linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
  19#include <linux/integrity.h>
  20#include <linux/ima.h>
  21#include <linux/evm.h>
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
  27#include <net/flow.h>
  28
  29#define MAX_LSM_EVM_XATTR       2
  30
  31/* Boot-time LSM user choice */
  32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  33        CONFIG_DEFAULT_SECURITY;
  34
  35static struct security_operations *security_ops;
  36static struct security_operations default_security_ops = {
  37        .name   = "default",
  38};
  39
  40static inline int __init verify(struct security_operations *ops)
  41{
  42        /* verify the security_operations structure exists */
  43        if (!ops)
  44                return -EINVAL;
  45        security_fixup_ops(ops);
  46        return 0;
  47}
  48
  49static void __init do_security_initcalls(void)
  50{
  51        initcall_t *call;
  52        call = __security_initcall_start;
  53        while (call < __security_initcall_end) {
  54                (*call) ();
  55                call++;
  56        }
  57}
  58
  59/**
  60 * security_init - initializes the security framework
  61 *
  62 * This should be called early in the kernel initialization sequence.
  63 */
  64int __init security_init(void)
  65{
  66        printk(KERN_INFO "Security Framework initialized\n");
  67
  68        security_fixup_ops(&default_security_ops);
  69        security_ops = &default_security_ops;
  70        do_security_initcalls();
  71
  72        return 0;
  73}
  74
  75void reset_security_ops(void)
  76{
  77        security_ops = &default_security_ops;
  78}
  79
  80/* Save user chosen LSM */
  81static int __init choose_lsm(char *str)
  82{
  83        strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  84        return 1;
  85}
  86__setup("security=", choose_lsm);
  87
  88/**
  89 * security_module_enable - Load given security module on boot ?
  90 * @ops: a pointer to the struct security_operations that is to be checked.
  91 *
  92 * Each LSM must pass this method before registering its own operations
  93 * to avoid security registration races. This method may also be used
  94 * to check if your LSM is currently loaded during kernel initialization.
  95 *
  96 * Return true if:
  97 *      -The passed LSM is the one chosen by user at boot time,
  98 *      -or the passed LSM is configured as the default and the user did not
  99 *       choose an alternate LSM at boot time.
 100 * Otherwise, return false.
 101 */
 102int __init security_module_enable(struct security_operations *ops)
 103{
 104        return !strcmp(ops->name, chosen_lsm);
 105}
 106
 107/**
 108 * register_security - registers a security framework with the kernel
 109 * @ops: a pointer to the struct security_options that is to be registered
 110 *
 111 * This function allows a security module to register itself with the
 112 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 113 * value passed to this function. You'll need to check first if your LSM
 114 * is allowed to register its @ops by calling security_module_enable(@ops).
 115 *
 116 * If there is already a security module registered with the kernel,
 117 * an error will be returned.  Otherwise %0 is returned on success.
 118 */
 119int __init register_security(struct security_operations *ops)
 120{
 121        if (verify(ops)) {
 122                printk(KERN_DEBUG "%s could not verify "
 123                       "security_operations structure.\n", __func__);
 124                return -EINVAL;
 125        }
 126
 127        if (security_ops != &default_security_ops)
 128                return -EAGAIN;
 129
 130        security_ops = ops;
 131
 132        return 0;
 133}
 134
 135/* Security operations */
 136
 137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 138{
 139        return security_ops->ptrace_access_check(child, mode);
 140}
 141
 142int security_ptrace_traceme(struct task_struct *parent)
 143{
 144        return security_ops->ptrace_traceme(parent);
 145}
 146
 147int security_capget(struct task_struct *target,
 148                     kernel_cap_t *effective,
 149                     kernel_cap_t *inheritable,
 150                     kernel_cap_t *permitted)
 151{
 152        return security_ops->capget(target, effective, inheritable, permitted);
 153}
 154
 155int security_capset(struct cred *new, const struct cred *old,
 156                    const kernel_cap_t *effective,
 157                    const kernel_cap_t *inheritable,
 158                    const kernel_cap_t *permitted)
 159{
 160        return security_ops->capset(new, old,
 161                                    effective, inheritable, permitted);
 162}
 163
 164int security_capable(const struct cred *cred, struct user_namespace *ns,
 165                     int cap)
 166{
 167        return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 168}
 169
 170int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 171                             int cap)
 172{
 173        return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 174}
 175
 176int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 177{
 178        return security_ops->quotactl(cmds, type, id, sb);
 179}
 180
 181int security_quota_on(struct dentry *dentry)
 182{
 183        return security_ops->quota_on(dentry);
