linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 107
 108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 110                         unsigned long nr_segs, loff_t pos);
 111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 112                          unsigned long nr_segs, loff_t pos);
 113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 114
 115static int sock_close(struct inode *inode, struct file *file);
 116static unsigned int sock_poll(struct file *file,
 117                              struct poll_table_struct *wait);
 118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 119#ifdef CONFIG_COMPAT
 120static long compat_sock_ioctl(struct file *file,
 121                              unsigned int cmd, unsigned long arg);
 122#endif
 123static int sock_fasync(int fd, struct file *filp, int on);
 124static ssize_t sock_sendpage(struct file *file, struct page *page,
 125                             int offset, size_t size, loff_t *ppos, int more);
 126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 127                                struct pipe_inode_info *pipe, size_t len,
 128                                unsigned int flags);
 129
 130/*
 131 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 132 *      in the operation structures but are done directly via the socketcall() multiplexor.
 133 */
 134
 135static const struct file_operations socket_file_ops = {
 136        .owner =        THIS_MODULE,
 137        .llseek =       no_llseek,
 138        .aio_read =     sock_aio_read,
 139        .aio_write =    sock_aio_write,
 140        .poll =         sock_poll,
 141        .unlocked_ioctl = sock_ioctl,
 142#ifdef CONFIG_COMPAT
 143        .compat_ioctl = compat_sock_ioctl,
 144#endif
 145        .mmap =         sock_mmap,
 146        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 147        .release =      sock_close,
 148        .fasync =       sock_fasync,
 149        .sendpage =     sock_sendpage,
 150        .splice_write = generic_splice_sendpage,
 151        .splice_read =  sock_splice_read,
 152};
 153
 154/*
 155 *      The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 *      Statistics counters of the socket lists
 163 */
 164
 165static DEFINE_PER_CPU(int, sockets_in_use);
 166
 167/*
 168 * Support routines.
 169 * Move socket addresses back and forth across the kernel/user
 170 * divide and look after the messy bits.
 171 */
 172
 173/**
 174 *      move_addr_to_kernel     -       copy a socket address into kernel space
 175 *      @uaddr: Address in user space
 176 *      @kaddr: Address in kernel space
 177 *      @ulen: Length in user space
 178 *
 179 *      The address is copied into kernel space. If the provided address is
 180 *      too long an error code of -EINVAL is returned. If the copy gives
 181 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 182 */
 183
 184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 185{
 186        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 187                return -EINVAL;
 188        if (ulen == 0)
 189                return 0;
 190        if (copy_from_user(kaddr, uaddr, ulen))
 191                return -EFAULT;
 192        return audit_sockaddr(ulen, kaddr);
 193}
 194
 195/**
 196 *      move_addr_to_user       -       copy an address to user space
 197 *      @kaddr: kernel space address
 198 *      @klen: length of address in kernel
 199 *      @uaddr: user space address
 200 *      @ulen: pointer to user length field
 201 *
 202 *      The value pointed to by ulen on entry is the buffer length available.
 203 *      This is overwritten with the buffer space used. -EINVAL is returned
 204 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 205 *      is returned if either the buffer or the length field are not
 206 *      accessible.
 207 *      After copying the data up to the limit the user specifies, the true
 208 *      length of the data is written over the length limit the user
 209 *      specified. Zero is returned for a success.
 210 */
 211
 212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 213                             void __user *uaddr, int __user *ulen)
 214{
 215        int err;
 216        int len;
 217
 218        err = get_user(len, ulen);
 219        if (err)
 220                return err;
 221        if (len > klen)
 222                len = klen;
 223        if (len < 0 || len > sizeof(struct sockaddr_storage))
 224                return -EINVAL;
 225        if (len) {
 226                if (audit_sockaddr(klen, kaddr))
 227                        return -ENOMEM;
 228                if (copy_to_user(uaddr, kaddr, len))
 229                        return -EFAULT;
 230        }
 231        /*
 232         *      "fromlen shall refer to the value before truncation.."
 233         *                      1003.1g
 234         */
 235        return __put_user(klen, ulen);
 236}
 237
 238static struct kmem_cache *sock_inode_cachep __read_mostly;
 239
 240static struct inode *sock_alloc_inode(struct super_block *sb)
 241{
 242        struct socket_alloc *ei;
 243        struct socket_wq *wq;
 244
 245        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 246        if (!ei)
 247                return NULL;
 248        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 249        if (!wq) {
 250                kmem_cache_free(sock_inode_cachep, ei);
 251                return NULL;
 252        }
 253        init_waitqueue_head(&wq->wait);
 254        wq->fasync_list = NULL;
 255        RCU_INIT_POINTER(ei->socket.wq, wq);
 256
 257        ei->socket.state = SS_UNCONNECTED;
 258        ei->socket.flags = 0;
 259        ei->socket.ops = NULL;
 260        ei->socket.sk = NULL;
 261        ei->socket.file = NULL;
 262
 263        return &ei->vfs_inode;
 264}
 265
 266static void sock_destroy_inode(struct inode *inode)
 267{
 268        struct socket_alloc *ei;
 269        struct socket_wq *wq;
 270
 271        ei = container_of(inode, struct socket_alloc, vfs_inode);
 272        wq = rcu_dereference_protected(ei->socket.wq, 1);
 273        kfree_rcu(wq, rcu);
 274        kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279        struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281        inode_init_once(&ei->vfs_inode);
 282}
 283
 284static int init_inodecache(void)
 285{
 286        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287                                              sizeof(struct socket_alloc),
 288                                              0,
 289                                              (SLAB_HWCACHE_ALIGN |
 290                                               SLAB_RECLAIM_ACCOUNT |
 291                                               SLAB_MEM_SPREAD),
 292                                              init_once);
 293        if (sock_inode_cachep == NULL)
 294                return -ENOMEM;
 295        return 0;
 296}
 297
 298static const struct super_operations sockfs_ops = {
 299        .alloc_inode    = sock_alloc_inode,
 300        .destroy_inode  = sock_destroy_inode,
 301        .statfs         = simple_statfs,
 302};
 303
 304/*
 305 * sockfs_dname() is called from d_path().
 306 */
 307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 308{
 309        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 310                                dentry->d_inode->i_ino);
 311}
 312
 313static const struct dentry_operations sockfs_dentry_operations = {
 314        .d_dname  = sockfs_dname,
 315};
 316
 317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 318                         int flags, const char *dev_name, void *data)
 319{
 320        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 321                &sockfs_dentry_operations, SOCKFS_MAGIC);
 322}
 323
 324static struct vfsmount *sock_mnt __read_mostly;
 325
 326static struct file_system_type sock_fs_type = {
 327        .name =         "sockfs",
 328        .mount =        sockfs_mount,
 329        .kill_sb =      kill_anon_super,
 330};
 331
 332/*
 333 *      Obtains the first available file descriptor and sets it up for use.
 334 *
 335 *      These functions create file structures and maps them to fd space
 336 *      of the current process. On success it returns file descriptor
 337 *      and file struct implicitly stored in sock->file.
 338 *      Note that another thread may close file descriptor before we return
 339 *      from this function. We use the fact that now we do not refer
 340 *      to socket after mapping. If one day we will need it, this
 341 *      function will increment ref. count on file by 1.
 342 *
 343 *      In any case returned fd MAY BE not valid!
 344 *      This race condition is unavoidable
 345 *      with shared fd spaces, we cannot solve it inside kernel,
 346 *      but we take care of internal coherence yet.
 347 */
 348
 349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 350{
 351        struct qstr name = { .name = "" };
 352        struct path path;
 353        struct file *file;
 354        int fd;
 355
 356        fd = get_unused_fd_flags(flags);
 357        if (unlikely(fd < 0))
 358                return fd;
 359
 360        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 361        if (unlikely(!path.dentry)) {
 362                put_unused_fd(fd);
 363                return -ENOMEM;
 364        }
 365        path.mnt = mntget(sock_mnt);
 366
 367        d_instantiate(path.dentry, SOCK_INODE(sock));
 368        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 369
 370        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 371                  &socket_file_ops);
 372        if (unlikely(!file)) {
 373                /* drop dentry, keep inode */
 374                ihold(path.dentry->d_inode);
 375                path_put(&path);
 376                put_unused_fd(fd);
 377                return -ENFILE;
 378        }
 379
 380        sock->file = file;
 381        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382        file->f_pos = 0;
 383        file->private_data = sock;
 384
 385        *f = file;
 386        return fd;
 387}
 388
 389int sock_map_fd(struct socket *sock, int flags)
 390{
 391        struct file *newfile;
 392        int fd = sock_alloc_file(sock, &newfile, flags);
 393
 394        if (likely(fd >= 0))
 395                fd_install(fd, newfile);
 396
 397        return fd;
 398}
 399EXPORT_SYMBOL(sock_map_fd);
 400
 401struct socket *sock_from_file(struct file *file, int *err)
 402{
 403        if (file->f_op == &socket_file_ops)
 404                return file->private_data;      /* set in sock_map_fd */
 405
 406        *err = -ENOTSOCK;
 407        return NULL;
 408}
 409EXPORT_SYMBOL(sock_from_file);
 410
 411/**
 412 *      sockfd_lookup - Go from a file number to its socket slot
 413 *      @fd: file handle
 414 *      @err: pointer to an error code return
 415 *
 416 *      The file handle passed in is locked and the socket it is bound
 417 *      too is returned. If an error occurs the err pointer is overwritten
 418 *      with a negative errno code and NULL is returned. The function checks
 419 *      for both invalid handles and passing a handle which is not a socket.
 420 *
 421 *      On a success the socket object pointer is returned.
 422 */
 423
 424struct socket *sockfd_lookup(int fd, int *err)
 425{
 426        struct file *file;
 427        struct socket *sock;
 428
 429        file = fget(fd);
 430        if (!file) {
 431                *err = -EBADF;
 432                return NULL;
 433        }
 434
 435        sock = sock_from_file(file, err);
 436        if (!sock)
 437                fput(file);
 438        return sock;
 439}
 440EXPORT_SYMBOL(sockfd_lookup);
 441
 442static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 443{
 444        struct file *file;
 445        struct socket *sock;
 446
 447        *err = -EBADF;
 448        file = fget_light(fd, fput_needed);
 449        if (file) {
 450                sock = sock_from_file(file, err);
 451                if (sock)
 452                        return sock;
 453                fput_light(file, *fput_needed);
 454        }
 455        return NULL;
 456}
 457
 458/**
 459 *      sock_alloc      -       allocate a socket
 460 *
 461 *      Allocate a new inode and socket object. The two are bound together
 462 *      and initialised. The socket is then returned. If we are out of inodes
 463 *      NULL is returned.
 464 */
 465
 466static struct socket *sock_alloc(void)
 467{
 468        struct inode *inode;
 469        struct socket *sock;
 470
 471        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 472        if (!inode)
 473                return NULL;
 474
 475        sock = SOCKET_I(inode);
 476
 477        kmemcheck_annotate_bitfield(sock, type);
 478        inode->i_ino = get_next_ino();
 479        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 480        inode->i_uid = current_fsuid();
 481        inode->i_gid = current_fsgid();
 482
 483        this_cpu_add(sockets_in_use, 1);
 484        return sock;
 485}
 486
 487/*
 488 *      In theory you can't get an open on this inode, but /proc provides
 489 *      a back door. Remember to keep it shut otherwise you'll let the
 490 *      creepy crawlies in.
