linux/fs/reiserfs/ibalance.c
<<
>>
Prefs
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <asm/uaccess.h>
   6#include <linux/string.h>
   7#include <linux/time.h>
   8#include "reiserfs.h"
   9#include <linux/buffer_head.h>
  10
  11/* this is one and only function that is used outside (do_balance.c) */
  12int balance_internal(struct tree_balance *,
  13                     int, int, struct item_head *, struct buffer_head **);
  14
  15/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
  16#define INTERNAL_SHIFT_FROM_S_TO_L 0
  17#define INTERNAL_SHIFT_FROM_R_TO_S 1
  18#define INTERNAL_SHIFT_FROM_L_TO_S 2
  19#define INTERNAL_SHIFT_FROM_S_TO_R 3
  20#define INTERNAL_INSERT_TO_S 4
  21#define INTERNAL_INSERT_TO_L 5
  22#define INTERNAL_INSERT_TO_R 6
  23
  24static void internal_define_dest_src_infos(int shift_mode,
  25                                           struct tree_balance *tb,
  26                                           int h,
  27                                           struct buffer_info *dest_bi,
  28                                           struct buffer_info *src_bi,
  29                                           int *d_key, struct buffer_head **cf)
  30{
  31        memset(dest_bi, 0, sizeof(struct buffer_info));
  32        memset(src_bi, 0, sizeof(struct buffer_info));
  33        /* define dest, src, dest parent, dest position */
  34        switch (shift_mode) {
  35        case INTERNAL_SHIFT_FROM_S_TO_L:        /* used in internal_shift_left */
  36                src_bi->tb = tb;
  37                src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
  38                src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
  39                src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
  40                dest_bi->tb = tb;
  41                dest_bi->bi_bh = tb->L[h];
  42                dest_bi->bi_parent = tb->FL[h];
  43                dest_bi->bi_position = get_left_neighbor_position(tb, h);
  44                *d_key = tb->lkey[h];
  45                *cf = tb->CFL[h];
  46                break;
  47        case INTERNAL_SHIFT_FROM_L_TO_S:
  48                src_bi->tb = tb;
  49                src_bi->bi_bh = tb->L[h];
  50                src_bi->bi_parent = tb->FL[h];
  51                src_bi->bi_position = get_left_neighbor_position(tb, h);
  52                dest_bi->tb = tb;
  53                dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
  54                dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
  55                dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);     /* dest position is analog of dest->b_item_order */
  56                *d_key = tb->lkey[h];
  57                *cf = tb->CFL[h];
  58                break;
  59
  60        case INTERNAL_SHIFT_FROM_R_TO_S:        /* used in internal_shift_left */
  61                src_bi->tb = tb;
  62                src_bi->bi_bh = tb->R[h];
  63                src_bi->bi_parent = tb->FR[h];
  64                src_bi->bi_position = get_right_neighbor_position(tb, h);
  65                dest_bi->tb = tb;
  66                dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
  67                dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
  68                dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
  69                *d_key = tb->rkey[h];
  70                *cf = tb->CFR[h];
  71                break;
  72
  73        case INTERNAL_SHIFT_FROM_S_TO_R:
  74                src_bi->tb = tb;
  75                src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
  76                src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
  77                src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
  78                dest_bi->tb = tb;
  79                dest_bi->bi_bh = tb->R[h];
  80                dest_bi->bi_parent = tb->FR[h];
  81                dest_bi->bi_position = get_right_neighbor_position(tb, h);
  82                *d_key = tb->rkey[h];
  83                *cf = tb->CFR[h];
  84                break;
  85
  86        case INTERNAL_INSERT_TO_L:
  87                dest_bi->tb = tb;
  88                dest_bi->bi_bh = tb->L[h];
  89                dest_bi->bi_parent = tb->FL[h];
  90                dest_bi->bi_position = get_left_neighbor_position(tb, h);
  91                break;
  92
  93        case INTERNAL_INSERT_TO_S:
  94                dest_bi->tb = tb;
  95                dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
  96                dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
  97                dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
  98                break;
  99
 100        case INTERNAL_INSERT_TO_R:
 101                dest_bi->tb = tb;
 102                dest_bi->bi_bh = tb->R[h];
 103                dest_bi->bi_parent = tb->FR[h];
 104                dest_bi->bi_position = get_right_neighbor_position(tb, h);
 105                break;
 106
 107        default:
 108                reiserfs_panic(tb->tb_sb, "ibalance-1",
 109                               "shift type is unknown (%d)",
 110                               shift_mode);
 111        }
 112}
 113
 114/* Insert count node pointers into buffer cur before position to + 1.
 115 * Insert count items into buffer cur before position to.
 116 * Items and node pointers are specified by inserted and bh respectively.