 184}
 185
 186int security_syslog(int type)
 187{
 188        return security_ops->syslog(type);
 189}
 190
 191int security_settime(const struct timespec *ts, const struct timezone *tz)
 192{
 193        return security_ops->settime(ts, tz);
 194}
 195
 196int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 197{
 198        return security_ops->vm_enough_memory(mm, pages);
 199}
 200
 201int security_bprm_set_creds(struct linux_binprm *bprm)
 202{
 203        return security_ops->bprm_set_creds(bprm);
 204}
 205
 206int security_bprm_check(struct linux_binprm *bprm)
 207{
 208        int ret;
 209
 210        ret = security_ops->bprm_check_security(bprm);
 211        if (ret)
 212                return ret;
 213        return ima_bprm_check(bprm);
 214}
 215
 216void security_bprm_committing_creds(struct linux_binprm *bprm)
 217{
 218        security_ops->bprm_committing_creds(bprm);
 219}
 220
 221void security_bprm_committed_creds(struct linux_binprm *bprm)
 222{
 223        security_ops->bprm_committed_creds(bprm);
 224}
 225
 226int security_bprm_secureexec(struct linux_binprm *bprm)
 227{
 228        return security_ops->bprm_secureexec(bprm);
 229}
 230
 231int security_sb_alloc(struct super_block *sb)
 232{
 233        return security_ops->sb_alloc_security(sb);
 234}
 235
 236void security_sb_free(struct super_block *sb)
 237{
 238        security_ops->sb_free_security(sb);
 239}
 240
 241int security_sb_copy_data(char *orig, char *copy)
 242{
 243        return security_ops->sb_copy_data(orig, copy);
 244}
 245EXPORT_SYMBOL(security_sb_copy_data);
 246
 247int security_sb_remount(struct super_block *sb, void *data)
 248{
 249        return security_ops->sb_remount(sb, data);
 250}
 251
 252int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 253{
 254        return security_ops->sb_kern_mount(sb, flags, data);
 255}
 256
 257int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 258{
 259        return security_ops->sb_show_options(m, sb);
 260}
 261
 262int security_sb_statfs(struct dentry *dentry)
 263{
 264        return security_ops->sb_statfs(dentry);
 265}
 266
 267int security_sb_mount(char *dev_name, struct path *path,
 268                       char *type, unsigned long flags, void *data)
 269{
 270        return security_ops->sb_mount(dev_name, path, type, flags, data);
 271}
 272
 273int security_sb_umount(struct vfsmount *mnt, int flags)
 274{
 275        return security_ops->sb_umount(mnt, flags);
 276}
 277
 278int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 279{
 280        return security_ops->sb_pivotroot(old_path, new_path);
 281}
 282
 283int security_sb_set_mnt_opts(struct super_block *sb,
 284                                struct security_mnt_opts *opts)
 285{
 286        return security_ops->sb_set_mnt_opts(sb, opts);
 287}
 288EXPORT_SYMBOL(security_sb_set_mnt_opts);
 289
 290void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 291                                struct super_block *newsb)
 292{
 293        security_ops->sb_clone_mnt_opts(oldsb, newsb);
 294}
 295EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 296
 297int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 298{
 299        return security_ops->sb_parse_opts_str(options, opts);
 300}
 301EXPORT_SYMBOL(security_sb_parse_opts_str);
 302
 303int security_inode_alloc(struct inode *inode)
 304{
 305        inode->i_security = NULL;
 306        return security_ops->inode_alloc_security(inode);
 307}
 308
 309void security_inode_free(struct inode *inode)
 310{
 311        integrity_inode_free(inode);
 312        security_ops->inode_free_security(inode);
 313}
 314
 315int security_inode_init_security(struct inode *inode, struct inode *dir,
 316                                 const struct qstr *qstr,
 317                                 const initxattrs initxattrs, void *fs_data)
 318{
 319        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 320        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 321        int ret;
 322
 323        if (unlikely(IS_PRIVATE(inode)))
 324                return 0;
 325
 326        memset(new_xattrs, 0, sizeof new_xattrs);
 327        if (!initxattrs)
 328                return security_ops->inode_init_security(inode, dir, qstr,
 329                                                         NULL, NULL, NULL);
 330        lsm_xattr = new_xattrs;
 331        ret = security_ops->inode_init_security(inode, dir, qstr,
 332                                                &lsm_xattr->name,
 333                                                &lsm_xattr->value,
 334                                                &lsm_xattr->value_len);
 335        if (ret)
 336                goto out;
 337
 338        evm_xattr = lsm_xattr + 1;
 339        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 340        if (ret)
 341                goto out;
 342        ret = initxattrs(inode, new_xattrs, fs_data);
 343out:
 344        for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
 345                kfree(xattr->name);
 346                kfree(xattr->value);
 347        }
 348        return (ret == -EOPNOTSUPP) ? 0 : ret;
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 352int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 353                                     const struct qstr *qstr, char **name,
