @deadline; otherwise, -errno.
3343 */
3344int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3345                   int (*check_ready)(struct ata_link *link))
3346{
3347        unsigned long start = jiffies;
3348        unsigned long nodev_deadline;
3349        int warned = 0;
3350
3351        /* choose which 0xff timeout to use, read comment in libata.h */
3352        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3353                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3354        else
3355                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3356
3357        /* Slave readiness can't be tested separately from master.  On
3358         * M/S emulation configuration, this function should be called
3359         * only on the master and it will handle both master and slave.
3360         */
3361        WARN_ON(link == link->ap->slave_link);
3362
3363        if (time_after(nodev_deadline, deadline))
3364                nodev_deadline = deadline;
3365
3366        while (1) {
3367                unsigned long now = jiffies;
3368                int ready, tmp;
3369
3370                ready = tmp = check_ready(link);
3371                if (ready > 0)
3372                        return 0;
3373
3374                /*
3375                 * -ENODEV could be transient.  Ignore -ENODEV if link
3376                 * is online.  Also, some SATA devices take a long
3377                 * time to clear 0xff after reset.  Wait for
3378                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3379                 * offline.
3380                 *
3381                 * Note that some PATA controllers (pata_ali) explode
3382                 * if status register is read more than once when
3383                 * there's no device attached.
3384                 */
3385                if (ready == -ENODEV) {
3386                        if (ata_link_online(link))
3387                                ready = 0;
3388                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3389                                 !ata_link_offline(link) &&
3390                                 time_before(now, nodev_deadline))
3391                                ready = 0;
3392                }
3393
3394                if (ready)
3395                        return ready;
3396                if (time_after(now, deadline))
3397                        return -EBUSY;
3398
3399                if (!warned && time_after(now, start + 5 * HZ) &&
3400                    (deadline - now > 3 * HZ)) {
3401                        ata_link_warn(link,
3402                                "link is slow to respond, please be patient "
3403                                "(ready=%d)\n", tmp);
3404                        warned = 1;
3405                }
3406
3407                ata_msleep(link->ap, 50);
3408        }
3409}
3410
3411/**
3412 *      ata_wait_after_reset - wait for link to become ready after reset
3413 *      @link: link to be waited on
3414 *      @deadline: deadline jiffies for the operation
3415 *      @check_ready: callback to check link readiness
3416 *
3417 *      Wait for @link to become ready after reset.
3418 *
3419 *      LOCKING:
3420 *      EH context.
3421 *
3422 *      RETURNS:
3423 *      0 if @linke is ready before @deadline; otherwise, -errno.
3424 */
3425int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3426                                int (*check_ready)(struct ata_link *link))
3427{
3428        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3429
3430        return ata_wait_ready(link, deadline, check_ready);
3431}
3432
3433/**
3434 *      sata_link_debounce - debounce SATA phy status
3435 *      @link: ATA link to debounce SATA phy status for
3436 *      @params: timing parameters { interval, duratinon, timeout } in msec
3437 *      @deadline: deadline jiffies for the operation
3438 *
3439 *      Make sure SStatus of @link reaches stable state, determined by
3440 *      holding the same value where DET is not 1 for @duration polled
3441 *      every @interval, before @timeout.  Timeout constraints the
3442 *      beginning of the stable state.  Because DET gets stuck at 1 on
3443 *      some controllers after hot unplugging, this functions waits
3444 *      until timeout then returns 0 if DET is stable at 1.
3445 *
3446 *      @timeout is further limited by @deadline.  The sooner of the
3447 *      two is used.
3448 *
3449 *      LOCKING:
3450 *      Kernel thread context (may sleep)
3451 *
3452 *      RETURNS:
3453 *      0 on success, -errno on failure.
3454 */
3455int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3456                       unsigned long deadline)
3457{
3458        unsigned long interval = params[0];
3459        unsigned long duration = params[1];
3460        unsigned long last_jiffies, t;
3461        u32 last, cur;
3462        int rc;
3463
3464        t = ata_deadline(jiffies, params[2]);
3465        if (time_before(t, deadline))
3466                deadline = t;
3467
3468        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3469                return rc;
3470        cur &= 0xf;
3471
3472        last = cur;
3473        last_jiffies = jiffies;
3474
3475        while (1) {
3476                ata_msleep(link->ap, interval);
3477                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3478                        return rc;
3479                cur &= 0xf;
3480
3481                /* DET stable? */
3482                if (cur == last) {
3483                        if (cur == 1 && time_before(jiffies, deadline))
3484                                continue;
3485                        if (time_after(jiffies,
3486                                       ata_deadline(last_jiffies, duration)))
3487                                return 0;
3488                        continue;
3489                }
3490
3491                /* unstable, start over */
3492                last = cur;
3493                last_jiffies = jiffies;
3494
3495                /* Check deadline.  If debouncing failed, return
3496                 * -EPIPE to tell upper layer to lower link speed.
3497                 */
3498                if (time_after(jiffies, deadline))
3499                        return -EPIPE;
3500        }
3501}
3502
3503/**
3504 *      sata_link_resume - resume SATA link
3505 *      @link: ATA link to resume SATA
3506 *      @params: timing parameters { interval, duratinon, timeout } in msec
3507 *      @deadline: deadline jiffies for the operation
3508 *
3509 *      Resume SATA phy @link and debounce it.
3510 *
3511 *      LOCKING:
3512 *      Kernel thread context (may sleep)
3513 *
3514 *      RETURNS:
3515 *      0 on success, -errno on failure.
3516 */
3517int sata_link_resume(struct ata_link *link, const unsigned long *params,
3518                     unsigned long deadline)
3519{
3520        int tries = ATA_LINK_RESUME_TRIES;
3521        u32 scontrol, serror;
3522        int rc;
3523
3524        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3525                return rc;
3526
3527        /*
3528         * Writes to SControl sometimes get ignored under certain
3529         * controllers (ata_piix SIDPR).  Make sure DET actually is
3530         * cleared.
3531         */
3532        do {
3533                scontrol = (scontrol & 0x0f0) | 0x300;
3534                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3535                        return rc;
3536                /*
3537                 * Some PHYs react badly if SStatus is pounded
3538                 * immediately after resuming.  Delay 200ms before
3539                 * debouncing.
3540                 */
3541                ata_msleep(link->ap, 200);
3542
3543                /* is SControl restored correctly? */
3544                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3545                        return rc;
3546        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3547
3548        if ((scontrol & 0xf0f) != 0x300) {
3549                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3550                             scontrol);
3551                return 0;
3552        }
3553
3554        if (tries < ATA_LINK_RESUME_TRIES)
3555                ata_link_warn(link, "link resume succeeded after %d retries\n",
3556                              ATA_LINK_RESUME_TRIES - tries);
3557
3558        if ((rc = sata_link_debounce(link, params, deadline)))
3559                return rc;
3560
3561        /* clear SError, some PHYs require this even for SRST to work */
3562        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3563                rc = sata_scr_write(link, SCR_ERROR, serror);
3564
3565        return rc != -EINVAL ? rc : 0;
3566}
3567
3568/**
3569 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3570 *      @link: ATA link to manipulate SControl for
3571 *      @policy: LPM policy to configure
3572 *      @spm_wakeup: initiate LPM transition to active state
3573 *
3574 *      Manipulate the IPM field of the SControl register of @link
3575 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3576 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3577 *      the link.  This function also clears PHYRDY_CHG before
3578 *      returning.
3579 *
3580 *      LOCKING:
3581 *      EH context.
3582 *
3583 *      RETURNS:
3584 *      0 on succes, -errno otherwise.