 491 */
 492
 493static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 494{
 495        return -ENXIO;
 496}
 497
 498const struct file_operations bad_sock_fops = {
 499        .owner = THIS_MODULE,
 500        .open = sock_no_open,
 501        .llseek = noop_llseek,
 502};
 503
 504/**
 505 *      sock_release    -       close a socket
 506 *      @sock: socket to close
 507 *
 508 *      The socket is released from the protocol stack if it has a release
 509 *      callback, and the inode is then released if the socket is bound to
 510 *      an inode not a file.
 511 */
 512
 513void sock_release(struct socket *sock)
 514{
 515        if (sock->ops) {
 516                struct module *owner = sock->ops->owner;
 517
 518                sock->ops->release(sock);
 519                sock->ops = NULL;
 520                module_put(owner);
 521        }
 522
 523        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 524                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 525
 526        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 527                return;
 528
 529        this_cpu_sub(sockets_in_use, 1);
 530        if (!sock->file) {
 531                iput(SOCK_INODE(sock));
 532                return;
 533        }
 534        sock->file = NULL;
 535}
 536EXPORT_SYMBOL(sock_release);
 537
 538int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 539{
 540        *tx_flags = 0;
 541        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 542                *tx_flags |= SKBTX_HW_TSTAMP;
 543        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 544                *tx_flags |= SKBTX_SW_TSTAMP;
 545        if (sock_flag(sk, SOCK_WIFI_STATUS))
 546                *tx_flags |= SKBTX_WIFI_STATUS;
 547        return 0;
 548}
 549EXPORT_SYMBOL(sock_tx_timestamp);
 550
 551static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 552                                       struct msghdr *msg, size_t size)
 553{
 554        struct sock_iocb *si = kiocb_to_siocb(iocb);
 555
 556        sock_update_classid(sock->sk);
 557
 558        si->sock = sock;
 559        si->scm = NULL;
 560        si->msg = msg;
 561        si->size = size;
 562
 563        return sock->ops->sendmsg(iocb, sock, msg, size);
 564}
 565
 566static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 567                                 struct msghdr *msg, size_t size)
 568{
 569        int err = security_socket_sendmsg(sock, msg, size);
 570
 571        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 572}
 573
 574int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 575{
 576        struct kiocb iocb;
 577        struct sock_iocb siocb;
 578        int ret;
 579
 580        init_sync_kiocb(&iocb, NULL);
 581        iocb.private = &siocb;
 582        ret = __sock_sendmsg(&iocb, sock, msg, size);
 583        if (-EIOCBQUEUED == ret)
 584                ret = wait_on_sync_kiocb(&iocb);
 585        return ret;
 586}
 587EXPORT_SYMBOL(sock_sendmsg);
 588
 589static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 590{
 591        struct kiocb iocb;
 592        struct sock_iocb siocb;
 593        int ret;
 594
 595        init_sync_kiocb(&iocb, NULL);
 596        iocb.private = &siocb;
 597        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 598        if (-EIOCBQUEUED == ret)
 599                ret = wait_on_sync_kiocb(&iocb);
 600        return ret;
 601}
 602
 603int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 604                   struct kvec *vec, size_t num, size_t size)
 605{
 606        mm_segment_t oldfs = get_fs();
 607        int result;
 608
 609        set_fs(KERNEL_DS);
 610        /*
 611         * the following is safe, since for compiler definitions of kvec and
 612         * iovec are identical, yielding the same in-core layout and alignment
 613         */
 614        msg->msg_iov = (struct iovec *)vec;
 615        msg->msg_iovlen = num;
 616        result = sock_sendmsg(sock, msg, size);
 617        set_fs(oldfs);
 618        return result;
 619}
 620EXPORT_SYMBOL(kernel_sendmsg);
 621
 622static int ktime2ts(ktime_t kt, struct timespec *ts)
 623{
 624        if (kt.tv64) {
 625                *ts = ktime_to_timespec(kt);
 626                return 1;
 627        } else {
 628                return 0;
 629        }
 630}
 631
 632/*
 633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 634 */
 635void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 636        struct sk_buff *skb)
 637{
 638        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 639        struct timespec ts[3];
 640        int empty = 1;
 641        struct skb_shared_hwtstamps *shhwtstamps =
 642                skb_hwtstamps(skb);
 643
 644        /* Race occurred between timestamp enabling and packet
 645           receiving.  Fill in the current time for now. */
 646        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 647                __net_timestamp(skb);
 648
 649        if (need_software_tstamp) {
 650                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 651                        struct timeval tv;
 652                        skb_get_timestamp(skb, &tv);
 653                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 654                                 sizeof(tv), &tv);
 655                } else {
 656                        skb_get_timestampns(skb, &ts[0]);
 657                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 658                                 sizeof(ts[0]), &ts[0]);
 659                }
 660        }
 661
 662
 663        memset(ts, 0, sizeof(ts));
 664        if (skb->tstamp.tv64 &&
 665            sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 666                skb_get_timestampns(skb, ts + 0);
 667                empty = 0;
 668        }
 669        if (shhwtstamps) {
 670                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 671                    ktime2ts(shhwtstamps->syststamp, ts + 1))
 672                        empty = 0;
 673                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 674                    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 675                        empty = 0;
 676        }
 677        if (!empty)
 678                put_cmsg(msg, SOL_SOCKET,
 679                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 680}
 681EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 682
 683void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 684        struct sk_buff *skb)
 685{
 686        int ack;
 687
 688        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 689                return;
 690        if (!skb->wifi_acked_valid)
 691                return;
 692
 693        ack = skb->wifi_acked;
 694
 695        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 696}
 697EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 698
 699static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 700                                   struct sk_buff *skb)
 701{
 702        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 703                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 704                        sizeof(__u32), &skb->dropcount);
 705}
 706
 707void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 708        struct sk_buff *skb)
 709{
 710        sock_recv_timestamp(msg, sk, skb);
 711        sock_recv_drops(msg, sk, skb);
 712}
 713EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 714
 715static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 716                                       struct msghdr *msg, size_t size, int flags)
 717{
 718        struct sock_iocb *si = kiocb_to_siocb(iocb);
 719
 720        sock_update_classid(sock->sk);
 721
 722        si->sock = sock;
 723        si->scm = NULL;
 724        si->msg = msg;
 725        si->size = size;
 726        si->flags = flags;
 727
 728        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 729}
 730
 731static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 732                                 struct msghdr *msg, size_t size, int flags)
 733{
 734        int err = security_socket_recvmsg(sock, msg, size, flags);
 735
 736        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 737}
 738
 739int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 740                 size_t size, int flags)
 741{
 742        struct kiocb iocb;
 743        struct sock_iocb siocb;
 744        int ret;
 745
 746        init_sync_kiocb(&iocb, NULL);
 747        iocb.private = &siocb;
 748        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 749        if (-EIOCBQUEUED == ret)
 750                ret = wait_on_sync_kiocb(&iocb);
 751        return ret;
 752}
 753EXPORT_SYMBOL(sock_recvmsg);
 754
 755static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 756                              size_t size, int flags)
 757{
 758        struct kiocb iocb;
 759        struct sock_iocb siocb;
 760        int ret;
 761
 762        init_sync_kiocb(&iocb, NULL);
 763        iocb.private = &siocb;
 764        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 765        if (-EIOCBQUEUED == ret)
 766                ret = wait_on_sync_kiocb(&iocb);
 767        return ret;
 768}
 769
 770/**
 771 * kernel_recvmsg - Receive a message from a socket (kernel space)
 772 * @sock:       The socket to receive the message from
 773 * @msg:        Received message
 774 * @vec:        Input s/g array for message data
 775 * @num:        Size of input s/g array
 776 * @size:       Number of bytes to read
 777 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 778 *
 779 * On return the msg structure contains the scatter/gather array passed in the
 780 * vec argument. The array is modified so that it consists of the unfilled
 781 * portion of the original array.
 782 *
 783 * The returned value is the total number of bytes received, or an error.
 784 */
 785int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 786                   struct kvec *vec, size_t num, size_t size, int flags)
 787{
 788        mm_segment_t oldfs = get_fs();
 789        int result;
 790
 791        set_fs(KERNEL_DS);
 792        /*
 793         * the following is safe, since for compiler definitions of kvec and
 794         * iovec are identical, yielding the same in-core layout and alignment
 795         */
 796        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 797        result = sock_recvmsg(sock, msg, size, flags);
 798        set_fs(oldfs);
 799        return result;
 800}
 801EXPORT_SYMBOL(kernel_recvmsg);
 802
 803static void sock_aio_dtor(struct kiocb *iocb)
 804{
 805        kfree(iocb->private);
 806}
 807
 808static ssize_t sock_sendpage(struct file *file, struct page *page,
 809                             int offset, size_t size, loff_t *ppos, int more)
 810{
 811        struct socket *sock;
 812        int flags;
 813
 814        sock = file->private_data;
 815
 816        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 817        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 818        flags |= more;
 819
 820        return kernel_sendpage(sock, page, offset, size, flags);
 821}
 822
 823static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 824                                struct pipe_inode_info *pipe, size_t len,
 825                                unsigned int flags)
 826{
 827        struct socket *sock = file->private_data;
 828
 829        if (unlikely(!sock->ops->splice_read))
 830                return -EINVAL;
 831
 832        sock_update_classid(sock->sk);
 833
 834        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 835}
 836
 837static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 838                                         struct sock_iocb *siocb)
 839{
 840        if (!is_sync_kiocb(iocb)) {
 841                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 842                if (!siocb)
 843                        return NULL;
 844                iocb->ki_dtor = sock_aio_dtor;
 845        }
 846
 847        siocb->kiocb = iocb;
 848        iocb->private = siocb;
 849        return siocb;
 850}
 851
 852static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 853                struct file *file, const struct iovec *iov,
 854                unsigned long nr_segs)
 855{
 856        struct socket *sock = file->private_data;
 857        size_t size = 0;
 858        int i;
 859
 860        for (i = 0; i < nr_segs; i++)
 861                size += iov[i].iov_len;
 862
 863        msg->msg_name = NULL;
 864        msg->msg_namelen = 0;
 865        msg->msg_control = NULL;
 866        msg->msg_controllen = 0;
 867        msg->msg_iov = (struct iovec *)iov;
 868        msg->msg_iovlen = nr_segs;
 869        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 870
 871        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 872}
 873
 874static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 875                                unsigned long nr_segs, loff_t pos)
 876{
 877        struct sock_iocb siocb, *x;
 878
 879        if (pos != 0)
 880                return -ESPIPE;
 881
 882        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 883                return 0;
 884
 885
 886        x = alloc_sock_iocb(iocb, &siocb);
 887        if (!x)
 888                return -ENOMEM;
 889        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 890}
 891
 892static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 893                        struct file *file, const struct iovec *iov,
 894                        unsigned long nr_segs)
 895{
 896        struct socket *sock = file->private_data;
 897        size_t size = 0;
 898        int i;
 899
 900        for (i = 0; i < nr_segs; i++)
 901                size += iov[i].iov_len;
 902
 903        msg->msg_name = NULL;
 904        msg->msg_namelen = 0;
 905        msg->msg_control = NULL;
 906        msg->msg_controllen = 0;
 907        msg->msg_iov = (struct iovec *)iov;
 908        msg->msg_iovlen = nr_segs;
 909        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 910        if (sock->type == SOCK_SEQPACKET)
 911                msg->msg_flags |= MSG_EOR;
 912
 913        return __sock_sendmsg(iocb, sock, msg, size);
 914}
 915
 916static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 917                          unsigned long nr_segs, loff_t pos)
 918{
 919        struct sock_iocb siocb, *x;
 920
 921        if (pos != 0)
 922                return -ESPIPE;
 923
 924        x = alloc_sock_iocb(iocb, &siocb);
 925        if (!x)
 926                return -ENOMEM;
 927
 928        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 929}
 930
 931/*
 932 * Atomic setting of ioctl hooks to avoid race
 933 * with module unload.