 117 */
 118static void internal_insert_childs(struct buffer_info *cur_bi,
 119                                   int to, int count,
 120                                   struct item_head *inserted,
 121                                   struct buffer_head **bh)
 122{
 123        struct buffer_head *cur = cur_bi->bi_bh;
 124        struct block_head *blkh;
 125        int nr;
 126        struct reiserfs_key *ih;
 127        struct disk_child new_dc[2];
 128        struct disk_child *dc;
 129        int i;
 130
 131        if (count <= 0)
 132                return;
 133
 134        blkh = B_BLK_HEAD(cur);
 135        nr = blkh_nr_item(blkh);
 136
 137        RFALSE(count > 2, "too many children (%d) are to be inserted", count);
 138        RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
 139               "no enough free space (%d), needed %d bytes",
 140               B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
 141
 142        /* prepare space for count disk_child */
 143        dc = B_N_CHILD(cur, to + 1);
 144
 145        memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
 146
 147        /* copy to_be_insert disk children */
 148        for (i = 0; i < count; i++) {
 149                put_dc_size(&(new_dc[i]),
 150                            MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
 151                put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
 152        }
 153        memcpy(dc, new_dc, DC_SIZE * count);
 154
 155        /* prepare space for count items  */
 156        ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
 157
 158        memmove(ih + count, ih,
 159                (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
 160
 161        /* copy item headers (keys) */
 162        memcpy(ih, inserted, KEY_SIZE);
 163        if (count > 1)
 164                memcpy(ih + 1, inserted + 1, KEY_SIZE);
 165
 166        /* sizes, item number */
 167        set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
 168        set_blkh_free_space(blkh,
 169                            blkh_free_space(blkh) - count * (DC_SIZE +
 170                                                             KEY_SIZE));
 171
 172        do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
 173
 174        /*&&&&&&&&&&&&&&&&&&&&&&&& */
 175        check_internal(cur);
 176        /*&&&&&&&&&&&&&&&&&&&&&&&& */
 177
 178        if (cur_bi->bi_parent) {
 179                struct disk_child *t_dc =
 180                    B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
 181                put_dc_size(t_dc,
 182                            dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
 183                do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
 184                                               0);
 185
 186                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 187                check_internal(cur_bi->bi_parent);
 188                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 189        }
 190
 191}
 192
 193/* Delete del_num items and node pointers from buffer cur starting from *
 194 * the first_i'th item and first_p'th pointers respectively.            */
 195static void internal_delete_pointers_items(struct buffer_info *cur_bi,
 196                                           int first_p,
 197                                           int first_i, int del_num)
 198{
 199        struct buffer_head *cur = cur_bi->bi_bh;
 200        int nr;
 201        struct block_head *blkh;
 202        struct reiserfs_key *key;
 203        struct disk_child *dc;
 204
 205        RFALSE(cur == NULL, "buffer is 0");
 206        RFALSE(del_num < 0,
 207               "negative number of items (%d) can not be deleted", del_num);
 208        RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
 209               || first_i < 0,
 210               "first pointer order (%d) < 0 or "
 211               "no so many pointers (%d), only (%d) or "
 212               "first key order %d < 0", first_p, first_p + del_num,
 213               B_NR_ITEMS(cur) + 1, first_i);
 214        if (del_num == 0)
 215                return;
 216
 217        blkh = B_BLK_HEAD(cur);
 218        nr = blkh_nr_item(blkh);
 219
 220        if (first_p == 0 && del_num == nr + 1) {
 221                RFALSE(first_i != 0,
 222                       "1st deleted key must have order 0, not %d", first_i);
 223                make_empty_node(cur_bi);
 224                return;
 225        }
 226
 227        RFALSE(first_i + del_num > B_NR_ITEMS(cur),
 228               "first_i = %d del_num = %d "
 229               "no so many keys (%d) in the node (%b)(%z)",
 230               first_i, del_num, first_i + del_num, cur, cur);
 231
 232        /* deleting */
 233        dc = B_N_CHILD(cur, first_p);
 234
 235        memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
 236        key = B_N_PDELIM_KEY(cur, first_i);
 237        memmove(key, key + del_num,
 238                (nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
 239                                                       del_num) * DC_SIZE);
 240
 241        /* sizes, item number */
 242        set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
 243        set_blkh_free_space(blkh,
 244                            blkh_free_space(blkh) +
 245                            (del_num * (KEY_SIZE + DC_SIZE)));
 246
 247        do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
 248        /*&&&&&&&&&&&&&&&&&&&&&&& */
 249        check_internal(cur);
 250        /*&&&&&&&&&&&&&&&&&&&&&&& */
 251
 252        if (cur_bi->bi_parent) {
 253                struct disk_child *t_dc;
 254                t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
 255                put_dc_size(t_dc,
 256                            dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
 257
 258                do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
 259                                               0);
 260                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 261                check_internal(cur_bi->bi_parent);
 262                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 263        }
 264}
 265
 266/* delete n node pointers and items starting from given position */
 267static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
 268{
 269        int i_from;
 270
 271        i_from = (from == 0) ? from : from - 1;
 272
 273        /* delete n pointers starting from `from' position in CUR;
 274           delete n keys starting from 'i_from' position in CUR;
 275         */
 276        internal_delete_pointers_items(cur_bi, from, i_from, n);
 277}
 278
 279/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
 280* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
 281 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
 282 */
 283static void internal_copy_pointers_items(struct buffer_info *dest_bi,
 284                                         struct buffer_head *src,
 285                                         int last_first, int cpy_num)
 286{
 287        /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
 288         * as delimiting key have already inserted to buffer dest.*/
 289        struct buffer_head *dest = dest_bi->bi_bh;
 290        int nr_dest, nr_src;
 291        int dest_order, src_order;
 292        struct block_head *blkh;
 293        struct reiserfs_key *key;