 354                                     void **value, size_t *len)
 355{
 356        if (unlikely(IS_PRIVATE(inode)))
 357                return -EOPNOTSUPP;
 358        return security_ops->inode_init_security(inode, dir, qstr, name, value,
 359                                                 len);
 360}
 361EXPORT_SYMBOL(security_old_inode_init_security);
 362
 363#ifdef CONFIG_SECURITY_PATH
 364int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 365                        unsigned int dev)
 366{
 367        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 368                return 0;
 369        return security_ops->path_mknod(dir, dentry, mode, dev);
 370}
 371EXPORT_SYMBOL(security_path_mknod);
 372
 373int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 374{
 375        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 376                return 0;
 377        return security_ops->path_mkdir(dir, dentry, mode);
 378}
 379EXPORT_SYMBOL(security_path_mkdir);
 380
 381int security_path_rmdir(struct path *dir, struct dentry *dentry)
 382{
 383        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 384                return 0;
 385        return security_ops->path_rmdir(dir, dentry);
 386}
 387
 388int security_path_unlink(struct path *dir, struct dentry *dentry)
 389{
 390        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391                return 0;
 392        return security_ops->path_unlink(dir, dentry);
 393}
 394EXPORT_SYMBOL(security_path_unlink);
 395
 396int security_path_symlink(struct path *dir, struct dentry *dentry,
 397                          const char *old_name)
 398{
 399        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 400                return 0;
 401        return security_ops->path_symlink(dir, dentry, old_name);
 402}
 403
 404int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 405                       struct dentry *new_dentry)
 406{
 407        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 408                return 0;
 409        return security_ops->path_link(old_dentry, new_dir, new_dentry);
 410}
 411
 412int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 413                         struct path *new_dir, struct dentry *new_dentry)
 414{
 415        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 416                     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 417                return 0;
 418        return security_ops->path_rename(old_dir, old_dentry, new_dir,
 419                                         new_dentry);
 420}
 421EXPORT_SYMBOL(security_path_rename);
 422
 423int security_path_truncate(struct path *path)
 424{
 425        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 426                return 0;
 427        return security_ops->path_truncate(path);
 428}
 429
 430int security_path_chmod(struct path *path, umode_t mode)
 431{
 432        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 433                return 0;
 434        return security_ops->path_chmod(path, mode);
 435}
 436
 437int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 438{
 439        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 440                return 0;
 441        return security_ops->path_chown(path, uid, gid);
 442}
 443
 444int security_path_chroot(struct path *path)
 445{
 446        return security_ops->path_chroot(path);
 447}
 448#endif
 449
 450int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 451{
 452        if (unlikely(IS_PRIVATE(dir)))
 453                return 0;
 454        return security_ops->inode_create(dir, dentry, mode);
 455}
 456EXPORT_SYMBOL_GPL(security_inode_create);
 457
 458int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 459                         struct dentry *new_dentry)
 460{
 461        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 462                return 0;
 463        return security_ops->inode_link(old_dentry, dir, new_dentry);
 464}
 465
 466int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 467{
 468        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 469                return 0;
 470        return security_ops->inode_unlink(dir, dentry);
 471}
 472
 473int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 474                            const char *old_name)
 475{
 476        if (unlikely(IS_PRIVATE(dir)))
 477                return 0;
 478        return security_ops->inode_symlink(dir, dentry, old_name);
 479}
 480
 481int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 482{
 483        if (unlikely(IS_PRIVATE(dir)))
 484                return 0;
 485        return security_ops->inode_mkdir(dir, dentry, mode);
 486}
 487EXPORT_SYMBOL_GPL(security_inode_mkdir);
 488
 489int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 490{
 491        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 492                return 0;
 493        return security_ops->inode_rmdir(dir, dentry);
 494}
 495
 496int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 497{
 498        if (unlikely(IS_PRIVATE(dir)))
 499                return 0;
 500        return security_ops->inode_mknod(dir, dentry, mode, dev);
 501}
 502
 503int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 504                           struct inode *new_dir, struct dentry *new_dentry)