 934 */
 935
 936static DEFINE_MUTEX(br_ioctl_mutex);
 937static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 938
 939void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 940{
 941        mutex_lock(&br_ioctl_mutex);
 942        br_ioctl_hook = hook;
 943        mutex_unlock(&br_ioctl_mutex);
 944}
 945EXPORT_SYMBOL(brioctl_set);
 946
 947static DEFINE_MUTEX(vlan_ioctl_mutex);
 948static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 949
 950void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 951{
 952        mutex_lock(&vlan_ioctl_mutex);
 953        vlan_ioctl_hook = hook;
 954        mutex_unlock(&vlan_ioctl_mutex);
 955}
 956EXPORT_SYMBOL(vlan_ioctl_set);
 957
 958static DEFINE_MUTEX(dlci_ioctl_mutex);
 959static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 960
 961void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 962{
 963        mutex_lock(&dlci_ioctl_mutex);
 964        dlci_ioctl_hook = hook;
 965        mutex_unlock(&dlci_ioctl_mutex);
 966}
 967EXPORT_SYMBOL(dlci_ioctl_set);
 968
 969static long sock_do_ioctl(struct net *net, struct socket *sock,
 970                                 unsigned int cmd, unsigned long arg)
 971{
 972        int err;
 973        void __user *argp = (void __user *)arg;
 974
 975        err = sock->ops->ioctl(sock, cmd, arg);
 976
 977        /*
 978         * If this ioctl is unknown try to hand it down
 979         * to the NIC driver.
 980         */
 981        if (err == -ENOIOCTLCMD)
 982                err = dev_ioctl(net, cmd, argp);
 983
 984        return err;
 985}
 986
 987/*
 988 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 989 *      what to do with it - that's up to the protocol still.
 990 */
 991
 992static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 993{
 994        struct socket *sock;
 995        struct sock *sk;
 996        void __user *argp = (void __user *)arg;
 997        int pid, err;
 998        struct net *net;
 999
1000        sock = file->private_data;
1001        sk = sock->sk;
1002        net = sock_net(sk);
1003        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1004                err = dev_ioctl(net, cmd, argp);
1005        } else
1006#ifdef CONFIG_WEXT_CORE
1007        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1008                err = dev_ioctl(net, cmd, argp);
1009        } else
1010#endif
1011                switch (cmd) {
1012                case FIOSETOWN:
1013                case SIOCSPGRP:
1014                        err = -EFAULT;
1015                        if (get_user(pid, (int __user *)argp))
1016                                break;
1017                        err = f_setown(sock->file, pid, 1);
1018                        break;
1019                case FIOGETOWN:
1020                case SIOCGPGRP:
1021                        err = put_user(f_getown(sock->file),
1022                                       (int __user *)argp);
1023                        break;
1024                case SIOCGIFBR:
1025                case SIOCSIFBR:
1026                case SIOCBRADDBR:
1027                case SIOCBRDELBR:
1028                        err = -ENOPKG;
1029                        if (!br_ioctl_hook)
1030                                request_module("bridge");
1031
1032                        mutex_lock(&br_ioctl_mutex);
1033                        if (br_ioctl_hook)
1034                                err = br_ioctl_hook(net, cmd, argp);
1035                        mutex_unlock(&br_ioctl_mutex);
1036                        break;
1037                case SIOCGIFVLAN:
1038                case SIOCSIFVLAN:
1039                        err = -ENOPKG;
1040                        if (!vlan_ioctl_hook)
1041                                request_module("8021q");
1042
1043                        mutex_lock(&vlan_ioctl_mutex);
1044                        if (vlan_ioctl_hook)
1045                                err = vlan_ioctl_hook(net, argp);
1046                        mutex_unlock(&vlan_ioctl_mutex);
1047                        break;
1048                case SIOCADDDLCI:
1049                case SIOCDELDLCI:
1050                        err = -ENOPKG;
1051                        if (!dlci_ioctl_hook)
1052                                request_module("dlci");
1053
1054                        mutex_lock(&dlci_ioctl_mutex);
1055                        if (dlci_ioctl_hook)
1056                                err = dlci_ioctl_hook(cmd, argp);
1057                        mutex_unlock(&dlci_ioctl_mutex);
1058                        break;
1059                default:
1060                        err = sock_do_ioctl(net, sock, cmd, arg);
1061                        break;
1062                }
1063        return err;
1064}
1065
1066int sock_create_lite(int family, int type, int protocol, struct socket **res)
1067{
1068        int err;
1069        struct socket *sock = NULL;
1070
1071        err = security_socket_create(family, type, protocol, 1);
1072        if (err)
1073                goto out;
1074
1075        sock = sock_alloc();
1076        if (!sock) {
1077                err = -ENOMEM;
1078                goto out;
1079        }
1080
1081        sock->type = type;
1082        err = security_socket_post_create(sock, family, type, protocol, 1);
1083        if (err)
1084                goto out_release;
1085
1086out:
1087        *res = sock;
1088        return err;
1089out_release:
1090        sock_release(sock);
1091        sock = NULL;
1092        goto out;
1093}
1094EXPORT_SYMBOL(sock_create_lite);
1095
1096/* No kernel lock held - perfect */
1097static unsigned int sock_poll(struct file *file, poll_table *wait)
1098{
1099        struct socket *sock;
1100
1101        /*
1102         *      We can't return errors to poll, so it's either yes or no.
1103         */
1104        sock = file->private_data;
1105        return sock->ops->poll(file, sock, wait);
1106}
1107
1108static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1109{
1110        struct socket *sock = file->private_data;
1111
1112        return sock->ops->mmap(file, sock, vma);
1113}
1114
1115static int sock_close(struct inode *inode, struct file *filp)
1116{
1117        /*
1118         *      It was possible the inode is NULL we were
1119         *      closing an unfinished socket.
1120         */
1121
1122        if (!inode) {
1123                printk(KERN_DEBUG "sock_close: NULL inode\n");
1124                return 0;
1125        }
1126        sock_release(SOCKET_I(inode));
1127        return 0;
1128}
1129
1130/*
1131 *      Update the socket async list
1132 *
1133 *      Fasync_list locking strategy.
1134 *
1135 *      1. fasync_list is modified only under process context socket lock
1136 *         i.e. under semaphore.
1137 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 *         or under socket lock
1139 */
1140
1141static int sock_fasync(int fd, struct file *filp, int on)
1142{
1143        struct socket *sock = filp->private_data;
1144        struct sock *sk = sock->sk;
1145        struct socket_wq *wq;
1146
1147        if (sk == NULL)
1148                return -EINVAL;
1149
1150        lock_sock(sk);
1151        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1152        fasync_helper(fd, filp, on, &wq->fasync_list);
1153
1154        if (!wq->fasync_list)
1155                sock_reset_flag(sk, SOCK_FASYNC);
1156        else
1157                sock_set_flag(sk, SOCK_FASYNC);
1158
1159        release_sock(sk);
1160        return 0;
1161}
1162
1163/* This function may be called only under socket lock or callback_lock or rcu_lock */
1164
1165int sock_wake_async(struct socket *sock, int how, int band)
1166{
1167        struct socket_wq *wq;
1168
1169        if (!sock)
1170                return -1;
1171        rcu_read_lock();
1172        wq = rcu_dereference(sock->wq);
1173        if (!wq || !wq->fasync_list) {
1174                rcu_read_unlock();
1175                return -1;
1176        }
1177        switch (how) {
1178        case SOCK_WAKE_WAITD:
1179                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180                        break;
1181                goto call_kill;
1182        case SOCK_WAKE_SPACE:
1183                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184                        break;
1185                /* fall through */
1186        case SOCK_WAKE_IO:
1187call_kill:
1188                kill_fasync(&wq->fasync_list, SIGIO, band);
1189                break;
1190        case SOCK_WAKE_URG:
1191                kill_fasync(&wq->fasync_list, SIGURG, band);
1192        }
1193        rcu_read_unlock();
1194        return 0;
1195}
1196EXPORT_SYMBOL(sock_wake_async);
1197
1198int __sock_create(struct net *net, int family, int type, int protocol,
1199                         struct socket **res, int kern)
1200{
1201        int err;
1202        struct socket *sock;
1203        const struct net_proto_family *pf;
1204
1205        /*
1206         *      Check protocol is in range
1207         */
1208        if (family < 0 || family >= NPROTO)
1209                return -EAFNOSUPPORT;
1210        if (type < 0 || type >= SOCK_MAX)
1211                return -EINVAL;
1212
1213        /* Compatibility.
1214
1215           This uglymoron is moved from INET layer to here to avoid
1216           deadlock in module load.
1217         */
1218        if (family == PF_INET && type == SOCK_PACKET) {
1219                static int warned;
1220                if (!warned) {
1221                        warned = 1;
1222                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1223                               current->comm);
1224                }
1225                family = PF_PACKET;
1226        }
1227
1228        err = security_socket_create(family, type, protocol, kern);
1229        if (err)
1230                return err;
1231
1232        /*
1233         *      Allocate the socket and allow the family to set things up. if
1234         *      the protocol is 0, the family is instructed to select an appropriate
1235         *      default.
1236         */
1237        sock = sock_alloc();
1238        if (!sock) {
1239                net_warn_ratelimited("socket: no more sockets\n");
1240                return -ENFILE; /* Not exactly a match, but its the
1241                                   closest posix thing */
1242        }
1243
1244        sock->type = type;
1245
1246#ifdef CONFIG_MODULES
1247        /* Attempt to load a protocol module if the find failed.
1248         *
1249         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1250         * requested real, full-featured networking support upon configuration.
1251         * Otherwise module support will break!
1252         */
1253        if (rcu_access_pointer(net_families[family]) == NULL)
1254                request_module("net-pf-%d", family);
1255#endif
1256
1257        rcu_read_lock();
1258        pf = rcu_dereference(net_families[family]);
1259        err = -EAFNOSUPPORT;
1260        if (!pf)
1261                goto out_release;
1262
1263        /*
1264         * We will call the ->create function, that possibly is in a loadable
1265         * module, so we have to bump that loadable module refcnt first.
1266         */
1267        if (!try_module_get(pf->owner))
1268                goto out_release;
1269
1270        /* Now protected by module ref count */
1271        rcu_read_unlock();
1272
1273        err = pf->create(net, sock, protocol, kern);
1274        if (err < 0)
1275                goto out_module_put;
1276
1277        /*
1278         * Now to bump the refcnt of the [loadable] module that owns this
1279         * socket at sock_release time we decrement its refcnt.