3585 */
3586int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3587                      bool spm_wakeup)
3588{
3589        struct ata_eh_context *ehc = &link->eh_context;
3590        bool woken_up = false;
3591        u32 scontrol;
3592        int rc;
3593
3594        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3595        if (rc)
3596                return rc;
3597
3598        switch (policy) {
3599        case ATA_LPM_MAX_POWER:
3600                /* disable all LPM transitions */
3601                scontrol |= (0x3 << 8);
3602                /* initiate transition to active state */
3603                if (spm_wakeup) {
3604                        scontrol |= (0x4 << 12);
3605                        woken_up = true;
3606                }
3607                break;
3608        case ATA_LPM_MED_POWER:
3609                /* allow LPM to PARTIAL */
3610                scontrol &= ~(0x1 << 8);
3611                scontrol |= (0x2 << 8);
3612                break;
3613        case ATA_LPM_MIN_POWER:
3614                if (ata_link_nr_enabled(link) > 0)
3615                        /* no restrictions on LPM transitions */
3616                        scontrol &= ~(0x3 << 8);
3617                else {
3618                        /* empty port, power off */
3619                        scontrol &= ~0xf;
3620                        scontrol |= (0x1 << 2);
3621                }
3622                break;
3623        default:
3624                WARN_ON(1);
3625        }
3626
3627        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3628        if (rc)
3629                return rc;
3630
3631        /* give the link time to transit out of LPM state */
3632        if (woken_up)
3633                msleep(10);
3634
3635        /* clear PHYRDY_CHG from SError */
3636        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3637        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3638}
3639
3640/**
3641 *      ata_std_prereset - prepare for reset
3642 *      @link: ATA link to be reset
3643 *      @deadline: deadline jiffies for the operation
3644 *
3645 *      @link is about to be reset.  Initialize it.  Failure from
3646 *      prereset makes libata abort whole reset sequence and give up
3647 *      that port, so prereset should be best-effort.  It does its
3648 *      best to prepare for reset sequence but if things go wrong, it
3649 *      should just whine, not fail.
3650 *
3651 *      LOCKING:
3652 *      Kernel thread context (may sleep)
3653 *
3654 *      RETURNS:
3655 *      0 on success, -errno otherwise.
3656 */
3657int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3658{
3659        struct ata_port *ap = link->ap;
3660        struct ata_eh_context *ehc = &link->eh_context;
3661        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3662        int rc;
3663
3664        /* if we're about to do hardreset, nothing more to do */
3665        if (ehc->i.action & ATA_EH_HARDRESET)
3666                return 0;
3667
3668        /* if SATA, resume link */
3669        if (ap->flags & ATA_FLAG_SATA) {
3670                rc = sata_link_resume(link, timing, deadline);
3671                /* whine about phy resume failure but proceed */
3672                if (rc && rc != -EOPNOTSUPP)
3673                        ata_link_warn(link,
3674                                      "failed to resume link for reset (errno=%d)\n",
3675                                      rc);
3676        }
3677
3678        /* no point in trying softreset on offline link */
3679        if (ata_phys_link_offline(link))
3680                ehc->i.action &= ~ATA_EH_SOFTRESET;
3681
3682        return 0;
3683}
3684
3685/**
3686 *      sata_link_hardreset - reset link via SATA phy reset
3687 *      @link: link to reset
3688 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3689 *      @deadline: deadline jiffies for the operation
3690 *      @online: optional out parameter indicating link onlineness
3691 *      @check_ready: optional callback to check link readiness
3692 *
3693 *      SATA phy-reset @link using DET bits of SControl register.
3694 *      After hardreset, link readiness is waited upon using
3695 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3696 *      allowed to not specify @check_ready and wait itself after this
3697 *      function returns.  Device classification is LLD's
3698 *      responsibility.
3699 *
3700 *      *@online is set to one iff reset succeeded and @link is online
3701 *      after reset.
3702 *
3703 *      LOCKING:
3704 *      Kernel thread context (may sleep)
3705 *
3706 *      RETURNS:
3707 *      0 on success, -errno otherwise.
3708 */
3709int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3710                        unsigned long deadline,
3711                        bool *online, int (*check_ready)(struct ata_link *))
3712{
3713        u32 scontrol;
3714        int rc;
3715
3716        DPRINTK("ENTER\n");
3717
3718        if (online)
3719                *online = false;
3720
3721        if (sata_set_spd_needed(link)) {
3722                /* SATA spec says nothing about how to reconfigure
3723                 * spd.  To be on the safe side, turn off phy during
3724                 * reconfiguration.  This works for at least ICH7 AHCI
3725                 * and Sil3124.
3726                 */
3727                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728                        goto out;
3729
3730                scontrol = (scontrol & 0x0f0) | 0x304;
3731
3732                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3733                        goto out;
3734
3735                sata_set_spd(link);
3736        }
3737
3738        /* issue phy wake/reset */
3739        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3740                goto out;
3741
3742        scontrol = (scontrol & 0x0f0) | 0x301;
3743
3744        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3745                goto out;
3746
3747        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3748         * 10.4.2 says at least 1 ms.
3749         */
3750        ata_msleep(link->ap, 1);
3751
3752        /* bring link back */
3753        rc = sata_link_resume(link, timing, deadline);
3754        if (rc)
3755                goto out;
3756        /* if link is offline nothing more to do */
3757        if (ata_phys_link_offline(link))
3758                goto out;
3759
3760        /* Link is online.  From this point, -ENODEV too is an error. */
3761        if (online)
3762                *online = true;
3763
3764        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3765                /* If PMP is supported, we have to do follow-up SRST.
3766                 * Some PMPs don't send D2H Reg FIS after hardreset if
3767                 * the first port is empty.  Wait only for
3768                 * ATA_TMOUT_PMP_SRST_WAIT.
3769                 */
3770                if (check_ready) {
3771                        unsigned long pmp_deadline;
3772
3773                        pmp_deadline = ata_deadline(jiffies,
3774                                                    ATA_TMOUT_PMP_SRST_WAIT);
3775                        if (time_after(pmp_deadline, deadline))
3776                                pmp_deadline = deadline;
3777                        ata_wait_ready(link, pmp_deadline, check_ready);
3778                }
3779                rc = -EAGAIN;
3780                goto out;
3781        }
3782
3783        rc = 0;
3784        if (check_ready)
3785                rc = ata_wait_ready(link, deadline, check_ready);
3786 out:
3787        if (rc && rc != -EAGAIN) {
3788                /* online is set iff link is online && reset succeeded */
3789                if (online)
3790                        *online = false;
3791                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3792        }
3793        DPRINTK("EXIT, rc=%d\n", rc);
3794        return rc;
3795}
3796
3797/**
3798 *      sata_std_hardreset - COMRESET w/o waiting or classification
3799 *      @link: link to reset
3800 *      @class: resulting class of attached device
3801 *      @deadline: deadline jiffies for the operation
3802 *
3803 *      Standard SATA COMRESET w/o waiting or classification.
3804 *
3805 *      LOCKING:
3806 *      Kernel thread context (may sleep)
3807 *
3808 *      RETURNS:
3809 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3810 */
3811int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3812                       unsigned long deadline)
3813{
3814        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3815        bool online;
3816        int rc;
3817
3818        /* do hardreset */
3819        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3820        return online ? -EAGAIN : rc;
3821}
3822
3823/**
3824 *      ata_std_postreset - standard postreset callback
3825 *      @link: the target ata_link
3826 *      @classes: classes of attached devices
3827 *
3828 *      This function is invoked after a successful reset.  Note that
3829 *      the device might have been reset more than once using
3830 *      different reset methods before postreset is invoked.
3831 *
3832 *      LOCKING:
3833 *      Kernel thread context (may sleep)
3834 */
3835void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3836{
3837        u32 serror;
3838
3839        DPRINTK("ENTER\n");
3840
3841        /* reset complete, clear SError */
3842        if (!sata_scr_read(link, SCR_ERROR, &serror))
3843                sata_scr_write(link, SCR_ERROR, serror);
3844
3845        /* print link status */
3846        sata_print_link_status(link);
3847
3848        DPRINTK("EXIT\n");
3849}
3850
3851/**
3852 *      ata_dev_same_device - Determine whether new ID matches configured device
3853 *      @dev: device to compare against
3854 *      @new_class: class of the new device
3855 *      @new_id: IDENTIFY page of the new device
3856 *
3857 *      Compare @new_class and @new_id against @dev and determine
3858 *      whether @dev is the device indicated by @new_class and
3859 *      @new_id.
3860 *
3861 *      LOCKING:
3862 *      None.
