linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 107
 108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 110                         unsigned long nr_segs, loff_t pos);
 111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 112                          unsigned long nr_segs, loff_t pos);
 113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 114
 115static int sock_close(struct inode *inode, struct file *file);
 116static unsigned int sock_poll(struct file *file,
 117                              struct poll_table_struct *wait);
 118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 119#ifdef CONFIG_COMPAT
 120static long compat_sock_ioctl(struct file *file,
 121                              unsigned int cmd, unsigned long arg);
 122#endif
 123static int sock_fasync(int fd, struct file *filp, int on);
 124static ssize_t sock_sendpage(struct file *file, struct page *page,
 125                             int offset, size_t size, loff_t *ppos, int more);
 126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 127                                struct pipe_inode_info *pipe, size_t len,
 128                                unsigned int flags);
 129
 130/*
 131 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 132 *      in the operation structures but are done directly via the socketcall() multiplexor.
 133 */
 134
 135static const struct file_operations socket_file_ops = {
 136        .owner =        THIS_MODULE,
 137        .llseek =       no_llseek,
 138        .aio_read =     sock_aio_read,
 139        .aio_write =    sock_aio_write,
 140        .poll =         sock_poll,
 141        .unlocked_ioctl = sock_ioctl,
 142#ifdef CONFIG_COMPAT
 143        .compat_ioctl = compat_sock_ioctl,
 144#endif
 145        .mmap =         sock_mmap,
 146        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 147        .release =      sock_close,
 148        .fasync =       sock_fasync,
 149        .sendpage =     sock_sendpage,
 150        .splice_write = generic_splice_sendpage,
 151        .splice_read =  sock_splice_read,
 152};
 153
 154/*
 155 *      The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 *      Statistics counters of the socket lists
 163 */
 164
 165static DEFINE_PER_CPU(int, sockets_in_use);
 166
 167/*
 168 * Support routines.
 169 * Move socket addresses back and forth across the kernel/user
 170 * divide and look after the messy bits.
 171 */
 172
 173/**
 174 *      move_addr_to_kernel     -       copy a socket address into kernel space
 175 *      @uaddr: Address in user space
 176 *      @kaddr: Address in kernel space
 177 *      @ulen: Length in user space
 178 *
 179 *      The address is copied into kernel space. If the provided address is
 180 *      too long an error code of -EINVAL is returned. If the copy gives
 181 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 182 */
 183
 184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 185{
 186        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 187                return -EINVAL;
 188        if (ulen == 0)
 189                return 0;
 190        if (copy_from_user(kaddr, uaddr, ulen))
 191                return -EFAULT;
 192        return audit_sockaddr(ulen, kaddr);
 193}
 194
 195/**
 196 *      move_addr_to_user       -       copy an address to user space
 197 *      @kaddr: kernel space address
 198 *      @klen: length of address in kernel
 199 *      @uaddr: user space address
 200 *      @ulen: pointer to user length field
 201 *
 202 *      The value pointed to by ulen on entry is the buffer length available.
 203 *      This is overwritten with the buffer space used. -EINVAL is returned
 204 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 205 *      is returned if either the buffer or the length field are not
 206 *      accessible.
 207 *      After copying the data up to the limit the user specifies, the true
 208 *      length of the data is written over the length limit the user
 209 *      specified. Zero is returned for a success.
 210 */
 211
 212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 213                             void __user *uaddr, int __user *ulen)
 214{
 215        int err;
 216        int len;
 217
 218        err = get_user(len, ulen);
 219        if (err)
 220                return err;
 221        if (len > klen)
 222                len = klen;
 223        if (len < 0 || len > sizeof(struct sockaddr_storage))
 224                return -EINVAL;
 225        if (len) {
 226                if (audit_sockaddr(klen, kaddr))
 227                        return -ENOMEM;
 228                if (copy_to_user(uaddr, kaddr, len))
 229                        return -EFAULT;
 230        }
 231        /*
 232         *      "fromlen shall refer to the value before truncation.."