1280         */
1281        if (!try_module_get(sock->ops->owner))
1282                goto out_module_busy;
1283
1284        /*
1285         * Now that we're done with the ->create function, the [loadable]
1286         * module can have its refcnt decremented
1287         */
1288        module_put(pf->owner);
1289        err = security_socket_post_create(sock, family, type, protocol, kern);
1290        if (err)
1291                goto out_sock_release;
1292        *res = sock;
1293
1294        return 0;
1295
1296out_module_busy:
1297        err = -EAFNOSUPPORT;
1298out_module_put:
1299        sock->ops = NULL;
1300        module_put(pf->owner);
1301out_sock_release:
1302        sock_release(sock);
1303        return err;
1304
1305out_release:
1306        rcu_read_unlock();
1307        goto out_sock_release;
1308}
1309EXPORT_SYMBOL(__sock_create);
1310
1311int sock_create(int family, int type, int protocol, struct socket **res)
1312{
1313        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1314}
1315EXPORT_SYMBOL(sock_create);
1316
1317int sock_create_kern(int family, int type, int protocol, struct socket **res)
1318{
1319        return __sock_create(&init_net, family, type, protocol, res, 1);
1320}
1321EXPORT_SYMBOL(sock_create_kern);
1322
1323SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1324{
1325        int retval;
1326        struct socket *sock;
1327        int flags;
1328
1329        /* Check the SOCK_* constants for consistency.  */
1330        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1331        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1332        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1333        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1334
1335        flags = type & ~SOCK_TYPE_MASK;
1336        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337                return -EINVAL;
1338        type &= SOCK_TYPE_MASK;
1339
1340        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342
1343        retval = sock_create(family, type, protocol, &sock);
1344        if (retval < 0)
1345                goto out;
1346
1347        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1348        if (retval < 0)
1349                goto out_release;
1350
1351out:
1352        /* It may be already another descriptor 8) Not kernel problem. */
1353        return retval;
1354
1355out_release:
1356        sock_release(sock);
1357        return retval;
1358}
1359
1360/*
1361 *      Create a pair of connected sockets.
1362 */
1363
1364SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1365                int __user *, usockvec)
1366{
1367        struct socket *sock1, *sock2;
1368        int fd1, fd2, err;
1369        struct file *newfile1, *newfile2;
1370        int flags;
1371
1372        flags = type & ~SOCK_TYPE_MASK;
1373        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374                return -EINVAL;
1375        type &= SOCK_TYPE_MASK;
1376
1377        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379
1380        /*
1381         * Obtain the first socket and check if the underlying protocol
1382         * supports the socketpair call.
1383         */
1384
1385        err = sock_create(family, type, protocol, &sock1);
1386        if (err < 0)
1387                goto out;
1388
1389        err = sock_create(family, type, protocol, &sock2);
1390        if (err < 0)
1391                goto out_release_1;
1392
1393        err = sock1->ops->socketpair(sock1, sock2);
1394        if (err < 0)
1395                goto out_release_both;
1396
1397        fd1 = sock_alloc_file(sock1, &newfile1, flags);
1398        if (unlikely(fd1 < 0)) {
1399                err = fd1;
1400                goto out_release_both;
1401        }
1402
1403        fd2 = sock_alloc_file(sock2, &newfile2, flags);
1404        if (unlikely(fd2 < 0)) {
1405                err = fd2;
1406                fput(newfile1);
1407                put_unused_fd(fd1);
1408                sock_release(sock2);
1409                goto out;
1410        }
1411
1412        audit_fd_pair(fd1, fd2);
1413        fd_install(fd1, newfile1);
1414        fd_install(fd2, newfile2);
1415        /* fd1 and fd2 may be already another descriptors.
1416         * Not kernel problem.
1417         */
1418
1419        err = put_user(fd1, &usockvec[0]);
1420        if (!err)
1421                err = put_user(fd2, &usockvec[1]);
1422        if (!err)
1423                return 0;
1424
1425        sys_close(fd2);
1426        sys_close(fd1);
1427        return err;
1428
1429out_release_both:
1430        sock_release(sock2);
1431out_release_1:
1432        sock_release(sock1);
1433out:
1434        return err;
1435}
1436
1437/*
1438 *      Bind a name to a socket. Nothing much to do here since it's
1439 *      the protocol's responsibility to handle the local address.
1440 *
1441 *      We move the socket address to kernel space before we call
1442 *      the protocol layer (having also checked the address is ok).
1443 */
1444
1445SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1446{
1447        struct socket *sock;
1448        struct sockaddr_storage address;
1449        int err, fput_needed;
1450
1451        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452        if (sock) {
1453                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1454                if (err >= 0) {
1455                        err = security_socket_bind(sock,
1456                                                   (struct sockaddr *)&address,
1457                                                   addrlen);
1458                        if (!err)
1459                                err = sock->ops->bind(sock,
1460                                                      (struct sockaddr *)
1461                                                      &address, addrlen);
1462                }
1463                fput_light(sock->file, fput_needed);
1464        }
1465        return err;
1466}
1467
1468/*
1469 *      Perform a listen. Basically, we allow the protocol to do anything
1470 *      necessary for a listen, and if that works, we mark the socket as
1471 *      ready for listening.
1472 */
1473
1474SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1475{
1476        struct socket *sock;
1477        int err, fput_needed;
1478        int somaxconn;
1479
1480        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481        if (sock) {
1482                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1483                if ((unsigned int)backlog > somaxconn)
1484                        backlog = somaxconn;
1485
1486                err = security_socket_listen(sock, backlog);
1487                if (!err)
1488                        err = sock->ops->listen(sock, backlog);
1489
1490                fput_light(sock->file, fput_needed);
1491        }
1492        return err;
1493}
1494
1495/*
1496 *      For accept, we attempt to create a new socket, set up the link
1497 *      with the client, wake up the client, then return the new
1498 *      connected fd. We collect the address of the connector in kernel
1499 *      space and move it to user at the very end. This is unclean because
1500 *      we open the socket then return an error.
1501 *
1502 *      1003.1g adds the ability to recvmsg() to query connection pending
1503 *      status to recvmsg. We need to add that support in a way thats
1504 *      clean when we restucture accept also.
1505 */
1506
1507SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508                int __user *, upeer_addrlen, int, flags)
1509{
1510        struct socket *sock, *newsock;
1511        struct file *newfile;
1512        int err, len, newfd, fput_needed;
1513        struct sockaddr_storage address;
1514
1515        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516                return -EINVAL;
1517
1518        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1519                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1520
1521        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1522        if (!sock)
1523                goto out;
1524
1525        err = -ENFILE;
1526        newsock = sock_alloc();
1527        if (!newsock)
1528                goto out_put;
1529
1530        newsock->type = sock->type;
1531        newsock->ops = sock->ops;
1532
1533        /*
1534         * We don't need try_module_get here, as the listening socket (sock)
1535         * has the protocol module (sock->ops->owner) held.
1536         */
1537        __module_get(newsock->ops->owner);
1538
1539        newfd = sock_alloc_file(newsock, &newfile, flags);
1540        if (unlikely(newfd < 0)) {
1541                err = newfd;
1542                sock_release(newsock);
1543                goto out_put;
1544        }
1545
1546        err = security_socket_accept(sock, newsock);
1547        if (err)
1548                goto out_fd;
1549
1550        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1551        if (err < 0)
1552                goto out_fd;
1553
1554        if (upeer_sockaddr) {
1555                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1556                                          &len, 2) < 0) {
1557                        err = -ECONNABORTED;
1558                        goto out_fd;
1559                }
1560                err = move_addr_to_user(&address,
1561                                        len, upeer_sockaddr, upeer_addrlen);
1562                if (err < 0)
1563                        goto out_fd;
1564        }
1565
1566        /* File flags are not inherited via accept() unlike another OSes. */
1567
1568        fd_install(newfd, newfile);
1569        err = newfd;
1570
1571out_put:
1572        fput_light(sock->file, fput_needed);
1573out:
1574        return err;
1575out_fd:
1576        fput(newfile);
1577        put_unused_fd(newfd);
1578        goto out_put;
1579}
1580
1581SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582                int __user *, upeer_addrlen)
1583{
1584        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1585}
1586
1587/*
1588 *      Attempt to connect to a socket with the server address.  The address
1589 *      is in user space so we verify it is OK and move it to kernel space.
1590 *
1591 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1592 *      break bindings
1593 *
1594 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1595 *      other SEQPACKET protocols that take time to connect() as it doesn't
1596 *      include the -EINPROGRESS status for such sockets.
1597 */
1598
1599SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1600                int, addrlen)
1601{
1602        struct socket *sock;
1603        struct sockaddr_storage address;
1604        int err, fput_needed;
1605
1606        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1607        if (!sock)
1608                goto out;
1609        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1610        if (err < 0)
1611                goto out_put;
1612
1613        err =
1614            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1615        if (err)
1616                goto out_put;
1617
1618        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1619                                 sock->file->f_flags);
1620out_put:
1621        fput_light(sock->file, fput_needed);
1622out:
1623        return err;
1624}
1625
1626/*
1627 *      Get the local address ('name') of a socket object. Move the obtained
1628 *      name to user space.
1629 */
1630
1631SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1632                int __user *, usockaddr_len)
1633{
1634        struct socket *sock;
1635        struct sockaddr_storage address;
1636        int len, err, fput_needed;
1637
1638        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639        if (!sock)
1640                goto out;
1641
1642        err = security_socket_getsockname(sock);
1643        if (err)
1644                goto out_put;
1645
1646        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1647        if (err)
1648                goto out_put;
1649        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1650
1651out_put:
1652        fput_light(sock->file, fput_needed);
1653out:
1654        return err;
1655}
1656
1657/*
1658 *      Get the remote address ('name') of a socket object. Move the obtained
1659 *      name to user space.
1660 */
1661
1662SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1663                int __user *, usockaddr_len)
1664{
1665        struct socket *sock;
1666        struct sockaddr_storage address;
1667        int len, err, fput_needed;
1668
1669        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670        if (sock != NULL) {
1671                err = security_socket_getpeername(sock);
1672                if (err) {
1673                        fput_light(sock->file, fput_needed);
1674                        return err;
1675                }
1676
1677                err =
1678                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1679                                       1);
1680                if (!err)
1681                        err = move_addr_to_user(&address, len, usockaddr,
1682                                                usockaddr_len);
1683                fput_light(sock->file, fput_needed);
1684        }
1685        return err;
1686}
1687
1688/*
1689 *      Send a datagram to a given address. We move the address into kernel
1690 *      space and check the user space data area is readable before invoking
1691 *      the protocol.
1692 */
1693
1694SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1695                unsigned int, flags, struct sockaddr __user *, addr,
1696                int, addr_len)
1697{
1698        struct socket *sock;
1699        struct sockaddr_storage address;
1700        int err;
1701        struct msghdr msg;
1702        struct iovec iov;
1703        int fput_needed;
1704
1705        if (len > INT_MAX)
1706                len = INT_MAX;
1707        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708        if (!sock)
1709                goto out;
1710
1711        iov.iov_base = buff;
1712        iov.iov_len = len;
1713        msg.msg_name = NULL;
1714        msg.msg_iov = &iov;
1715        msg.msg_iovlen = 1;
1716        msg.msg_control = NULL;
1717        msg.msg_controllen = 0;
1718        msg.msg_namelen = 0;
1719        if (addr) {
1720                err = move_addr_to_kernel(addr, addr_len, &address);
1721                if (err < 0)
1722                        goto out_put;
1723                msg.msg_name = (struct sockaddr *)&address;
1724                msg.msg_namelen = addr_len;
1725        }
1726        if (sock->file->f_flags & O_NONBLOCK)
1727                flags |= MSG_DONTWAIT;
1728        msg.msg_flags = flags;
1729        err = sock_sendmsg(sock, &msg, len);
1730
1731out_put:
1732        fput_light(sock->file, fput_needed);
1733out:
1734        return err;
1735}
1736
1737/*
1738 *      Send a datagram down a socket.
1739 */
1740
1741SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1742                unsigned int, flags)
1743{
1744        return sys_sendto(fd, buff, len, flags, NULL, 0);
1745}
1746
1747/*
1748 *      Receive a frame from the socket and optionally record the address of the
1749 *      sender. We verify the buffers are writable and if needed move the
1750 *      sender address from kernel to user space.
