linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39
  40#define rdev_crit(rdev, fmt, ...)                                       \
  41        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_err(rdev, fmt, ...)                                        \
  43        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_warn(rdev, fmt, ...)                                       \
  45        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_info(rdev, fmt, ...)                                       \
  47        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_dbg(rdev, fmt, ...)                                        \
  49        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50
  51static DEFINE_MUTEX(regulator_list_mutex);
  52static LIST_HEAD(regulator_list);
  53static LIST_HEAD(regulator_map_list);
  54static bool has_full_constraints;
  55static bool board_wants_dummy_regulator;
  56
  57static struct dentry *debugfs_root;
  58
  59/*
  60 * struct regulator_map
  61 *
  62 * Used to provide symbolic supply names to devices.
  63 */
  64struct regulator_map {
  65        struct list_head list;
  66        const char *dev_name;   /* The dev_name() for the consumer */
  67        const char *supply;
  68        struct regulator_dev *regulator;
  69};
  70
  71/*
  72 * struct regulator
  73 *
  74 * One for each consumer device.
  75 */
  76struct regulator {
  77        struct device *dev;
  78        struct list_head list;
  79        unsigned int always_on:1;
  80        int uA_load;
  81        int min_uV;
  82        int max_uV;
  83        char *supply_name;
  84        struct device_attribute dev_attr;
  85        struct regulator_dev *rdev;
  86        struct dentry *debugfs;
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95                                  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97                                     int min_uV, int max_uV);
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99                                          struct device *dev,
 100                                          const char *supply_name);
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104        if (rdev->constraints && rdev->constraints->name)
 105                return rdev->constraints->name;
 106        else if (rdev->desc->name)
 107                return rdev->desc->name;
 108        else
 109                return "";
 110}
 111
 112/**
 113 * of_get_regulator - get a regulator device node based on supply name
 114 * @dev: Device pointer for the consumer (of regulator) device
 115 * @supply: regulator supply name
 116 *
 117 * Extract the regulator device node corresponding to the supply name.
 118 * retruns the device node corresponding to the regulator if found, else
 119 * returns NULL.
 120 */
 121static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 122{
 123        struct device_node *regnode = NULL;
 124        char prop_name[32]; /* 32 is max size of property name */
 125
 126        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 127
 128        snprintf(prop_name, 32, "%s-supply", supply);
 129        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 130
 131        if (!regnode) {
 132                dev_dbg(dev, "Looking up %s property in node %s failed",
 133                                prop_name, dev->of_node->full_name);
 134                return NULL;
 135        }
 136        return regnode;
 137}
 138
 139static int _regulator_can_change_status(struct regulator_dev *rdev)
 140{
 141        if (!rdev->constraints)
 142                return 0;
 143
 144        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 145                return 1;
 146        else
 147                return 0;
 148}
 149
 150/* Platform voltage constraint check */
 151static int regulator_check_voltage(struct regulator_dev *rdev,
 152                                   int *min_uV, int *max_uV)
 153{
 154        BUG_ON(*min_uV > *max_uV);
 155
 156        if (!rdev->constraints) {
 157                rdev_err(rdev, "no constraints\n");
 158                return -ENODEV;
 159        }
 160        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 161                rdev_err(rdev, "operation not allowed\n");
 162                return -EPERM;
 163        }
 164
 165        if (*max_uV > rdev->constraints->max_uV)
 166                *max_uV = rdev->constraints->max_uV;
 167        if (*min_uV < rdev->constraints->min_uV)
 168                *min_uV = rdev->constraints->min_uV;
 169
 170        if (*min_uV > *max_uV) {
 171                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 172                         *min_uV, *max_uV);
 173                return -EINVAL;
 174        }
 175
 176        return 0;
 177}
 178
 179/* Make sure we select a voltage that suits the needs of all
 180 * regulator consumers
 181 */
 182static int regulator_check_consumers(struct regulator_dev *rdev,
 183                                     int *min_uV, int *max_uV)
 184{
 185        struct regulator *regulator;
 186
 187        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 188                /*
 189                 * Assume consumers that didn't say anything are OK
 190                 * with anything in the constraint range.
 191                 */
 192                if (!regulator->min_uV && !regulator->max_uV)
 193                        continue;
 194
 195                if (*max_uV > regulator->max_uV)
 196                        *max_uV = regulator->max_uV;
 197                if (*min_uV < regulator->min_uV)
 198                        *min_uV = regulator->min_uV;
 199        }
 200
 201        if (*min_uV > *max_uV)
 202                return -EINVAL;
 203
 204        return 0;
 205}
 206
 207/* current constraint check */
 208static int regulator_check_current_limit(struct regulator_dev *rdev,
 209                                        int *min_uA, int *max_uA)
 210{
 211        BUG_ON(*min_uA > *max_uA);
 212
 213        if (!rdev->constraints) {
 214                rdev_err(rdev, "no constraints\n");
 215                return -ENODEV;
 216        }
 217        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 218                rdev_err(rdev, "operation not allowed\n");
 219                return -EPERM;
 220        }
 221
 222        if (*max_uA > rdev->constraints->max_uA)
 223                *max_uA = rdev->constraints->max_uA;
 224        if (*min_uA < rdev->constraints->min_uA)
 225                *min_uA = rdev->constraints->min_uA;
 226
 227        if (*min_uA > *max_uA) {
 228                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 229                         *min_uA, *max_uA);
 230                return -EINVAL;
 231        }
 232
 233        return 0;
 234}
 235
 236/* operating mode constraint check */
 237static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 238{
 239        switch (*mode) {
 240        case REGULATOR_MODE_FAST:
 241        case REGULATOR_MODE_NORMAL:
 242        case REGULATOR_MODE_IDLE:
 243        case REGULATOR_MODE_STANDBY:
 244                break;
 245        default:
 246                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 247                return -EINVAL;
 248        }
 249
 250        if (!rdev->constraints) {
 251                rdev_err(rdev, "no constraints\n");
 252                return -ENODEV;
 253        }
 254        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 255                rdev_err(rdev, "operation not allowed\n");
 256                return -EPERM;
 257        }
 258
 259        /* The modes are bitmasks, the most power hungry modes having
 260         * the lowest values. If the requested mode isn't supported
 261         * try higher modes. */
 262        while (*mode) {
 263                if (rdev->constraints->valid_modes_mask & *mode)
 264                        return 0;
 265                *mode /= 2;
 266        }
 267
 268        return -EINVAL;
 269}
 270
 271/* dynamic regulator mode switching constraint check */
 272static int regulator_check_drms(struct regulator_dev *rdev)
 273{
 274        if (!rdev->constraints) {
 275                rdev_err(rdev, "no constraints\n");
 276                return -ENODEV;
 277        }
 278        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 279                rdev_err(rdev, "operation not allowed\n");
 280                return -EPERM;
 281        }
 282        return 0;
 283}
 284
 285static ssize_t regulator_uV_show(struct device *dev,
 286                                struct device_attribute *attr, char *buf)
 287{
 288        struct regulator_dev *rdev = dev_get_drvdata(dev);
 289        ssize_t ret;
 290
 291        mutex_lock(&rdev->mutex);
 292        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 293        mutex_unlock(&rdev->mutex);
 294
 295        return ret;
 296}
 297static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 298
 299static ssize_t regulator_uA_show(struct device *dev,
 300                                struct device_attribute *attr, char *buf)
 301{
 302        struct regulator_dev *rdev = dev_get_drvdata(dev);
 303
 304        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 305}
 306static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 307
 308static ssize_t regulator_name_show(struct device *dev,
 309                             struct device_attribute *attr, char *buf)
 310{
 311        struct regulator_dev *rdev = dev_get_drvdata(dev);
 312
 313        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 314}
 315
 316static ssize_t regulator_print_opmode(char *buf, int mode)
 317{
 318        switch (mode) {
 319        case REGULATOR_MODE_FAST:
 320                return sprintf(buf, "fast\n");
 321        case REGULATOR_MODE_NORMAL:
 322                return sprintf(buf, "normal\n");
 323        case REGULATOR_MODE_IDLE:
 324                return sprintf(buf, "idle\n");
 325        case REGULATOR_MODE_STANDBY:
 326                return sprintf(buf, "standby\n");
 327        }
 328        return sprintf(buf, "unknown\n");
 329}
 330
 331static ssize_t regulator_opmode_show(struct device *dev,
 332                                    struct device_attribute *attr, char *buf)
 333{
 334        struct regulator_dev *rdev = dev_get_drvdata(dev);
 335
 336        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 337}
 338static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 339
 340static ssize_t regulator_print_state(char *buf, int state)
 341{
 342        if (state > 0)
 343                return sprintf(buf, "enabled\n");
 344        else if (state == 0)
 345                return sprintf(buf, "disabled\n");
 346        else
 347                return sprintf(buf, "unknown\n");
 348}
 349
 350static ssize_t regulator_state_show(struct device *dev,
 351                                   struct device_attribute *attr, char *buf)
 352{
 353        struct regulator_dev *rdev = dev_get_drvdata(dev);
 354        ssize_t ret;
 355
 356        mutex_lock(&rdev->mutex);
 357        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 358        mutex_unlock(&rdev->mutex);
 359
 360        return ret;
 361}
 362static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 363
 364static ssize_t regulator_status_show(struct device *dev,
 365                                   struct device_attribute *attr, char *buf)
 366{
 367        struct regulator_dev *rdev = dev_get_drvdata(dev);
 368        int status;
 369        char *label;
 370
 371        status = rdev->desc->ops->get_status(rdev);
 372        if (status < 0)
 373                return status;
 374
 375        switch (status) {
 376        case REGULATOR_STATUS_OFF:
 377                label = "off";
 378                break;
 379        case REGULATOR_STATUS_ON:
 380                label = "on";
 381                break;
 382        case REGULATOR_STATUS_ERROR:
 383                label = "error";
 384                break;
 385        case REGULATOR_STATUS_FAST:
 386                label = "fast";
 387                break;
 388        case REGULATOR_STATUS_NORMAL:
 389                label = "normal";
 390                break;
 391        case REGULATOR_STATUS_IDLE:
 392                label = "idle";
 393                break;
 394        case REGULATOR_STATUS_STANDBY:
 395                label = "standby";
 396                break;
 397        case REGULATOR_STATUS_UNDEFINED:
 398                label = "undefined";
 399                break;
 400        default:
 401                return -ERANGE;
 402        }
 403
 404        return sprintf(buf, "%s\n", label);
 405}
 406static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 407
 408static ssize_t regulator_min_uA_show(struct device *dev,
 409                                    struct device_attribute *attr, char *buf)
 410{
 411        struct regulator_dev *rdev = dev_get_drvdata(dev);
 412
 413        if (!rdev->constraints)
 414                return sprintf(buf, "constraint not defined\n");
 415
 416        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 417}
 418static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 419
 420static ssize_t regulator_max_uA_show(struct device *dev,
 421                                    struct device_attribute *attr, char *buf)
 422{
 423        struct regulator_dev *rdev = dev_get_drvdata(dev);
 424
 425        if (!rdev->constraints)
 426                return sprintf(buf, "constraint not defined\n");
 427
 428        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 429}
 430static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 431
 432static ssize_t regulator_min_uV_show(struct device *dev,
 433                                    struct device_attribute *attr, char *buf)
 434{
 435        struct regulator_dev *rdev = dev_get_drvdata(dev);
 436
 437        if (!rdev->constraints)
 438                return sprintf(buf, "constraint not defined\n");
 439
 440        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 441}
 442static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 443
 444static ssize_t regulator_max_uV_show(struct device *dev,
 445                                    struct device_attribute *attr, char *buf)
 446{
 447        struct regulator_dev *rdev = dev_get_drvdata(dev);
 448
 449        if (!rdev->constraints)
 450                return sprintf(buf, "constraint not defined\n");
 451
 452        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 453}
 454static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 455
 456static ssize_t regulator_total_uA_show(struct device *dev,
 457                                      struct device_attribute *attr, char *buf)
 458{
 459        struct regulator_dev *rdev = dev_get_drvdata(dev);
 460        struct regulator *regulator;
 461        int uA = 0;
 462
 463        mutex_lock(&rdev->mutex);
 464        list_for_each_entry(regulator, &rdev->consumer_list, list)
 465                uA += regulator->uA_load;
 466        mutex_unlock(&rdev->mutex);
 467        return sprintf(buf, "%d\n", uA);
 468}
 469static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 470
 471static ssize_t regulator_num_users_show(struct device *dev,
 472                                      struct device_attribute *attr, char *buf)
 473{
 474        struct regulator_dev *rdev = dev_get_drvdata(dev);
 475        return sprintf(buf, "%d\n", rdev->use_count);
 476}
 477
 478static ssize_t regulator_type_show(struct device *dev,
 479                                  struct device_attribute *attr, char *buf)
 480{
 481        struct regulator_dev *rdev = dev_get_drvdata(dev);
 482
 483        switch (rdev->desc->type) {
 484        case REGULATOR_VOLTAGE:
 485                return sprintf(buf, "voltage\n");
 486        case REGULATOR_CURRENT:
 487                return sprintf(buf, "current\n");
 488        }
 489        return sprintf(buf, "unknown\n");
 490}
 491
 492static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 493                                struct device_attribute *attr, char *buf)
 494{
 495        struct regulator_dev *rdev = dev_get_drvdata(dev);
 496
 497        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 498}
 499static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 500                regulator_suspend_mem_uV_show, NULL);
 501
 502static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 503                                struct device_attribute *attr, char *buf)
 504{
 505        struct regulator_dev *rdev = dev_get_drvdata(dev);
 506
 507        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 508}
 509static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 510                regulator_suspend_disk_uV_show, NULL);
 511
 512static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 513                                struct device_attribute *attr, char *buf)
 514{
 515        struct regulator_dev *rdev = dev_get_drvdata(dev);
 516
 517        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 518}
 519static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 520                regulator_suspend_standby_uV_show, NULL);
 521
 522static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 523                                struct device_attribute *attr, char *buf)
 524{
 525        struct regulator_dev *rdev = dev_get_drvdata(dev);
 526
 527        return regulator_print_opmode(buf,
 528                rdev->constraints->state_mem.mode);
 529}
 530static DEVICE_ATTR(suspend_mem_mode, 0444,
 531                regulator_suspend_mem_mode_show, NULL);
 532
 533static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 534                                struct device_attribute *attr, char *buf)
 535{
 536        struct regulator_dev *rdev = dev_get_drvdata(dev);
 537
 538        return regulator_print_opmode(buf,
 539                rdev->constraints->state_disk.mode);
 540}
 541static DEVICE_ATTR(suspend_disk_mode, 0444,
 542                regulator_suspend_disk_mode_show, NULL);
 543
 544static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 545                                struct device_attribute *attr, char *buf)
 546{
 547        struct regulator_dev *rdev = dev_get_drvdata(dev);
 548
 549        return regulator_print_opmode(buf,
 550                rdev->constraints->state_standby.mode);
 551}
 552static DEVICE_ATTR(suspend_standby_mode, 0444,
 553                regulator_suspend_standby_mode_show, NULL);
 554
 555static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 556                                   struct device_attribute *attr, char *buf)
 557{
 558        struct regulator_dev *rdev = dev_get_drvdata(dev);
 559
 560        return regulator_print_state(buf,
 561                        rdev->constraints->state_mem.enabled);
 562}
 563static DEVICE_ATTR(suspend_mem_state, 0444,
 564                regulator_suspend_mem_state_show, NULL);
 565
 566static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 567                                   struct device_attribute *attr, char *buf)
 568{
 569        struct regulator_dev *rdev = dev_get_drvdata(dev);
 570
 571        return regulator_print_state(buf,
 572                        rdev->constraints->state_disk.enabled);
 573}
 574static DEVICE_ATTR(suspend_disk_state, 0444,
 575                regulator_suspend_disk_state_show, NULL);
 576
 577static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 578                                   struct device_attribute *attr, char *buf)
 579{
 580        struct regulator_dev *rdev = dev_get_drvdata(dev);
 581
 582        return regulator_print_state(buf,
 583                        rdev->constraints->state_standby.enabled);
 584}
 585static DEVICE_ATTR(suspend_standby_state, 0444,
 586                regulator_suspend_standby_state_show, NULL);
 587
 588
 589/*
 590 * These are the only attributes are present for all regulators.