 505{
 506        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 507            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 508                return 0;
 509        return security_ops->inode_rename(old_dir, old_dentry,
 510                                           new_dir, new_dentry);
 511}
 512
 513int security_inode_readlink(struct dentry *dentry)
 514{
 515        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 516                return 0;
 517        return security_ops->inode_readlink(dentry);
 518}
 519
 520int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 521{
 522        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 523                return 0;
 524        return security_ops->inode_follow_link(dentry, nd);
 525}
 526
 527int security_inode_permission(struct inode *inode, int mask)
 528{
 529        if (unlikely(IS_PRIVATE(inode)))
 530                return 0;
 531        return security_ops->inode_permission(inode, mask);
 532}
 533
 534int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536        int ret;
 537
 538        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 539                return 0;
 540        ret = security_ops->inode_setattr(dentry, attr);
 541        if (ret)
 542                return ret;
 543        return evm_inode_setattr(dentry, attr);
 544}
 545EXPORT_SYMBOL_GPL(security_inode_setattr);
 546
 547int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 548{
 549        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 550                return 0;
 551        return security_ops->inode_getattr(mnt, dentry);
 552}
 553
 554int security_inode_setxattr(struct dentry *dentry, const char *name,
 555                            const void *value, size_t size, int flags)
 556{
 557        int ret;
 558
 559        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 560                return 0;
 561        ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 562        if (ret)
 563                return ret;
 564        return evm_inode_setxattr(dentry, name, value, size);
 565}
 566
 567void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 568                                  const void *value, size_t size, int flags)
 569{
 570        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 571                return;
 572        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 573        evm_inode_post_setxattr(dentry, name, value, size);
 574}
 575
 576int security_inode_getxattr(struct dentry *dentry, const char *name)
 577{
 578        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 579                return 0;
 580        return security_ops->inode_getxattr(dentry, name);
 581}
 582
 583int security_inode_listxattr(struct dentry *dentry)
 584{
 585        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 586                return 0;
 587        return security_ops->inode_listxattr(dentry);
 588}
 589
 590int security_inode_removexattr(struct dentry *dentry, const char *name)
 591{
 592        int ret;
 593
 594        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 595                return 0;
 596        ret = security_ops->inode_removexattr(dentry, name);
 597        if (ret)
 598                return ret;
 599        return evm_inode_removexattr(dentry, name);
 600}
 601
 602int security_inode_need_killpriv(struct dentry *dentry)
 603{
 604        return security_ops->inode_need_killpriv(dentry);
 605}
 606
 607int security_inode_killpriv(struct dentry *dentry)
 608{
 609        return security_ops->inode_killpriv(dentry);
 610}
 611
 612int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 613{
 614        if (unlikely(IS_PRIVATE(inode)))
 615                return -EOPNOTSUPP;
 616        return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 617}
 618
 619int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 620{
 621        if (unlikely(IS_PRIVATE(inode)))
 622                return -EOPNOTSUPP;
 623        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 624}
 625
 626int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 627{
 628        if (unlikely(IS_PRIVATE(inode)))
 629                return 0;
 630        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 631}
 632
 633void security_inode_getsecid(const struct inode *inode, u32 *secid)
 634{
 635        security_ops->inode_getsecid(inode, secid);
 636}
 637
 638int security_file_permission(struct file *file, int mask)
 639{
 640        int ret;
 641
 642        ret = security_ops->file_permission(file, mask);
 643        if (ret)
 644                return ret;
 645
 646        return fsnotify_perm(file, mask);
 647}
 648
 649int security_file_alloc(struct file *file)
 650{
 651        return security_ops->file_alloc_security(file);
 652}
 653
 654void security_file_free(struct file *file)
 655{
 656        security_ops->file_free_security(file);
 657}
 658
 659int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 660{
 661        return security_ops->file_ioctl(file, cmd, arg);
 662}
 663
 664static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 665{
 666        /*
 667         * Does we have PROT_READ and does the application expect
 668         * it to imply PROT_EXEC?  If not, nothing to talk about...