 294        struct disk_child *dc;
 295
 296        nr_src = B_NR_ITEMS(src);
 297
 298        RFALSE(dest == NULL || src == NULL,
 299               "src (%p) or dest (%p) buffer is 0", src, dest);
 300        RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
 301               "invalid last_first parameter (%d)", last_first);
 302        RFALSE(nr_src < cpy_num - 1,
 303               "no so many items (%d) in src (%d)", cpy_num, nr_src);
 304        RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
 305        RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
 306               "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
 307               cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
 308
 309        if (cpy_num == 0)
 310                return;
 311
 312        /* coping */
 313        blkh = B_BLK_HEAD(dest);
 314        nr_dest = blkh_nr_item(blkh);
 315
 316        /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
 317        /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
 318        (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
 319                                         nr_src - cpy_num + 1) : (dest_order =
 320                                                                  nr_dest,
 321                                                                  src_order =
 322                                                                  0);
 323
 324        /* prepare space for cpy_num pointers */
 325        dc = B_N_CHILD(dest, dest_order);
 326
 327        memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
 328
 329        /* insert pointers */
 330        memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
 331
 332        /* prepare space for cpy_num - 1 item headers */
 333        key = B_N_PDELIM_KEY(dest, dest_order);
 334        memmove(key + cpy_num - 1, key,
 335                KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
 336                                                               cpy_num));
 337
 338        /* insert headers */
 339        memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
 340
 341        /* sizes, item number */
 342        set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
 343        set_blkh_free_space(blkh,
 344                            blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
 345                                                     DC_SIZE * cpy_num));
 346
 347        do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
 348
 349        /*&&&&&&&&&&&&&&&&&&&&&&&& */
 350        check_internal(dest);
 351        /*&&&&&&&&&&&&&&&&&&&&&&&& */
 352
 353        if (dest_bi->bi_parent) {
 354                struct disk_child *t_dc;
 355                t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
 356                put_dc_size(t_dc,
 357                            dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
 358                                             DC_SIZE * cpy_num));
 359
 360                do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
 361                                               0);
 362                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 363                check_internal(dest_bi->bi_parent);
 364                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 365        }
 366
 367}
 368
 369/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
 370 * Delete cpy_num - del_par items and node pointers from buffer src.
 371 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
 372 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
 373 */
 374static void internal_move_pointers_items(struct buffer_info *dest_bi,
 375                                         struct buffer_info *src_bi,
 376                                         int last_first, int cpy_num,
 377                                         int del_par)
 378{
 379        int first_pointer;
 380        int first_item;
 381
 382        internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
 383                                     cpy_num);
 384
 385        if (last_first == FIRST_TO_LAST) {      /* shift_left occurs */
 386                first_pointer = 0;
 387                first_item = 0;
 388                /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
 389                   for key - with first_item */
 390                internal_delete_pointers_items(src_bi, first_pointer,
 391                                               first_item, cpy_num - del_par);
 392        } else {                /* shift_right occurs */
 393                int i, j;
 394
 395                i = (cpy_num - del_par ==
 396                     (j =
 397                      B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
 398                    del_par;
 399
 400                internal_delete_pointers_items(src_bi,
 401                                               j + 1 - cpy_num + del_par, i,
 402                                               cpy_num - del_par);
 403        }
 404}
 405
 406/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
 407static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before,  /* insert key before key with n_dest number */
 408                                struct buffer_head *src, int src_position)
 409{
 410        struct buffer_head *dest = dest_bi->bi_bh;
 411        int nr;
 412        struct block_head *blkh;
 413        struct reiserfs_key *key;
 414
 415        RFALSE(dest == NULL || src == NULL,
 416               "source(%p) or dest(%p) buffer is 0", src, dest);
 417        RFALSE(dest_position_before < 0 || src_position < 0,
 418               "source(%d) or dest(%d) key number less than 0",
 419               src_position, dest_position_before);
 420        RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
 421               src_position >= B_NR_ITEMS(src),
 422               "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
 423               dest_position_before, B_NR_ITEMS(dest),
 424               src_position, B_NR_ITEMS(src));
 425        RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
 426               "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
 427
 428        blkh = B_BLK_HEAD(dest);
 429        nr = blkh_nr_item(blkh);
 430
 431        /* prepare space for inserting key */
 432        key = B_N_PDELIM_KEY(dest, dest_position_before);
 433        memmove(key + 1, key,
 434                (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
 435
 436        /* insert key */
 437        memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
 438
 439        /* Change dirt, free space, item number fields. */
 440
 441        set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
 442        set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
 443
 444        do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
 445
 446        if (dest_bi->bi_parent) {
 447                struct disk_child *t_dc;
 448                t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
 449                put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
 450
 451                do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
 452                                               0);
 453        }
 454}
 455
 456/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
 457 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
 458 * Replace  d_key'th key in buffer cfl.