3863 *
3864 *      RETURNS:
3865 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3866 */
3867static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3868                               const u16 *new_id)
3869{
3870        const u16 *old_id = dev->id;
3871        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3872        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3873
3874        if (dev->class != new_class) {
3875                ata_dev_info(dev, "class mismatch %d != %d\n",
3876                             dev->class, new_class);
3877                return 0;
3878        }
3879
3880        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3881        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3882        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3883        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3884
3885        if (strcmp(model[0], model[1])) {
3886                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3887                             model[0], model[1]);
3888                return 0;
3889        }
3890
3891        if (strcmp(serial[0], serial[1])) {
3892                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3893                             serial[0], serial[1]);
3894                return 0;
3895        }
3896
3897        return 1;
3898}
3899
3900/**
3901 *      ata_dev_reread_id - Re-read IDENTIFY data
3902 *      @dev: target ATA device
3903 *      @readid_flags: read ID flags
3904 *
3905 *      Re-read IDENTIFY page and make sure @dev is still attached to
3906 *      the port.
3907 *
3908 *      LOCKING:
3909 *      Kernel thread context (may sleep)
3910 *
3911 *      RETURNS:
3912 *      0 on success, negative errno otherwise
3913 */
3914int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3915{
3916        unsigned int class = dev->class;
3917        u16 *id = (void *)dev->link->ap->sector_buf;
3918        int rc;
3919
3920        /* read ID data */
3921        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3922        if (rc)
3923                return rc;
3924
3925        /* is the device still there? */
3926        if (!ata_dev_same_device(dev, class, id))
3927                return -ENODEV;
3928
3929        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3930        return 0;
3931}
3932
3933/**
3934 *      ata_dev_revalidate - Revalidate ATA device
3935 *      @dev: device to revalidate
3936 *      @new_class: new class code
3937 *      @readid_flags: read ID flags
3938 *
3939 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3940 *      port and reconfigure it according to the new IDENTIFY page.
3941 *
3942 *      LOCKING:
3943 *      Kernel thread context (may sleep)
3944 *
3945 *      RETURNS:
3946 *      0 on success, negative errno otherwise
3947 */
3948int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3949                       unsigned int readid_flags)
3950{
3951        u64 n_sectors = dev->n_sectors;
3952        u64 n_native_sectors = dev->n_native_sectors;
3953        int rc;
3954
3955        if (!ata_dev_enabled(dev))
3956                return -ENODEV;
3957
3958        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3959        if (ata_class_enabled(new_class) &&
3960            new_class != ATA_DEV_ATA &&
3961            new_class != ATA_DEV_ATAPI &&
3962            new_class != ATA_DEV_SEMB) {
3963                ata_dev_info(dev, "class mismatch %u != %u\n",
3964                             dev->class, new_class);
3965                rc = -ENODEV;
3966                goto fail;
3967        }
3968
3969        /* re-read ID */
3970        rc = ata_dev_reread_id(dev, readid_flags);
3971        if (rc)
3972                goto fail;
3973
3974        /* configure device according to the new ID */
3975        rc = ata_dev_configure(dev);
3976        if (rc)
3977                goto fail;
3978
3979        /* verify n_sectors hasn't changed */
3980        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3981            dev->n_sectors == n_sectors)
3982                return 0;
3983
3984        /* n_sectors has changed */
3985        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3986                     (unsigned long long)n_sectors,
3987                     (unsigned long long)dev->n_sectors);
3988
3989        /*
3990         * Something could have caused HPA to be unlocked
3991         * involuntarily.  If n_native_sectors hasn't changed and the
3992         * new size matches it, keep the device.
3993         */
3994        if (dev->n_native_sectors == n_native_sectors &&
3995            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3996                ata_dev_warn(dev,
3997                             "new n_sectors matches native, probably "
3998                             "late HPA unlock, n_sectors updated\n");
3999                /* use the larger n_sectors */
4000                return 0;
4001        }
4002
4003        /*
4004         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4005         * unlocking HPA in those cases.
4006         *
4007         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4008         */
4009        if (dev->n_native_sectors == n_native_sectors &&
4010            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4011            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4012                ata_dev_warn(dev,
4013                             "old n_sectors matches native, probably "
4014                             "late HPA lock, will try to unlock HPA\n");
4015                /* try unlocking HPA */
4016                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4017                rc = -EIO;
4018        } else
4019                rc = -ENODEV;
4020
4021        /* restore original n_[native_]sectors and fail */
4022        dev->n_native_sectors = n_native_sectors;
4023        dev->n_sectors = n_sectors;
4024 fail:
4025        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4026        return rc;
4027}
4028
4029struct ata_blacklist_entry {
4030        const char *model_num;
4031        const char *model_rev;
4032        unsigned long horkage;
4033};
4034
4035static const struct ata_blacklist_entry ata_device_blacklist [] = {
4036        /* Devices with DMA related problems under Linux */
4037        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4038        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4039        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4040        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4041        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4042        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4043        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4044        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4045        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4046        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4047        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4048        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4049        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4050        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4051        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4052        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4053        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4054        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4055        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4056        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4057        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4058        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4059        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4060        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4061        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4062        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4063        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4064        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4065        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4066        /* Odd clown on sil3726/4726 PMPs */
4067        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4068
4069        /* Weird ATAPI devices */
4070        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4071        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4072
4073        /* Devices we expect to fail diagnostics */
4074
4075        /* Devices where NCQ should be avoided */
4076        /* NCQ is slow */
4077        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4078        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4079        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4080        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4081        /* NCQ is broken */
4082        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4083        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4084        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4085        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4086        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4087
4088        /* Seagate NCQ + FLUSH CACHE firmware bug */
4089        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4090                                                ATA_HORKAGE_FIRMWARE_WARN },
4091
4092        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4093                                                ATA_HORKAGE_FIRMWARE_WARN },
4094
4095        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4096                                                ATA_HORKAGE_FIRMWARE_WARN },
4097
4098        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4099                                                ATA_HORKAGE_FIRMWARE_WARN },
4100
4101        /* Blacklist entries taken from Silicon Image 3124/3132
4102           Windows driver .inf file - also several Linux problem reports */
4103        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4104        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4105        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4106
4107        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4108        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4109
4110        /* devices which puke on READ_NATIVE_MAX */
4111        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4112        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4113        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4114        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4115
4116        /* this one allows HPA unlocking but fails IOs on the area */
4117        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4118
4119        /* Devices which report 1 sector over size HPA */
4120        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4121        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4122        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4123
4124        /* Devices which get the IVB wrong */
4125        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4126        /* Maybe we should just blacklist TSSTcorp... */
4127        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4128
4129        /* Devices that do not need bridging limits applied */
4130        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4131        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4132
4133        /* Devices which aren't very happy with higher link speeds */
4134        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4135        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4136
4137        /*
4138         * Devices which choke on SETXFER.  Applies only if both the
4139         * device and controller are SATA.
4140         */
4141        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4142        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4143        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4144        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4145        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4146
4147        /* End Marker */
4148        { }
4149};
4150
4151/**
4152 *      glob_match - match a text string against a glob-style pattern
4153 *      @text: the string to be examined
4154 *      @pattern: the glob-style pattern to be matched against
4155 *
4156 *      Either/both of text and pattern can be empty strings.
4157 *
4158 *      Match text against a glob-style pattern, with wildcards and simple sets:
4159 *
4160 *              ?       matches any single character.
4161 *              *       matches any run of characters.
4162 *              [xyz]   matches a single character from the set: x, y, or z.
4163 *              [a-d]   matches a single character from the range: a, b, c, or d.
4164 *              [a-d0-9] matches a single character from either range.
4165 *
4166 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4167 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4168 *
4169 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4170 *
4171 *      This function uses one level of recursion per '*' in pattern.
4172 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4173 *      this will not cause stack problems for any reasonable use here.
4174 *
4175 *      RETURNS:
4176 *      0 on match, 1 otherwise.