 591 * Other attributes are a function of regulator functionality.
 592 */
 593static struct device_attribute regulator_dev_attrs[] = {
 594        __ATTR(name, 0444, regulator_name_show, NULL),
 595        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 596        __ATTR(type, 0444, regulator_type_show, NULL),
 597        __ATTR_NULL,
 598};
 599
 600static void regulator_dev_release(struct device *dev)
 601{
 602        struct regulator_dev *rdev = dev_get_drvdata(dev);
 603        kfree(rdev);
 604}
 605
 606static struct class regulator_class = {
 607        .name = "regulator",
 608        .dev_release = regulator_dev_release,
 609        .dev_attrs = regulator_dev_attrs,
 610};
 611
 612/* Calculate the new optimum regulator operating mode based on the new total
 613 * consumer load. All locks held by caller */
 614static void drms_uA_update(struct regulator_dev *rdev)
 615{
 616        struct regulator *sibling;
 617        int current_uA = 0, output_uV, input_uV, err;
 618        unsigned int mode;
 619
 620        err = regulator_check_drms(rdev);
 621        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 622            (!rdev->desc->ops->get_voltage &&
 623             !rdev->desc->ops->get_voltage_sel) ||
 624            !rdev->desc->ops->set_mode)
 625                return;
 626
 627        /* get output voltage */
 628        output_uV = _regulator_get_voltage(rdev);
 629        if (output_uV <= 0)
 630                return;
 631
 632        /* get input voltage */
 633        input_uV = 0;
 634        if (rdev->supply)
 635                input_uV = regulator_get_voltage(rdev->supply);
 636        if (input_uV <= 0)
 637                input_uV = rdev->constraints->input_uV;
 638        if (input_uV <= 0)
 639                return;
 640
 641        /* calc total requested load */
 642        list_for_each_entry(sibling, &rdev->consumer_list, list)
 643                current_uA += sibling->uA_load;
 644
 645        /* now get the optimum mode for our new total regulator load */
 646        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 647                                                  output_uV, current_uA);
 648
 649        /* check the new mode is allowed */
 650        err = regulator_mode_constrain(rdev, &mode);
 651        if (err == 0)
 652                rdev->desc->ops->set_mode(rdev, mode);
 653}
 654
 655static int suspend_set_state(struct regulator_dev *rdev,
 656        struct regulator_state *rstate)
 657{
 658        int ret = 0;
 659
 660        /* If we have no suspend mode configration don't set anything;
 661         * only warn if the driver implements set_suspend_voltage or
 662         * set_suspend_mode callback.
 663         */
 664        if (!rstate->enabled && !rstate->disabled) {
 665                if (rdev->desc->ops->set_suspend_voltage ||
 666                    rdev->desc->ops->set_suspend_mode)
 667                        rdev_warn(rdev, "No configuration\n");
 668                return 0;
 669        }
 670
 671        if (rstate->enabled && rstate->disabled) {
 672                rdev_err(rdev, "invalid configuration\n");
 673                return -EINVAL;
 674        }
 675
 676        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 677                ret = rdev->desc->ops->set_suspend_enable(rdev);
 678        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 679                ret = rdev->desc->ops->set_suspend_disable(rdev);
 680        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 681                ret = 0;
 682
 683        if (ret < 0) {
 684                rdev_err(rdev, "failed to enabled/disable\n");
 685                return ret;
 686        }
 687
 688        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 689                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 690                if (ret < 0) {
 691                        rdev_err(rdev, "failed to set voltage\n");
 692                        return ret;
 693                }
 694        }
 695
 696        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 697                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 698                if (ret < 0) {
 699                        rdev_err(rdev, "failed to set mode\n");
 700                        return ret;
 701                }
 702        }
 703        return ret;
 704}
 705
 706/* locks held by caller */
 707static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 708{
 709        if (!rdev->constraints)
 710                return -EINVAL;
 711
 712        switch (state) {
 713        case PM_SUSPEND_STANDBY:
 714                return suspend_set_state(rdev,
 715                        &rdev->constraints->state_standby);
 716        case PM_SUSPEND_MEM:
 717                return suspend_set_state(rdev,
 718                        &rdev->constraints->state_mem);
 719        case PM_SUSPEND_MAX:
 720                return suspend_set_state(rdev,
 721                        &rdev->constraints->state_disk);
 722        default:
 723                return -EINVAL;
 724        }
 725}
 726
 727static void print_constraints(struct regulator_dev *rdev)
 728{
 729        struct regulation_constraints *constraints = rdev->constraints;
 730        char buf[80] = "";
 731        int count = 0;
 732        int ret;
 733
 734        if (constraints->min_uV && constraints->max_uV) {
 735                if (constraints->min_uV == constraints->max_uV)
 736                        count += sprintf(buf + count, "%d mV ",
 737                                         constraints->min_uV / 1000);
 738                else
 739                        count += sprintf(buf + count, "%d <--> %d mV ",
 740                                         constraints->min_uV / 1000,
 741                                         constraints->max_uV / 1000);
 742        }
 743
 744        if (!constraints->min_uV ||
 745            constraints->min_uV != constraints->max_uV) {
 746                ret = _regulator_get_voltage(rdev);
 747                if (ret > 0)
 748                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 749        }
 750
 751        if (constraints->uV_offset)
 752                count += sprintf(buf, "%dmV offset ",
 753                                 constraints->uV_offset / 1000);
 754
 755        if (constraints->min_uA && constraints->max_uA) {
 756                if (constraints->min_uA == constraints->max_uA)
 757                        count += sprintf(buf + count, "%d mA ",
 758                                         constraints->min_uA / 1000);
 759                else
 760                        count += sprintf(buf + count, "%d <--> %d mA ",
 761                                         constraints->min_uA / 1000,
 762                                         constraints->max_uA / 1000);
 763        }
 764
 765        if (!constraints->min_uA ||
 766            constraints->min_uA != constraints->max_uA) {
 767                ret = _regulator_get_current_limit(rdev);
 768                if (ret > 0)
 769                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 770        }
 771
 772        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 773                count += sprintf(buf + count, "fast ");
 774        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 775                count += sprintf(buf + count, "normal ");
 776        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 777                count += sprintf(buf + count, "idle ");
 778        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 779                count += sprintf(buf + count, "standby");
 780
 781        rdev_info(rdev, "%s\n", buf);
 782
 783        if ((constraints->min_uV != constraints->max_uV) &&
 784            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 785                rdev_warn(rdev,
 786                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 787}
 788
 789static int machine_constraints_voltage(struct regulator_dev *rdev,
 790        struct regulation_constraints *constraints)
 791{
 792        struct regulator_ops *ops = rdev->desc->ops;
 793        int ret;
 794
 795        /* do we need to apply the constraint voltage */
 796        if (rdev->constraints->apply_uV &&
 797            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 798                ret = _regulator_do_set_voltage(rdev,
 799                                                rdev->constraints->min_uV,
 800                                                rdev->constraints->max_uV);
 801                if (ret < 0) {
 802                        rdev_err(rdev, "failed to apply %duV constraint\n",
 803                                 rdev->constraints->min_uV);
 804                        return ret;
 805                }
 806        }
 807
 808        /* constrain machine-level voltage specs to fit
 809         * the actual range supported by this regulator.
 810         */
 811        if (ops->list_voltage && rdev->desc->n_voltages) {
 812                int     count = rdev->desc->n_voltages;
 813                int     i;
 814                int     min_uV = INT_MAX;
 815                int     max_uV = INT_MIN;
 816                int     cmin = constraints->min_uV;
 817                int     cmax = constraints->max_uV;
 818
 819                /* it's safe to autoconfigure fixed-voltage supplies
 820                   and the constraints are used by list_voltage. */
 821                if (count == 1 && !cmin) {
 822                        cmin = 1;
 823                        cmax = INT_MAX;
 824                        constraints->min_uV = cmin;
 825                        constraints->max_uV = cmax;
 826                }
 827
 828                /* voltage constraints are optional */
 829                if ((cmin == 0) && (cmax == 0))
 830                        return 0;
 831
 832                /* else require explicit machine-level constraints */
 833                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 834                        rdev_err(rdev, "invalid voltage constraints\n");
 835                        return -EINVAL;
 836                }
 837
 838                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 839                for (i = 0; i < count; i++) {
 840                        int     value;
 841
 842                        value = ops->list_voltage(rdev, i);
 843                        if (value <= 0)
 844                                continue;
 845
 846                        /* maybe adjust [min_uV..max_uV] */
 847                        if (value >= cmin && value < min_uV)
 848                                min_uV = value;
 849                        if (value <= cmax && value > max_uV)
 850                                max_uV = value;
 851                }
 852
 853                /* final: [min_uV..max_uV] valid iff constraints valid */
 854                if (max_uV < min_uV) {
 855                        rdev_err(rdev, "unsupportable voltage constraints\n");
 856                        return -EINVAL;
 857                }
 858
 859                /* use regulator's subset of machine constraints */
 860                if (constraints->min_uV < min_uV) {
 861                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 862                                 constraints->min_uV, min_uV);
 863                        constraints->min_uV = min_uV;
 864                }
 865                if (constraints->max_uV > max_uV) {
 866                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 867                                 constraints->max_uV, max_uV);
 868                        constraints->max_uV = max_uV;
 869                }
 870        }
 871
 872        return 0;
 873}
 874
 875/**
 876 * set_machine_constraints - sets regulator constraints
 877 * @rdev: regulator source
 878 * @constraints: constraints to apply
 879 *
 880 * Allows platform initialisation code to define and constrain
 881 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 882 * Constraints *must* be set by platform code in order for some
 883 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 884 * set_mode.
 885 */
 886static int set_machine_constraints(struct regulator_dev *rdev,
 887        const struct regulation_constraints *constraints)
 888{
 889        int ret = 0;
 890        struct regulator_ops *ops = rdev->desc->ops;
 891
 892        if (constraints)
 893                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 894                                            GFP_KERNEL);
 895        else
 896                rdev->constraints = kzalloc(sizeof(*constraints),
 897                                            GFP_KERNEL);
 898        if (!rdev->constraints)
 899                return -ENOMEM;
 900
 901        ret = machine_constraints_voltage(rdev, rdev->constraints);
 902        if (ret != 0)
 903                goto out;
 904
 905        /* do we need to setup our suspend state */
 906        if (rdev->constraints->initial_state) {
 907                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 908                if (ret < 0) {
 909                        rdev_err(rdev, "failed to set suspend state\n");
 910                        goto out;
 911                }
 912        }
 913
 914        if (rdev->constraints->initial_mode) {
 915                if (!ops->set_mode) {
 916                        rdev_err(rdev, "no set_mode operation\n");
 917                        ret = -EINVAL;
 918                        goto out;
 919                }
 920
 921                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 922                if (ret < 0) {
 923                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 924                        goto out;
 925                }
 926        }
 927
 928        /* If the constraints say the regulator should be on at this point
 929         * and we have control then make sure it is enabled.