 459 * Delete pointer_amount items and node pointers from buffer src.
 460 */
 461/* this can be invoked both to shift from S to L and from R to S */
 462static void internal_shift_left(int mode,       /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
 463                                struct tree_balance *tb,
 464                                int h, int pointer_amount)
 465{
 466        struct buffer_info dest_bi, src_bi;
 467        struct buffer_head *cf;
 468        int d_key_position;
 469
 470        internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
 471                                       &d_key_position, &cf);
 472
 473        /*printk("pointer_amount = %d\n",pointer_amount); */
 474
 475        if (pointer_amount) {
 476                /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
 477                internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
 478                                    d_key_position);
 479
 480                if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
 481                        if (src_bi.bi_position /*src->b_item_order */  == 0)
 482                                replace_key(tb, cf, d_key_position,
 483                                            src_bi.
 484                                            bi_parent /*src->b_parent */ , 0);
 485                } else
 486                        replace_key(tb, cf, d_key_position, src_bi.bi_bh,
 487                                    pointer_amount - 1);
 488        }
 489        /* last parameter is del_parameter */
 490        internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
 491                                     pointer_amount, 0);
 492
 493}
 494
 495/* Insert delimiting key to L[h].
 496 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
 497 * Delete n - 1 items and node pointers from buffer S[h].
 498 */
 499/* it always shifts from S[h] to L[h] */
 500static void internal_shift1_left(struct tree_balance *tb,
 501                                 int h, int pointer_amount)
 502{
 503        struct buffer_info dest_bi, src_bi;
 504        struct buffer_head *cf;
 505        int d_key_position;
 506
 507        internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
 508                                       &dest_bi, &src_bi, &d_key_position, &cf);
 509
 510        if (pointer_amount > 0) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
 511                internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
 512                                    d_key_position);
 513        /*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
 514
 515        /* last parameter is del_parameter */
 516        internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
 517                                     pointer_amount, 1);
 518        /*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
 519}
 520
 521/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
 522 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
 523 * Replace  d_key'th key in buffer cfr.
 524 * Delete n items and node pointers from buffer src.
 525 */
 526static void internal_shift_right(int mode,      /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
 527                                 struct tree_balance *tb,
 528                                 int h, int pointer_amount)
 529{
 530        struct buffer_info dest_bi, src_bi;
 531        struct buffer_head *cf;
 532        int d_key_position;
 533        int nr;
 534
 535        internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
 536                                       &d_key_position, &cf);
 537
 538        nr = B_NR_ITEMS(src_bi.bi_bh);
 539
 540        if (pointer_amount > 0) {
 541                /* insert delimiting key from common father of dest and src to dest node into position 0 */
 542                internal_insert_key(&dest_bi, 0, cf, d_key_position);
 543                if (nr == pointer_amount - 1) {
 544                        RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
 545                               dest_bi.bi_bh != tb->R[h],
 546                               "src (%p) must be == tb->S[h](%p) when it disappears",
 547                               src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
 548                        /* when S[h] disappers replace left delemiting key as well */
 549                        if (tb->CFL[h])
 550                                replace_key(tb, cf, d_key_position, tb->CFL[h],
 551                                            tb->lkey[h]);
 552                } else
 553                        replace_key(tb, cf, d_key_position, src_bi.bi_bh,
 554                                    nr - pointer_amount);
 555        }
 556
 557        /* last parameter is del_parameter */
 558        internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
 559                                     pointer_amount, 0);
 560}
 561
 562/* Insert delimiting key to R[h].