4177 */
4178static int glob_match (const char *text, const char *pattern)
4179{
4180        do {
4181                /* Match single character or a '?' wildcard */
4182                if (*text == *pattern || *pattern == '?') {
4183                        if (!*pattern++)
4184                                return 0;  /* End of both strings: match */
4185                } else {
4186                        /* Match single char against a '[' bracketed ']' pattern set */
4187                        if (!*text || *pattern != '[')
4188                                break;  /* Not a pattern set */
4189                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4190                                if (*pattern == '-' && *(pattern - 1) != '[')
4191                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4192                                                ++pattern;
4193                                                break;
4194                                        }
4195                        }
4196                        if (!*pattern || *pattern == ']')
4197                                return 1;  /* No match */
4198                        while (*pattern && *pattern++ != ']');
4199                }
4200        } while (*++text && *pattern);
4201
4202        /* Match any run of chars against a '*' wildcard */
4203        if (*pattern == '*') {
4204                if (!*++pattern)
4205                        return 0;  /* Match: avoid recursion at end of pattern */
4206                /* Loop to handle additional pattern chars after the wildcard */
4207                while (*text) {
4208                        if (glob_match(text, pattern) == 0)
4209                                return 0;  /* Remainder matched */
4210                        ++text;  /* Absorb (match) this char and try again */
4211                }
4212        }
4213        if (!*text && !*pattern)
4214                return 0;  /* End of both strings: match */
4215        return 1;  /* No match */
4216}
4217
4218static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4219{
4220        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4221        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4222        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4223
4224        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4225        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4226
4227        while (ad->model_num) {
4228                if (!glob_match(model_num, ad->model_num)) {
4229                        if (ad->model_rev == NULL)
4230                                return ad->horkage;
4231                        if (!glob_match(model_rev, ad->model_rev))
4232                                return ad->horkage;
4233                }
4234                ad++;
4235        }
4236        return 0;
4237}
4238
4239static int ata_dma_blacklisted(const struct ata_device *dev)
4240{
4241        /* We don't support polling DMA.
4242         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4243         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4244         */
4245        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4246            (dev->flags & ATA_DFLAG_CDB_INTR))
4247                return 1;
4248        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4249}
4250
4251/**
4252 *      ata_is_40wire           -       check drive side detection
4253 *      @dev: device
4254 *
4255 *      Perform drive side detection decoding, allowing for device vendors
4256 *      who can't follow the documentation.
4257 */
4258
4259static int ata_is_40wire(struct ata_device *dev)
4260{
4261        if (dev->horkage & ATA_HORKAGE_IVB)
4262                return ata_drive_40wire_relaxed(dev->id);
4263        return ata_drive_40wire(dev->id);
4264}
4265
4266/**
4267 *      cable_is_40wire         -       40/80/SATA decider
4268 *      @ap: port to consider
4269 *
4270 *      This function encapsulates the policy for speed management
4271 *      in one place. At the moment we don't cache the result but
4272 *      there is a good case for setting ap->cbl to the result when
4273 *      we are called with unknown cables (and figuring out if it
4274 *      impacts hotplug at all).
4275 *
4276 *      Return 1 if the cable appears to be 40 wire.
4277 */
4278
4279static int cable_is_40wire(struct ata_port *ap)
4280{
4281        struct ata_link *link;
4282        struct ata_device *dev;
4283
4284        /* If the controller thinks we are 40 wire, we are. */
4285        if (ap->cbl == ATA_CBL_PATA40)
4286                return 1;
4287
4288        /* If the controller thinks we are 80 wire, we are. */
4289        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4290                return 0;
4291
4292        /* If the system is known to be 40 wire short cable (eg
4293         * laptop), then we allow 80 wire modes even if the drive
4294         * isn't sure.
4295         */
4296        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4297                return 0;
4298
4299        /* If the controller doesn't know, we scan.
4300         *
4301         * Note: We look for all 40 wire detects at this point.  Any
4302         *       80 wire detect is taken to be 80 wire cable because
4303         * - in many setups only the one drive (slave if present) will
4304         *   give a valid detect
4305         * - if you have a non detect capable drive you don't want it
4306         *   to colour the choice
4307         */
4308        ata_for_each_link(link, ap, EDGE) {
4309                ata_for_each_dev(dev, link, ENABLED) {
4310                        if (!ata_is_40wire(dev))
4311                                return 0;
4312                }
4313        }
4314        return 1;
4315}
4316
4317/**
4318 *      ata_dev_xfermask - Compute supported xfermask of the given device
4319 *      @dev: Device to compute xfermask for
4320 *
4321 *      Compute supported xfermask of @dev and store it in
4322 *      dev->*_mask.  This function is responsible for applying all
4323 *      known limits including host controller limits, device
4324 *      blacklist, etc...
4325 *
4326 *      LOCKING:
4327 *      None.
4328 */
4329static void ata_dev_xfermask(struct ata_device *dev)
4330{
4331        struct ata_link *link = dev->link;
4332        struct ata_port *ap = link->ap;
4333        struct ata_host *host = ap->host;
4334        unsigned long xfer_mask;
4335
4336        /* controller modes available */
4337        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4338                                      ap->mwdma_mask, ap->udma_mask);
4339
4340        /* drive modes available */
4341        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4342                                       dev->mwdma_mask, dev->udma_mask);
4343        xfer_mask &= ata_id_xfermask(dev->id);
4344
4345        /*
4346         *      CFA Advanced TrueIDE timings are not allowed on a shared
4347         *      cable
4348         */
4349        if (ata_dev_pair(dev)) {
4350                /* No PIO5 or PIO6 */
4351                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4352                /* No MWDMA3 or MWDMA 4 */
4353                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4354        }
4355
4356        if (ata_dma_blacklisted(dev)) {
4357                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4358                ata_dev_warn(dev,
4359                             "device is on DMA blacklist, disabling DMA\n");
4360        }
4361
4362        if ((host->flags & ATA_HOST_SIMPLEX) &&
4363            host->simplex_claimed && host->simplex_claimed != ap) {
4364                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4365                ata_dev_warn(dev,
4366                             "simplex DMA is claimed by other device, disabling DMA\n");
4367        }
4368
4369        if (ap->flags & ATA_FLAG_NO_IORDY)
4370                xfer_mask &= ata_pio_mask_no_iordy(dev);
4371
4372        if (ap->ops->mode_filter)
4373                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4374
4375        /* Apply cable rule here.  Don't apply it early because when
4376         * we handle hot plug the cable type can itself change.
4377         * Check this last so that we know if the transfer rate was
4378         * solely limited by the cable.
4379         * Unknown or 80 wire cables reported host side are checked
4380         * drive side as well. Cases where we know a 40wire cable
4381         * is used safely for 80 are not checked here.
4382         */
4383        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4384                /* UDMA/44 or higher would be available */
4385                if (cable_is_40wire(ap)) {
4386                        ata_dev_warn(dev,
4387                                     "limited to UDMA/33 due to 40-wire cable\n");
4388                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4389                }
4390
4391        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4392                            &dev->mwdma_mask, &dev->udma_mask);
4393}
4394
4395/**
4396 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4397 *      @dev: Device to which command will be sent
4398 *
4399 *      Issue SET FEATURES - XFER MODE command to device @dev
4400 *      on port @ap.
4401 *
4402 *      LOCKING:
4403 *      PCI/etc. bus probe sem.
4404 *
4405 *      RETURNS:
4406 *      0 on success, AC_ERR_* mask otherwise.
4407 */
4408
4409static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4410{
4411        struct ata_taskfile tf;
4412        unsigned int err_mask;
4413
4414        /* set up set-features taskfile */
4415        DPRINTK("set features - xfer mode\n");
4416
4417        /* Some controllers and ATAPI devices show flaky interrupt
4418         * behavior after setting xfer mode.  Use polling instead.
4419         */
4420        ata_tf_init(dev, &tf);
4421        tf.command = ATA_CMD_SET_FEATURES;
4422        tf.feature = SETFEATURES_XFER;
4423        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4424        tf.protocol = ATA_PROT_NODATA;
4425        /* If we are using IORDY we must send the mode setting command */
4426        if (ata_pio_need_iordy(dev))
4427                tf.nsect = dev->xfer_mode;
4428        /* If the device has IORDY and the controller does not - turn it off */
4429        else if (ata_id_has_iordy(dev->id))
4430                tf.nsect = 0x01;
4431        else /* In the ancient relic department - skip all of this */
4432                return 0;
4433
4434        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4435
4436        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4437        return err_mask;
4438}
4439
4440/**
4441 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4442 *      @dev: Device to which command will be sent
4443 *      @enable: Whether to enable or disable the feature
4444 *      @feature: The sector count represents the feature to set
4445 *
4446 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4447 *      on port @ap with sector count
4448 *
4449 *      LOCKING:
4450 *      PCI/etc. bus probe sem.
4451 *
4452 *      RETURNS:
4453 *      0 on success, AC_ERR_* mask otherwise.