1751 */
1752
1753SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1754                unsigned int, flags, struct sockaddr __user *, addr,
1755                int __user *, addr_len)
1756{
1757        struct socket *sock;
1758        struct iovec iov;
1759        struct msghdr msg;
1760        struct sockaddr_storage address;
1761        int err, err2;
1762        int fput_needed;
1763
1764        if (size > INT_MAX)
1765                size = INT_MAX;
1766        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767        if (!sock)
1768                goto out;
1769
1770        msg.msg_control = NULL;
1771        msg.msg_controllen = 0;
1772        msg.msg_iovlen = 1;
1773        msg.msg_iov = &iov;
1774        iov.iov_len = size;
1775        iov.iov_base = ubuf;
1776        msg.msg_name = (struct sockaddr *)&address;
1777        msg.msg_namelen = sizeof(address);
1778        if (sock->file->f_flags & O_NONBLOCK)
1779                flags |= MSG_DONTWAIT;
1780        err = sock_recvmsg(sock, &msg, size, flags);
1781
1782        if (err >= 0 && addr != NULL) {
1783                err2 = move_addr_to_user(&address,
1784                                         msg.msg_namelen, addr, addr_len);
1785                if (err2 < 0)
1786                        err = err2;
1787        }
1788
1789        fput_light(sock->file, fput_needed);
1790out:
1791        return err;
1792}
1793
1794/*
1795 *      Receive a datagram from a socket.
1796 */
1797
1798asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1799                         unsigned int flags)
1800{
1801        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1802}
1803
1804/*
1805 *      Set a socket option. Because we don't know the option lengths we have
1806 *      to pass the user mode parameter for the protocols to sort out.
1807 */
1808
1809SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1810                char __user *, optval, int, optlen)
1811{
1812        int err, fput_needed;
1813        struct socket *sock;
1814
1815        if (optlen < 0)
1816                return -EINVAL;
1817
1818        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819        if (sock != NULL) {
1820                err = security_socket_setsockopt(sock, level, optname);
1821                if (err)
1822                        goto out_put;
1823
1824                if (level == SOL_SOCKET)
1825                        err =
1826                            sock_setsockopt(sock, level, optname, optval,
1827                                            optlen);
1828                else
1829                        err =
1830                            sock->ops->setsockopt(sock, level, optname, optval,
1831                                                  optlen);
1832out_put:
1833                fput_light(sock->file, fput_needed);
1834        }
1835        return err;
1836}
1837
1838/*
1839 *      Get a socket option. Because we don't know the option lengths we have
1840 *      to pass a user mode parameter for the protocols to sort out.
1841 */
1842
1843SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1844                char __user *, optval, int __user *, optlen)
1845{
1846        int err, fput_needed;
1847        struct socket *sock;
1848
1849        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850        if (sock != NULL) {
1851                err = security_socket_getsockopt(sock, level, optname);
1852                if (err)
1853                        goto out_put;
1854
1855                if (level == SOL_SOCKET)
1856                        err =
1857                            sock_getsockopt(sock, level, optname, optval,
1858                                            optlen);
1859                else
1860                        err =
1861                            sock->ops->getsockopt(sock, level, optname, optval,
1862                                                  optlen);
1863out_put:
1864                fput_light(sock->file, fput_needed);
1865        }
1866        return err;
1867}
1868
1869/*
1870 *      Shutdown a socket.
1871 */
1872
1873SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1874{
1875        int err, fput_needed;
1876        struct socket *sock;
1877
1878        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879        if (sock != NULL) {
1880                err = security_socket_shutdown(sock, how);
1881                if (!err)
1882                        err = sock->ops->shutdown(sock, how);
1883                fput_light(sock->file, fput_needed);
1884        }
1885        return err;
1886}
1887
1888/* A couple of helpful macros for getting the address of the 32/64 bit
1889 * fields which are the same type (int / unsigned) on our platforms.
1890 */
1891#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1892#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1893#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1894
1895struct used_address {
1896        struct sockaddr_storage name;
1897        unsigned int name_len;
1898};
1899
1900static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1901                         struct msghdr *msg_sys, unsigned int flags,
1902                         struct used_address *used_address)
1903{
1904        struct compat_msghdr __user *msg_compat =
1905            (struct compat_msghdr __user *)msg;
1906        struct sockaddr_storage address;
1907        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1908        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1909            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1910        /* 20 is size of ipv6_pktinfo */
1911        unsigned char *ctl_buf = ctl;
1912        int err, ctl_len, total_len;
1913
1914        err = -EFAULT;
1915        if (MSG_CMSG_COMPAT & flags) {
1916                if (get_compat_msghdr(msg_sys, msg_compat))
1917                        return -EFAULT;
1918        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1919                return -EFAULT;
1920
1921        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1922                err = -EMSGSIZE;
1923                if (msg_sys->msg_iovlen > UIO_MAXIOV)
1924                        goto out;
1925                err = -ENOMEM;
1926                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1927                              GFP_KERNEL);
1928                if (!iov)
1929                        goto out;
1930        }
1931
1932        /* This will also move the address data into kernel space */
1933        if (MSG_CMSG_COMPAT & flags) {
1934                err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1935        } else
1936                err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1937        if (err < 0)
1938                goto out_freeiov;
1939        total_len = err;
1940
1941        err = -ENOBUFS;
1942
1943        if (msg_sys->msg_controllen > INT_MAX)
1944                goto out_freeiov;
1945        ctl_len = msg_sys->msg_controllen;
1946        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1947                err =
1948                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1949                                                     sizeof(ctl));
1950                if (err)
1951                        goto out_freeiov;
1952                ctl_buf = msg_sys->msg_control;
1953                ctl_len = msg_sys->msg_controllen;
1954        } else if (ctl_len) {
1955                if (ctl_len > sizeof(ctl)) {
1956                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1957                        if (ctl_buf == NULL)
1958                                goto out_freeiov;
1959                }
1960                err = -EFAULT;
1961                /*
1962                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1963                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1964                 * checking falls down on this.
1965                 */
1966                if (copy_from_user(ctl_buf,
1967                                   (void __user __force *)msg_sys->msg_control,
1968                                   ctl_len))
1969                        goto out_freectl;
1970                msg_sys->msg_control = ctl_buf;
1971        }
1972        msg_sys->msg_flags = flags;
1973
1974        if (sock->file->f_flags & O_NONBLOCK)
1975                msg_sys->msg_flags |= MSG_DONTWAIT;
1976        /*
1977         * If this is sendmmsg() and current destination address is same as
1978         * previously succeeded address, omit asking LSM's decision.
1979         * used_address->name_len is initialized to UINT_MAX so that the first
1980         * destination address never matches.
1981         */
1982        if (used_address && msg_sys->msg_name &&
1983            used_address->name_len == msg_sys->msg_namelen &&
1984            !memcmp(&used_address->name, msg_sys->msg_name,
1985                    used_address->name_len)) {
1986                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1987                goto out_freectl;
1988        }
1989        err = sock_sendmsg(sock, msg_sys, total_len);
1990        /*
1991         * If this is sendmmsg() and sending to current destination address was
1992         * successful, remember it.
1993         */
1994        if (used_address && err >= 0) {
1995                used_address->name_len = msg_sys->msg_namelen;
1996                if (msg_sys->msg_name)
1997                        memcpy(&used_address->name, msg_sys->msg_name,
1998                               used_address->name_len);
1999        }
2000
2001out_freectl:
2002        if (ctl_buf != ctl)
2003                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2004out_freeiov:
2005        if (iov != iovstack)
2006                kfree(iov);
2007out:
2008        return err;
2009}
2010
2011/*
2012 *      BSD sendmsg interface
2013 */
2014
2015SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2016{
2017        int fput_needed, err;
2018        struct msghdr msg_sys;
2019        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020
2021        if (!sock)
2022                goto out;
2023
2024        err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2025
2026        fput_light(sock->file, fput_needed);
2027out:
2028        return err;
2029}
2030
2031/*
2032 *      Linux sendmmsg interface
2033 */
2034
2035int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036                   unsigned int flags)
2037{
2038        int fput_needed, err, datagrams;
2039        struct socket *sock;
2040        struct mmsghdr __user *entry;
2041        struct compat_mmsghdr __user *compat_entry;
2042        struct msghdr msg_sys;
2043        struct used_address used_address;
2044
2045        if (vlen > UIO_MAXIOV)
2046                vlen = UIO_MAXIOV;
2047
2048        datagrams = 0;
2049
2050        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2051        if (!sock)
2052                return err;
2053
2054        used_address.name_len = UINT_MAX;
2055        entry = mmsg;
2056        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2057        err = 0;
2058
2059        while (datagrams < vlen) {
2060                if (MSG_CMSG_COMPAT & flags) {
2061                        err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2062                                            &msg_sys, flags, &used_address);
2063                        if (err < 0)
2064                                break;
2065                        err = __put_user(err, &compat_entry->msg_len);
2066                        ++compat_entry;
2067                } else {
2068                        err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2069                                            &msg_sys, flags, &used_address);
2070                        if (err < 0)
2071                                break;
2072                        err = put_user(err, &entry->msg_len);
2073                        ++entry;
2074                }
2075
2076                if (err)
2077                        break;
2078                ++datagrams;
2079        }
2080
2081        fput_light(sock->file, fput_needed);
2082
2083        /* We only return an error if no datagrams were able to be sent */
2084        if (datagrams != 0)
2085                return datagrams;
2086
2087        return err;
2088}
2089
2090SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2091                unsigned int, vlen, unsigned int, flags)
2092{
2093        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2094}
2095
2096static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2097                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2098{
2099        struct compat_msghdr __user *msg_compat =
2100            (struct compat_msghdr __user *)msg;
2101        struct iovec iovstack[UIO_FASTIOV];
2102        struct iovec *iov = iovstack;
2103        unsigned long cmsg_ptr;
2104        int err, total_len, len;
2105
2106        /* kernel mode address */
2107        struct sockaddr_storage addr;
2108
2109        /* user mode address pointers */
2110        struct sockaddr __user *uaddr;
2111        int __user *uaddr_len;
2112
2113        if (MSG_CMSG_COMPAT & flags) {
2114                if (get_compat_msghdr(msg_sys, msg_compat))
2115                        return -EFAULT;
2116        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2117                return -EFAULT;
2118
2119        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2120                err = -EMSGSIZE;
2121                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2122                        goto out;
2123                err = -ENOMEM;
2124                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2125                              GFP_KERNEL);
2126                if (!iov)
2127                        goto out;
2128        }
2129
2130        /*
2131         *      Save the user-mode address (verify_iovec will change the
2132         *      kernel msghdr to use the kernel address space)
2133         */
2134
2135        uaddr = (__force void __user *)msg_sys->msg_name;
2136        uaddr_len = COMPAT_NAMELEN(msg);
2137        if (MSG_CMSG_COMPAT & flags) {
2138                err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2139        } else
2140                err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2141        if (err < 0)
2142                goto out_freeiov;
2143        total_len = err;
2144
2145        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2146        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2147
2148        if (sock->file->f_flags & O_NONBLOCK)
2149                flags |= MSG_DONTWAIT;
2150        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2151                                                          total_len, flags);
2152        if (err < 0)
2153                goto out_freeiov;
2154        len = err;
2155
2156        if (uaddr != NULL) {
2157                err = move_addr_to_user(&addr,
2158                                        msg_sys->msg_namelen, uaddr,
2159                                        uaddr_len);
2160                if (err < 0)
2161                        goto out_freeiov;
2162        }
2163        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2164                         COMPAT_FLAGS(msg));
2165        if (err)
2166                goto out_freeiov;
2167        if (MSG_CMSG_COMPAT & flags)
2168                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2169                                 &msg_compat->msg_controllen);
2170        else
2171                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2172                                 &msg->msg_controllen);
2173        if (err)
2174                goto out_freeiov;
2175        err = len;
2176
2177out_freeiov:
2178        if (iov != iovstack)
2179                kfree(iov);
2180out:
2181        return err;
2182}
2183
2184/*
2185 *      BSD recvmsg interface
2186 */
2187
2188SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2189                unsigned int, flags)
2190{
2191        int fput_needed, err;
2192        struct msghdr msg_sys;
2193        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2194
2195        if (!sock)
2196                goto out;
2197
2198        err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2199
2200        fput_light(sock->file, fput_needed);
2201out:
2202        return err;
2203}
2204
2205/*
2206 *     Linux recvmmsg interface
2207 */
2208
2209int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2210                   unsigned int flags, struct timespec *timeout)
2211{
2212        int fput_needed, err, datagrams;
2213        struct socket *sock;
2214        struct mmsghdr __user *entry;
2215        struct compat_mmsghdr __user *compat_entry;
2216        struct msghdr msg_sys;
2217        struct timespec end_time;
2218
2219        if (timeout &&
2220            poll_select_set_timeout(&end_time, timeout->tv_sec,
2221                                    timeout->tv_nsec))
2222                return -EINVAL;
2223
2224        datagrams = 0;
2225
2226        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227        if (!sock)
2228                return err;
2229
2230        err = sock_error(sock->sk);
2231        if (err)
2232                goto out_put;
2233
2234        entry = mmsg;
2235        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236
2237        while (datagrams < vlen) {
2238                /*
2239                 * No need to ask LSM for more than the first datagram.