 563 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
 564 * Delete n - 1 items and node pointers from buffer S[h].
 565 */
 566/* it always shift from S[h] to R[h] */
 567static void internal_shift1_right(struct tree_balance *tb,
 568                                  int h, int pointer_amount)
 569{
 570        struct buffer_info dest_bi, src_bi;
 571        struct buffer_head *cf;
 572        int d_key_position;
 573
 574        internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
 575                                       &dest_bi, &src_bi, &d_key_position, &cf);
 576
 577        if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
 578                internal_insert_key(&dest_bi, 0, cf, d_key_position);
 579        /*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
 580
 581        /* last parameter is del_parameter */
 582        internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
 583                                     pointer_amount, 1);
 584        /*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
 585}
 586
 587/* Delete insert_num node pointers together with their left items
 588 * and balance current node.*/
 589static void balance_internal_when_delete(struct tree_balance *tb,
 590                                         int h, int child_pos)
 591{
 592        int insert_num;
 593        int n;
 594        struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
 595        struct buffer_info bi;
 596
 597        insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
 598
 599        /* delete child-node-pointer(s) together with their left item(s) */
 600        bi.tb = tb;
 601        bi.bi_bh = tbSh;
 602        bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
 603        bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
 604
 605        internal_delete_childs(&bi, child_pos, -insert_num);
 606
 607        RFALSE(tb->blknum[h] > 1,
 608               "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
 609
 610        n = B_NR_ITEMS(tbSh);
 611
 612        if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
 613                if (tb->blknum[h] == 0) {
 614                        /* node S[h] (root of the tree) is empty now */
 615                        struct buffer_head *new_root;
 616
 617                        RFALSE(n
 618                               || B_FREE_SPACE(tbSh) !=
 619                               MAX_CHILD_SIZE(tbSh) - DC_SIZE,
 620                               "buffer must have only 0 keys (%d)", n);
 621                        RFALSE(bi.bi_parent, "root has parent (%p)",
 622                               bi.bi_parent);
 623
 624                        /* choose a new root */
 625                        if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
 626                                new_root = tb->R[h - 1];
 627                        else
 628                                new_root = tb->L[h - 1];
 629                        /* switch super block's tree root block number to the new value */
 630                        PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
 631                        //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
 632                        PUT_SB_TREE_HEIGHT(tb->tb_sb,
 633                                           SB_TREE_HEIGHT(tb->tb_sb) - 1);
 634
 635                        do_balance_mark_sb_dirty(tb,
 636                                                 REISERFS_SB(tb->tb_sb)->s_sbh,
 637                                                 1);
 638                        /*&&&&&&&&&&&&&&&&&&&&&& */
 639                        if (h > 1)
 640                                /* use check_internal if new root is an internal node */
 641                                check_internal(new_root);
 642                        /*&&&&&&&&&&&&&&&&&&&&&& */
 643
 644                        /* do what is needed for buffer thrown from tree */
 645                        reiserfs_invalidate_buffer(tb, tbSh);
 646                        return;
 647                }
 648                return;
 649        }
 650
 651        if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {     /* join S[h] with L[h] */
 652
 653                RFALSE(tb->rnum[h] != 0,
 654                       "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
 655                       h, tb->rnum[h]);
 656
 657                internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
 658                reiserfs_invalidate_buffer(tb, tbSh);
 659
 660                return;
 661        }
 662
 663        if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {     /* join S[h] with R[h] */
 664                RFALSE(tb->lnum[h] != 0,
 665                       "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
 666                       h, tb->lnum[h]);
 667
 668                internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
 669
 670                reiserfs_invalidate_buffer(tb, tbSh);
 671                return;
 672        }
 673
 674        if (tb->lnum[h] < 0) {  /* borrow from left neighbor L[h] */
 675                RFALSE(tb->rnum[h] != 0,
 676                       "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
 677                       tb->rnum[h]);
 678                /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
 679                internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
 680                                     -tb->lnum[h]);
 681                return;
 682        }
 683
 684        if (tb->rnum[h] < 0) {  /* borrow from right neighbor R[h] */
 685                RFALSE(tb->lnum[h] != 0,
 686                       "invalid tb->lnum[%d]==%d when borrow from R[h]",
 687                       h, tb->lnum[h]);
 688                internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);   /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
 689                return;
 690        }
 691
 692        if (tb->lnum[h] > 0) {  /* split S[h] into two parts and put them into neighbors */
 693                RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
 694                       "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
 695                       h, tb->lnum[h], h, tb->rnum[h], n);
 696
 697                internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);    /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
 698                internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
 699                                     tb->rnum[h]);
 700
 701                reiserfs_invalidate_buffer(tb, tbSh);