4454 */
4455unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4456{
4457        struct ata_taskfile tf;
4458        unsigned int err_mask;
4459
4460        /* set up set-features taskfile */
4461        DPRINTK("set features - SATA features\n");
4462
4463        ata_tf_init(dev, &tf);
4464        tf.command = ATA_CMD_SET_FEATURES;
4465        tf.feature = enable;
4466        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4467        tf.protocol = ATA_PROT_NODATA;
4468        tf.nsect = feature;
4469
4470        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4471
4472        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4473        return err_mask;
4474}
4475
4476/**
4477 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4478 *      @dev: Device to which command will be sent
4479 *      @heads: Number of heads (taskfile parameter)
4480 *      @sectors: Number of sectors (taskfile parameter)
4481 *
4482 *      LOCKING:
4483 *      Kernel thread context (may sleep)
4484 *
4485 *      RETURNS:
4486 *      0 on success, AC_ERR_* mask otherwise.
4487 */
4488static unsigned int ata_dev_init_params(struct ata_device *dev,
4489                                        u16 heads, u16 sectors)
4490{
4491        struct ata_taskfile tf;
4492        unsigned int err_mask;
4493
4494        /* Number of sectors per track 1-255. Number of heads 1-16 */
4495        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4496                return AC_ERR_INVALID;
4497
4498        /* set up init dev params taskfile */
4499        DPRINTK("init dev params \n");
4500
4501        ata_tf_init(dev, &tf);
4502        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4503        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4504        tf.protocol = ATA_PROT_NODATA;
4505        tf.nsect = sectors;
4506        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4507
4508        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4509        /* A clean abort indicates an original or just out of spec drive
4510           and we should continue as we issue the setup based on the
4511           drive reported working geometry */
4512        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4513                err_mask = 0;
4514
4515        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4516        return err_mask;
4517}
4518
4519/**
4520 *      ata_sg_clean - Unmap DMA memory associated with command
4521 *      @qc: Command containing DMA memory to be released
4522 *
4523 *      Unmap all mapped DMA memory associated with this command.
4524 *
4525 *      LOCKING:
4526 *      spin_lock_irqsave(host lock)
4527 */
4528void ata_sg_clean(struct ata_queued_cmd *qc)
4529{
4530        struct ata_port *ap = qc->ap;
4531        struct scatterlist *sg = qc->sg;
4532        int dir = qc->dma_dir;
4533
4534        WARN_ON_ONCE(sg == NULL);
4535
4536        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4537
4538        if (qc->n_elem)
4539                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4540
4541        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4542        qc->sg = NULL;
4543}
4544
4545/**
4546 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4547 *      @qc: Metadata associated with taskfile to check
4548 *
4549 *      Allow low-level driver to filter ATA PACKET commands, returning
4550 *      a status indicating whether or not it is OK to use DMA for the
4551 *      supplied PACKET command.
4552 *
4553 *      LOCKING:
4554 *      spin_lock_irqsave(host lock)
4555 *
4556 *      RETURNS: 0 when ATAPI DMA can be used
4557 *               nonzero otherwise
4558 */
4559int atapi_check_dma(struct ata_queued_cmd *qc)
4560{
4561        struct ata_port *ap = qc->ap;
4562
4563        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4564         * few ATAPI devices choke on such DMA requests.
4565         */
4566        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4567            unlikely(qc->nbytes & 15))
4568                return 1;
4569
4570        if (ap->ops->check_atapi_dma)
4571                return ap->ops->check_atapi_dma(qc);
4572
4573        return 0;
4574}
4575
4576/**
4577 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4578 *      @qc: ATA command in question
4579 *
4580 *      Non-NCQ commands cannot run with any other command, NCQ or
4581 *      not.  As upper layer only knows the queue depth, we are
4582 *      responsible for maintaining exclusion.  This function checks
4583 *      whether a new command @qc can be issued.
4584 *
4585 *      LOCKING:
4586 *      spin_lock_irqsave(host lock)
4587 *
4588 *      RETURNS:
4589 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4590 */
4591int ata_std_qc_defer(struct ata_queued_cmd *qc)
4592{
4593        struct ata_link *link = qc->dev->link;
4594
4595        if (qc->tf.protocol == ATA_PROT_NCQ) {
4596                if (!ata_tag_valid(link->active_tag))
4597                        return 0;
4598        } else {
4599                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4600                        return 0;
4601        }
4602
4603        return ATA_DEFER_LINK;
4604}
4605
4606void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4607
4608/**
4609 *      ata_sg_init - Associate command with scatter-gather table.
4610 *      @qc: Command to be associated
4611 *      @sg: Scatter-gather table.
4612 *      @n_elem: Number of elements in s/g table.
4613 *
4614 *      Initialize the data-related elements of queued_cmd @qc
4615 *      to point to a scatter-gather table @sg, containing @n_elem
4616 *      elements.
4617 *
4618 *      LOCKING:
4619 *      spin_lock_irqsave(host lock)
4620 */
4621void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4622                 unsigned int n_elem)
4623{
4624        qc->sg = sg;
4625        qc->n_elem = n_elem;
4626        qc->cursg = qc->sg;
4627}
4628
4629/**
4630 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4631 *      @qc: Command with scatter-gather table to be mapped.
4632 *
4633 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4634 *
4635 *      LOCKING:
4636 *      spin_lock_irqsave(host lock)
4637 *
4638 *      RETURNS:
4639 *      Zero on success, negative on error.
4640 *
4641 */
4642static int ata_sg_setup(struct ata_queued_cmd *qc)
4643{
4644        struct ata_port *ap = qc->ap;
4645        unsigned int n_elem;
4646
4647        VPRINTK("ENTER, ata%u\n", ap->print_id);
4648
4649        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4650        if (n_elem < 1)
4651                return -1;
4652
4653        DPRINTK("%d sg elements mapped\n", n_elem);
4654        qc->orig_n_elem = qc->n_elem;
4655        qc->n_elem = n_elem;
4656        qc->flags |= ATA_QCFLAG_DMAMAP;
4657
4658        return 0;
4659}
4660
4661/**
4662 *      swap_buf_le16 - swap halves of 16-bit words in place
4663 *      @buf:  Buffer to swap
4664 *      @buf_words:  Number of 16-bit words in buffer.
4665 *
4666 *      Swap halves of 16-bit words if needed to convert from
4667 *      little-endian byte order to native cpu byte order, or
4668 *      vice-versa.
4669 *
4670 *      LOCKING:
4671 *      Inherited from caller.
4672 */
4673void swap_buf_le16(u16 *buf, unsigned int buf_words)
4674{
4675#ifdef __BIG_ENDIAN
4676        unsigned int i;
4677
4678        for (i = 0; i < buf_words; i++)
4679                buf[i] = le16_to_cpu(buf[i]);
4680#endif /* __BIG_ENDIAN */
4681}
4682
4683/**
4684 *      ata_qc_new - Request an available ATA command, for queueing
4685 *      @ap: target port
4686 *
4687 *      LOCKING:
4688 *      None.
4689 */
4690
4691static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4692{
4693        struct ata_queued_cmd *qc = NULL;
4694        unsigned int i;
4695
4696        /* no command while frozen */
4697        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4698                return NULL;
4699
4700        /* the last tag is reserved for internal command. */
4701        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4702                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4703                        qc = __ata_qc_from_tag(ap, i);
4704                        break;
4705                }
4706
4707        if (qc)
4708                qc->tag = i;
4709
4710        return qc;
4711}
4712
4713/**
4714 *      ata_qc_new_init - Request an available ATA command, and initialize it
4715 *      @dev: Device from whom we request an available command structure
4716 *
4717 *      LOCKING:
4718 *      None.
4719 */
4720
4721struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4722{
4723        struct ata_port *ap = dev->link->ap;
4724        struct ata_queued_cmd *qc;
4725
4726        qc = ata_qc_new(ap);
4727        if (qc) {
4728                qc->scsicmd = NULL;
4729                qc->ap = ap;
4730                qc->dev = dev;
4731
4732                ata_qc_reinit(qc);
4733        }
4734
4735        return qc;
4736}
4737
4738/**
4739 *      ata_qc_free - free unused ata_queued_cmd
4740 *      @qc: Command to complete
4741 *
4742 *      Designed to free unused ata_queued_cmd object
4743 *      in case something prevents using it.