 669         */
 670        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 671                return prot;
 672        if (!(current->personality & READ_IMPLIES_EXEC))
 673                return prot;
 674        /*
 675         * if that's an anonymous mapping, let it.
 676         */
 677        if (!file)
 678                return prot | PROT_EXEC;
 679        /*
 680         * ditto if it's not on noexec mount, except that on !MMU we need
 681         * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 682         */
 683        if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 684#ifndef CONFIG_MMU
 685                unsigned long caps = 0;
 686                struct address_space *mapping = file->f_mapping;
 687                if (mapping && mapping->backing_dev_info)
 688                        caps = mapping->backing_dev_info->capabilities;
 689                if (!(caps & BDI_CAP_EXEC_MAP))
 690                        return prot;
 691#endif
 692                return prot | PROT_EXEC;
 693        }
 694        /* anything on noexec mount won't get PROT_EXEC */
 695        return prot;
 696}
 697
 698int security_mmap_file(struct file *file, unsigned long prot,
 699                        unsigned long flags)
 700{
 701        int ret;
 702        ret = security_ops->mmap_file(file, prot,
 703                                        mmap_prot(file, prot), flags);
 704        if (ret)
 705                return ret;
 706        return ima_file_mmap(file, prot);
 707}
 708
 709int security_mmap_addr(unsigned long addr)
 710{
 711        return security_ops->mmap_addr(addr);
 712}
 713
 714int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 715                            unsigned long prot)
 716{
 717        return security_ops->file_mprotect(vma, reqprot, prot);
 718}
 719
 720int security_file_lock(struct file *file, unsigned int cmd)
 721{
 722        return security_ops->file_lock(file, cmd);
 723}
 724
 725int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 726{
 727        return security_ops->file_fcntl(file, cmd, arg);
 728}
 729
 730int security_file_set_fowner(struct file *file)
 731{
 732        return security_ops->file_set_fowner(file);
 733}
 734
 735int security_file_send_sigiotask(struct task_struct *tsk,
 736                                  struct fown_struct *fown, int sig)
 737{
 738        return security_ops->file_send_sigiotask(tsk, fown, sig);
 739}
 740
 741int security_file_receive(struct file *file)
 742{
 743        return security_ops->file_receive(file);
 744}
 745
 746int security_file_open(struct file *file, const struct cred *cred)
 747{
 748        int ret;
 749
 750        ret = security_ops->file_open(file, cred);
 751        if (ret)
 752                return ret;
 753
 754        return fsnotify_perm(file, MAY_OPEN);
 755}
 756
 757int security_task_create(unsigned long clone_flags)
 758{
 759        return security_ops->task_create(clone_flags);
 760}
 761
 762void security_task_free(struct task_struct *task)
 763{
 764        security_ops->task_free(task);
 765}
 766
 767int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 768{
 769        return security_ops->cred_alloc_blank(cred, gfp);
 770}
 771
 772void security_cred_free(struct cred *cred)
 773{
 774        security_ops->cred_free(cred);
 775}
 776
 777int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 778{
 779        return security_ops->cred_prepare(new, old, gfp);
 780}
 781
 782void security_transfer_creds(struct cred *new, const struct cred *old)
 783{
 784        security_ops->cred_transfer(new, old);
 785}
 786
 787int security_kernel_act_as(struct cred *new, u32 secid)
 788{
 789        return security_ops->kernel_act_as(new, secid);
 790}
 791
 792int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 793{
 794        return security_ops->kernel_create_files_as(new, inode);
 795}
 796
 797int security_kernel_module_request(char *kmod_name)
 798{
 799        return security_ops->kernel_module_request(kmod_name);
 800}
 801
 802int security_task_fix_setuid(struct cred *new, const struct cred *old,
 803                             int flags)
 804{
 805        return security_ops->task_fix_setuid(new, old, flags);
 806}
 807
 808int security_task_setpgid(struct task_struct *p, pid_t pgid)
 809{
 810        return security_ops->task_setpgid(p, pgid);
 811}
 812
 813int security_task_getpgid(struct task_struct *p)
 814{
 815        return security_ops->task_getpgid(p);
 816}
 817
 818int security_task_getsid(struct task_struct *p)
 819{
 820        return security_ops->task_getsid(p);
 821}
 822
 823void security_task_getsecid(struct task_struct *p, u32 *secid)
 824{
 825        security_ops->task_getsecid(p, secid);
 826}
 827EXPORT_SYMBOL(security_task_getsecid);
 828
 829int security_task_setnice(struct task_struct *p, int nice)
 830{
 831        return security_ops->task_setnice(p, nice);
 832}
 833
 834int security_task_setioprio(struct task_struct *p, int ioprio)
 835{
 836        return security_ops->task_setioprio(p, ioprio);
 837}
 838
 839int security_task_getioprio(struct task_struct *p)
 840{