 233         *                      1003.1g
 234         */
 235        return __put_user(klen, ulen);
 236}
 237
 238static struct kmem_cache *sock_inode_cachep __read_mostly;
 239
 240static struct inode *sock_alloc_inode(struct super_block *sb)
 241{
 242        struct socket_alloc *ei;
 243        struct socket_wq *wq;
 244
 245        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 246        if (!ei)
 247                return NULL;
 248        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 249        if (!wq) {
 250                kmem_cache_free(sock_inode_cachep, ei);
 251                return NULL;
 252        }
 253        init_waitqueue_head(&wq->wait);
 254        wq->fasync_list = NULL;
 255        RCU_INIT_POINTER(ei->socket.wq, wq);
 256
 257        ei->socket.state = SS_UNCONNECTED;
 258        ei->socket.flags = 0;
 259        ei->socket.ops = NULL;
 260        ei->socket.sk = NULL;
 261        ei->socket.file = NULL;
 262
 263        return &ei->vfs_inode;
 264}
 265
 266static void sock_destroy_inode(struct inode *inode)
 267{
 268        struct socket_alloc *ei;
 269        struct socket_wq *wq;
 270
 271        ei = container_of(inode, struct socket_alloc, vfs_inode);
 272        wq = rcu_dereference_protected(ei->socket.wq, 1);
 273        kfree_rcu(wq, rcu);
 274        kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279        struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281        inode_init_once(&ei->vfs_inode);
 282}
 283
 284static int init_inodecache(void)
 285{
 286        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287                                              sizeof(struct socket_alloc),
 288                                              0,
 289                                              (SLAB_HWCACHE_ALIGN |
 290                                               SLAB_RECLAIM_ACCOUNT |
 291                                               SLAB_MEM_SPREAD),
 292                                              init_once);
 293        if (sock_inode_cachep == NULL)
 294                return -ENOMEM;
 295        return 0;
 296}
 297
 298static const struct super_operations sockfs_ops = {
 299        .alloc_inode    = sock_alloc_inode,
 300        .destroy_inode  = sock_destroy_inode,
 301        .statfs         = simple_statfs,
 302};
 303
 304/*
 305 * sockfs_dname() is called from d_path().
 306 */
 307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 308{
 309        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 310                                dentry->d_inode->i_ino);
 311}
 312
 313static const struct dentry_operations sockfs_dentry_operations = {
 314        .d_dname  = sockfs_dname,
 315};
 316
 317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 318                         int flags, const char *dev_name, void *data)
 319{
 320        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 321                &sockfs_dentry_operations, SOCKFS_MAGIC);
 322}
 323
 324static struct vfsmount *sock_mnt __read_mostly;
 325
 326static struct file_system_type sock_fs_type = {
 327        .name =         "sockfs",
 328        .mount =        sockfs_mount,
 329        .kill_sb =      kill_anon_super,
 330};
 331
 332/*
 333 *      Obtains the first available file descriptor and sets it up for use.
 334 *
 335 *      These functions create file structures and maps them to fd space
 336 *      of the current process. On success it returns file descriptor
 337 *      and file struct implicitly stored in sock->file.
 338 *      Note that another thread may close file descriptor before we return
 339 *      from this function. We use the fact that now we do not refer
 340 *      to socket after mapping. If one day we will need it, this
 341 *      function will increment ref. count on file by 1.
 342 *
 343 *      In any case returned fd MAY BE not valid!
 344 *      This race condition is unavoidable
 345 *      with shared fd spaces, we cannot solve it inside kernel,
 346 *      but we take care of internal coherence yet.