4744 *
4745 *      LOCKING:
4746 *      spin_lock_irqsave(host lock)
4747 */
4748void ata_qc_free(struct ata_queued_cmd *qc)
4749{
4750        struct ata_port *ap;
4751        unsigned int tag;
4752
4753        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4754        ap = qc->ap;
4755
4756        qc->flags = 0;
4757        tag = qc->tag;
4758        if (likely(ata_tag_valid(tag))) {
4759                qc->tag = ATA_TAG_POISON;
4760                clear_bit(tag, &ap->qc_allocated);
4761        }
4762}
4763
4764void __ata_qc_complete(struct ata_queued_cmd *qc)
4765{
4766        struct ata_port *ap;
4767        struct ata_link *link;
4768
4769        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4770        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4771        ap = qc->ap;
4772        link = qc->dev->link;
4773
4774        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4775                ata_sg_clean(qc);
4776
4777        /* command should be marked inactive atomically with qc completion */
4778        if (qc->tf.protocol == ATA_PROT_NCQ) {
4779                link->sactive &= ~(1 << qc->tag);
4780                if (!link->sactive)
4781                        ap->nr_active_links--;
4782        } else {
4783                link->active_tag = ATA_TAG_POISON;
4784                ap->nr_active_links--;
4785        }
4786
4787        /* clear exclusive status */
4788        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4789                     ap->excl_link == link))
4790                ap->excl_link = NULL;
4791
4792        /* atapi: mark qc as inactive to prevent the interrupt handler
4793         * from completing the command twice later, before the error handler
4794         * is called. (when rc != 0 and atapi request sense is needed)
4795         */
4796        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4797        ap->qc_active &= ~(1 << qc->tag);
4798
4799        /* call completion callback */
4800        qc->complete_fn(qc);
4801}
4802
4803static void fill_result_tf(struct ata_queued_cmd *qc)
4804{
4805        struct ata_port *ap = qc->ap;
4806
4807        qc->result_tf.flags = qc->tf.flags;
4808        ap->ops->qc_fill_rtf(qc);
4809}
4810
4811static void ata_verify_xfer(struct ata_queued_cmd *qc)
4812{
4813        struct ata_device *dev = qc->dev;
4814
4815        if (ata_is_nodata(qc->tf.protocol))
4816                return;
4817
4818        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4819                return;
4820
4821        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4822}
4823
4824/**
4825 *      ata_qc_complete - Complete an active ATA command
4826 *      @qc: Command to complete
4827 *
4828 *      Indicate to the mid and upper layers that an ATA command has
4829 *      completed, with either an ok or not-ok status.
4830 *
4831 *      Refrain from calling this function multiple times when
4832 *      successfully completing multiple NCQ commands.
4833 *      ata_qc_complete_multiple() should be used instead, which will
4834 *      properly update IRQ expect state.
4835 *
4836 *      LOCKING:
4837 *      spin_lock_irqsave(host lock)
4838 */
4839void ata_qc_complete(struct ata_queued_cmd *qc)
4840{
4841        struct ata_port *ap = qc->ap;
4842
4843        /* XXX: New EH and old EH use different mechanisms to
4844         * synchronize EH with regular execution path.
4845         *
4846         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4847         * Normal execution path is responsible for not accessing a
4848         * failed qc.  libata core enforces the rule by returning NULL
4849         * from ata_qc_from_tag() for failed qcs.
4850         *
4851         * Old EH depends on ata_qc_complete() nullifying completion
4852         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4853         * not synchronize with interrupt handler.  Only PIO task is
4854         * taken care of.
4855         */
4856        if (ap->ops->error_handler) {
4857                struct ata_device *dev = qc->dev;
4858                struct ata_eh_info *ehi = &dev->link->eh_info;
4859
4860                if (unlikely(qc->err_mask))
4861                        qc->flags |= ATA_QCFLAG_FAILED;
4862
4863                /*
4864                 * Finish internal commands without any further processing
4865                 * and always with the result TF filled.
4866                 */
4867                if (unlikely(ata_tag_internal(qc->tag))) {
4868                        fill_result_tf(qc);
4869                        __ata_qc_complete(qc);
4870                        return;
4871                }
4872
4873                /*
4874                 * Non-internal qc has failed.  Fill the result TF and
4875                 * summon EH.
4876                 */
4877                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4878                        fill_result_tf(qc);
4879                        ata_qc_schedule_eh(qc);
4880                        return;
4881                }
4882
4883                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4884
4885                /* read result TF if requested */
4886                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4887                        fill_result_tf(qc);
4888
4889                /* Some commands need post-processing after successful
4890                 * completion.
4891                 */
4892                switch (qc->tf.command) {
4893                case ATA_CMD_SET_FEATURES:
4894                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4895                            qc->tf.feature != SETFEATURES_WC_OFF)
4896                                break;
4897                        /* fall through */
4898                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4899                case ATA_CMD_SET_MULTI: /* multi_count changed */
4900                        /* revalidate device */
4901                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4902                        ata_port_schedule_eh(ap);
4903                        break;
4904
4905                case ATA_CMD_SLEEP:
4906                        dev->flags |= ATA_DFLAG_SLEEPING;
4907                        break;
4908                }
4909
4910                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4911                        ata_verify_xfer(qc);
4912
4913                __ata_qc_complete(qc);
4914        } else {
4915                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4916                        return;
4917
4918                /* read result TF if failed or requested */
4919                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4920                        fill_result_tf(qc);
4921
4922                __ata_qc_complete(qc);
4923        }
4924}
4925
4926/**
4927 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4928 *      @ap: port in question
4929 *      @qc_active: new qc_active mask
4930 *
4931 *      Complete in-flight commands.  This functions is meant to be
4932 *      called from low-level driver's interrupt routine to complete
4933 *      requests normally.  ap->qc_active and @qc_active is compared
4934 *      and commands are completed accordingly.
4935 *
4936 *      Always use this function when completing multiple NCQ commands
4937 *      from IRQ handlers instead of calling ata_qc_complete()
4938 *      multiple times to keep IRQ expect status properly in sync.
4939 *
4940 *      LOCKING:
4941 *      spin_lock_irqsave(host lock)
4942 *
4943 *      RETURNS:
4944 *      Number of completed commands on success, -errno otherwise.
4945 */
4946int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4947{
4948        int nr_done = 0;
4949        u32 done_mask;
4950
4951        done_mask = ap->qc_active ^ qc_active;
4952
4953        if (unlikely(done_mask & qc_active)) {
4954                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4955                             ap->qc_active, qc_active);
4956                return -EINVAL;
4957        }
4958
4959        while (done_mask) {
4960                struct ata_queued_cmd *qc;
4961                unsigned int tag = __ffs(done_mask);
4962
4963                qc = ata_qc_from_tag(ap, tag);
4964                if (qc) {
4965                        ata_qc_complete(qc);
4966                        nr_done++;
4967                }
4968                done_mask &= ~(1 << tag);
4969        }
4970
4971        return nr_done;
4972}
4973
4974/**
4975 *      ata_qc_issue - issue taskfile to device
4976 *      @qc: command to issue to device
4977 *
4978 *      Prepare an ATA command to submission to device.
4979 *      This includes mapping the data into a DMA-able
4980 *      area, filling in the S/G table, and finally
4981 *      writing the taskfile to hardware, starting the command.
4982 *
4983 *      LOCKING:
4984 *      spin_lock_irqsave(host lock)
4985 */
4986void ata_qc_issue(struct ata_queued_cmd *qc)
4987{
4988        struct ata_port *ap = qc->ap;
4989        struct ata_link *link = qc->dev->link;
4990        u8 prot = qc->tf.protocol;
4991
4992        /* Make sure only one non-NCQ command is outstanding.  The
4993         * check is skipped for old EH because it reuses active qc to
4994         * request ATAPI sense.
4995         */
4996        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4997
4998        if (ata_is_ncq(prot)) {
4999                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5000
5001                if (!link->sactive)
5002                        ap->nr_active_links++;
5003                link->sactive |= 1 << qc->tag;
5004        } else {
5005                WARN_ON_ONCE(link->sactive);
5006
5007                ap->nr_active_links++;
5008                link->active_tag = qc->tag;
5009        }
5010
5011        qc->flags |= ATA_QCFLAG_ACTIVE;
5012        ap->qc_active |= 1 << qc->tag;
5013
5014        /*
5015         * We guarantee to LLDs that they will have at least one
5016         * non-zero sg if the command is a data command.