 841        return security_ops->task_getioprio(p);
 842}
 843
 844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 845                struct rlimit *new_rlim)
 846{
 847        return security_ops->task_setrlimit(p, resource, new_rlim);
 848}
 849
 850int security_task_setscheduler(struct task_struct *p)
 851{
 852        return security_ops->task_setscheduler(p);
 853}
 854
 855int security_task_getscheduler(struct task_struct *p)
 856{
 857        return security_ops->task_getscheduler(p);
 858}
 859
 860int security_task_movememory(struct task_struct *p)
 861{
 862        return security_ops->task_movememory(p);
 863}
 864
 865int security_task_kill(struct task_struct *p, struct siginfo *info,
 866                        int sig, u32 secid)
 867{
 868        return security_ops->task_kill(p, info, sig, secid);
 869}
 870
 871int security_task_wait(struct task_struct *p)
 872{
 873        return security_ops->task_wait(p);
 874}
 875
 876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 877                         unsigned long arg4, unsigned long arg5)
 878{
 879        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 880}
 881
 882void security_task_to_inode(struct task_struct *p, struct inode *inode)
 883{
 884        security_ops->task_to_inode(p, inode);
 885}
 886
 887int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 888{
 889        return security_ops->ipc_permission(ipcp, flag);
 890}
 891
 892void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 893{
 894        security_ops->ipc_getsecid(ipcp, secid);
 895}
 896
 897int security_msg_msg_alloc(struct msg_msg *msg)
 898{
 899        return security_ops->msg_msg_alloc_security(msg);
 900}
 901
 902void security_msg_msg_free(struct msg_msg *msg)
 903{
 904        security_ops->msg_msg_free_security(msg);
 905}
 906
 907int security_msg_queue_alloc(struct msg_queue *msq)
 908{
 909        return security_ops->msg_queue_alloc_security(msq);
 910}
 911
 912void security_msg_queue_free(struct msg_queue *msq)
 913{
 914        security_ops->msg_queue_free_security(msq);
 915}
 916
 917int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 918{
 919        return security_ops->msg_queue_associate(msq, msqflg);
 920}
 921
 922int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 923{
 924        return security_ops->msg_queue_msgctl(msq, cmd);
 925}
 926
 927int security_msg_queue_msgsnd(struct msg_queue *msq,
 928                               struct msg_msg *msg, int msqflg)
 929{
 930        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 931}
 932
 933int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 934                               struct task_struct *target, long type, int mode)
 935{
 936        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 937}
 938
 939int security_shm_alloc(struct shmid_kernel *shp)
 940{
 941        return security_ops->shm_alloc_security(shp);
 942}
 943
 944void security_shm_free(struct shmid_kernel *shp)
 945{
 946        security_ops->shm_free_security(shp);
 947}
 948
 949int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 950{
 951        return security_ops->shm_associate(shp, shmflg);
 952}
 953
 954int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 955{
 956        return security_ops->shm_shmctl(shp, cmd);
 957}
 958
 959int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 960{
 961        return security_ops->shm_shmat(shp, shmaddr, shmflg);
 962}
 963
 964int security_sem_alloc(struct sem_array *sma)
 965{
 966        return security_ops->sem_alloc_security(sma);
 967}
 968
 969void security_sem_free(struct sem_array *sma)
 970{
 971        security_ops->sem_free_security(sma);
 972}
 973
 974int security_sem_associate(struct sem_array *sma, int semflg)
 975{
 976        return security_ops->sem_associate(sma, semflg);
 977}
 978
 979int security_sem_semctl(struct sem_array *sma, int cmd)
 980{
 981        return security_ops->sem_semctl(sma, cmd);
 982}
 983
 984int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 985                        unsigned nsops, int alter)
 986{
 987        return security_ops->sem_semop(sma, sops, nsops, alter);
 988}
 989
 990void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 991{
 992        if (unlikely(inode && IS_PRIVATE(inode)))
 993                return;
 994        security_ops->d_instantiate(dentry, inode);
 995}
 996EXPORT_SYMBOL(security_d_instantiate);
 997
 998int security_getprocattr(struct task_struct *p, char *name, char **value)
 999{
1000        return security_ops->getprocattr(p, name, value);
1001}
1002
1003int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004{
1005        return security_ops->setprocattr(p, name, value, size);
1006}
1007
1008int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009{
1010        return security_ops->netlink_send(sk, skb);
1011}
1012
1013int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014{
1015        return security_ops->secid_to_secctx(secid, secdata, seclen);
1016}
1017EXPORT_SYMBOL(security_secid_to_secctx);
1018
1019int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020{
1021        return security_ops->secctx_to_secid(secdata, seclen, secid);