2240                 */
2241                if (MSG_CMSG_COMPAT & flags) {
2242                        err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2243                                            &msg_sys, flags & ~MSG_WAITFORONE,
2244                                            datagrams);
2245                        if (err < 0)
2246                                break;
2247                        err = __put_user(err, &compat_entry->msg_len);
2248                        ++compat_entry;
2249                } else {
2250                        err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2251                                            &msg_sys, flags & ~MSG_WAITFORONE,
2252                                            datagrams);
2253                        if (err < 0)
2254                                break;
2255                        err = put_user(err, &entry->msg_len);
2256                        ++entry;
2257                }
2258
2259                if (err)
2260                        break;
2261                ++datagrams;
2262
2263                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2264                if (flags & MSG_WAITFORONE)
2265                        flags |= MSG_DONTWAIT;
2266
2267                if (timeout) {
2268                        ktime_get_ts(timeout);
2269                        *timeout = timespec_sub(end_time, *timeout);
2270                        if (timeout->tv_sec < 0) {
2271                                timeout->tv_sec = timeout->tv_nsec = 0;
2272                                break;
2273                        }
2274
2275                        /* Timeout, return less than vlen datagrams */
2276                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2277                                break;
2278                }
2279
2280                /* Out of band data, return right away */
2281                if (msg_sys.msg_flags & MSG_OOB)
2282                        break;
2283        }
2284
2285out_put:
2286        fput_light(sock->file, fput_needed);
2287
2288        if (err == 0)
2289                return datagrams;
2290
2291        if (datagrams != 0) {
2292                /*
2293                 * We may return less entries than requested (vlen) if the
2294                 * sock is non block and there aren't enough datagrams...
2295                 */
2296                if (err != -EAGAIN) {
2297                        /*
2298                         * ... or  if recvmsg returns an error after we
2299                         * received some datagrams, where we record the
2300                         * error to return on the next call or if the
2301                         * app asks about it using getsockopt(SO_ERROR).
2302                         */
2303                        sock->sk->sk_err = -err;
2304                }
2305
2306                return datagrams;
2307        }
2308
2309        return err;
2310}
2311
2312SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2313                unsigned int, vlen, unsigned int, flags,
2314                struct timespec __user *, timeout)
2315{
2316        int datagrams;
2317        struct timespec timeout_sys;
2318
2319        if (!timeout)
2320                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2321
2322        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2323                return -EFAULT;
2324
2325        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2326
2327        if (datagrams > 0 &&
2328            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2329                datagrams = -EFAULT;
2330
2331        return datagrams;
2332}
2333
2334#ifdef __ARCH_WANT_SYS_SOCKETCALL
2335/* Argument list sizes for sys_socketcall */
2336#define AL(x) ((x) * sizeof(unsigned long))
2337static const unsigned char nargs[21] = {
2338        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2339        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2340        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2341        AL(4), AL(5), AL(4)
2342};
2343
2344#undef AL
2345
2346/*
2347 *      System call vectors.
2348 *
2349 *      Argument checking cleaned up. Saved 20% in size.
2350 *  This function doesn't need to set the kernel lock because
2351 *  it is set by the callees.
2352 */
2353
2354SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2355{
2356        unsigned long a[6];
2357        unsigned long a0, a1;
2358        int err;
2359        unsigned int len;
2360
2361        if (call < 1 || call > SYS_SENDMMSG)
2362                return -EINVAL;
2363
2364        len = nargs[call];
2365        if (len > sizeof(a))
2366                return -EINVAL;
2367
2368        /* copy_from_user should be SMP safe. */
2369        if (copy_from_user(a, args, len))
2370                return -EFAULT;
2371
2372        audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2373
2374        a0 = a[0];
2375        a1 = a[1];
2376
2377        switch (call) {
2378        case SYS_SOCKET:
2379                err = sys_socket(a0, a1, a[2]);
2380                break;
2381        case SYS_BIND:
2382                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2383                break;
2384        case SYS_CONNECT:
2385                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2386                break;
2387        case SYS_LISTEN:
2388                err = sys_listen(a0, a1);
2389                break;
2390        case SYS_ACCEPT:
2391                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2392                                  (int __user *)a[2], 0);
2393                break;
2394        case SYS_GETSOCKNAME:
2395                err =
2396                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2397                                    (int __user *)a[2]);
2398                break;
2399        case SYS_GETPEERNAME:
2400                err =
2401                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2402                                    (int __user *)a[2]);
2403                break;
2404        case SYS_SOCKETPAIR:
2405                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2406                break;
2407        case SYS_SEND:
2408                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2409                break;
2410        case SYS_SENDTO:
2411                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2412                                 (struct sockaddr __user *)a[4], a[5]);
2413                break;
2414        case SYS_RECV:
2415                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2416                break;
2417        case SYS_RECVFROM:
2418                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2419                                   (struct sockaddr __user *)a[4],
2420                                   (int __user *)a[5]);
2421                break;
2422        case SYS_SHUTDOWN:
2423                err = sys_shutdown(a0, a1);
2424                break;
2425        case SYS_SETSOCKOPT:
2426                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2427                break;
2428        case SYS_GETSOCKOPT:
2429                err =
2430                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2431                                   (int __user *)a[4]);
2432                break;
2433        case SYS_SENDMSG:
2434                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2435                break;
2436        case SYS_SENDMMSG:
2437                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2438                break;
2439        case SYS_RECVMSG:
2440                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2441                break;
2442        case SYS_RECVMMSG:
2443                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2444                                   (struct timespec __user *)a[4]);
2445                break;
2446        case SYS_ACCEPT4:
2447                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2448                                  (int __user *)a[2], a[3]);
2449                break;
2450        default:
2451                err = -EINVAL;
2452                break;
2453        }
2454        return err;
2455}
2456
2457#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2458
2459/**
2460 *      sock_register - add a socket protocol handler
2461 *      @ops: description of protocol
2462 *
2463 *      This function is called by a protocol handler that wants to
2464 *      advertise its address family, and have it linked into the
2465 *      socket interface. The value ops->family coresponds to the
2466 *      socket system call protocol family.
2467 */
2468int sock_register(const struct net_proto_family *ops)
2469{
2470        int err;
2471
2472        if (ops->family >= NPROTO) {
2473                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2474                       NPROTO);
2475                return -ENOBUFS;
2476        }
2477
2478        spin_lock(&net_family_lock);
2479        if (rcu_dereference_protected(net_families[ops->family],
2480                                      lockdep_is_held(&net_family_lock)))
2481                err = -EEXIST;
2482        else {
2483                rcu_assign_pointer(net_families[ops->family], ops);
2484                err = 0;
2485        }
2486        spin_unlock(&net_family_lock);
2487
2488        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2489        return err;
2490}
2491EXPORT_SYMBOL(sock_register);
2492
2493/**
2494 *      sock_unregister - remove a protocol handler
2495 *      @family: protocol family to remove
2496 *
2497 *      This function is called by a protocol handler that wants to
2498 *      remove its address family, and have it unlinked from the
2499 *      new socket creation.
2500 *
2501 *      If protocol handler is a module, then it can use module reference
2502 *      counts to protect against new references. If protocol handler is not
2503 *      a module then it needs to provide its own protection in
2504 *      the ops->create routine.
2505 */
2506void sock_unregister(int family)
2507{
2508        BUG_ON(family < 0 || family >= NPROTO);
2509
2510        spin_lock(&net_family_lock);
2511        RCU_INIT_POINTER(net_families[family], NULL);
2512        spin_unlock(&net_family_lock);
2513
2514        synchronize_rcu();
2515
2516        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2517}
2518EXPORT_SYMBOL(sock_unregister);
2519
2520static int __init sock_init(void)
2521{
2522        int err;
2523        /*
2524         *      Initialize the network sysctl infrastructure.
2525         */
2526        err = net_sysctl_init();
2527        if (err)
2528                goto out;
2529
2530        /*
2531         *      Initialize sock SLAB cache.
2532         */
2533
2534        sk_init();
2535
2536        /*
2537         *      Initialize skbuff SLAB cache
2538         */
2539        skb_init();
2540
2541        /*
2542         *      Initialize the protocols module.
2543         */
2544
2545        init_inodecache();
2546
2547        err = register_filesystem(&sock_fs_type);
2548        if (err)
2549                goto out_fs;
2550        sock_mnt = kern_mount(&sock_fs_type);
2551        if (IS_ERR(sock_mnt)) {
2552                err = PTR_ERR(sock_mnt);
2553                goto out_mount;
2554        }
2555
2556        /* The real protocol initialization is performed in later initcalls.