 347 */
 348
 349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 350{
 351        struct qstr name = { .name = "" };
 352        struct path path;
 353        struct file *file;
 354        int fd;
 355
 356        fd = get_unused_fd_flags(flags);
 357        if (unlikely(fd < 0))
 358                return fd;
 359
 360        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 361        if (unlikely(!path.dentry)) {
 362                put_unused_fd(fd);
 363                return -ENOMEM;
 364        }
 365        path.mnt = mntget(sock_mnt);
 366
 367        d_instantiate(path.dentry, SOCK_INODE(sock));
 368        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 369
 370        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 371                  &socket_file_ops);
 372        if (unlikely(!file)) {
 373                /* drop dentry, keep inode */
 374                ihold(path.dentry->d_inode);
 375                path_put(&path);
 376                put_unused_fd(fd);
 377                return -ENFILE;
 378        }
 379
 380        sock->file = file;
 381        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382        file->f_pos = 0;
 383        file->private_data = sock;
 384
 385        *f = file;
 386        return fd;
 387}
 388
 389int sock_map_fd(struct socket *sock, int flags)
 390{
 391        struct file *newfile;
 392        int fd = sock_alloc_file(sock, &newfile, flags);
 393
 394        if (likely(fd >= 0))
 395                fd_install(fd, newfile);
 396
 397        return fd;
 398}
 399EXPORT_SYMBOL(sock_map_fd);
 400
 401static struct socket *sock_from_file(struct file *file, int *err)
 402{
 403        if (file->f_op == &socket_file_ops)
 404                return file->private_data;      /* set in sock_map_fd */
 405
 406        *err = -ENOTSOCK;
 407        return NULL;
 408}
 409
 410/**
 411 *      sockfd_lookup - Go from a file number to its socket slot
 412 *      @fd: file handle
 413 *      @err: pointer to an error code return
 414 *
 415 *      The file handle passed in is locked and the socket it is bound
 416 *      too is returned. If an error occurs the err pointer is overwritten
 417 *      with a negative errno code and NULL is returned. The function checks
 418 *      for both invalid handles and passing a handle which is not a socket.
 419 *
 420 *      On a success the socket object pointer is returned.
 421 */
 422
 423struct socket *sockfd_lookup(int fd, int *err)
 424{
 425        struct file *file;
 426        struct socket *sock;
 427
 428        file = fget(fd);
 429        if (!file) {
 430                *err = -EBADF;
 431                return NULL;
 432        }
 433
 434        sock = sock_from_file(file, err);
 435        if (!sock)
 436                fput(file);
 437        return sock;
 438}
 439EXPORT_SYMBOL(sockfd_lookup);
 440
 441static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 442{
 443        struct file *file;
 444        struct socket *sock;
 445
 446        *err = -EBADF;
 447        file = fget_light(fd, fput_needed);
 448        if (file) {
 449                sock = sock_from_file(file, err);
 450                if (sock)
 451                        return sock;
 452                fput_light(file, *fput_needed);
 453        }
 454        return NULL;
 455}
 456
 457/**
 458 *      sock_alloc      -       allocate a socket
 459 *
 460 *      Allocate a new inode and socket object. The two are bound together
 461 *      and initialised. The socket is then returned. If we are out of inodes
 462 *      NULL is returned.
 463 */
 464
 465static struct socket *sock_alloc(void)
 466{
 467        struct inode *inode;
 468        struct socket *sock;
 469
 470        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 471        if (!inode)
 472                return NULL;
 473
 474        sock = SOCKET_I(inode);
 475
 476        kmemcheck_annotate_bitfield(sock, type);
 477        inode->i_ino = get_next_ino();
 478        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 479        inode->i_uid = current_fsuid();
 480        inode->i_gid = current_fsgid();
 481
 482        this_cpu_add(sockets_in_use, 1);
 483        return sock;
 484}
 485
 486/*
 487 *      In theory you can't get an open on this inode, but /proc provides
 488 *      a back door. Remember to keep it shut otherwise you'll let the
 489 *      creepy crawlies in.
 490 */
 491
 492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 493{
 494        return -ENXIO;
 495}
 496
 497const struct file_operations bad_sock_fops = {
 498        .owner = THIS_MODULE,
 499        .open = sock_no_open,
 500        .llseek = noop_llseek,
 501};
 502
 503/**
 504 *      sock_release    -       close a socket
 505 *      @sock: socket to close
 506 *
 507 *      The socket is released from the protocol stack if it has a release
 508 *      callback, and the inode is then released if the socket is bound to
 509 *      an inode not a file.