1022}
1023EXPORT_SYMBOL(security_secctx_to_secid);
1024
1025void security_release_secctx(char *secdata, u32 seclen)
1026{
1027        security_ops->release_secctx(secdata, seclen);
1028}
1029EXPORT_SYMBOL(security_release_secctx);
1030
1031int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032{
1033        return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034}
1035EXPORT_SYMBOL(security_inode_notifysecctx);
1036
1037int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038{
1039        return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040}
1041EXPORT_SYMBOL(security_inode_setsecctx);
1042
1043int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044{
1045        return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046}
1047EXPORT_SYMBOL(security_inode_getsecctx);
1048
1049#ifdef CONFIG_SECURITY_NETWORK
1050
1051int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052{
1053        return security_ops->unix_stream_connect(sock, other, newsk);
1054}
1055EXPORT_SYMBOL(security_unix_stream_connect);
1056
1057int security_unix_may_send(struct socket *sock,  struct socket *other)
1058{
1059        return security_ops->unix_may_send(sock, other);
1060}
1061EXPORT_SYMBOL(security_unix_may_send);
1062
1063int security_socket_create(int family, int type, int protocol, int kern)
1064{
1065        return security_ops->socket_create(family, type, protocol, kern);
1066}
1067
1068int security_socket_post_create(struct socket *sock, int family,
1069                                int type, int protocol, int kern)
1070{
1071        return security_ops->socket_post_create(sock, family, type,
1072                                                protocol, kern);
1073}
1074
1075int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076{
1077        return security_ops->socket_bind(sock, address, addrlen);
1078}
1079
1080int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081{
1082        return security_ops->socket_connect(sock, address, addrlen);
1083}
1084
1085int security_socket_listen(struct socket *sock, int backlog)
1086{
1087        return security_ops->socket_listen(sock, backlog);
1088}
1089
1090int security_socket_accept(struct socket *sock, struct socket *newsock)
1091{
1092        return security_ops->socket_accept(sock, newsock);
1093}
1094
1095int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096{
1097        return security_ops->socket_sendmsg(sock, msg, size);
1098}
1099
1100int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101                            int size, int flags)
1102{
1103        return security_ops->socket_recvmsg(sock, msg, size, flags);
1104}
1105
1106int security_socket_getsockname(struct socket *sock)
1107{
1108        return security_ops->socket_getsockname(sock);
1109}
1110
1111int security_socket_getpeername(struct socket *sock)
1112{
1113        return security_ops->socket_getpeername(sock);
1114}
1115
1116int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117{
1118        return security_ops->socket_getsockopt(sock, level, optname);
1119}
1120
1121int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122{
1123        return security_ops->socket_setsockopt(sock, level, optname);
1124}
1125
1126int security_socket_shutdown(struct socket *sock, int how)
1127{
1128        return security_ops->socket_shutdown(sock, how);
1129}
1130
1131int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132{
1133        return security_ops->socket_sock_rcv_skb(sk, skb);
1134}
1135EXPORT_SYMBOL(security_sock_rcv_skb);
1136
1137int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138                                      int __user *optlen, unsigned len)
1139{
1140        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1141}
1142
1143int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144{
1145        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1146}
1147EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148
1149int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150{
1151        return security_ops->sk_alloc_security(sk, family, priority);
1152}
1153
1154void security_sk_free(struct sock *sk)
1155{
1156        security_ops->sk_free_security(sk);
1157}
1158
1159void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160{
1161        security_ops->sk_clone_security(sk, newsk);
1162}
1163EXPORT_SYMBOL(security_sk_clone);
1164
1165void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166{
1167        security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168}
1169EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172{
1173        security_ops->req_classify_flow(req, fl);
1174}
1175EXPORT_SYMBOL(security_req_classify_flow);
1176
1177void security_sock_graft(struct sock *sk, struct socket *parent)
1178{
1179        security_ops->sock_graft(sk, parent);
1180}
1181EXPORT_SYMBOL(security_sock_graft);
1182
1183int security_inet_conn_request(struct sock *sk,
1184                        struct sk_buff *skb, struct request_sock *req)
1185{
1186        return security_ops->inet_conn_request(sk, skb, req);
1187}
1188EXPORT_SYMBOL(security_inet_conn_request);