 930         */
 931        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 932            ops->enable) {
 933                ret = ops->enable(rdev);
 934                if (ret < 0) {
 935                        rdev_err(rdev, "failed to enable\n");
 936                        goto out;
 937                }
 938        }
 939
 940        if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
 941                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
 942                if (ret < 0) {
 943                        rdev_err(rdev, "failed to set ramp_delay\n");
 944                        goto out;
 945                }
 946        }
 947
 948        print_constraints(rdev);
 949        return 0;
 950out:
 951        kfree(rdev->constraints);
 952        rdev->constraints = NULL;
 953        return ret;
 954}
 955
 956/**
 957 * set_supply - set regulator supply regulator
 958 * @rdev: regulator name
 959 * @supply_rdev: supply regulator name
 960 *
 961 * Called by platform initialisation code to set the supply regulator for this
 962 * regulator. This ensures that a regulators supply will also be enabled by the
 963 * core if it's child is enabled.
 964 */
 965static int set_supply(struct regulator_dev *rdev,
 966                      struct regulator_dev *supply_rdev)
 967{
 968        int err;
 969
 970        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 971
 972        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 973        if (rdev->supply == NULL) {
 974                err = -ENOMEM;
 975                return err;
 976        }
 977
 978        return 0;
 979}
 980
 981/**
 982 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 983 * @rdev:         regulator source
 984 * @consumer_dev_name: dev_name() string for device supply applies to
 985 * @supply:       symbolic name for supply
 986 *
 987 * Allows platform initialisation code to map physical regulator
 988 * sources to symbolic names for supplies for use by devices.  Devices
 989 * should use these symbolic names to request regulators, avoiding the
 990 * need to provide board-specific regulator names as platform data.
 991 */
 992static int set_consumer_device_supply(struct regulator_dev *rdev,
 993                                      const char *consumer_dev_name,
 994                                      const char *supply)
 995{
 996        struct regulator_map *node;
 997        int has_dev;
 998
 999        if (supply == NULL)
1000                return -EINVAL;
1001
1002        if (consumer_dev_name != NULL)
1003                has_dev = 1;
1004        else
1005                has_dev = 0;
1006
1007        list_for_each_entry(node, &regulator_map_list, list) {
1008                if (node->dev_name && consumer_dev_name) {
1009                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010                                continue;
1011                } else if (node->dev_name || consumer_dev_name) {
1012                        continue;
1013                }
1014
1015                if (strcmp(node->supply, supply) != 0)
1016                        continue;
1017
1018                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019                         consumer_dev_name,
1020                         dev_name(&node->regulator->dev),
1021                         node->regulator->desc->name,
1022                         supply,
1023                         dev_name(&rdev->dev), rdev_get_name(rdev));
1024                return -EBUSY;
1025        }
1026
1027        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028        if (node == NULL)
1029                return -ENOMEM;
1030
1031        node->regulator = rdev;
1032        node->supply = supply;
1033
1034        if (has_dev) {
1035                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036                if (node->dev_name == NULL) {
1037                        kfree(node);
1038                        return -ENOMEM;
1039                }
1040        }
1041
1042        list_add(&node->list, &regulator_map_list);
1043        return 0;
1044}
1045
1046static void unset_regulator_supplies(struct regulator_dev *rdev)
1047{
1048        struct regulator_map *node, *n;
1049
1050        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051                if (rdev == node->regulator) {
1052                        list_del(&node->list);
1053                        kfree(node->dev_name);
1054                        kfree(node);
1055                }
1056        }
1057}
1058
1059#define REG_STR_SIZE    64
1060
1061static struct regulator *create_regulator(struct regulator_dev *rdev,
1062                                          struct device *dev,
1063                                          const char *supply_name)
1064{
1065        struct regulator *regulator;
1066        char buf[REG_STR_SIZE];
1067        int err, size;
1068
1069        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070        if (regulator == NULL)
1071                return NULL;
1072
1073        mutex_lock(&rdev->mutex);
1074        regulator->rdev = rdev;
1075        list_add(&regulator->list, &rdev->consumer_list);
1076
1077        if (dev) {
1078                regulator->dev = dev;
1079
1080                /* Add a link to the device sysfs entry */
1081                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082                                 dev->kobj.name, supply_name);
1083                if (size >= REG_STR_SIZE)
1084                        goto overflow_err;
1085
1086                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087                if (regulator->supply_name == NULL)
1088                        goto overflow_err;
1089
1090                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091                                        buf);
1092                if (err) {
1093                        rdev_warn(rdev, "could not add device link %s err %d\n",
1094                                  dev->kobj.name, err);
1095                        /* non-fatal */
1096                }
1097        } else {
1098                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099                if (regulator->supply_name == NULL)
1100                        goto overflow_err;
1101        }
1102
1103        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104                                                rdev->debugfs);
1105        if (!regulator->debugfs) {
1106                rdev_warn(rdev, "Failed to create debugfs directory\n");
1107        } else {
1108                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109                                   &regulator->uA_load);
1110                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111                                   &regulator->min_uV);
1112                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113                                   &regulator->max_uV);
1114        }
1115
1116        /*
1117         * Check now if the regulator is an always on regulator - if
1118         * it is then we don't need to do nearly so much work for
1119         * enable/disable calls.
1120         */
1121        if (!_regulator_can_change_status(rdev) &&
1122            _regulator_is_enabled(rdev))
1123                regulator->always_on = true;
1124
1125        mutex_unlock(&rdev->mutex);
1126        return regulator;
1127overflow_err:
1128        list_del(&regulator->list);
1129        kfree(regulator);
1130        mutex_unlock(&rdev->mutex);
1131        return NULL;
1132}
1133
1134static int _regulator_get_enable_time(struct regulator_dev *rdev)
1135{
1136        if (!rdev->desc->ops->enable_time)
1137                return rdev->desc->enable_time;
1138        return rdev->desc->ops->enable_time(rdev);
1139}
1140
1141static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142                                                  const char *supply,
1143                                                  int *ret)
1144{
1145        struct regulator_dev *r;
1146        struct device_node *node;
1147        struct regulator_map *map;
1148        const char *devname = NULL;
1149
1150        /* first do a dt based lookup */
1151        if (dev && dev->of_node) {
1152                node = of_get_regulator(dev, supply);
1153                if (node) {
1154                        list_for_each_entry(r, &regulator_list, list)
1155                                if (r->dev.parent &&
1156                                        node == r->dev.of_node)
1157                                        return r;
1158                } else {
1159                        /*
1160                         * If we couldn't even get the node then it's
1161                         * not just that the device didn't register
1162                         * yet, there's no node and we'll never
1163                         * succeed.
1164                         */
1165                        *ret = -ENODEV;
1166                }
1167        }
1168
1169        /* if not found, try doing it non-dt way */
1170        if (dev)
1171                devname = dev_name(dev);
1172
1173        list_for_each_entry(r, &regulator_list, list)
1174                if (strcmp(rdev_get_name(r), supply) == 0)
1175                        return r;
1176
1177        list_for_each_entry(map, &regulator_map_list, list) {
1178                /* If the mapping has a device set up it must match */
1179                if (map->dev_name &&
1180                    (!devname || strcmp(map->dev_name, devname)))
1181                        continue;
1182
1183                if (strcmp(map->supply, supply) == 0)
1184                        return map->regulator;
1185        }
1186
1187
1188        return NULL;
1189}
1190
1191/* Internal regulator request function */
1192static struct regulator *_regulator_get(struct device *dev, const char *id,
1193                                        int exclusive)
1194{
1195        struct regulator_dev *rdev;
1196        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197        const char *devname = NULL;
1198        int ret;
1199
1200        if (id == NULL) {
1201                pr_err("get() with no identifier\n");
1202                return regulator;
1203        }
1204
1205        if (dev)
1206                devname = dev_name(dev);
1207
1208        mutex_lock(&regulator_list_mutex);
1209
1210        rdev = regulator_dev_lookup(dev, id, &ret);
1211        if (rdev)
1212                goto found;
1213
1214        if (board_wants_dummy_regulator) {
1215                rdev = dummy_regulator_rdev;
1216                goto found;
1217        }
1218
1219#ifdef CONFIG_REGULATOR_DUMMY
1220        if (!devname)
1221                devname = "deviceless";
1222
1223        /* If the board didn't flag that it was fully constrained then
1224         * substitute in a dummy regulator so consumers can continue.
1225         */
1226        if (!has_full_constraints) {
1227                pr_warn("%s supply %s not found, using dummy regulator\n",
1228                        devname, id);
1229                rdev = dummy_regulator_rdev;
1230                goto found;
1231        }
1232#endif
1233
1234        mutex_unlock(&regulator_list_mutex);
1235        return regulator;
1236
1237found:
1238        if (rdev->exclusive) {
1239                regulator = ERR_PTR(-EPERM);
1240                goto out;
1241        }
1242
1243        if (exclusive && rdev->open_count) {
1244                regulator = ERR_PTR(-EBUSY);
1245                goto out;
1246        }
1247
1248        if (!try_module_get(rdev->owner))
1249                goto out;
1250
1251        regulator = create_regulator(rdev, dev, id);
1252        if (regulator == NULL) {
1253                regulator = ERR_PTR(-ENOMEM);
1254                module_put(rdev->owner);
1255                goto out;
1256        }
1257
1258        rdev->open_count++;
1259        if (exclusive) {
1260                rdev->exclusive = 1;
1261
1262                ret = _regulator_is_enabled(rdev);
1263                if (ret > 0)
1264                        rdev->use_count = 1;
1265                else
1266                        rdev->use_count = 0;
1267        }
1268
1269out:
1270        mutex_unlock(&regulator_list_mutex);
1271
1272        return regulator;
1273}
1274
1275/**
1276 * regulator_get - lookup and obtain a reference to a regulator.
1277 * @dev: device for regulator "consumer"
1278 * @id: Supply name or regulator ID.
1279 *
1280 * Returns a struct regulator corresponding to the regulator producer,
1281 * or IS_ERR() condition containing errno.
1282 *
1283 * Use of supply names configured via regulator_set_device_supply() is
1284 * strongly encouraged.  It is recommended that the supply name used
1285 * should match the name used for the supply and/or the relevant
1286 * device pins in the datasheet.
1287 */
1288struct regulator *regulator_get(struct device *dev, const char *id)
1289{
1290        return _regulator_get(dev, id, 0);
1291}
1292EXPORT_SYMBOL_GPL(regulator_get);
1293
1294static void devm_regulator_release(struct device *dev, void *res)
1295{
1296        regulator_put(*(struct regulator **)res);
1297}
1298
1299/**
1300 * devm_regulator_get - Resource managed regulator_get()
1301 * @dev: device for regulator "consumer"
1302 * @id: Supply name or regulator ID.
1303 *
1304 * Managed regulator_get(). Regulators returned from this function are
1305 * automatically regulator_put() on driver detach. See regulator_get() for more
1306 * information.
1307 */
1308struct regulator *devm_regulator_get(struct device *dev, const char *id)
1309{
1310        struct regulator **ptr, *regulator;
1311
1312        ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313        if (!ptr)
1314                return ERR_PTR(-ENOMEM);
1315
1316        regulator = regulator_get(dev, id);
1317        if (!IS_ERR(regulator)) {
1318                *ptr = regulator;
1319                devres_add(dev, ptr);
1320        } else {
1321                devres_free(ptr);
1322        }
1323
1324        return regulator;
1325}
1326EXPORT_SYMBOL_GPL(devm_regulator_get);
1327
1328/**
1329 * regulator_get_exclusive - obtain exclusive access to a regulator.
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Returns a struct regulator corresponding to the regulator producer,
1334 * or IS_ERR() condition containing errno.  Other consumers will be
1335 * unable to obtain this reference is held and the use count for the
1336 * regulator will be initialised to reflect the current state of the
1337 * regulator.
1338 *
1339 * This is intended for use by consumers which cannot tolerate shared
1340 * use of the regulator such as those which need to force the
1341 * regulator off for correct operation of the hardware they are
1342 * controlling.
1343 *
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged.  It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1348 */
1349struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1350{
1351        return _regulator_get(dev, id, 1);
1352}
1353EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1354
1355/**
1356 * regulator_put - "free" the regulator source
1357 * @regulator: regulator source
1358 *
1359 * Note: drivers must ensure that all regulator_enable calls made on this
1360 * regulator source are balanced by regulator_disable calls prior to calling
1361 * this function.
1362 */
1363void regulator_put(struct regulator *regulator)
1364{
1365        struct regulator_dev *rdev;
1366
1367        if (regulator == NULL || IS_ERR(regulator))
1368                return;
1369
1370        mutex_lock(&regulator_list_mutex);
1371        rdev = regulator->rdev;
1372
1373        debugfs_remove_recursive(regulator->debugfs);
1374
1375        /* remove any sysfs entries */
1376        if (regulator->dev)
1377                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378        kfree(regulator->supply_name);
1379        list_del(&regulator->list);
1380        kfree(regulator);
1381
1382        rdev->open_count--;
1383        rdev->exclusive = 0;
1384
1385        module_put(rdev->owner);
1386        mutex_unlock(&regulator_list_mutex);
1387}
1388EXPORT_SYMBOL_GPL(regulator_put);
1389
1390static int devm_regulator_match(struct device *dev, void *res, void *data)
1391{
1392        struct regulator **r = res;
1393        if (!r || !*r) {
1394                WARN_ON(!r || !*r);
1395                return 0;
1396        }
1397        return *r == data;
1398}
1399
1400/**
1401 * devm_regulator_put - Resource managed regulator_put()
1402 * @regulator: regulator to free
1403 *
1404 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405 * this function will not need to be called and the resource management
1406 * code will ensure that the resource is freed.