 702
 703                return;
 704        }
 705        reiserfs_panic(tb->tb_sb, "ibalance-2",
 706                       "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
 707                       h, tb->lnum[h], h, tb->rnum[h]);
 708}
 709
 710/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
 711static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
 712{
 713        RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
 714               "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
 715               tb->L[h], tb->CFL[h]);
 716
 717        if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
 718                return;
 719
 720        memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
 721
 722        do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
 723}
 724
 725/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
 726static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
 727{
 728        RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
 729               "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
 730               tb->R[h], tb->CFR[h]);
 731        RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
 732               "R[h] can not be empty if it exists (item number=%d)",
 733               B_NR_ITEMS(tb->R[h]));
 734
 735        memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
 736
 737        do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
 738}
 739
 740int balance_internal(struct tree_balance *tb,   /* tree_balance structure               */
 741                     int h,     /* level of the tree                    */
 742                     int child_pos, struct item_head *insert_key,       /* key for insertion on higher level    */
 743                     struct buffer_head **insert_ptr    /* node for insertion on higher level */
 744    )
 745    /* if inserting/pasting
 746       {
 747       child_pos is the position of the node-pointer in S[h] that        *
 748       pointed to S[h-1] before balancing of the h-1 level;              *
 749       this means that new pointers and items must be inserted AFTER *
 750       child_pos
 751       }
 752       else
 753       {
 754       it is the position of the leftmost pointer that must be deleted (together with
 755       its corresponding key to the left of the pointer)
 756       as a result of the previous level's balancing.
 757       }
 758     */
 759{
 760        struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
 761        struct buffer_info bi;
 762        int order;              /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
 763        int insert_num, n, k;
 764        struct buffer_head *S_new;
 765        struct item_head new_insert_key;
 766        struct buffer_head *new_insert_ptr = NULL;
 767        struct item_head *new_insert_key_addr = insert_key;
 768
 769        RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
 770
 771        PROC_INFO_INC(tb->tb_sb, balance_at[h]);
 772
 773        order =
 774            (tbSh) ? PATH_H_POSITION(tb->tb_path,
 775                                     h + 1) /*tb->S[h]->b_item_order */ : 0;
 776
 777        /* Using insert_size[h] calculate the number insert_num of items
 778           that must be inserted to or deleted from S[h]. */
 779        insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
 780
 781        /* Check whether insert_num is proper * */
 782        RFALSE(insert_num < -2 || insert_num > 2,
 783               "incorrect number of items inserted to the internal node (%d)",
 784               insert_num);
 785        RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
 786               "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
 787               insert_num, h);
 788
 789        /* Make balance in case insert_num < 0 */
 790        if (insert_num < 0) {
 791                balance_internal_when_delete(tb, h, child_pos);
 792                return order;
 793        }
 794
 795        k = 0;
 796        if (tb->lnum[h] > 0) {
 797                /* shift lnum[h] items from S[h] to the left neighbor L[h].
 798                   check how many of new items fall into L[h] or CFL[h] after
 799                   shifting */
 800                n = B_NR_ITEMS(tb->L[h]);       /* number of items in L[h] */
 801                if (tb->lnum[h] <= child_pos) {
 802                        /* new items don't fall into L[h] or CFL[h] */
 803                        internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
 804                                            tb->lnum[h]);
 805                        /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
 806                        child_pos -= tb->lnum[h];
 807                } else if (tb->lnum[h] > child_pos + insert_num) {
 808                        /* all new items fall into L[h] */
 809                        internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
 810                                            tb->lnum[h] - insert_num);
 811                        /*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
 812                           tb->lnum[h]-insert_num);
 813                         */
 814                        /* insert insert_num keys and node-pointers into L[h] */
 815                        bi.tb = tb;
 816                        bi.bi_bh = tb->L[h];
 817                        bi.bi_parent = tb->FL[h];
 818                        bi.bi_position = get_left_neighbor_position(tb, h);
 819                        internal_insert_childs(&bi,
 820                                               /*tb->L[h], tb->S[h-1]->b_next */
 821                                               n + child_pos + 1,
 822                                               insert_num, insert_key,
 823                                               insert_ptr);
 824
 825                        insert_num = 0;
 826                } else {
 827                        struct disk_child *dc;
 828
 829                        /* some items fall into L[h] or CFL[h], but some don't fall */
 830                        internal_shift1_left(tb, h, child_pos + 1);
 831                        /* calculate number of new items that fall into L[h] */
 832                        k = tb->lnum[h] - child_pos - 1;
 833                        bi.tb = tb;
 834                        bi.bi_bh = tb->L[h];
 835                        bi.bi_parent = tb->FL[h];
 836                        bi.bi_position = get_left_neighbor_position(tb, h);
 837                        internal_insert_childs(&bi,