1189
1190void security_inet_csk_clone(struct sock *newsk,
1191                        const struct request_sock *req)
1192{
1193        security_ops->inet_csk_clone(newsk, req);
1194}
1195
1196void security_inet_conn_established(struct sock *sk,
1197                        struct sk_buff *skb)
1198{
1199        security_ops->inet_conn_established(sk, skb);
1200}
1201
1202int security_secmark_relabel_packet(u32 secid)
1203{
1204        return security_ops->secmark_relabel_packet(secid);
1205}
1206EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208void security_secmark_refcount_inc(void)
1209{
1210        security_ops->secmark_refcount_inc();
1211}
1212EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214void security_secmark_refcount_dec(void)
1215{
1216        security_ops->secmark_refcount_dec();
1217}
1218EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
1220int security_tun_dev_create(void)
1221{
1222        return security_ops->tun_dev_create();
1223}
1224EXPORT_SYMBOL(security_tun_dev_create);
1225
1226void security_tun_dev_post_create(struct sock *sk)
1227{
1228        return security_ops->tun_dev_post_create(sk);
1229}
1230EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232int security_tun_dev_attach(struct sock *sk)
1233{
1234        return security_ops->tun_dev_attach(sk);
1235}
1236EXPORT_SYMBOL(security_tun_dev_attach);
1237
1238#endif  /* CONFIG_SECURITY_NETWORK */
1239
1240#ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1243{
1244        return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245}
1246EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249                              struct xfrm_sec_ctx **new_ctxp)
1250{
1251        return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252}
1253
1254void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255{
1256        security_ops->xfrm_policy_free_security(ctx);
1257}
1258EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261{
1262        return security_ops->xfrm_policy_delete_security(ctx);
1263}
1264
1265int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1266{
1267        return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268}
1269EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272                                      struct xfrm_sec_ctx *polsec, u32 secid)
1273{
1274        if (!polsec)
1275                return 0;
1276        /*
1277         * We want the context to be taken from secid which is usually
1278         * from the sock.
1279         */
1280        return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281}
1282
1283int security_xfrm_state_delete(struct xfrm_state *x)
1284{
1285        return security_ops->xfrm_state_delete_security(x);
1286}
1287EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289void security_xfrm_state_free(struct xfrm_state *x)
1290{
1291        security_ops->xfrm_state_free_security(x);
1292}
1293
1294int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295{
1296        return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297}
1298
1299int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300                                       struct xfrm_policy *xp,
1301                                       const struct flowi *fl)
1302{
1303        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304}
1305
1306int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307{
1308        return security_ops->xfrm_decode_session(skb, secid, 1);
1309}
1310
1311void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312{
1313        int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314
1315        BUG_ON(rc);
1316}
1317EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321#ifdef CONFIG_KEYS
1322
1323int security_key_alloc(struct key *key, const struct cred *cred,
1324                       unsigned long flags)
1325{
1326        return security_ops->key_alloc(key, cred, flags);
1327}
1328
1329void security_key_free(struct key *key)
1330{
1331        security_ops->key_free(key);
1332}
1333
1334int security_key_permission(key_ref_t key_ref,
1335                            const struct cred *cred, key_perm_t perm)
1336{
1337        return security_ops->key_permission(key_ref, cred, perm);
1338}
1339
1340int security_key_getsecurity(struct key *key, char **_buffer)
1341{
1342        return security_ops->key_getsecurity(key, _buffer);
1343}
1344
1345#endif  /* CONFIG_KEYS */
1346
1347#ifdef CONFIG_AUDIT
1348
1349int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350{
1351        return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352}
1353
1354int security_audit_rule_known(struct audit_krule *krule)
1355{
1356        return security_ops->audit_rule_known(krule);
1357}
1358
1359void security_audit_rule_free(void *lsmrule)
1360{
1361        security_ops->audit_rule_free(lsmrule);
1362}
1363
1364int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365                              struct audit_context *actx)
1366{
1367        return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368}
1369
1370#endif /* CONFIG_AUDIT */
1371
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.