 510 */
 511
 512void sock_release(struct socket *sock)
 513{
 514        if (sock->ops) {
 515                struct module *owner = sock->ops->owner;
 516
 517                sock->ops->release(sock);
 518                sock->ops = NULL;
 519                module_put(owner);
 520        }
 521
 522        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 523                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 524
 525        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 526                return;
 527
 528        this_cpu_sub(sockets_in_use, 1);
 529        if (!sock->file) {
 530                iput(SOCK_INODE(sock));
 531                return;
 532        }
 533        sock->file = NULL;
 534}
 535EXPORT_SYMBOL(sock_release);
 536
 537int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 538{
 539        *tx_flags = 0;
 540        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 541                *tx_flags |= SKBTX_HW_TSTAMP;
 542        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 543                *tx_flags |= SKBTX_SW_TSTAMP;
 544        if (sock_flag(sk, SOCK_WIFI_STATUS))
 545                *tx_flags |= SKBTX_WIFI_STATUS;
 546        return 0;
 547}
 548EXPORT_SYMBOL(sock_tx_timestamp);
 549
 550static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 551                                       struct msghdr *msg, size_t size)
 552{
 553        struct sock_iocb *si = kiocb_to_siocb(iocb);
 554
 555        sock_update_classid(sock->sk);
 556
 557        sock_update_netprioidx(sock->sk);
 558
 559        si->sock = sock;
 560        si->scm = NULL;
 561        si->msg = msg;
 562        si->size = size;
 563
 564        return sock->ops->sendmsg(iocb, sock, msg, size);
 565}
 566
 567static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 568                                 struct msghdr *msg, size_t size)
 569{
 570        int err = security_socket_sendmsg(sock, msg, size);
 571
 572        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 573}
 574
 575int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 576{
 577        struct kiocb iocb;
 578        struct sock_iocb siocb;
 579        int ret;
 580
 581        init_sync_kiocb(&iocb, NULL);
 582        iocb.private = &siocb;
 583        ret = __sock_sendmsg(&iocb, sock, msg, size);
 584        if (-EIOCBQUEUED == ret)
 585                ret = wait_on_sync_kiocb(&iocb);
 586        return ret;
 587}
 588EXPORT_SYMBOL(sock_sendmsg);
 589
 590static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 591{
 592        struct kiocb iocb;
 593        struct sock_iocb siocb;
 594        int ret;
 595
 596        init_sync_kiocb(&iocb, NULL);
 597        iocb.private = &siocb;
 598        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 599        if (-EIOCBQUEUED == ret)
 600                ret = wait_on_sync_kiocb(&iocb);
 601        return ret;
 602}
 603
 604int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 605                   struct kvec *vec, size_t num, size_t size)
 606{
 607        mm_segment_t oldfs = get_fs();
 608        int result;
 609
 610        set_fs(KERNEL_DS);
 611        /*
 612         * the following is safe, since for compiler definitions of kvec and
 613         * iovec are identical, yielding the same in-core layout and alignment
 614         */
 615        msg->msg_iov = (struct iovec *)vec;
 616        msg->msg_iovlen = num;
 617        result = sock_sendmsg(sock, msg, size);
 618        set_fs(oldfs);
 619        return result;
 620}
 621EXPORT_SYMBOL(kernel_sendmsg);
 622
 623static int ktime2ts(ktime_t kt, struct timespec *ts)
 624{
 625        if (kt.tv64) {
 626                *ts = ktime_to_timespec(kt);
 627                return 1;
 628        } else {
 629                return 0;
 630        }
 631}
 632
 633/*
 634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 635 */
 636void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 637        struct sk_buff *skb)
 638{
 639        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 640        struct timespec ts[3];
 641        int empty = 1;
 642        struct skb_shared_hwtstamps *shhwtstamps =
 643                skb_hwtstamps(skb);
 644
 645        /* Race occurred between timestamp enabling and packet
 646           receiving.  Fill in the current time for now. */
 647        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 648                __net_timestamp(skb);
 649
 650        if (need_software_tstamp) {
 651                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 652                        struct timeval tv;
 653                        skb_get_timestamp(skb, &tv);
 654                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 655                                 sizeof(tv), &tv);
 656                } else {
 657                        skb_get_timestampns(skb, &ts[0]);
 658                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 659                                 sizeof(ts[0]), &ts[0]);
 660                }
 661        }
 662
 663
 664        memset(ts, 0, sizeof(ts));
 665        if (skb->tstamp.tv64 &&
 666            sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 667                skb_get_timestampns(skb, ts + 0);