 838                                               /*tb->L[h], tb->S[h-1]->b_next, */
 839                                               n + child_pos + 1, k,
 840                                               insert_key, insert_ptr);
 841
 842                        replace_lkey(tb, h, insert_key + k);
 843
 844                        /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
 845                        dc = B_N_CHILD(tbSh, 0);
 846                        put_dc_size(dc,
 847                                    MAX_CHILD_SIZE(insert_ptr[k]) -
 848                                    B_FREE_SPACE(insert_ptr[k]));
 849                        put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
 850
 851                        do_balance_mark_internal_dirty(tb, tbSh, 0);
 852
 853                        k++;
 854                        insert_key += k;
 855                        insert_ptr += k;
 856                        insert_num -= k;
 857                        child_pos = 0;
 858                }
 859        }
 860        /* tb->lnum[h] > 0 */
 861        if (tb->rnum[h] > 0) {
 862                /*shift rnum[h] items from S[h] to the right neighbor R[h] */
 863                /* check how many of new items fall into R or CFR after shifting */
 864                n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
 865                if (n - tb->rnum[h] >= child_pos)
 866                        /* new items fall into S[h] */
 867                        /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
 868                        internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
 869                                             tb->rnum[h]);
 870                else if (n + insert_num - tb->rnum[h] < child_pos) {
 871                        /* all new items fall into R[h] */
 872                        /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
 873                           tb->rnum[h] - insert_num); */
 874                        internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
 875                                             tb->rnum[h] - insert_num);
 876
 877                        /* insert insert_num keys and node-pointers into R[h] */
 878                        bi.tb = tb;
 879                        bi.bi_bh = tb->R[h];
 880                        bi.bi_parent = tb->FR[h];
 881                        bi.bi_position = get_right_neighbor_position(tb, h);
 882                        internal_insert_childs(&bi,
 883                                               /*tb->R[h],tb->S[h-1]->b_next */
 884                                               child_pos - n - insert_num +
 885                                               tb->rnum[h] - 1,
 886                                               insert_num, insert_key,
 887                                               insert_ptr);
 888                        insert_num = 0;
 889                } else {
 890                        struct disk_child *dc;
 891
 892                        /* one of the items falls into CFR[h] */
 893                        internal_shift1_right(tb, h, n - child_pos + 1);
 894                        /* calculate number of new items that fall into R[h] */
 895                        k = tb->rnum[h] - n + child_pos - 1;
 896                        bi.tb = tb;
 897                        bi.bi_bh = tb->R[h];
 898                        bi.bi_parent = tb->FR[h];
 899                        bi.bi_position = get_right_neighbor_position(tb, h);
 900                        internal_insert_childs(&bi,
 901                                               /*tb->R[h], tb->R[h]->b_child, */
 902                                               0, k, insert_key + 1,
 903                                               insert_ptr + 1);
 904
 905                        replace_rkey(tb, h, insert_key + insert_num - k - 1);
 906
 907                        /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
 908                        dc = B_N_CHILD(tb->R[h], 0);
 909                        put_dc_size(dc,
 910                                    MAX_CHILD_SIZE(insert_ptr
 911                                                   [insert_num - k - 1]) -
 912                                    B_FREE_SPACE(insert_ptr
 913                                                 [insert_num - k - 1]));
 914                        put_dc_block_number(dc,
 915                                            insert_ptr[insert_num - k -
 916                                                       1]->b_blocknr);
 917
 918                        do_balance_mark_internal_dirty(tb, tb->R[h], 0);
 919
 920                        insert_num -= (k + 1);
 921                }
 922        }
 923
 924    /** Fill new node that appears instead of S[h] **/
 925        RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
 926        RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
 927
 928        if (!tb->blknum[h]) {   /* node S[h] is empty now */
 929                RFALSE(!tbSh, "S[h] is equal NULL");
 930
 931                /* do what is needed for buffer thrown from tree */
 932                reiserfs_invalidate_buffer(tb, tbSh);
 933                return order;
 934        }
 935
 936        if (!tbSh) {
 937                /* create new root */
 938                struct disk_child *dc;
 939                struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
 940                struct block_head *blkh;
 941
 942                if (tb->blknum[h] != 1)
 943                        reiserfs_panic(NULL, "ibalance-3", "One new node "
 944                                       "required for creating the new root");
 945                /* S[h] = empty buffer from the list FEB. */
 946                tbSh = get_FEB(tb);
 947                blkh = B_BLK_HEAD(tbSh);
 948                set_blkh_level(blkh, h + 1);
 949
 950                /* Put the unique node-pointer to S[h] that points to S[h-1]. */
 951
 952                dc = B_N_CHILD(tbSh, 0);
 953                put_dc_block_number(dc, tbSh_1->b_blocknr);
 954                put_dc_size(dc,
 955                            (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
 956
 957                tb->insert_size[h] -= DC_SIZE;
 958                set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
 959
 960                do_balance_mark_internal_dirty(tb, tbSh, 0);
 961
 962                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 963                check_internal(tbSh);