1407 */
1408void devm_regulator_put(struct regulator *regulator)
1409{
1410        int rc;
1411
1412        rc = devres_release(regulator->dev, devm_regulator_release,
1413                            devm_regulator_match, regulator);
1414        if (rc != 0)
1415                WARN_ON(rc);
1416}
1417EXPORT_SYMBOL_GPL(devm_regulator_put);
1418
1419static int _regulator_do_enable(struct regulator_dev *rdev)
1420{
1421        int ret, delay;
1422
1423        /* Query before enabling in case configuration dependent.  */
1424        ret = _regulator_get_enable_time(rdev);
1425        if (ret >= 0) {
1426                delay = ret;
1427        } else {
1428                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429                delay = 0;
1430        }
1431
1432        trace_regulator_enable(rdev_get_name(rdev));
1433
1434        if (rdev->ena_gpio) {
1435                gpio_set_value_cansleep(rdev->ena_gpio,
1436                                        !rdev->ena_gpio_invert);
1437                rdev->ena_gpio_state = 1;
1438        } else if (rdev->desc->ops->enable) {
1439                ret = rdev->desc->ops->enable(rdev);
1440                if (ret < 0)
1441                        return ret;
1442        } else {
1443                return -EINVAL;
1444        }
1445
1446        /* Allow the regulator to ramp; it would be useful to extend
1447         * this for bulk operations so that the regulators can ramp
1448         * together.  */
1449        trace_regulator_enable_delay(rdev_get_name(rdev));
1450
1451        if (delay >= 1000) {
1452                mdelay(delay / 1000);
1453                udelay(delay % 1000);
1454        } else if (delay) {
1455                udelay(delay);
1456        }
1457
1458        trace_regulator_enable_complete(rdev_get_name(rdev));
1459
1460        return 0;
1461}
1462
1463/* locks held by regulator_enable() */
1464static int _regulator_enable(struct regulator_dev *rdev)
1465{
1466        int ret;
1467
1468        /* check voltage and requested load before enabling */
1469        if (rdev->constraints &&
1470            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471                drms_uA_update(rdev);
1472
1473        if (rdev->use_count == 0) {
1474                /* The regulator may on if it's not switchable or left on */
1475                ret = _regulator_is_enabled(rdev);
1476                if (ret == -EINVAL || ret == 0) {
1477                        if (!_regulator_can_change_status(rdev))
1478                                return -EPERM;
1479
1480                        ret = _regulator_do_enable(rdev);
1481                        if (ret < 0)
1482                                return ret;
1483
1484                } else if (ret < 0) {
1485                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486                        return ret;
1487                }
1488                /* Fallthrough on positive return values - already enabled */
1489        }
1490
1491        rdev->use_count++;
1492
1493        return 0;
1494}
1495
1496/**
1497 * regulator_enable - enable regulator output
1498 * @regulator: regulator source
1499 *
1500 * Request that the regulator be enabled with the regulator output at
1501 * the predefined voltage or current value.  Calls to regulator_enable()
1502 * must be balanced with calls to regulator_disable().
1503 *
1504 * NOTE: the output value can be set by other drivers, boot loader or may be
1505 * hardwired in the regulator.
1506 */
1507int regulator_enable(struct regulator *regulator)
1508{
1509        struct regulator_dev *rdev = regulator->rdev;
1510        int ret = 0;
1511
1512        if (regulator->always_on)
1513                return 0;
1514
1515        if (rdev->supply) {
1516                ret = regulator_enable(rdev->supply);
1517                if (ret != 0)
1518                        return ret;
1519        }
1520
1521        mutex_lock(&rdev->mutex);
1522        ret = _regulator_enable(rdev);
1523        mutex_unlock(&rdev->mutex);
1524
1525        if (ret != 0 && rdev->supply)
1526                regulator_disable(rdev->supply);
1527
1528        return ret;
1529}
1530EXPORT_SYMBOL_GPL(regulator_enable);
1531
1532static int _regulator_do_disable(struct regulator_dev *rdev)
1533{
1534        int ret;
1535
1536        trace_regulator_disable(rdev_get_name(rdev));
1537
1538        if (rdev->ena_gpio) {
1539                gpio_set_value_cansleep(rdev->ena_gpio,
1540                                        rdev->ena_gpio_invert);
1541                rdev->ena_gpio_state = 0;
1542
1543        } else if (rdev->desc->ops->disable) {
1544                ret = rdev->desc->ops->disable(rdev);
1545                if (ret != 0)
1546                        return ret;
1547        }
1548
1549        trace_regulator_disable_complete(rdev_get_name(rdev));
1550
1551        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552                             NULL);
1553        return 0;
1554}
1555
1556/* locks held by regulator_disable() */
1557static int _regulator_disable(struct regulator_dev *rdev)
1558{
1559        int ret = 0;
1560
1561        if (WARN(rdev->use_count <= 0,
1562                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563                return -EIO;
1564
1565        /* are we the last user and permitted to disable ? */
1566        if (rdev->use_count == 1 &&
1567            (rdev->constraints && !rdev->constraints->always_on)) {
1568
1569                /* we are last user */
1570                if (_regulator_can_change_status(rdev)) {
1571                        ret = _regulator_do_disable(rdev);
1572                        if (ret < 0) {
1573                                rdev_err(rdev, "failed to disable\n");
1574                                return ret;
1575                        }
1576                }
1577
1578                rdev->use_count = 0;
1579        } else if (rdev->use_count > 1) {
1580
1581                if (rdev->constraints &&
1582                        (rdev->constraints->valid_ops_mask &
1583                        REGULATOR_CHANGE_DRMS))
1584                        drms_uA_update(rdev);
1585
1586                rdev->use_count--;
1587        }
1588
1589        return ret;
1590}
1591
1592/**
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1595 *
1596 * Disable the regulator output voltage or current.  Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1599 *
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1603 */
1604int regulator_disable(struct regulator *regulator)
1605{
1606        struct regulator_dev *rdev = regulator->rdev;
1607        int ret = 0;
1608
1609        if (regulator->always_on)
1610                return 0;
1611
1612        mutex_lock(&rdev->mutex);
1613        ret = _regulator_disable(rdev);
1614        mutex_unlock(&rdev->mutex);
1615
1616        if (ret == 0 && rdev->supply)
1617                regulator_disable(rdev->supply);
1618
1619        return ret;
1620}
1621EXPORT_SYMBOL_GPL(regulator_disable);
1622
1623/* locks held by regulator_force_disable() */
1624static int _regulator_force_disable(struct regulator_dev *rdev)
1625{
1626        int ret = 0;
1627
1628        /* force disable */
1629        if (rdev->desc->ops->disable) {
1630                /* ah well, who wants to live forever... */
1631                ret = rdev->desc->ops->disable(rdev);
1632                if (ret < 0) {
1633                        rdev_err(rdev, "failed to force disable\n");
1634                        return ret;
1635                }
1636                /* notify other consumers that power has been forced off */
1637                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638                        REGULATOR_EVENT_DISABLE, NULL);
1639        }
1640
1641        return ret;
1642}
1643
1644/**
1645 * regulator_force_disable - force disable regulator output
1646 * @regulator: regulator source
1647 *
1648 * Forcibly disable the regulator output voltage or current.
1649 * NOTE: this *will* disable the regulator output even if other consumer
1650 * devices have it enabled. This should be used for situations when device
1651 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1652 */
1653int regulator_force_disable(struct regulator *regulator)
1654{
1655        struct regulator_dev *rdev = regulator->rdev;
1656        int ret;
1657
1658        mutex_lock(&rdev->mutex);
1659        regulator->uA_load = 0;
1660        ret = _regulator_force_disable(regulator->rdev);
1661        mutex_unlock(&rdev->mutex);
1662
1663        if (rdev->supply)
1664                while (rdev->open_count--)
1665                        regulator_disable(rdev->supply);
1666
1667        return ret;
1668}
1669EXPORT_SYMBOL_GPL(regulator_force_disable);
1670
1671static void regulator_disable_work(struct work_struct *work)
1672{
1673        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674                                                  disable_work.work);
1675        int count, i, ret;
1676
1677        mutex_lock(&rdev->mutex);
1678
1679        BUG_ON(!rdev->deferred_disables);
1680
1681        count = rdev->deferred_disables;
1682        rdev->deferred_disables = 0;
1683
1684        for (i = 0; i < count; i++) {
1685                ret = _regulator_disable(rdev);
1686                if (ret != 0)
1687                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1688        }
1689
1690        mutex_unlock(&rdev->mutex);
1691
1692        if (rdev->supply) {
1693                for (i = 0; i < count; i++) {
1694                        ret = regulator_disable(rdev->supply);
1695                        if (ret != 0) {
1696                                rdev_err(rdev,
1697                                         "Supply disable failed: %d\n", ret);
1698                        }
1699                }
1700        }
1701}
1702
1703/**
1704 * regulator_disable_deferred - disable regulator output with delay
1705 * @regulator: regulator source
1706 * @ms: miliseconds until the regulator is disabled
1707 *
1708 * Execute regulator_disable() on the regulator after a delay.  This
1709 * is intended for use with devices that require some time to quiesce.
1710 *
1711 * NOTE: this will only disable the regulator output if no other consumer
1712 * devices have it enabled, the regulator device supports disabling and
1713 * machine constraints permit this operation.
1714 */
1715int regulator_disable_deferred(struct regulator *regulator, int ms)
1716{
1717        struct regulator_dev *rdev = regulator->rdev;
1718        int ret;
1719
1720        if (regulator->always_on)
1721                return 0;
1722
1723        mutex_lock(&rdev->mutex);
1724        rdev->deferred_disables++;
1725        mutex_unlock(&rdev->mutex);
1726
1727        ret = schedule_delayed_work(&rdev->disable_work,
1728                                    msecs_to_jiffies(ms));
1729        if (ret < 0)
1730                return ret;
1731        else
1732                return 0;
1733}
1734EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1735
1736/**
1737 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1738 *
1739 * @rdev: regulator to operate on
1740 *
1741 * Regulators that use regmap for their register I/O can set the
1742 * enable_reg and enable_mask fields in their descriptor and then use
1743 * this as their is_enabled operation, saving some code.
1744 */
1745int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1746{
1747        unsigned int val;
1748        int ret;
1749
1750        ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751        if (ret != 0)
1752                return ret;
1753
1754        return (val & rdev->desc->enable_mask) != 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1757
1758/**
1759 * regulator_enable_regmap - standard enable() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their enable() operation, saving some code.
1766 */
1767int regulator_enable_regmap(struct regulator_dev *rdev)
1768{
1769        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770                                  rdev->desc->enable_mask,
1771                                  rdev->desc->enable_mask);
1772}
1773EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1774
1775/**
1776 * regulator_disable_regmap - standard disable() for regmap users
1777 *
1778 * @rdev: regulator to operate on
1779 *
1780 * Regulators that use regmap for their register I/O can set the
1781 * enable_reg and enable_mask fields in their descriptor and then use
1782 * this as their disable() operation, saving some code.
1783 */
1784int regulator_disable_regmap(struct regulator_dev *rdev)
1785{
1786        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787                                  rdev->desc->enable_mask, 0);
1788}
1789EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1790
1791static int _regulator_is_enabled(struct regulator_dev *rdev)
1792{
1793        /* A GPIO control always takes precedence */
1794        if (rdev->ena_gpio)
1795                return rdev->ena_gpio_state;
1796
1797        /* If we don't know then assume that the regulator is always on */
1798        if (!rdev->desc->ops->is_enabled)
1799                return 1;
1800
1801        return rdev->desc->ops->is_enabled(rdev);
1802}
1803
1804/**
1805 * regulator_is_enabled - is the regulator output enabled
1806 * @regulator: regulator source
1807 *
1808 * Returns positive if the regulator driver backing the source/client
1809 * has requested that the device be enabled, zero if it hasn't, else a
1810 * negative errno code.
1811 *
1812 * Note that the device backing this regulator handle can have multiple
1813 * users, so it might be enabled even if regulator_enable() was never
1814 * called for this particular source.
1815 */
1816int regulator_is_enabled(struct regulator *regulator)
1817{
1818        int ret;
1819
1820        if (regulator->always_on)
1821                return 1;
1822
1823        mutex_lock(&regulator->rdev->mutex);
1824        ret = _regulator_is_enabled(regulator->rdev);
1825        mutex_unlock(&regulator->rdev->mutex);
1826
1827        return ret;
1828}
1829EXPORT_SYMBOL_GPL(regulator_is_enabled);
1830
1831/**
1832 * regulator_count_voltages - count regulator_list_voltage() selectors
1833 * @regulator: regulator source
1834 *
1835 * Returns number of selectors, or negative errno.  Selectors are
1836 * numbered starting at zero, and typically correspond to bitfields
1837 * in hardware registers.