5017         */
5018        if (WARN_ON_ONCE(ata_is_data(prot) &&
5019                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5020                goto sys_err;
5021
5022        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5023                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5024                if (ata_sg_setup(qc))
5025                        goto sys_err;
5026
5027        /* if device is sleeping, schedule reset and abort the link */
5028        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5029                link->eh_info.action |= ATA_EH_RESET;
5030                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5031                ata_link_abort(link);
5032                return;
5033        }
5034
5035        ap->ops->qc_prep(qc);
5036
5037        qc->err_mask |= ap->ops->qc_issue(qc);
5038        if (unlikely(qc->err_mask))
5039                goto err;
5040        return;
5041
5042sys_err:
5043        qc->err_mask |= AC_ERR_SYSTEM;
5044err:
5045        ata_qc_complete(qc);
5046}
5047
5048/**
5049 *      sata_scr_valid - test whether SCRs are accessible
5050 *      @link: ATA link to test SCR accessibility for
5051 *
5052 *      Test whether SCRs are accessible for @link.
5053 *
5054 *      LOCKING:
5055 *      None.
5056 *
5057 *      RETURNS:
5058 *      1 if SCRs are accessible, 0 otherwise.
5059 */
5060int sata_scr_valid(struct ata_link *link)
5061{
5062        struct ata_port *ap = link->ap;
5063
5064        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5065}
5066
5067/**
5068 *      sata_scr_read - read SCR register of the specified port
5069 *      @link: ATA link to read SCR for
5070 *      @reg: SCR to read
5071 *      @val: Place to store read value
5072 *
5073 *      Read SCR register @reg of @link into *@val.  This function is
5074 *      guaranteed to succeed if @link is ap->link, the cable type of
5075 *      the port is SATA and the port implements ->scr_read.
5076 *
5077 *      LOCKING:
5078 *      None if @link is ap->link.  Kernel thread context otherwise.
5079 *
5080 *      RETURNS:
5081 *      0 on success, negative errno on failure.
5082 */
5083int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5084{
5085        if (ata_is_host_link(link)) {
5086                if (sata_scr_valid(link))
5087                        return link->ap->ops->scr_read(link, reg, val);
5088                return -EOPNOTSUPP;
5089        }
5090
5091        return sata_pmp_scr_read(link, reg, val);
5092}
5093
5094/**
5095 *      sata_scr_write - write SCR register of the specified port
5096 *      @link: ATA link to write SCR for
5097 *      @reg: SCR to write
5098 *      @val: value to write
5099 *
5100 *      Write @val to SCR register @reg of @link.  This function is
5101 *      guaranteed to succeed if @link is ap->link, the cable type of
5102 *      the port is SATA and the port implements ->scr_read.
5103 *
5104 *      LOCKING:
5105 *      None if @link is ap->link.  Kernel thread context otherwise.
5106 *
5107 *      RETURNS:
5108 *      0 on success, negative errno on failure.
5109 */
5110int sata_scr_write(struct ata_link *link, int reg, u32 val)
5111{
5112        if (ata_is_host_link(link)) {
5113                if (sata_scr_valid(link))
5114                        return link->ap->ops->scr_write(link, reg, val);
5115                return -EOPNOTSUPP;
5116        }
5117
5118        return sata_pmp_scr_write(link, reg, val);
5119}
5120
5121/**
5122 *      sata_scr_write_flush - write SCR register of the specified port and flush
5123 *      @link: ATA link to write SCR for
5124 *      @reg: SCR to write
5125 *      @val: value to write
5126 *
5127 *      This function is identical to sata_scr_write() except that this
5128 *      function performs flush after writing to the register.
5129 *
5130 *      LOCKING:
5131 *      None if @link is ap->link.  Kernel thread context otherwise.
5132 *
5133 *      RETURNS:
5134 *      0 on success, negative errno on failure.
5135 */
5136int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5137{
5138        if (ata_is_host_link(link)) {
5139                int rc;
5140
5141                if (sata_scr_valid(link)) {
5142                        rc = link->ap->ops->scr_write(link, reg, val);
5143                        if (rc == 0)
5144                                rc = link->ap->ops->scr_read(link, reg, &val);
5145                        return rc;
5146                }
5147                return -EOPNOTSUPP;
5148        }
5149
5150        return sata_pmp_scr_write(link, reg, val);
5151}
5152
5153/**
5154 *      ata_phys_link_online - test whether the given link is online
5155 *      @link: ATA link to test
5156 *
5157 *      Test whether @link is online.  Note that this function returns
5158 *      0 if online status of @link cannot be obtained, so
5159 *      ata_link_online(link) != !ata_link_offline(link).
5160 *
5161 *      LOCKING:
5162 *      None.
5163 *
5164 *      RETURNS:
5165 *      True if the port online status is available and online.
5166 */
5167bool ata_phys_link_online(struct ata_link *link)
5168{
5169        u32 sstatus;
5170
5171        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5172            ata_sstatus_online(sstatus))
5173                return true;
5174        return false;
5175}
5176
5177/**
5178 *      ata_phys_link_offline - test whether the given link is offline
5179 *      @link: ATA link to test
5180 *
5181 *      Test whether @link is offline.  Note that this function
5182 *      returns 0 if offline status of @link cannot be obtained, so
5183 *      ata_link_online(link) != !ata_link_offline(link).
5184 *
5185 *      LOCKING:
5186 *      None.
5187 *
5188 *      RETURNS:
5189 *      True if the port offline status is available and offline.
5190 */
5191bool ata_phys_link_offline(struct ata_link *link)
5192{
5193        u32 sstatus;
5194
5195        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5196            !ata_sstatus_online(sstatus))
5197                return true;
5198        return false;
5199}
5200
5201/**
5202 *      ata_link_online - test whether the given link is online
5203 *      @link: ATA link to test
5204 *
5205 *      Test whether @link is online.  This is identical to
5206 *      ata_phys_link_online() when there's no slave link.  When
5207 *      there's a slave link, this function should only be called on
5208 *      the master link and will return true if any of M/S links is
5209 *      online.
5210 *
5211 *      LOCKING:
5212 *      None.
5213 *
5214 *      RETURNS:
5215 *      True if the port online status is available and online.
5216 */
5217bool ata_link_online(struct ata_link *link)
5218{
5219        struct ata_link *slave = link->ap->slave_link;
5220
5221        WARN_ON(link == slave); /* shouldn't be called on slave link */
5222
5223        return ata_phys_link_online(link) ||
5224                (slave && ata_phys_link_online(slave));
5225}
5226
5227/**
5228 *      ata_link_offline - test whether the given link is offline
5229 *      @link: ATA link to test
5230 *
5231 *      Test whether @link is offline.  This is identical to
5232 *      ata_phys_link_offline() when there's no slave link.  When
5233 *      there's a slave link, this function should only be called on
5234 *      the master link and will return true if both M/S links are
5235 *      offline.
5236 *
5237 *      LOCKING:
5238 *      None.
5239 *
5240 *      RETURNS:
5241 *      True if the port offline status is available and offline.
5242 */
5243bool ata_link_offline(struct ata_link *link)
5244{
5245        struct ata_link *slave = link->ap->slave_link;
5246
5247        WARN_ON(link == slave); /* shouldn't be called on slave link */
5248
5249        return ata_phys_link_offline(link) &&
5250                (!slave || ata_phys_link_offline(slave));
5251}
5252
5253#ifdef CONFIG_PM
5254static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5255                               unsigned int action, unsigned int ehi_flags,
5256                               int wait)
5257{
5258        struct ata_link *link;
5259        unsigned long flags;
5260        int rc;
5261
5262        /* Previous resume operation might still be in
5263         * progress.  Wait for PM_PENDING to clear.