 668                empty = 0;
 669        }
 670        if (shhwtstamps) {
 671                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 672                    ktime2ts(shhwtstamps->syststamp, ts + 1))
 673                        empty = 0;
 674                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 675                    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 676                        empty = 0;
 677        }
 678        if (!empty)
 679                put_cmsg(msg, SOL_SOCKET,
 680                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 681}
 682EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 683
 684void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 685        struct sk_buff *skb)
 686{
 687        int ack;
 688
 689        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 690                return;
 691        if (!skb->wifi_acked_valid)
 692                return;
 693
 694        ack = skb->wifi_acked;
 695
 696        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 697}
 698EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 699
 700static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 701                                   struct sk_buff *skb)
 702{
 703        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 704                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 705                        sizeof(__u32), &skb->dropcount);
 706}
 707
 708void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 709        struct sk_buff *skb)
 710{
 711        sock_recv_timestamp(msg, sk, skb);
 712        sock_recv_drops(msg, sk, skb);
 713}
 714EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 715
 716static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 717                                       struct msghdr *msg, size_t size, int flags)
 718{
 719        struct sock_iocb *si = kiocb_to_siocb(iocb);
 720
 721        sock_update_classid(sock->sk);
 722
 723        si->sock = sock;
 724        si->scm = NULL;
 725        si->msg = msg;
 726        si->size = size;
 727        si->flags = flags;
 728
 729        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 730}
 731
 732static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 733                                 struct msghdr *msg, size_t size, int flags)
 734{
 735        int err = security_socket_recvmsg(sock, msg, size, flags);
 736
 737        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 738}
 739
 740int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 741                 size_t size, int flags)
 742{
 743        struct kiocb iocb;
 744        struct sock_iocb siocb;
 745        int ret;
 746
 747        init_sync_kiocb(&iocb, NULL);
 748        iocb.private = &siocb;
 749        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 750        if (-EIOCBQUEUED == ret)
 751                ret = wait_on_sync_kiocb(&iocb);
 752        return ret;
 753}
 754EXPORT_SYMBOL(sock_recvmsg);
 755
 756static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 757                              size_t size, int flags)
 758{
 759        struct kiocb iocb;
 760        struct sock_iocb siocb;
 761        int ret;
 762
 763        init_sync_kiocb(&iocb, NULL);
 764        iocb.private = &siocb;
 765        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 766        if (-EIOCBQUEUED == ret)
 767                ret = wait_on_sync_kiocb(&iocb);
 768        return ret;
 769}
 770
 771/**
 772 * kernel_recvmsg - Receive a message from a socket (kernel space)
 773 * @sock:       The socket to receive the message from
 774 * @msg:        Received message
 775 * @vec:        Input s/g array for message data
 776 * @num:        Size of input s/g array
 777 * @size:       Number of bytes to read
 778 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 779 *
 780 * On return the msg structure contains the scatter/gather array passed in the
 781 * vec argument. The array is modified so that it consists of the unfilled
 782 * portion of the original array.
 783 *
 784 * The returned value is the total number of bytes received, or an error.
 785 */
 786int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 787                   struct kvec *vec, size_t num, size_t size, int flags)
 788{
 789        mm_segment_t oldfs = get_fs();
 790        int result;
 791
 792        set_fs(KERNEL_DS);
 793        /*
 794         * the following is safe, since for compiler definitions of kvec and
 795         * iovec are identical, yielding the same in-core layout and alignment
 796         */
 797        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 798        result = sock_recvmsg(sock, msg, size, flags);
 799        set_fs(oldfs);
 800        return result;
 801}
 802EXPORT_SYMBOL(kernel_recvmsg);
 803
 804static void sock_aio_dtor(struct kiocb *iocb)
 805{
 806        kfree(iocb->private);
 807}
 808
 809static ssize_t sock_sendpage(struct file *file, struct page *page,
 810                             int offset, size_t size, loff_t *ppos, int more)
 811{
 812        struct socket *sock;
 813        int flags;
 814
 815        sock = file->private_data;
 816