2557         */
2558
2559#ifdef CONFIG_NETFILTER
2560        netfilter_init();
2561#endif
2562
2563#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2564        skb_timestamping_init();
2565#endif
2566
2567out:
2568        return err;
2569
2570out_mount:
2571        unregister_filesystem(&sock_fs_type);
2572out_fs:
2573        goto out;
2574}
2575
2576core_initcall(sock_init);       /* early initcall */
2577
2578#ifdef CONFIG_PROC_FS
2579void socket_seq_show(struct seq_file *seq)
2580{
2581        int cpu;
2582        int counter = 0;
2583
2584        for_each_possible_cpu(cpu)
2585            counter += per_cpu(sockets_in_use, cpu);
2586
2587        /* It can be negative, by the way. 8) */
2588        if (counter < 0)
2589                counter = 0;
2590
2591        seq_printf(seq, "sockets: used %d\n", counter);
2592}
2593#endif                          /* CONFIG_PROC_FS */
2594
2595#ifdef CONFIG_COMPAT
2596static int do_siocgstamp(struct net *net, struct socket *sock,
2597                         unsigned int cmd, void __user *up)
2598{
2599        mm_segment_t old_fs = get_fs();
2600        struct timeval ktv;
2601        int err;
2602
2603        set_fs(KERNEL_DS);
2604        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2605        set_fs(old_fs);
2606        if (!err)
2607                err = compat_put_timeval(&ktv, up);
2608
2609        return err;
2610}
2611
2612static int do_siocgstampns(struct net *net, struct socket *sock,
2613                           unsigned int cmd, void __user *up)
2614{
2615        mm_segment_t old_fs = get_fs();
2616        struct timespec kts;
2617        int err;
2618
2619        set_fs(KERNEL_DS);
2620        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2621        set_fs(old_fs);
2622        if (!err)
2623                err = compat_put_timespec(&kts, up);
2624
2625        return err;
2626}
2627
2628static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2629{
2630        struct ifreq __user *uifr;
2631        int err;
2632
2633        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2634        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2635                return -EFAULT;
2636
2637        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2638        if (err)
2639                return err;
2640
2641        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2642                return -EFAULT;
2643
2644        return 0;
2645}
2646
2647static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2648{
2649        struct compat_ifconf ifc32;
2650        struct ifconf ifc;
2651        struct ifconf __user *uifc;
2652        struct compat_ifreq __user *ifr32;
2653        struct ifreq __user *ifr;
2654        unsigned int i, j;
2655        int err;
2656
2657        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2658                return -EFAULT;
2659
2660        memset(&ifc, 0, sizeof(ifc));
2661        if (ifc32.ifcbuf == 0) {
2662                ifc32.ifc_len = 0;
2663                ifc.ifc_len = 0;
2664                ifc.ifc_req = NULL;
2665                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2666        } else {
2667                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2668                        sizeof(struct ifreq);
2669                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2670                ifc.ifc_len = len;
2671                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2672                ifr32 = compat_ptr(ifc32.ifcbuf);
2673                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2674                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2675                                return -EFAULT;
2676                        ifr++;
2677                        ifr32++;
2678                }
2679        }
2680        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2681                return -EFAULT;
2682
2683        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2684        if (err)
2685                return err;
2686
2687        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2688                return -EFAULT;
2689
2690        ifr = ifc.ifc_req;
2691        ifr32 = compat_ptr(ifc32.ifcbuf);
2692        for (i = 0, j = 0;
2693             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2694             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2695                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2696                        return -EFAULT;
2697                ifr32++;
2698                ifr++;
2699        }
2700
2701        if (ifc32.ifcbuf == 0) {
2702                /* Translate from 64-bit structure multiple to
2703                 * a 32-bit one.
2704                 */
2705                i = ifc.ifc_len;
2706                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2707                ifc32.ifc_len = i;
2708        } else {
2709                ifc32.ifc_len = i;
2710        }
2711        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2712                return -EFAULT;
2713
2714        return 0;
2715}
2716
2717static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2718{
2719        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2720        bool convert_in = false, convert_out = false;
2721        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2722        struct ethtool_rxnfc __user *rxnfc;
2723        struct ifreq __user *ifr;
2724        u32 rule_cnt = 0, actual_rule_cnt;
2725        u32 ethcmd;
2726        u32 data;
2727        int ret;
2728
2729        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2730                return -EFAULT;
2731
2732        compat_rxnfc = compat_ptr(data);
2733
2734        if (get_user(ethcmd, &compat_rxnfc->cmd))
2735                return -EFAULT;
2736
2737        /* Most ethtool structures are defined without padding.
2738         * Unfortunately struct ethtool_rxnfc is an exception.
2739         */
2740        switch (ethcmd) {
2741        default:
2742                break;
2743        case ETHTOOL_GRXCLSRLALL:
2744                /* Buffer size is variable */
2745                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2746                        return -EFAULT;
2747                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2748                        return -ENOMEM;
2749                buf_size += rule_cnt * sizeof(u32);
2750                /* fall through */
2751        case ETHTOOL_GRXRINGS:
2752        case ETHTOOL_GRXCLSRLCNT:
2753        case ETHTOOL_GRXCLSRULE:
2754        case ETHTOOL_SRXCLSRLINS:
2755                convert_out = true;
2756                /* fall through */
2757        case ETHTOOL_SRXCLSRLDEL:
2758                buf_size += sizeof(struct ethtool_rxnfc);
2759                convert_in = true;
2760                break;
2761        }
2762
2763        ifr = compat_alloc_user_space(buf_size);
2764        rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2765
2766        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2767                return -EFAULT;
2768
2769        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2770                     &ifr->ifr_ifru.ifru_data))
2771                return -EFAULT;
2772
2773        if (convert_in) {
2774                /* We expect there to be holes between fs.m_ext and
2775                 * fs.ring_cookie and at the end of fs, but nowhere else.
2776                 */
2777                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2778                             sizeof(compat_rxnfc->fs.m_ext) !=
2779                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2780                             sizeof(rxnfc->fs.m_ext));
2781                BUILD_BUG_ON(
2782                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2783                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2784                        offsetof(struct ethtool_rxnfc, fs.location) -
2785                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2786
2787                if (copy_in_user(rxnfc, compat_rxnfc,
2788                                 (void *)(&rxnfc->fs.m_ext + 1) -
2789                                 (void *)rxnfc) ||
2790                    copy_in_user(&rxnfc->fs.ring_cookie,
2791                                 &compat_rxnfc->fs.ring_cookie,
2792                                 (void *)(&rxnfc->fs.location + 1) -
2793                                 (void *)&rxnfc->fs.ring_cookie) ||
2794                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2795                                 sizeof(rxnfc->rule_cnt)))
2796                        return -EFAULT;
2797        }
2798
2799        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2800        if (ret)
2801                return ret;
2802
2803        if (convert_out) {
2804                if (copy_in_user(compat_rxnfc, rxnfc,
2805                                 (const void *)(&rxnfc->fs.m_ext + 1) -
2806                                 (const void *)rxnfc) ||
2807                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2808                                 &rxnfc->fs.ring_cookie,
2809                                 (const void *)(&rxnfc->fs.location + 1) -
2810                                 (const void *)&rxnfc->fs.ring_cookie) ||
2811                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2812                                 sizeof(rxnfc->rule_cnt)))
2813                        return -EFAULT;
2814
2815                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2816                        /* As an optimisation, we only copy the actual
2817                         * number of rules that the underlying
2818                         * function returned.  Since Mallory might
2819                         * change the rule count in user memory, we
2820                         * check that it is less than the rule count
2821                         * originally given (as the user buffer size),
2822                         * which has been range-checked.
2823                         */
2824                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2825                                return -EFAULT;
2826                        if (actual_rule_cnt < rule_cnt)
2827                                rule_cnt = actual_rule_cnt;
2828                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2829                                         &rxnfc->rule_locs[0],
2830                                         rule_cnt * sizeof(u32)))
2831                                return -EFAULT;
2832                }
2833        }
2834
2835        return 0;
2836}
2837
2838static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2839{
2840        void __user *uptr;
2841        compat_uptr_t uptr32;
2842        struct ifreq __user *uifr;
2843
2844        uifr = compat_alloc_user_space(sizeof(*uifr));
2845        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2846                return -EFAULT;
2847
2848        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2849                return -EFAULT;
2850
2851        uptr = compat_ptr(uptr32);
2852
2853        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2854                return -EFAULT;
2855
2856        return dev_ioctl(net, SIOCWANDEV, uifr);
2857}
2858
2859static int bond_ioctl(struct net *net, unsigned int cmd,
2860                         struct compat_ifreq __user *ifr32)
2861{
2862        struct ifreq kifr;
2863        struct ifreq __user *uifr;
2864        mm_segment_t old_fs;
2865        int err;
2866        u32 data;
2867        void __user *datap;
2868
2869        switch (cmd) {
2870        case SIOCBONDENSLAVE:
2871        case SIOCBONDRELEASE:
2872        case SIOCBONDSETHWADDR:
2873        case SIOCBONDCHANGEACTIVE:
2874                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875                        return -EFAULT;
2876
2877                old_fs = get_fs();
2878                set_fs(KERNEL_DS);
2879                err = dev_ioctl(net, cmd,
2880                                (struct ifreq __user __force *) &kifr);
2881                set_fs(old_fs);
2882
2883                return err;
2884        case SIOCBONDSLAVEINFOQUERY:
2885        case SIOCBONDINFOQUERY:
2886                uifr = compat_alloc_user_space(sizeof(*uifr));
2887                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2888                        return -EFAULT;
2889
2890                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2891                        return -EFAULT;
2892
2893                datap = compat_ptr(data);
2894                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2895                        return -EFAULT;
2896
2897                return dev_ioctl(net, cmd, uifr);
2898        default:
2899                return -ENOIOCTLCMD;
2900        }
2901}
2902
2903static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2904                                 struct compat_ifreq __user *u_ifreq32)
2905{
2906        struct ifreq __user *u_ifreq64;
2907        char tmp_buf[IFNAMSIZ];
2908        void __user *data64;
2909        u32 data32;
2910
2911        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2912                           IFNAMSIZ))
2913                return -EFAULT;
2914        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2915                return -EFAULT;
2916        data64 = compat_ptr(data32);
2917
2918        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2919
2920        /* Don't check these user accesses, just let that get trapped
2921         * in the ioctl handler instead.