1838 */
1839int regulator_count_voltages(struct regulator *regulator)
1840{
1841        struct regulator_dev    *rdev = regulator->rdev;
1842
1843        return rdev->desc->n_voltages ? : -EINVAL;
1844}
1845EXPORT_SYMBOL_GPL(regulator_count_voltages);
1846
1847/**
1848 * regulator_list_voltage_linear - List voltages with simple calculation
1849 *
1850 * @rdev: Regulator device
1851 * @selector: Selector to convert into a voltage
1852 *
1853 * Regulators with a simple linear mapping between voltages and
1854 * selectors can set min_uV and uV_step in the regulator descriptor
1855 * and then use this function as their list_voltage() operation,
1856 */
1857int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858                                  unsigned int selector)
1859{
1860        if (selector >= rdev->desc->n_voltages)
1861                return -EINVAL;
1862
1863        return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1864}
1865EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1866
1867/**
1868 * regulator_list_voltage_table - List voltages with table based mapping
1869 *
1870 * @rdev: Regulator device
1871 * @selector: Selector to convert into a voltage
1872 *
1873 * Regulators with table based mapping between voltages and
1874 * selectors can set volt_table in the regulator descriptor
1875 * and then use this function as their list_voltage() operation.
1876 */
1877int regulator_list_voltage_table(struct regulator_dev *rdev,
1878                                 unsigned int selector)
1879{
1880        if (!rdev->desc->volt_table) {
1881                BUG_ON(!rdev->desc->volt_table);
1882                return -EINVAL;
1883        }
1884
1885        if (selector >= rdev->desc->n_voltages)
1886                return -EINVAL;
1887
1888        return rdev->desc->volt_table[selector];
1889}
1890EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1891
1892/**
1893 * regulator_list_voltage - enumerate supported voltages
1894 * @regulator: regulator source
1895 * @selector: identify voltage to list
1896 * Context: can sleep
1897 *
1898 * Returns a voltage that can be passed to @regulator_set_voltage(),
1899 * zero if this selector code can't be used on this system, or a
1900 * negative errno.
1901 */
1902int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1903{
1904        struct regulator_dev    *rdev = regulator->rdev;
1905        struct regulator_ops    *ops = rdev->desc->ops;
1906        int                     ret;
1907
1908        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909                return -EINVAL;
1910
1911        mutex_lock(&rdev->mutex);
1912        ret = ops->list_voltage(rdev, selector);
1913        mutex_unlock(&rdev->mutex);
1914
1915        if (ret > 0) {
1916                if (ret < rdev->constraints->min_uV)
1917                        ret = 0;
1918                else if (ret > rdev->constraints->max_uV)
1919                        ret = 0;
1920        }
1921
1922        return ret;
1923}
1924EXPORT_SYMBOL_GPL(regulator_list_voltage);
1925
1926/**
1927 * regulator_is_supported_voltage - check if a voltage range can be supported
1928 *
1929 * @regulator: Regulator to check.
1930 * @min_uV: Minimum required voltage in uV.
1931 * @max_uV: Maximum required voltage in uV.
1932 *
1933 * Returns a boolean or a negative error code.
1934 */
1935int regulator_is_supported_voltage(struct regulator *regulator,
1936                                   int min_uV, int max_uV)
1937{
1938        struct regulator_dev *rdev = regulator->rdev;
1939        int i, voltages, ret;
1940
1941        /* If we can't change voltage check the current voltage */
1942        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943                ret = regulator_get_voltage(regulator);
1944                if (ret >= 0)
1945                        return (min_uV <= ret && ret <= max_uV);
1946                else
1947                        return ret;
1948        }
1949
1950        ret = regulator_count_voltages(regulator);
1951        if (ret < 0)
1952                return ret;
1953        voltages = ret;
1954
1955        for (i = 0; i < voltages; i++) {
1956                ret = regulator_list_voltage(regulator, i);
1957
1958                if (ret >= min_uV && ret <= max_uV)
1959                        return 1;
1960        }
1961
1962        return 0;
1963}
1964EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1965
1966/**
1967 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1968 *
1969 * @rdev: regulator to operate on
1970 *
1971 * Regulators that use regmap for their register I/O can set the
1972 * vsel_reg and vsel_mask fields in their descriptor and then use this
1973 * as their get_voltage_vsel operation, saving some code.
1974 */
1975int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1976{
1977        unsigned int val;
1978        int ret;
1979
1980        ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981        if (ret != 0)
1982                return ret;
1983
1984        val &= rdev->desc->vsel_mask;
1985        val >>= ffs(rdev->desc->vsel_mask) - 1;
1986
1987        return val;
1988}
1989EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1990
1991/**
1992 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1993 *
1994 * @rdev: regulator to operate on
1995 * @sel: Selector to set
1996 *
1997 * Regulators that use regmap for their register I/O can set the
1998 * vsel_reg and vsel_mask fields in their descriptor and then use this
1999 * as their set_voltage_vsel operation, saving some code.
2000 */
2001int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2002{
2003        sel <<= ffs(rdev->desc->vsel_mask) - 1;
2004
2005        return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006                                  rdev->desc->vsel_mask, sel);
2007}
2008EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2009
2010/**
2011 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2012 *
2013 * @rdev: Regulator to operate on
2014 * @min_uV: Lower bound for voltage
2015 * @max_uV: Upper bound for voltage
2016 *
2017 * Drivers implementing set_voltage_sel() and list_voltage() can use
2018 * this as their map_voltage() operation.  It will find a suitable
2019 * voltage by calling list_voltage() until it gets something in bounds
2020 * for the requested voltages.
2021 */
2022int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023                                  int min_uV, int max_uV)
2024{
2025        int best_val = INT_MAX;
2026        int selector = 0;
2027        int i, ret;
2028
2029        /* Find the smallest voltage that falls within the specified
2030         * range.
2031         */
2032        for (i = 0; i < rdev->desc->n_voltages; i++) {
2033                ret = rdev->desc->ops->list_voltage(rdev, i);
2034                if (ret < 0)
2035                        continue;
2036
2037                if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038                        best_val = ret;
2039                        selector = i;
2040                }
2041        }
2042
2043        if (best_val != INT_MAX)
2044                return selector;
2045        else
2046                return -EINVAL;
2047}
2048EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2049
2050/**
2051 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2052 *
2053 * @rdev: Regulator to operate on
2054 * @min_uV: Lower bound for voltage
2055 * @max_uV: Upper bound for voltage
2056 *
2057 * Drivers providing min_uV and uV_step in their regulator_desc can
2058 * use this as their map_voltage() operation.
2059 */
2060int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061                                 int min_uV, int max_uV)
2062{
2063        int ret, voltage;
2064
2065        /* Allow uV_step to be 0 for fixed voltage */
2066        if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067                if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068                        return 0;
2069                else
2070                        return -EINVAL;
2071        }
2072
2073        if (!rdev->desc->uV_step) {
2074                BUG_ON(!rdev->desc->uV_step);
2075                return -EINVAL;
2076        }
2077
2078        if (min_uV < rdev->desc->min_uV)
2079                min_uV = rdev->desc->min_uV;
2080
2081        ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082        if (ret < 0)
2083                return ret;
2084
2085        /* Map back into a voltage to verify we're still in bounds */
2086        voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087        if (voltage < min_uV || voltage > max_uV)
2088                return -EINVAL;
2089
2090        return ret;
2091}
2092EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2093
2094static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095                                     int min_uV, int max_uV)
2096{
2097        int ret;
2098        int delay = 0;
2099        int best_val = 0;
2100        unsigned int selector;
2101        int old_selector = -1;
2102
2103        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2104
2105        min_uV += rdev->constraints->uV_offset;
2106        max_uV += rdev->constraints->uV_offset;
2107
2108        /*
2109         * If we can't obtain the old selector there is not enough
2110         * info to call set_voltage_time_sel().
2111         */
2112        if (_regulator_is_enabled(rdev) &&
2113            rdev->desc->ops->set_voltage_time_sel &&
2114            rdev->desc->ops->get_voltage_sel) {
2115                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116                if (old_selector < 0)
2117                        return old_selector;
2118        }
2119
2120        if (rdev->desc->ops->set_voltage) {
2121                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122                                                   &selector);
2123
2124                if (ret >= 0) {
2125                        if (rdev->desc->ops->list_voltage)
2126                                best_val = rdev->desc->ops->list_voltage(rdev,
2127                                                                         selector);
2128                        else
2129                                best_val = _regulator_get_voltage(rdev);
2130                }
2131
2132        } else if (rdev->desc->ops->set_voltage_sel) {
2133                if (rdev->desc->ops->map_voltage) {
2134                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135                                                           max_uV);
2136                } else {
2137                        if (rdev->desc->ops->list_voltage ==
2138                            regulator_list_voltage_linear)
2139                                ret = regulator_map_voltage_linear(rdev,
2140                                                                min_uV, max_uV);
2141                        else
2142                                ret = regulator_map_voltage_iterate(rdev,
2143                                                                min_uV, max_uV);
2144                }
2145
2146                if (ret >= 0) {
2147                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148                        if (min_uV <= best_val && max_uV >= best_val) {
2149                                selector = ret;
2150                                ret = rdev->desc->ops->set_voltage_sel(rdev,
2151                                                                       ret);
2152                        } else {
2153                                ret = -EINVAL;
2154                        }
2155                }
2156        } else {
2157                ret = -EINVAL;
2158        }
2159
2160        /* Call set_voltage_time_sel if successfully obtained old_selector */
2161        if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162            rdev->desc->ops->set_voltage_time_sel) {
2163
2164                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165                                                old_selector, selector);
2166                if (delay < 0) {
2167                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168                                  delay);
2169                        delay = 0;
2170                }
2171
2172                /* Insert any necessary delays */
2173                if (delay >= 1000) {
2174                        mdelay(delay / 1000);
2175                        udelay(delay % 1000);
2176                } else if (delay) {
2177                        udelay(delay);
2178                }
2179        }
2180
2181        if (ret == 0 && best_val >= 0)
2182                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183                                     (void *)best_val);
2184
2185        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186
2187        return ret;
2188}
2189
2190/**
2191 * regulator_set_voltage - set regulator output voltage
2192 * @regulator: regulator source
2193 * @min_uV: Minimum required voltage in uV
2194 * @max_uV: Maximum acceptable voltage in uV
2195 *
2196 * Sets a voltage regulator to the desired output voltage. This can be set
2197 * during any regulator state. IOW, regulator can be disabled or enabled.
2198 *
2199 * If the regulator is enabled then the voltage will change to the new value
2200 * immediately otherwise if the regulator is disabled the regulator will
2201 * output at the new voltage when enabled.
2202 *
2203 * NOTE: If the regulator is shared between several devices then the lowest
2204 * request voltage that meets the system constraints will be used.
2205 * Regulator system constraints must be set for this regulator before
2206 * calling this function otherwise this call will fail.
2207 */
2208int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209{
2210        struct regulator_dev *rdev = regulator->rdev;
2211        int ret = 0;
2212
2213        mutex_lock(&rdev->mutex);
2214
2215        /* If we're setting the same range as last time the change
2216         * should be a noop (some cpufreq implementations use the same
2217         * voltage for multiple frequencies, for example).
2218         */
2219        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220                goto out;
2221
2222        /* sanity check */
2223        if (!rdev->desc->ops->set_voltage &&
2224            !rdev->desc->ops->set_voltage_sel) {
2225                ret = -EINVAL;
2226                goto out;
2227        }
2228
2229        /* constraints check */
2230        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231        if (ret < 0)
2232                goto out;
2233        regulator->min_uV = min_uV;
2234        regulator->max_uV = max_uV;
2235
2236        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237        if (ret < 0)
2238                goto out;
2239
2240        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241
2242out:
2243        mutex_unlock(&rdev->mutex);
2244        return ret;
2245}
2246EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247
2248/**
2249 * regulator_set_voltage_time - get raise/fall time
2250 * @regulator: regulator source
2251 * @old_uV: starting voltage in microvolts
2252 * @new_uV: target voltage in microvolts
2253 *
2254 * Provided with the starting and ending voltage, this function attempts to
2255 * calculate the time in microseconds required to rise or fall to this new
2256 * voltage.
2257 */
2258int regulator_set_voltage_time(struct regulator *regulator,
2259                               int old_uV, int new_uV)
2260{
2261        struct regulator_dev    *rdev = regulator->rdev;
2262        struct regulator_ops    *ops = rdev->desc->ops;
2263        int old_sel = -1;
2264        int new_sel = -1;
2265        int voltage;
2266        int i;
2267
2268        /* Currently requires operations to do this */
2269        if (!ops->list_voltage || !ops->set_voltage_time_sel
2270            || !rdev->desc->n_voltages)
2271                return -EINVAL;
2272
2273        for (i = 0; i < rdev->desc->n_voltages; i++) {
2274                /* We only look for exact voltage matches here */
2275                voltage = regulator_list_voltage(regulator, i);
2276                if (voltage < 0)
2277                        return -EINVAL;
2278                if (voltage == 0)
2279                        continue;
2280                if (voltage == old_uV)
2281                        old_sel = i;
2282                if (voltage == new_uV)
2283                        new_sel = i;
2284        }
2285
2286        if (old_sel < 0 || new_sel < 0)
2287                return -EINVAL;
2288
2289        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290}
2291EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292
2293/**
2294 *regulator_set_voltage_time_sel - get raise/fall time
2295 * @regulator: regulator source
2296 * @old_selector: selector for starting voltage
2297 * @new_selector: selector for target voltage
2298 *
2299 * Provided with the starting and target voltage selectors, this function
2300 * returns time in microseconds required to rise or fall to this new voltage
2301 *
2302 * Drivers providing ramp_delay in regulation_constraints can use this as their
2303 * set_voltage_time_sel() operation.