 817        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 818        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 819        flags |= more;
 820
 821        return kernel_sendpage(sock, page, offset, size, flags);
 822}
 823
 824static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 825                                struct pipe_inode_info *pipe, size_t len,
 826                                unsigned int flags)
 827{
 828        struct socket *sock = file->private_data;
 829
 830        if (unlikely(!sock->ops->splice_read))
 831                return -EINVAL;
 832
 833        sock_update_classid(sock->sk);
 834
 835        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 836}
 837
 838static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 839                                         struct sock_iocb *siocb)
 840{
 841        if (!is_sync_kiocb(iocb)) {
 842                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 843                if (!siocb)
 844                        return NULL;
 845                iocb->ki_dtor = sock_aio_dtor;
 846        }
 847
 848        siocb->kiocb = iocb;
 849        iocb->private = siocb;
 850        return siocb;
 851}
 852
 853static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 854                struct file *file, const struct iovec *iov,
 855                unsigned long nr_segs)
 856{
 857        struct socket *sock = file->private_data;
 858        size_t size = 0;
 859        int i;
 860
 861        for (i = 0; i < nr_segs; i++)
 862                size += iov[i].iov_len;
 863
 864        msg->msg_name = NULL;
 865        msg->msg_namelen = 0;
 866        msg->msg_control = NULL;
 867        msg->msg_controllen = 0;
 868        msg->msg_iov = (struct iovec *)iov;
 869        msg->msg_iovlen = nr_segs;
 870        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 871
 872        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 873}
 874
 875static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 876                                unsigned long nr_segs, loff_t pos)
 877{
 878        struct sock_iocb siocb, *x;
 879
 880        if (pos != 0)
 881                return -ESPIPE;
 882
 883        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 884                return 0;
 885
 886
 887        x = alloc_sock_iocb(iocb, &siocb);
 888        if (!x)
 889                return -ENOMEM;
 890        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 891}
 892
 893static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 894                        struct file *file, const struct iovec *iov,
 895                        unsigned long nr_segs)
 896{
 897        struct socket *sock = file->private_data;
 898        size_t size = 0;
 899        int i;
 900
 901        for (i = 0; i < nr_segs; i++)
 902                size += iov[i].iov_len;
 903
 904        msg->msg_name = NULL;
 905        msg->msg_namelen = 0;
 906        msg->msg_control = NULL;
 907        msg->msg_controllen = 0;
 908        msg->msg_iov = (struct iovec *)iov;
 909        msg->msg_iovlen = nr_segs;
 910        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 911        if (sock->type == SOCK_SEQPACKET)
 912                msg->msg_flags |= MSG_EOR;
 913
 914        return __sock_sendmsg(iocb, sock, msg, size);
 915}
 916
 917static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 918                          unsigned long nr_segs, loff_t pos)
 919{
 920        struct sock_iocb siocb, *x;
 921
 922        if (pos != 0)
 923                return -ESPIPE;
 924
 925        x = alloc_sock_iocb(iocb, &siocb);
 926        if (!x)
 927                return -ENOMEM;
 928
 929        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 930}
 931
 932/*
 933 * Atomic setting of ioctl hooks to avoid race
 934 * with module unload.
 935 */
 936
 937static DEFINE_MUTEX(br_ioctl_mutex);
 938static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 939
 940void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 941{
 942        mutex_lock(&br_ioctl_mutex);
 943        br_ioctl_hook = hook;
 944        mutex_unlock(&br_ioctl_mutex);
 945}
 946EXPORT_SYMBOL(brioctl_set);
 947
 948static DEFINE_MUTEX(vlan_ioctl_mutex);
 949static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 950
 951void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 952{
 953        mutex_lock(&vlan_ioctl_mutex);
 954        vlan_ioctl_hook = hook;
 955        mutex_unlock(&vlan_ioctl_mutex);
 956}
 957EXPORT_SYMBOL(vlan_ioctl_set);
 958
 959static DEFINE_MUTEX(dlci_ioctl_mutex);
 960static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 961
 962void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 963{
 964        mutex_lock(&dlci_ioctl_mutex);
 965        dlci_ioctl_hook = hook;
 966        mutex_unlock(&dlci_ioctl_mutex);
 967}
 968EXPORT_SYMBOL(dlci_ioctl_set);
 969
 970static long sock_do_ioctl(struct net *net, struct socket *sock,
 971                                 unsigned int cmd, unsigned long arg)
 972{
 973        int err;
 974        void __user *argp = (void __user *)arg;
 975
 976        err = sock->ops->ioctl(sock, cmd, arg);
 977
 978        /*
 979         * If this ioctl is unknown try to hand it down
 980         * to the NIC driver.