5264         */
5265        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5266                ata_port_wait_eh(ap);
5267                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5268        }
5269
5270        /* request PM ops to EH */
5271        spin_lock_irqsave(ap->lock, flags);
5272
5273        ap->pm_mesg = mesg;
5274        if (wait) {
5275                rc = 0;
5276                ap->pm_result = &rc;
5277        }
5278
5279        ap->pflags |= ATA_PFLAG_PM_PENDING;
5280        ata_for_each_link(link, ap, HOST_FIRST) {
5281                link->eh_info.action |= action;
5282                link->eh_info.flags |= ehi_flags;
5283        }
5284
5285        ata_port_schedule_eh(ap);
5286
5287        spin_unlock_irqrestore(ap->lock, flags);
5288
5289        /* wait and check result */
5290        if (wait) {
5291                ata_port_wait_eh(ap);
5292                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5293        }
5294
5295        return rc;
5296}
5297
5298static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5299{
5300        struct ata_port *ap = to_ata_port(dev);
5301        unsigned int ehi_flags = ATA_EHI_QUIET;
5302        int rc;
5303
5304        /*
5305         * On some hardware, device fails to respond after spun down
5306         * for suspend.  As the device won't be used before being
5307         * resumed, we don't need to touch the device.  Ask EH to skip
5308         * the usual stuff and proceed directly to suspend.
5309         *
5310         * http://thread.gmane.org/gmane.linux.ide/46764
5311         */
5312        if (mesg.event == PM_EVENT_SUSPEND)
5313                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5314
5315        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5316        return rc;
5317}
5318
5319static int ata_port_suspend(struct device *dev)
5320{
5321        if (pm_runtime_suspended(dev))
5322                return 0;
5323
5324        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5325}
5326
5327static int ata_port_do_freeze(struct device *dev)
5328{
5329        if (pm_runtime_suspended(dev))
5330                pm_runtime_resume(dev);
5331
5332        return ata_port_suspend_common(dev, PMSG_FREEZE);
5333}
5334
5335static int ata_port_poweroff(struct device *dev)
5336{
5337        if (pm_runtime_suspended(dev))
5338                return 0;
5339
5340        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5341}
5342
5343static int ata_port_resume_common(struct device *dev)
5344{
5345        struct ata_port *ap = to_ata_port(dev);
5346        int rc;
5347
5348        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5349                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5350        return rc;
5351}
5352
5353static int ata_port_resume(struct device *dev)
5354{
5355        int rc;
5356
5357        rc = ata_port_resume_common(dev);
5358        if (!rc) {
5359                pm_runtime_disable(dev);
5360                pm_runtime_set_active(dev);
5361                pm_runtime_enable(dev);
5362        }
5363
5364        return rc;
5365}
5366
5367static int ata_port_runtime_idle(struct device *dev)
5368{
5369        return pm_runtime_suspend(dev);
5370}
5371
5372static const struct dev_pm_ops ata_port_pm_ops = {
5373        .suspend = ata_port_suspend,
5374        .resume = ata_port_resume,
5375        .freeze = ata_port_do_freeze,
5376        .thaw = ata_port_resume,
5377        .poweroff = ata_port_poweroff,
5378        .restore = ata_port_resume,
5379
5380        .runtime_suspend = ata_port_suspend,
5381        .runtime_resume = ata_port_resume_common,
5382        .runtime_idle = ata_port_runtime_idle,
5383};
5384
5385/**
5386 *      ata_host_suspend - suspend host
5387 *      @host: host to suspend
5388 *      @mesg: PM message
5389 *
5390 *      Suspend @host.  Actual operation is performed by port suspend.
5391 */
5392int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5393{
5394        host->dev->power.power_state = mesg;
5395        return 0;
5396}
5397
5398/**
5399 *      ata_host_resume - resume host
5400 *      @host: host to resume
5401 *
5402 *      Resume @host.  Actual operation is performed by port resume.
5403 */
5404void ata_host_resume(struct ata_host *host)
5405{
5406        host->dev->power.power_state = PMSG_ON;
5407}
5408#endif
5409
5410struct device_type ata_port_type = {
5411        .name = "ata_port",
5412#ifdef CONFIG_PM
5413        .pm = &ata_port_pm_ops,
5414#endif
5415};
5416
5417/**
5418 *      ata_dev_init - Initialize an ata_device structure
5419 *      @dev: Device structure to initialize
5420 *
5421 *      Initialize @dev in preparation for probing.
5422 *
5423 *      LOCKING:
5424 *      Inherited from caller.
5425 */
5426void ata_dev_init(struct ata_device *dev)
5427{
5428        struct ata_link *link = ata_dev_phys_link(dev);
5429        struct ata_port *ap = link->ap;
5430        unsigned long flags;
5431
5432        /* SATA spd limit is bound to the attached device, reset together */
5433        link->sata_spd_limit = link->hw_sata_spd_limit;
5434        link->sata_spd = 0;
5435
5436        /* High bits of dev->flags are used to record warm plug
5437         * requests which occur asynchronously.  Synchronize using
5438         * host lock.
5439         */
5440        spin_lock_irqsave(ap->lock, flags);
5441        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5442        dev->horkage = 0;
5443        spin_unlock_irqrestore(ap->lock, flags);
5444
5445        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5446               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5447        dev->pio_mask = UINT_MAX;
5448        dev->mwdma_mask = UINT_MAX;
5449        dev->udma_mask = UINT_MAX;
5450}
5451
5452/**
5453 *      ata_link_init - Initialize an ata_link structure
5454 *      @ap: ATA port link is attached to
5455 *      @link: Link structure to initialize
5456 *      @pmp: Port multiplier port number
5457 *
5458 *      Initialize @link.
5459 *
5460 *      LOCKING:
5461 *      Kernel thread context (may sleep)
5462 */
5463void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5464{
5465        int i;
5466
5467        /* clear everything except for devices */
5468        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5469               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5470
5471        link->ap = ap;
5472        link->pmp = pmp;
5473        link->active_tag = ATA_TAG_POISON;
5474        link->hw_sata_spd_limit = UINT_MAX;
5475
5476        /* can't use iterator, ap isn't initialized yet */
5477        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5478                struct ata_device *dev = &link->device[i];
5479
5480                dev->link = link;
5481                dev->devno = dev - link->device;
5482#ifdef CONFIG_ATA_ACPI
5483                dev->gtf_filter = ata_acpi_gtf_filter;
5484#endif
5485                ata_dev_init(dev);
5486        }
5487}
5488
5489/**
5490 *      sata_link_init_spd - Initialize link->sata_spd_limit
5491 *      @link: Link to configure sata_spd_limit for
5492 *
5493 *      Initialize @link->[hw_]sata_spd_limit to the currently
5494 *      configured value.
5495 *
5496 *      LOCKING:
5497 *      Kernel thread context (may sleep).
5498 *
5499 *      RETURNS:
5500 *      0 on success, -errno on failure.
5501 */
5502int sata_link_init_spd(struct ata_link *link)
5503{
5504        u8 spd;
5505        int rc;
5506
5507        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5508        if (rc)
5509                return rc;
5510
5511        spd = (link->saved_scontrol >> 4) & 0xf;
5512        if (spd)
5513                link->hw_sata_spd_limit &= (1 << spd) - 1;
5514
5515        ata_force_link_limits(link);
5516
5517        link->sata_spd_limit = link->hw_sata_spd_limit;
5518
5519        return 0;
5520}
5521
5522/**
5523 *      ata_port_alloc - allocate and initialize basic ATA port resources
5524 *      @host: ATA host this allocated port belongs to
5525 *
5526 *      Allocate and initialize basic ATA port resources.
5527 *
5528 *      RETURNS:
5529 *      Allocate ATA port on success, NULL on failure.
5530 *
5531 *      LOCKING:
5532 *      Inherited from calling layer (may sleep).
5533 */
5534struct ata_port *ata_port_alloc(struct ata_host *host)
5535{
5536        struct ata_port *ap;
5537
5538        DPRINTK("ENTER\n");
5539
5540        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5541        if (!ap)
5542                return NULL;
5543
5544        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5545        ap->lock = &host->lock;
5546        ap->print_id = -1;
5547        ap->host = host;
5548        ap->dev = host->dev;
5549
5550#if defined(ATA_VERBOSE_DEBUG)
5551        /* turn on all debugging levels */
5552        ap->msg_enable = 0x00FF;
5553#elif defined(ATA_DEBUG)
5554        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5555#else
5556        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5557#endif
5558
5559        mutex_init(&ap->scsi_scan_mutex);
5560        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5561        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5562        INIT_LIST_HEAD(&ap->eh_done_q);
5563        init_waitqueue_head(&ap->eh_wait_q);
5564        init_completion(&ap->