2304 */
2305int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306                                   unsigned int old_selector,
2307                                   unsigned int new_selector)
2308{
2309        unsigned int ramp_delay = 0;
2310        int old_volt, new_volt;
2311
2312        if (rdev->constraints->ramp_delay)
2313                ramp_delay = rdev->constraints->ramp_delay;
2314        else if (rdev->desc->ramp_delay)
2315                ramp_delay = rdev->desc->ramp_delay;
2316
2317        if (ramp_delay == 0) {
2318                rdev_warn(rdev, "ramp_delay not set\n");
2319                return 0;
2320        }
2321
2322        /* sanity check */
2323        if (!rdev->desc->ops->list_voltage)
2324                return -EINVAL;
2325
2326        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328
2329        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330}
2331EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332
2333/**
2334 * regulator_sync_voltage - re-apply last regulator output voltage
2335 * @regulator: regulator source
2336 *
2337 * Re-apply the last configured voltage.  This is intended to be used
2338 * where some external control source the consumer is cooperating with
2339 * has caused the configured voltage to change.
2340 */
2341int regulator_sync_voltage(struct regulator *regulator)
2342{
2343        struct regulator_dev *rdev = regulator->rdev;
2344        int ret, min_uV, max_uV;
2345
2346        mutex_lock(&rdev->mutex);
2347
2348        if (!rdev->desc->ops->set_voltage &&
2349            !rdev->desc->ops->set_voltage_sel) {
2350                ret = -EINVAL;
2351                goto out;
2352        }
2353
2354        /* This is only going to work if we've had a voltage configured. */
2355        if (!regulator->min_uV && !regulator->max_uV) {
2356                ret = -EINVAL;
2357                goto out;
2358        }
2359
2360        min_uV = regulator->min_uV;
2361        max_uV = regulator->max_uV;
2362
2363        /* This should be a paranoia check... */
2364        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365        if (ret < 0)
2366                goto out;
2367
2368        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369        if (ret < 0)
2370                goto out;
2371
2372        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373
2374out:
2375        mutex_unlock(&rdev->mutex);
2376        return ret;
2377}
2378EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379
2380static int _regulator_get_voltage(struct regulator_dev *rdev)
2381{
2382        int sel, ret;
2383
2384        if (rdev->desc->ops->get_voltage_sel) {
2385                sel = rdev->desc->ops->get_voltage_sel(rdev);
2386                if (sel < 0)
2387                        return sel;
2388                ret = rdev->desc->ops->list_voltage(rdev, sel);
2389        } else if (rdev->desc->ops->get_voltage) {
2390                ret = rdev->desc->ops->get_voltage(rdev);
2391        } else {
2392                return -EINVAL;
2393        }
2394
2395        if (ret < 0)
2396                return ret;
2397        return ret - rdev->constraints->uV_offset;
2398}
2399
2400/**
2401 * regulator_get_voltage - get regulator output voltage
2402 * @regulator: regulator source
2403 *
2404 * This returns the current regulator voltage in uV.
2405 *
2406 * NOTE: If the regulator is disabled it will return the voltage value. This
2407 * function should not be used to determine regulator state.
2408 */
2409int regulator_get_voltage(struct regulator *regulator)
2410{
2411        int ret;
2412
2413        mutex_lock(&regulator->rdev->mutex);
2414
2415        ret = _regulator_get_voltage(regulator->rdev);
2416
2417        mutex_unlock(&regulator->rdev->mutex);
2418
2419        return ret;
2420}
2421EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422
2423/**
2424 * regulator_set_current_limit - set regulator output current limit
2425 * @regulator: regulator source
2426 * @min_uA: Minimuum supported current in uA
2427 * @max_uA: Maximum supported current in uA
2428 *
2429 * Sets current sink to the desired output current. This can be set during
2430 * any regulator state. IOW, regulator can be disabled or enabled.
2431 *
2432 * If the regulator is enabled then the current will change to the new value
2433 * immediately otherwise if the regulator is disabled the regulator will
2434 * output at the new current when enabled.
2435 *
2436 * NOTE: Regulator system constraints must be set for this regulator before
2437 * calling this function otherwise this call will fail.
2438 */
2439int regulator_set_current_limit(struct regulator *regulator,
2440                               int min_uA, int max_uA)
2441{
2442        struct regulator_dev *rdev = regulator->rdev;
2443        int ret;
2444
2445        mutex_lock(&rdev->mutex);
2446
2447        /* sanity check */
2448        if (!rdev->desc->ops->set_current_limit) {
2449                ret = -EINVAL;
2450                goto out;
2451        }
2452
2453        /* constraints check */
2454        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455        if (ret < 0)
2456                goto out;
2457
2458        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459out:
2460        mutex_unlock(&rdev->mutex);
2461        return ret;
2462}
2463EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464
2465static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466{
2467        int ret;
2468
2469        mutex_lock(&rdev->mutex);
2470
2471        /* sanity check */
2472        if (!rdev->desc->ops->get_current_limit) {
2473                ret = -EINVAL;
2474                goto out;
2475        }
2476
2477        ret = rdev->desc->ops->get_current_limit(rdev);
2478out:
2479        mutex_unlock(&rdev->mutex);
2480        return ret;
2481}
2482
2483/**
2484 * regulator_get_current_limit - get regulator output current
2485 * @regulator: regulator source
2486 *
2487 * This returns the current supplied by the specified current sink in uA.
2488 *
2489 * NOTE: If the regulator is disabled it will return the current value. This
2490 * function should not be used to determine regulator state.
2491 */
2492int regulator_get_current_limit(struct regulator *regulator)
2493{
2494        return _regulator_get_current_limit(regulator->rdev);
2495}
2496EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497
2498/**
2499 * regulator_set_mode - set regulator operating mode
2500 * @regulator: regulator source
2501 * @mode: operating mode - one of the REGULATOR_MODE constants
2502 *
2503 * Set regulator operating mode to increase regulator efficiency or improve
2504 * regulation performance.
2505 *
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2508 */
2509int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510{
2511        struct regulator_dev *rdev = regulator->rdev;
2512        int ret;
2513        int regulator_curr_mode;
2514
2515        mutex_lock(&rdev->mutex);
2516
2517        /* sanity check */
2518        if (!rdev->desc->ops->set_mode) {
2519                ret = -EINVAL;
2520                goto out;
2521        }
2522
2523        /* return if the same mode is requested */
2524        if (rdev->desc->ops->get_mode) {
2525                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526                if (regulator_curr_mode == mode) {
2527                        ret = 0;
2528                        goto out;
2529                }
2530        }
2531
2532        /* constraints check */
2533        ret = regulator_mode_constrain(rdev, &mode);
2534        if (ret < 0)
2535                goto out;
2536
2537        ret = rdev->desc->ops->set_mode(rdev, mode);
2538out:
2539        mutex_unlock(&rdev->mutex);
2540        return ret;
2541}
2542EXPORT_SYMBOL_GPL(regulator_set_mode);
2543
2544static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545{
2546        int ret;
2547
2548        mutex_lock(&rdev->mutex);
2549
2550        /* sanity check */
2551        if (!rdev->desc->ops->get_mode) {
2552                ret = -EINVAL;
2553                goto out;
2554        }
2555
2556        ret = rdev->desc->ops->get_mode(rdev);
2557out:
2558        mutex_unlock(&rdev->mutex);
2559        return ret;
2560}
2561
2562/**
2563 * regulator_get_mode - get regulator operating mode
2564 * @regulator: regulator source
2565 *
2566 * Get the current regulator operating mode.
2567 */
2568unsigned int regulator_get_mode(struct regulator *regulator)
2569{
2570        return _regulator_get_mode(regulator->rdev);
2571}
2572EXPORT_SYMBOL_GPL(regulator_get_mode);
2573
2574/**
2575 * regulator_set_optimum_mode - set regulator optimum operating mode
2576 * @regulator: regulator source
2577 * @uA_load: load current
2578 *
2579 * Notifies the regulator core of a new device load. This is then used by
2580 * DRMS (if enabled by constraints) to set the most efficient regulator
2581 * operating mode for the new regulator loading.
2582 *
2583 * Consumer devices notify their supply regulator of the maximum power
2584 * they will require (can be taken from device datasheet in the power
2585 * consumption tables) when they change operational status and hence power
2586 * state. Examples of operational state changes that can affect power
2587 * consumption are :-
2588 *
2589 *    o Device is opened / closed.
2590 *    o Device I/O is about to begin or has just finished.
2591 *    o Device is idling in between work.
2592 *
2593 * This information is also exported via sysfs to userspace.
2594 *
2595 * DRMS will sum the total requested load on the regulator and change
2596 * to the most efficient operating mode if platform constraints allow.
2597 *
2598 * Returns the new regulator mode or error.
2599 */
2600int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601{
2602        struct regulator_dev *rdev = regulator->rdev;
2603        struct regulator *consumer;
2604        int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605        unsigned int mode;
2606
2607        if (rdev->supply)
2608                input_uV = regulator_get_voltage(rdev->supply);
2609
2610        mutex_lock(&rdev->mutex);
2611
2612        /*
2613         * first check to see if we can set modes at all, otherwise just
2614         * tell the consumer everything is OK.
2615         */
2616        regulator->uA_load = uA_load;
2617        ret = regulator_check_drms(rdev);
2618        if (ret < 0) {
2619                ret = 0;
2620                goto out;
2621        }
2622
2623        if (!rdev->desc->ops->get_optimum_mode)
2624                goto out;
2625
2626        /*
2627         * we can actually do this so any errors are indicators of
2628         * potential real failure.
2629         */
2630        ret = -EINVAL;
2631
2632        if (!rdev->desc->ops->set_mode)
2633                goto out;
2634
2635        /* get output voltage */
2636        output_uV = _regulator_get_voltage(rdev);
2637        if (output_uV <= 0) {
2638                rdev_err(rdev, "invalid output voltage found\n");
2639                goto out;
2640        }
2641
2642        /* No supply? Use constraint voltage */
2643        if (input_uV <= 0)
2644                input_uV = rdev->constraints->input_uV;
2645        if (input_uV <= 0) {
2646                rdev_err(rdev, "invalid input voltage found\n");
2647                goto out;
2648        }
2649
2650        /* calc total requested load for this regulator */
2651        list_for_each_entry(consumer, &rdev->consumer_list, list)
2652                total_uA_load += consumer->uA_load;
2653
2654        mode = rdev->desc->ops->get_optimum_mode(rdev,
2655                                                 input_uV, output_uV,
2656                                                 total_uA_load);
2657        ret = regulator_mode_constrain(rdev, &mode);
2658        if (ret < 0) {
2659                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660                         total_uA_load, input_uV, output_uV);
2661                goto out;
2662        }
2663
2664        ret = rdev->desc->ops->set_mode(rdev, mode);
2665        if (ret < 0) {
2666                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667                goto out;
2668        }
2669        ret = mode;
2670out:
2671        mutex_unlock(&rdev->mutex);
2672        return ret;
2673}
2674EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675
2676/**
2677 * regulator_register_notifier - register regulator event notifier
2678 * @regulator: regulator source
2679 * @nb: notifier block
2680 *
2681 * Register notifier block to receive regulator events.
2682 */
2683int regulator_register_notifier(struct regulator *regulator,
2684                              struct notifier_block *nb)
2685{
2686        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687                                                nb);
2688}
2689EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690
2691/**
2692 * regulator_unregister_notifier - unregister regulator event notifier
2693 * @regulator: regulator source
2694 * @nb: notifier block
2695 *
2696 * Unregister regulator event notifier block.
2697 */
2698int regulator_unregister_notifier(struct regulator *regulator,
2699                                struct notifier_block *nb)
2700{
2701        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702                                                  nb);
2703}
2704EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705
2706/* notify regulator consumers and downstream regulator consumers.
2707 * Note mutex must be held by caller.
2708 */
2709static void _notifier_call_chain(struct regulator_dev *rdev,
2710                                  unsigned long event, void *data)
2711{
2712        /* call rdev chain first */
2713        blocking_notifier_call_chain(&rdev->notifier, event, data);
2714}
2715
2716/**
2717 * regulator_bulk_get - get multiple regulator consumers
2718 *
2719 * @dev:           Device to supply
2720 * @num_consumers: Number of consumers to register
2721 * @consumers:     Configuration of consumers; clients are stored here.
2722 *
2723 * @return 0 on success, an errno on failure.
2724 *
2725 * This helper function allows drivers to get several regulator
2726 * consumers in one operation.  If any of the regulators cannot be
2727 * acquired then any regulators that were allocated will be freed
2728 * before returning to the caller.
2729 */
2730int regulator_bulk_get(struct device *dev, int num_consumers,
2731                       struct regulator_bulk_data *consumers)
2732{
2733        int i;
2734        int ret;
2735
2736        for (i = 0; i < num_consumers; i++)
2737                consumers[i].consumer = NULL;
2738
2739        for (i = 0; i < num_consumers; i++) {
2740                consumers[i].consumer = regulator_get(dev,
2741                                                      consumers[i].supply);
2742                if (IS_ERR(consumers[i].consumer)) {
2743                        ret = PTR_ERR(consumers[i].consumer);
2744                        dev_err(dev, "Failed to get supply '%s': %d\n",
2745                                consumers[i].supply, ret);
2746                        consumers[i].consumer = NULL;
2747                        goto err;
2748                }
2749        }
2750
2751        return 0;
2752
2753err:
2754        while (--i >= 0)
2755                regulator_put(consumers[i].consumer);
2756
2757        return ret;
2758}
2759EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760
2761/**
2762 * devm_regulator_bulk_get - managed get multiple regulator consumers
2763 *
2764 * @dev:           Device to supply
2765 * @num_consumers: Number of consumers to register
2766 * @consumers:     Configuration of consumers; clients are stored here.