 964                /*&&&&&&&&&&&&&&&&&&&&&&&& */
 965
 966                /* put new root into path structure */
 967                PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
 968                    tbSh;
 969
 970                /* Change root in structure super block. */
 971                PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
 972                PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
 973                do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
 974        }
 975
 976        if (tb->blknum[h] == 2) {
 977                int snum;
 978                struct buffer_info dest_bi, src_bi;
 979
 980                /* S_new = free buffer from list FEB */
 981                S_new = get_FEB(tb);
 982
 983                set_blkh_level(B_BLK_HEAD(S_new), h + 1);
 984
 985                dest_bi.tb = tb;
 986                dest_bi.bi_bh = S_new;
 987                dest_bi.bi_parent = NULL;
 988                dest_bi.bi_position = 0;
 989                src_bi.tb = tb;
 990                src_bi.bi_bh = tbSh;
 991                src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
 992                src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
 993
 994                n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
 995                snum = (insert_num + n + 1) / 2;
 996                if (n - snum >= child_pos) {
 997                        /* new items don't fall into S_new */
 998                        /*  store the delimiting key for the next level */
 999                        /* new_insert_key = (n - snum)'th key in S[h] */
1000                        memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1001                               KEY_SIZE);
1002                        /* last parameter is del_par */
1003                        internal_move_pointers_items(&dest_bi, &src_bi,
1004                                                     LAST_TO_FIRST, snum, 0);
1005                        /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1006                } else if (n + insert_num - snum < child_pos) {
1007                        /* all new items fall into S_new */
1008                        /*  store the delimiting key for the next level */
1009                        /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1010                        memcpy(&new_insert_key,
1011                               B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1012                               KEY_SIZE);
1013                        /* last parameter is del_par */
1014                        internal_move_pointers_items(&dest_bi, &src_bi,
1015                                                     LAST_TO_FIRST,
1016                                                     snum - insert_num, 0);
1017                        /*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1018
1019                        /* insert insert_num keys and node-pointers into S_new */
1020                        internal_insert_childs(&dest_bi,
1021                                               /*S_new,tb->S[h-1]->b_next, */
1022                                               child_pos - n - insert_num +
1023                                               snum - 1,
1024                                               insert_num, insert_key,
1025                                               insert_ptr);
1026
1027                        insert_num = 0;
1028                } else {
1029                        struct disk_child *dc;
1030
1031                        /* some items fall into S_new, but some don't fall */
1032                        /* last parameter is del_par */
1033                        internal_move_pointers_items(&dest_bi, &src_bi,
1034                                                     LAST_TO_FIRST,
1035                                                     n - child_pos + 1, 1);
1036                        /*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1037                        /* calculate number of new items that fall into S_new */
1038                        k = snum - n + child_pos - 1;
1039
1040                        internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1041                                               insert_key + 1, insert_ptr + 1);
1042
1043                        /* new_insert_key = insert_key[insert_num - k - 1] */
1044                        memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1045                               KEY_SIZE);
1046                        /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1047
1048                        dc = B_N_CHILD(S_new, 0);
1049                        put_dc_size(dc,
1050                                    (MAX_CHILD_SIZE
1051                                     (insert_ptr[insert_num - k - 1]) -
1052                                     B_FREE_SPACE(insert_ptr
1053                                                  [insert_num - k - 1])));
1054                        put_dc_block_number(dc,
1055                                            insert_ptr[insert_num - k -
1056                                                       1]->b_blocknr);
1057
1058                        do_balance_mark_internal_dirty(tb, S_new, 0);
1059
1060                        insert_num -= (k + 1);
1061                }
1062                /* new_insert_ptr = node_pointer to S_new */
1063                new_insert_ptr = S_new;
1064
1065                RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1066                       || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1067                       S_new);
1068
1069                // S_new is released in unfix_nodes
1070        }
1071
1072        n = B_NR_ITEMS(tbSh);   /*number of items in S[h] */
1073
1074        if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1075                bi.tb = tb;
1076                bi.bi_bh = tbSh;
1077                bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1078                bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1079                internal_insert_childs(&bi,     /*tbSh, */
1080                                       /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1081                                       child_pos, insert_num, insert_key,
1082                                       insert_ptr);
1083        }
1084
1085        memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1086        insert_ptr[0] = new_insert_ptr;
1087
1088        return order;
1089}
1090
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.