2922         */
2923        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2924                         IFNAMSIZ))
2925                return -EFAULT;
2926        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2927                return -EFAULT;
2928
2929        return dev_ioctl(net, cmd, u_ifreq64);
2930}
2931
2932static int dev_ifsioc(struct net *net, struct socket *sock,
2933                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2934{
2935        struct ifreq __user *uifr;
2936        int err;
2937
2938        uifr = compat_alloc_user_space(sizeof(*uifr));
2939        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2940                return -EFAULT;
2941
2942        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2943
2944        if (!err) {
2945                switch (cmd) {
2946                case SIOCGIFFLAGS:
2947                case SIOCGIFMETRIC:
2948                case SIOCGIFMTU:
2949                case SIOCGIFMEM:
2950                case SIOCGIFHWADDR:
2951                case SIOCGIFINDEX:
2952                case SIOCGIFADDR:
2953                case SIOCGIFBRDADDR:
2954                case SIOCGIFDSTADDR:
2955                case SIOCGIFNETMASK:
2956                case SIOCGIFPFLAGS:
2957                case SIOCGIFTXQLEN:
2958                case SIOCGMIIPHY:
2959                case SIOCGMIIREG:
2960                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2961                                err = -EFAULT;
2962                        break;
2963                }
2964        }
2965        return err;
2966}
2967
2968static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2969                        struct compat_ifreq __user *uifr32)
2970{
2971        struct ifreq ifr;
2972        struct compat_ifmap __user *uifmap32;
2973        mm_segment_t old_fs;
2974        int err;
2975
2976        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2977        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2978        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2982        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2983        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2984        if (err)
2985                return -EFAULT;
2986
2987        old_fs = get_fs();
2988        set_fs(KERNEL_DS);
2989        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2990        set_fs(old_fs);
2991
2992        if (cmd == SIOCGIFMAP && !err) {
2993                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2994                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2995                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2996                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2997                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2998                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2999                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3000                if (err)
3001                        err = -EFAULT;
3002        }
3003        return err;
3004}
3005
3006static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3007{
3008        void __user *uptr;
3009        compat_uptr_t uptr32;
3010        struct ifreq __user *uifr;
3011
3012        uifr = compat_alloc_user_space(sizeof(*uifr));
3013        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3014                return -EFAULT;
3015
3016        if (get_user(uptr32, &uifr32->ifr_data))
3017                return -EFAULT;
3018
3019        uptr = compat_ptr(uptr32);
3020
3021        if (put_user(uptr, &uifr->ifr_data))
3022                return -EFAULT;
3023
3024        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3025}
3026
3027struct rtentry32 {
3028        u32             rt_pad1;
3029        struct sockaddr rt_dst;         /* target address               */
3030        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3031        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3032        unsigned short  rt_flags;
3033        short           rt_pad2;
3034        u32             rt_pad3;
3035        unsigned char   rt_tos;
3036        unsigned char   rt_class;
3037        short           rt_pad4;
3038        short           rt_metric;      /* +1 for binary compatibility! */
3039        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3040        u32             rt_mtu;         /* per route MTU/Window         */
3041        u32             rt_window;      /* Window clamping              */
3042        unsigned short  rt_irtt;        /* Initial RTT                  */
3043};
3044
3045struct in6_rtmsg32 {
3046        struct in6_addr         rtmsg_dst;
3047        struct in6_addr         rtmsg_src;
3048        struct in6_addr         rtmsg_gateway;
3049        u32                     rtmsg_type;
3050        u16                     rtmsg_dst_len;
3051        u16                     rtmsg_src_len;
3052        u32                     rtmsg_metric;
3053        u32                     rtmsg_info;
3054        u32                     rtmsg_flags;
3055        s32                     rtmsg_ifindex;
3056};
3057
3058static int routing_ioctl(struct net *net, struct socket *sock,
3059                         unsigned int cmd, void __user *argp)
3060{
3061        int ret;
3062        void *r = NULL;
3063        struct in6_rtmsg r6;
3064        struct rtentry r4;
3065        char devname[16];
3066        u32 rtdev;
3067        mm_segment_t old_fs = get_fs();
3068
3069        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3070                struct in6_rtmsg32 __user *ur6 = argp;
3071                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3072                        3 * sizeof(struct in6_addr));
3073                ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3074                ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3075                ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3076                ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3077                ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3078                ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3079                ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3080
3081                r = (void *) &r6;
3082        } else { /* ipv4 */
3083                struct rtentry32 __user *ur4 = argp;
3084                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3085                                        3 * sizeof(struct sockaddr));
3086                ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3087                ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3088                ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3089                ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3090                ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3091                ret |= __get_user(rtdev, &(ur4->rt_dev));
3092                if (rtdev) {
3093                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3094                        r4.rt_dev = (char __user __force *)devname;
3095                        devname[15] = 0;
3096                } else
3097                        r4.rt_dev = NULL;
3098
3099                r = (void *) &r4;
3100        }
3101
3102        if (ret) {
3103                ret = -EFAULT;
3104                goto out;
3105        }
3106
3107        set_fs(KERNEL_DS);
3108        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109        set_fs(old_fs);
3110
3111out:
3112        return ret;
3113}
3114
3115/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3116 * for some operations; this forces use of the newer bridge-utils that
3117 * use compatible ioctls
3118 */
3119static int old_bridge_ioctl(compat_ulong_t __user *argp)
3120{
3121        compat_ulong_t tmp;
3122
3123        if (get_user(tmp, argp))
3124                return -EFAULT;
3125        if (tmp == BRCTL_GET_VERSION)
3126                return BRCTL_VERSION + 1;
3127        return -EINVAL;
3128}
3129
3130static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3131                         unsigned int cmd, unsigned long arg)
3132{
3133        void __user *argp = compat_ptr(arg);
3134        struct sock *sk = sock->sk;
3135        struct net *net = sock_net(sk);
3136
3137        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3138                return siocdevprivate_ioctl(net, cmd, argp);
3139
3140        switch (cmd) {
3141        case SIOCSIFBR:
3142        case SIOCGIFBR:
3143                return old_bridge_ioctl(argp);
3144        case SIOCGIFNAME:
3145                return dev_ifname32(net, argp);
3146        case SIOCGIFCONF:
3147                return dev_ifconf(net, argp);
3148        case SIOCETHTOOL:
3149                return ethtool_ioctl(net, argp);
3150        case SIOCWANDEV:
3151                return compat_siocwandev(net, argp);
3152        case SIOCGIFMAP:
3153        case SIOCSIFMAP:
3154                return compat_sioc_ifmap(net, cmd, argp);
3155        case SIOCBONDENSLAVE:
3156        case SIOCBONDRELEASE:
3157        case SIOCBONDSETHWADDR:
3158        case SIOCBONDSLAVEINFOQUERY:
3159        case SIOCBONDINFOQUERY:
3160        case SIOCBONDCHANGEACTIVE:
3161                return bond_ioctl(net, cmd, argp);
3162        case SIOCADDRT:
3163        case SIOCDELRT:
3164                return routing_ioctl(net, sock, cmd, argp);
3165        case SIOCGSTAMP:
3166                return do_siocgstamp(net, sock, cmd, argp);
3167        case SIOCGSTAMPNS:
3168                return do_siocgstampns(net, sock, cmd, argp);
3169        case SIOCSHWTSTAMP:
3170                return compat_siocshwtstamp(net, argp);
3171
3172        case FIOSETOWN:
3173        case SIOCSPGRP:
3174        case FIOGETOWN:
3175        case SIOCGPGRP:
3176        case SIOCBRADDBR:
3177        case SIOCBRDELBR:
3178        case SIOCGIFVLAN:
3179        case SIOCSIFVLAN:
3180        case SIOCADDDLCI:
3181        case SIOCDELDLCI:
3182                return sock_ioctl(file, cmd, arg);
3183
3184        case SIOCGIFFLAGS:
3185        case SIOCSIFFLAGS:
3186        case SIOCGIFMETRIC:
3187        case SIOCSIFMETRIC:
3188        case SIOCGIFMTU:
3189        case SIOCSIFMTU:
3190        case SIOCGIFMEM:
3191        case SIOCSIFMEM:
3192        case SIOCGIFHWADDR:
3193        case SIOCSIFHWADDR:
3194        case SIOCADDMULTI:
3195        case SIOCDELMULTI:
3196        case SIOCGIFINDEX:
3197        case SIOCGIFADDR:
3198        case SIOCSIFADDR:
3199        case SIOCSIFHWBROADCAST:
3200        case SIOCDIFADDR:
3201        case SIOCGIFBRDADDR:
3202        case SIOCSIFBRDADDR:
3203        case SIOCGIFDSTADDR:
3204        case SIOCSIFDSTADDR:
3205        case SIOCGIFNETMASK:
3206        case SIOCSIFNETMASK:
3207        case SIOCSIFPFLAGS:
3208        case SIOCGIFPFLAGS:
3209        case SIOCGIFTXQLEN:
3210        case SIOCSIFTXQLEN:
3211        case SIOCBRADDIF:
3212        case SIOCBRDELIF:
3213        case SIOCSIFNAME:
3214        case SIOCGMIIPHY:
3215        case SIOCGMIIREG:
3216        case SIOCSMIIREG:
3217                return dev_ifsioc(net, sock, cmd, argp);
3218
3219        case SIOCSARP:
3220        case SIOCGARP:
3221        case SIOCDARP:
3222        case SIOCATMARK:
3223                return sock_do_ioctl(net, sock, cmd, arg);
3224        }
3225
3226        return -ENOIOCTLCMD;
3227}
3228
3229static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3230                              unsigned long arg)
3231{
3232        struct socket *sock = file->private_data;
3233        int ret = -ENOIOCTLCMD;
3234        struct sock *sk;
3235        struct net *net;
3236
3237        sk = sock->sk;
3238        net = sock_net(sk);
3239
3240        if (sock->ops->compat_ioctl)
3241                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3242
3243        if (ret == -ENOIOCTLCMD &&
3244            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3245                ret = compat_wext_handle_ioctl(net, cmd, arg);
3246
3247        if (ret == -ENOIOCTLCMD)
3248                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3249
3250        return ret;
3251}
3252#endif
3253
3254int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3255{
3256        return sock->ops->bind(sock, addr, addrlen);
3257}
3258EXPORT_SYMBOL(kernel_bind);
3259
3260int kernel_listen(struct socket *sock, int backlog)
3261{
3262        return sock->ops->listen(sock, backlog);
3263}
3264EXPORT_SYMBOL(kernel_listen);
3265
3266int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3267{
3268        struct sock *sk = sock->sk;
3269        int err;
3270
3271        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3272                               newsock);
3273        if (err < 0)
3274                goto done;
3275
3276        err = sock->ops->accept(sock, *newsock, flags);
3277        if (err < 0) {
3278                sock_release(*newsock);
3279                *newsock = NULL;
3280                goto done;
3281        }
3282
3283        (*newsock)->ops = sock->ops;
3284        __module_get((*newsock)->ops->owner);
3285
3286done:
3287        return err;
3288}
3289EXPORT_SYMBOL(kernel_accept);
3290
3291int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3292                   int flags)
3293{
3294        return sock->ops->connect(sock, addr, addrlen, flags);
3295}
3296EXPORT_SYMBOL(kernel_connect);
3297
3298int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3299                         int *addrlen)
3300{
3301        return sock->ops->getname(sock, addr, addrlen, 0);
3302}
3303EXPORT_SYMBOL(kernel_getsockname);
3304
3305int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3306                         int *addrlen)
3307{
3308        return sock->ops->getname(sock, addr, addrlen, 1);
3309}
3310EXPORT_SYMBOL(kernel_getpeername);
3311
3312int kernel_getsockopt(struct socket *sock, int level, int optname,
3313                        char *optval, int *optlen)
3314{
3315        mm_segment_t oldfs = get_fs();
3316        char __user *uoptval;
3317        int __user *uoptlen;
3318        int err;
3319
3320        uoptval = (char __user __force *) optval;
3321        uoptlen = (int __user __force *) optlen;
3322
3323        set_fs(KERNEL_DS);
3324        if (level == SOL_SOCKET)
3325                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3326        else
3327                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3328                                            uoptlen);
3329        set_fs(oldfs);
3330        return err;
3331}
3332EXPORT_SYMBOL(kernel_getsockopt);
3333
3334int kernel_setsockopt(struct socket *sock, int level, int optname,
3335                        char *optval, unsigned int optlen)
3336{
3337        mm_segment_t oldfs = get_fs();
3338        char __user *uoptval;
3339        int err;
3340
3341        uoptval = (char __user __force *) optval;
3342
3343        set_fs(KERNEL_DS);
3344        if (level == SOL_SOCKET)
3345                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3346        else
3347                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3348                                            optlen);
3349        set_fs(oldfs);
3350        return err;
3351}
3352EXPORT_SYMBOL(kernel_setsockopt);
3353
3354int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3355                    size_t size, int flags)
3356{
3357        sock_update_classid(sock->sk);
3358
3359        if (sock->ops->sendpage)
3360                return sock->ops->sendpage(sock, page, offset, size, flags);
3361
3362        return sock_no_sendpage(sock, page, offset, size, flags);
3363}
3364EXPORT_SYMBOL(kernel_sendpage);
3365
3366int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3367{
3368        mm_segment_t oldfs = get_fs();
3369        int err;
3370
3371        set_fs(KERNEL_DS);
3372        err = sock->ops->ioctl(sock, cmd, arg);
3373        set_fs(oldfs);
3374
3375        return err;
3376}
3377EXPORT_SYMBOL(kernel_sock_ioctl);
3378
3379int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3380{
3381        return sock->ops->shutdown(sock, how);
3382}
3383EXPORT_SYMBOL(kernel_sock_shutdown);
3384
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.