2767 *
2768 * @return 0 on success, an errno on failure.
2769 *
2770 * This helper function allows drivers to get several regulator
2771 * consumers in one operation with management, the regulators will
2772 * automatically be freed when the device is unbound.  If any of the
2773 * regulators cannot be acquired then any regulators that were
2774 * allocated will be freed before returning to the caller.
2775 */
2776int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777                            struct regulator_bulk_data *consumers)
2778{
2779        int i;
2780        int ret;
2781
2782        for (i = 0; i < num_consumers; i++)
2783                consumers[i].consumer = NULL;
2784
2785        for (i = 0; i < num_consumers; i++) {
2786                consumers[i].consumer = devm_regulator_get(dev,
2787                                                           consumers[i].supply);
2788                if (IS_ERR(consumers[i].consumer)) {
2789                        ret = PTR_ERR(consumers[i].consumer);
2790                        dev_err(dev, "Failed to get supply '%s': %d\n",
2791                                consumers[i].supply, ret);
2792                        consumers[i].consumer = NULL;
2793                        goto err;
2794                }
2795        }
2796
2797        return 0;
2798
2799err:
2800        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801                devm_regulator_put(consumers[i].consumer);
2802
2803        return ret;
2804}
2805EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806
2807static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808{
2809        struct regulator_bulk_data *bulk = data;
2810
2811        bulk->ret = regulator_enable(bulk->consumer);
2812}
2813
2814/**
2815 * regulator_bulk_enable - enable multiple regulator consumers
2816 *
2817 * @num_consumers: Number of consumers
2818 * @consumers:     Consumer data; clients are stored here.
2819 * @return         0 on success, an errno on failure
2820 *
2821 * This convenience API allows consumers to enable multiple regulator
2822 * clients in a single API call.  If any consumers cannot be enabled
2823 * then any others that were enabled will be disabled again prior to
2824 * return.
2825 */
2826int regulator_bulk_enable(int num_consumers,
2827                          struct regulator_bulk_data *consumers)
2828{
2829        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830        int i;
2831        int ret = 0;
2832
2833        for (i = 0; i < num_consumers; i++) {
2834                if (consumers[i].consumer->always_on)
2835                        consumers[i].ret = 0;
2836                else
2837                        async_schedule_domain(regulator_bulk_enable_async,
2838                                              &consumers[i], &async_domain);
2839        }
2840
2841        async_synchronize_full_domain(&async_domain);
2842
2843        /* If any consumer failed we need to unwind any that succeeded */
2844        for (i = 0; i < num_consumers; i++) {
2845                if (consumers[i].ret != 0) {
2846                        ret = consumers[i].ret;
2847                        goto err;
2848                }
2849        }
2850
2851        return 0;
2852
2853err:
2854        pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855        while (--i >= 0)
2856                regulator_disable(consumers[i].consumer);
2857
2858        return ret;
2859}
2860EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861
2862/**
2863 * regulator_bulk_disable - disable multiple regulator consumers
2864 *
2865 * @num_consumers: Number of consumers
2866 * @consumers:     Consumer data; clients are stored here.
2867 * @return         0 on success, an errno on failure
2868 *
2869 * This convenience API allows consumers to disable multiple regulator
2870 * clients in a single API call.  If any consumers cannot be disabled
2871 * then any others that were disabled will be enabled again prior to
2872 * return.
2873 */
2874int regulator_bulk_disable(int num_consumers,
2875                           struct regulator_bulk_data *consumers)
2876{
2877        int i;
2878        int ret, r;
2879
2880        for (i = num_consumers - 1; i >= 0; --i) {
2881                ret = regulator_disable(consumers[i].consumer);
2882                if (ret != 0)
2883                        goto err;
2884        }
2885
2886        return 0;
2887
2888err:
2889        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890        for (++i; i < num_consumers; ++i) {
2891                r = regulator_enable(consumers[i].consumer);
2892                if (r != 0)
2893                        pr_err("Failed to reename %s: %d\n",
2894                               consumers[i].supply, r);
2895        }
2896
2897        return ret;
2898}
2899EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900
2901/**
2902 * regulator_bulk_force_disable - force disable multiple regulator consumers
2903 *
2904 * @num_consumers: Number of consumers
2905 * @consumers:     Consumer data; clients are stored here.
2906 * @return         0 on success, an errno on failure
2907 *
2908 * This convenience API allows consumers to forcibly disable multiple regulator
2909 * clients in a single API call.
2910 * NOTE: This should be used for situations when device damage will
2911 * likely occur if the regulators are not disabled (e.g. over temp).
2912 * Although regulator_force_disable function call for some consumers can
2913 * return error numbers, the function is called for all consumers.
2914 */
2915int regulator_bulk_force_disable(int num_consumers,
2916                           struct regulator_bulk_data *consumers)
2917{
2918        int i;
2919        int ret;
2920
2921        for (i = 0; i < num_consumers; i++)
2922                consumers[i].ret =
2923                            regulator_force_disable(consumers[i].consumer);
2924
2925        for (i = 0; i < num_consumers; i++) {
2926                if (consumers[i].ret != 0) {
2927                        ret = consumers[i].ret;
2928                        goto out;
2929                }
2930        }
2931
2932        return 0;
2933out:
2934        return ret;
2935}
2936EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937
2938/**
2939 * regulator_bulk_free - free multiple regulator consumers
2940 *
2941 * @num_consumers: Number of consumers
2942 * @consumers:     Consumer data; clients are stored here.
2943 *
2944 * This convenience API allows consumers to free multiple regulator
2945 * clients in a single API call.
2946 */
2947void regulator_bulk_free(int num_consumers,
2948                         struct regulator_bulk_data *consumers)
2949{
2950        int i;
2951
2952        for (i = 0; i < num_consumers; i++) {
2953                regulator_put(consumers[i].consumer);
2954                consumers[i].consumer = NULL;
2955        }
2956}
2957EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958
2959/**
2960 * regulator_notifier_call_chain - call regulator event notifier
2961 * @rdev: regulator source
2962 * @event: notifier block
2963 * @data: callback-specific data.
2964 *
2965 * Called by regulator drivers to notify clients a regulator event has
2966 * occurred. We also notify regulator clients downstream.
2967 * Note lock must be held by caller.
2968 */
2969int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970                                  unsigned long event, void *data)
2971{
2972        _notifier_call_chain(rdev, event, data);
2973        return NOTIFY_DONE;
2974
2975}
2976EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977
2978/**
2979 * regulator_mode_to_status - convert a regulator mode into a status
2980 *
2981 * @mode: Mode to convert
2982 *
2983 * Convert a regulator mode into a status.
2984 */
2985int regulator_mode_to_status(unsigned int mode)
2986{
2987        switch (mode) {
2988        case REGULATOR_MODE_FAST:
2989                return REGULATOR_STATUS_FAST;
2990        case REGULATOR_MODE_NORMAL:
2991                return REGULATOR_STATUS_NORMAL;
2992        case REGULATOR_MODE_IDLE:
2993                return REGULATOR_STATUS_IDLE;
2994        case REGULATOR_MODE_STANDBY:
2995                return REGULATOR_STATUS_STANDBY;
2996        default:
2997                return REGULATOR_STATUS_UNDEFINED;
2998        }
2999}
3000EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001
3002/*
3003 * To avoid cluttering sysfs (and memory) with useless state, only
3004 * create attributes that can be meaningfully displayed.
3005 */
3006static int add_regulator_attributes(struct regulator_dev *rdev)
3007{
3008        struct device           *dev = &rdev->dev;
3009        struct regulator_ops    *ops = rdev->desc->ops;
3010        int                     status = 0;
3011
3012        /* some attributes need specific methods to be displayed */
3013        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015                status = device_create_file(dev, &dev_attr_microvolts);
3016                if (status < 0)
3017                        return status;
3018        }
3019        if (ops->get_current_limit) {
3020                status = device_create_file(dev, &dev_attr_microamps);
3021                if (status < 0)
3022                        return status;
3023        }
3024        if (ops->get_mode) {
3025                status = device_create_file(dev, &dev_attr_opmode);
3026                if (status < 0)
3027                        return status;
3028        }
3029        if (ops->is_enabled) {
3030                status = device_create_file(dev, &dev_attr_state);
3031                if (status < 0)
3032                        return status;
3033        }
3034        if (ops->get_status) {
3035                status = device_create_file(dev, &dev_attr_status);
3036                if (status < 0)
3037                        return status;
3038        }
3039
3040        /* some attributes are type-specific */
3041        if (rdev->desc->type == REGULATOR_CURRENT) {
3042                status = device_create_file(dev, &dev_attr_requested_microamps);
3043                if (status < 0)
3044                        return status;
3045        }
3046
3047        /* all the other attributes exist to support constraints;
3048         * don't show them if there are no constraints, or if the
3049         * relevant supporting methods are missing.
3050         */
3051        if (!rdev->constraints)
3052                return status;
3053
3054        /* constraints need specific supporting methods */
3055        if (ops->set_voltage || ops->set_voltage_sel) {
3056                status = device_create_file(dev, &dev_attr_min_microvolts);
3057                if (status < 0)
3058                        return status;
3059                status = device_create_file(dev, &dev_attr_max_microvolts);
3060                if (status < 0)
3061                        return status;
3062        }
3063        if (ops->set_current_limit) {
3064                status = device_create_file(dev, &dev_attr_min_microamps);
3065                if (status < 0)
3066                        return status;
3067                status = device_create_file(dev, &dev_attr_max_microamps);
3068                if (status < 0)
3069                        return status;
3070        }
3071
3072        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073        if (status < 0)
3074                return status;
3075        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076        if (status < 0)
3077                return status;
3078        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079        if (status < 0)
3080                return status;
3081
3082        if (ops->set_suspend_voltage) {
3083                status = device_create_file(dev,
3084                                &dev_attr_suspend_standby_microvolts);
3085                if (status < 0)
3086                        return status;
3087                status = device_create_file(dev,
3088                                &dev_attr_suspend_mem_microvolts);
3089                if (status < 0)
3090                        return status;
3091                status = device_create_file(dev,
3092                                &dev_attr_suspend_disk_microvolts);
3093                if (status < 0)
3094                        return status;
3095        }
3096
3097        if (ops->set_suspend_mode) {
3098                status = device_create_file(dev,
3099                                &dev_attr_suspend_standby_mode);
3100                if (status < 0)
3101                        return status;
3102                status = device_create_file(dev,
3103                                &dev_attr_suspend_mem_mode);
3104                if (status < 0)
3105                        return status;
3106                status = device_create_file(dev,
3107                                &dev_attr_suspend_disk_mode);
3108                if (status < 0)
3109                        return status;
3110        }
3111
3112        return status;
3113}
3114
3115static void rdev_init_debugfs(struct regulator_dev *rdev)
3116{
3117        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118        if (!rdev->debugfs) {
3119                rdev_warn(rdev, "Failed to create debugfs directory\n");
3120                return;
3121        }
3122
3123        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124                           &rdev->use_count);
3125        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126                           &rdev->open_count);
3127}
3128
3129/**
3130 * regulator_register - register regulator
3131 * @regulator_desc: regulator to register
3132 * @config: runtime configuration for regulator
3133 *
3134 * Called by regulator drivers to register a regulator.
3135 * Returns 0 on success.
3136 */
3137struct regulator_dev *
3138regulator_register(const struct regulator_desc *regulator_desc,
3139                   const struct regulator_config *config)
3140{
3141        const struct regulation_constraints *constraints = NULL;
3142        const struct regulator_init_data *init_data;
3143        static atomic_t regulator_no = ATOMIC_INIT(0);
3144        struct regulator_dev *rdev;
3145        struct device *dev;
3146        int ret, i;
3147        const char *supply = NULL;
3148
3149        if (regulator_desc == NULL || config == NULL)
3150                return ERR_PTR(-EINVAL);
3151
3152        dev = config->dev;
3153        WARN_ON(!dev);
3154
3155        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156                return ERR_PTR(-EINVAL);
3157
3158        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159            regulator_desc->type != REGULATOR_CURRENT)
3160                return ERR_PTR(-EINVAL);
3161
3162        /* Only one of each should be implemented */
3163        WARN_ON(regulator_desc->ops->get_voltage &&
3164                regulator_desc->ops->get_voltage_sel);
3165        WARN_ON(regulator_desc->ops->set_voltage &&
3166                regulator_desc->ops->set_voltage_sel);
3167
3168        /* If we're using selectors we must implement list_voltage. */
3169        if (regulator_desc->ops->get_voltage_sel &&
3170            !regulator_desc->ops->list_voltage) {
3171                return ERR_PTR(-EINVAL);
3172        }
3173        if (regulator_desc->ops->set_voltage_sel &&
3174            !regulator_desc->ops->list_voltage) {
3175                return ERR_PTR(-EINVAL);
3176        }
3177
3178        init_data = config->init_data;
3179
3180        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181        if (rdev == NULL)
3182                return ERR_PTR(-ENOMEM);
3183
3184        mutex_lock(&regulator_list_mutex);
3185
3186        mutex_init(&rdev->mutex);
3187        rdev->reg_data = config->driver_data;
3188        rdev->owner = regulator_desc->owner;
3189        rdev->desc = regulator_desc;
3190        if (config->regmap)
3191                rdev->regmap = config->regmap;
3192        else
3193                rdev->regmap = dev_get_regmap(dev, NULL);
3194        INIT_LIST_HEAD(&rdev->consumer_list);
3195        INIT_LIST_HEAD(&rdev->list);
3196        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198
3199        /* preform any regulator specific init */
3200        if (init_data && init_data->regulator_init) {
3201                ret = init_data->regulator_init(rdev->reg_data);
3202                if (ret < 0)
3203                        goto clean;
3204        }
3205
3206        /* register with sysfs */
3207        rdev->dev.class = &regulator_class;
3208        rdev->dev.of_node = config->of_node;
3209        rdev->dev.parent = dev;
3210        dev_set_name(&rdev->dev, "regulator.%d",
3211                     atomic_inc_return(&regulator_no) - 1);
3212        ret = device_register(&rdev->dev);
3213        if (ret != 0) {
3214                put_device(&rdev->dev);
3215                goto clean;
3216        }
3217
3218        dev_set_drvdata(&rdev->dev, rdev);
3219
3220        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3221                ret = gpio_request_one(config->ena_gpio,
3222                                       GPIOF_DIR_OUT | config->ena_gpio_flags,
3223                                       rdev_get_name(rdev));
3224                if (ret != 0) {
3225                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226                                 config->ena_gpio, ret);
3227                        goto clean;
3228                }
3229
3230                rdev->ena_gpio = config->ena_gpio;
3231                rdev->ena_gpio_invert = config->ena_gpio_invert;
3232
3233                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234                        rdev->ena_gpio_state = 1;
3235
3236                if (rdev->ena_gpio_invert)
3237                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3238        }
3239
3240        /* set regulator constraints */
3241        if (init_data)
3242                constraints = &init_data->constraints;
3243
3244        ret = set_machine_constraints(rdev, constraints);
3245        if (ret < 0)
3246                goto scrub;
3247
3248        /* add attributes supported by this regulator */
3249        ret = add_regulator_attributes(rdev);
3250        if (ret < 0)
3251                goto scrub;
3252
3253        if (init_data && init_data->supply_regulator)
3254                supply = init_data->supply_regulator;
3255        else if (regulator_desc->supply_name)
3256                supply = regulator_desc->supply_name;
3257
3258        if (supply) {
3259                struct regulator_dev *r;
3260
3261                r = regulator_dev_lookup(dev, supply, &ret);
3262
3263                if (!r) {
3264                        dev_err(dev, "Failed to find supply %s\n", supply);
3265                        ret = -EPROBE_DEFER;
3266                        goto scrub;
3267                }
3268
3269                ret = set_supply(rdev, r);
3270                if (ret < 0)
3271                        goto scrub;
3272
3273                /* Enable supply if rail is enabled */
3274                if (_regulator_is_enabled(rdev)) {
3275                        ret = regulator_enable(rdev->supply);
3276                        if (ret < 0)
3277                                goto scrub;
3278                }
3279        }
3280
3281        /* add consumers devices */
3282        if (init_data) {
3283                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284                        ret = set_consumer_device_supply(rdev,
3285                                init_data->consumer_supplies[i].dev_name,
3286                                init_data->consumer_supplies[i].supply);
3287                        if (ret < 0) {
3288                                dev_err(dev, "Failed to set supply %s\n",
3289                                        init_data->consumer_supplies[i].supply);
3290                                goto unset_supplies;
3291                        }
3292                }
3293        }
3294
3295        list_add(&rdev->list, &regulator_list);
3296
3297        rdev_init_debugfs(rdev);
3298out:
3299        mutex_unlock(&regulator_list_mutex);
3300        return rdev;
3301
3302unset_supplies:
3303        unset_regulator_supplies(rdev);
3304
3305scrub:
3306        if (rdev->supply)
3307                regulator_put(rdev->supply);
3308        if (rdev->ena_gpio)
3309                gpio_free(rdev->ena_gpio);
3310        kfree(rdev->constraints);
3311        device_unregister(&rdev->dev);
3312        /* device core frees rdev */
3313        rdev = ERR_PTR(ret);
3314        goto out;
3315
3316clean:
3317        kfree(rdev);
3318        rdev = ERR_PTR(ret);
3319        goto out;
3320}
3321EXPORT_SYMBOL_GPL(regulator_register);
3322
3323/**
3324 * regulator_unregister - unregister regulator
3325 * @rdev: regulator to unregister
3326 *
3327 * Called by regulator drivers to unregister a regulator.
3328 */
3329void regulator_unregister(struct regulator_dev *rdev)
3330{
3331        if (rdev == NULL)
3332                return;
3333
3334        if (rdev->supply)
3335                regulator_put(rdev->supply);
3336        mutex_lock(&regulator_list_mutex);
3337        debugfs_remove_recursive(rdev->debugfs);
3338        flush_work_sync(&rdev->disable_work.work);
3339        WARN_ON(rdev->open_count);
3340        unset_regulator_supplies(rdev);
3341        list_del(&rdev->list);
3342        kfree(rdev->constraints);
3343        if (rdev->ena_gpio)
3344                gpio_free(rdev->ena_gpio);
3345        device_unregister(&rdev->dev);
3346        mutex_unlock(&regulator_list_mutex);
3347}
3348EXPORT_SYMBOL_GPL(regulator_unregister);
3349
3350/**
3351 * regulator_suspend_prepare - prepare regulators for system wide suspend
3352 * @state: system suspend state
3353 *
3354 * Configure each regulator with it's suspend operating parameters for state.
3355 * This will usually be called by machine suspend code prior to supending.
3356 */
3357int regulator_suspend_prepare(suspend_state_t state)
3358{
3359        struct regulator_dev *rdev;
3360        int ret = 0;
3361
3362        /* ON is handled by regulator active state */
3363        if (state == PM_SUSPEND_ON)
3364                return -EINVAL;
3365
3366        mutex_lock(&regulator_list_mutex);
3367        list_for_each_entry(rdev, &regulator_list, list) {
3368
3369                mutex_lock(&rdev->mutex);
3370                ret = suspend_prepare(rdev, state);
3371                mutex_unlock(&rdev->mutex);
3372
3373                if (ret < 0) {
3374                        rdev_err(rdev, "failed to prepare\n");
3375                        goto out;
3376                }
3377        }
3378out:
3379        mutex_unlock(&regulator_list_mutex);
3380        return ret;
3381}
3382EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3383
3384/**
3385 * regulator_suspend_finish - resume regulators from system wide suspend
3386 *
3387 * Turn on regulators that might be turned off by regulator_suspend_prepare
3388 * and that should be turned on according to the regulators properties.
3389 */
3390int regulator_suspend_finish(void)
3391{
3392        struct regulator_dev *rdev;
3393        int ret = 0, error;
3394
3395        mutex_lock(&regulator_list_mutex);
3396        list_for_each_entry(rdev, &regulator_list, list) {
3397                struct regulator_ops *ops = rdev->desc->ops;
3398
3399                mutex_lock(&rdev->mutex);
3400                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3401                                ops->enable) {
3402                        error = ops->enable(rdev);
3403                        if (error)
3404                                ret = error;
3405                } else {
3406                        if (!has_full_constraints)
3407                                goto unlock;
3408                        if (!ops->disable)
3409                                goto unlock;
3410                        if (!_regulator_is_enabled(rdev))
3411                                goto unlock;
3412
3413                        error = ops->disable(rdev);
3414                        if (error)
3415                                ret = error;
3416                }
3417unlock:
3418                mutex_unlock(&rdev->mutex);
3419        }
3420        mutex_unlock(&regulator_list_mutex);
3421        return ret;
3422}
3423EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3424
3425/**
3426 * regulator_has_full_constraints - the system has fully specified constraints
3427 *
3428 * Calling this function will cause the regulator API to disable all
3429 * regulators which have a zero use count and don't have an always_on
3430 * constraint in a late_initcall.
3431 *
3432 * The intention is that this will become the default behaviour in a
3433 * future kernel release so users are encouraged to use this facility
3434 * now.
3435 */
3436void regulator_has_full_constraints(void)
3437{
3438        has_full_constraints = 1;
3439}
3440EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3441
3442/**
3443 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3444 *
3445 * Calling this function will cause the regulator API to provide a
3446 * dummy regulator to consumers if no physical regulator is found,
3447 * allowing most consumers to proceed as though a regulator were
3448 * configured.  This allows systems such as those with software
3449 * controllable regulators for the CPU core only to be brought up more
3450 * readily.
3451 */
3452void regulator_use_dummy_regulator(void)
3453{
3454        board_wants_dummy_regulator = true;
3455}
3456EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3457
3458/**
3459 * rdev_get_drvdata - get rdev regulator driver data
3460 * @rdev: regulator
3461 *
3462 * Get rdev regulator driver private data. This call can be used in the
3463 * regulator driver context.
3464 */
3465void *rdev_get_drvdata(struct regulator_dev *rdev)
3466{
3467        return rdev->reg_data;
3468}
3469EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3470
3471/**
3472 * regulator_get_drvdata - get regulator driver data
3473 * @regulator: regulator
3474 *
3475 * Get regulator driver private data. This call can be used in the consumer
3476 * driver context when non API regulator specific functions need to be called.
3477 */
3478void *regulator_get_drvdata(struct regulator *regulator)
3479{
3480        return regulator->rdev->reg_data;
3481}
3482EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3483
3484/**
3485 * regulator_set_drvdata - set regulator driver data
3486 * @regulator: regulator
3487 * @data: data
3488 */
3489void regulator_set_drvdata(struct regulator *regulator, void *data)
3490{
3491        regulator->rdev->reg_data = data;
3492}
3493EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3494
3495/**
3496 * regulator_get_id - get regulator ID
3497 * @rdev: regulator
3498 */
3499int rdev_get_id(struct regulator_dev *rdev)
3500{
3501        return rdev->desc->id;
3502}
3503EXPORT_SYMBOL_GPL(rdev_get_id);
3504
3505struct device *rdev_get_dev(struct regulator_dev *rdev)
3506{
3507        return &rdev->dev;
3508}
3509EXPORT_SYMBOL_GPL(rdev_get_dev);
3510
3511void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3512{
3513        return reg_init_data->driver_data;
3514}
3515EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3516
3517#ifdef CONFIG_DEBUG_FS
3518static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519                                    size_t count, loff_t *ppos)
3520{
3521        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522        ssize_t len, ret = 0;
3523        struct regulator_map *map;
3524
3525        if (!buf)
3526                return -ENOMEM;
3527
3528        list_for_each_entry(map, &regulator_map_list, list) {
3529                len = snprintf(buf + ret, PAGE_SIZE - ret,
3530                               "%s -> %s.%s\n",
3531                               rdev_get_name(map->regulator), map->dev_name,
3532                               map->supply);
3533                if (len >= 0)
3534                        ret += len;
3535                if (ret > PAGE_SIZE) {
3536                        ret = PAGE_SIZE;
3537                        break;
3538                }
3539        }
3540
3541        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3542
3543        kfree(buf);
3544
3545        return ret;
3546}
3547#endif
3548
3549static const struct file_operations supply_map_fops = {
3550#ifdef CONFIG_DEBUG_FS
3551        .read = supply_map_read_file,
3552        .llseek = default_llseek,
3553#endif
3554};
3555
3556static int __init regulator_init(void)
3557{
3558        int ret;
3559
3560        ret = class_register(&regulator_class);
3561
3562        debugfs_root = debugfs_create_dir("regulator", NULL);
3563        if (!debugfs_root)
3564                pr_warn("regulator: Failed to create debugfs directory\n");
3565
3566        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567                            &supply_map_fops);
3568
3569        regulator_dummy_init();
3570
3571        return ret;
3572}
3573
3574/* init early to allow our consumers to complete system booting */
3575core_initcall(regulator_init);
3576
3577static int __init regulator_init_complete(void)
3578{
3579        struct regulator_dev *rdev;
3580        struct regulator_ops *ops;
3581        struct regulation_constraints *c;
3582        int enabled, ret;
3583
3584        /*
3585         * Since DT doesn't provide an idiomatic mechanism for
3586         * enabling full constraints and since it's much more natural
3587         * with DT to provide them just assume that a DT enabled
3588         * system has full constraints.
3589         */
3590        if (of_have_populated_dt())
3591                has_full_constraints = true;
3592
3593        mutex_lock(&regulator_list_mutex);
3594
3595        /* If we have a full configuration then disable any regulators
3596         * which are not in use or always_on.  This will become the
3597         * default behaviour in the future.
3598         */
3599        list_for_each_entry(rdev, &regulator_list, list) {
3600                ops = rdev->desc->ops;
3601                c = rdev->constraints;
3602
3603                if (!ops->disable || (c && c->always_on))
3604                        continue;
3605
3606                mutex_lock(&rdev->mutex);
3607
3608                if (rdev->use_count)
3609                        goto unlock;
3610
3611                /* If we can't read the status assume it's on. */
3612                if (ops->is_enabled)
3613                        enabled = ops->is_enabled(rdev);
3614                else
3615                        enabled = 1;
3616
3617                if (!enabled)
3618                        goto unlock;
3619
3620                if (has_full_constraints) {
3621                        /* We log since this may kill the system if it
3622                         * goes wrong. */
3623                        rdev_info(rdev, "disabling\n");
3624                        ret = ops->disable(rdev);
3625                        if (ret != 0) {
3626                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3627                        }
3628                } else {
3629                        /* The intention is that in future we will
3630                         * assume that full constraints are provided
3631                         * so warn even if we aren't going to do
3632                         * anything here.
3633                         */
3634                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3635                }
3636
3637unlock:
3638                mutex_unlock(&rdev->mutex);
3639        }
3640
3641        mutex_unlock(&regulator_list_mutex);
3642
3643        return 0;
3644}
3645late_initcall(regulator_init_complete);
3646
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.