 981         */
 982        if (err == -ENOIOCTLCMD)
 983                err = dev_ioctl(net, cmd, argp);
 984
 985        return err;
 986}
 987
 988/*
 989 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *      what to do with it - that's up to the protocol still.
 991 */
 992
 993static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 994{
 995        struct socket *sock;
 996        struct sock *sk;
 997        void __user *argp = (void __user *)arg;
 998        int pid, err;
 999        struct net *net;
1000
1001        sock = file->private_data;
1002        sk = sock->sk;
1003        net = sock_net(sk);
1004        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1005                err = dev_ioctl(net, cmd, argp);
1006        } else
1007#ifdef CONFIG_WEXT_CORE
1008        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1009                err = dev_ioctl(net, cmd, argp);
1010        } else
1011#endif
1012                switch (cmd) {
1013                case FIOSETOWN:
1014                case SIOCSPGRP:
1015                        err = -EFAULT;
1016                        if (get_user(pid, (int __user *)argp))
1017                                break;
1018                        err = f_setown(sock->file, pid, 1);
1019                        break;
1020                case FIOGETOWN:
1021                case SIOCGPGRP:
1022                        err = put_user(f_getown(sock->file),
1023                                       (int __user *)argp);
1024                        break;
1025                case SIOCGIFBR:
1026                case SIOCSIFBR:
1027                case SIOCBRADDBR:
1028                case SIOCBRDELBR:
1029                        err = -ENOPKG;
1030                        if (!br_ioctl_hook)
1031                                request_module("bridge");
1032
1033                        mutex_lock(&br_ioctl_mutex);
1034                        if (br_ioctl_hook)
1035                                err = br_ioctl_hook(net, cmd, argp);
1036                        mutex_unlock(&br_ioctl_mutex);
1037                        break;
1038                case SIOCGIFVLAN:
1039                case SIOCSIFVLAN:
1040                        err = -ENOPKG;
1041                        if (!vlan_ioctl_hook)
1042                                request_module("8021q");
1043
1044                        mutex_lock(&vlan_ioctl_mutex);
1045                        if (vlan_ioctl_hook)
1046                                err = vlan_ioctl_hook(net, argp);
1047                        mutex_unlock(&vlan_ioctl_mutex);
1048                        break;
1049                case SIOCADDDLCI:
1050                case SIOCDELDLCI:
1051                        err = -ENOPKG;
1052                        if (!dlci_ioctl_hook)
1053                                request_module("dlci");
1054
1055                        mutex_lock(&dlci_ioctl_mutex);
1056                        if (dlci_ioctl_hook)
1057                                err = dlci_ioctl_hook(cmd, argp);
1058                        mutex_unlock(&dlci_ioctl_mutex);
1059                        break;
1060                default:
1061                        err = sock_do_ioctl(net, sock, cmd, arg);
1062                        break;
1063                }
1064        return err;
1065}
1066
1067int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068{
1069        int err;
1070        struct socket *sock = NULL;
1071
1072        err = security_socket_create(family, type, protocol, 1);
1073        if (err)
1074                goto out;
1075
1076        sock = sock_alloc();
1077        if (!sock) {
1078                err = -ENOMEM;
1079                goto out;
1080        }
1081
1082        sock->type = type;
1083        err = security_socket_post_create(sock, family, type, protocol, 1);
1084        if (err)
1085                goto out_release;
1086
1087out:
1088        *res = sock;
1089        return err;
1090out_release:
1091        sock_release(sock);
1092        sock = NULL;
1093        goto out;
1094}
1095EXPORT_SYMBOL(sock_create_lite);
1096
1097/* No kernel lock held - perfect */
1098static unsigned int sock_poll(struct file *file, poll_table *wait)
1099{
1100        struct socket *sock;
1101
1102        /*
1103         *      We can't return errors to poll, so it's either yes or no.
1104         */
1105        sock = file->private_data;
1106        return sock->ops->poll(file, sock, wait);
1107}
1108
1109static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110{
1111        struct socket *sock = file->private_data;
1112
1113        return sock->ops->mmap(file, sock, vma);
1114}
1115
1116static int sock_close(struct inode *inode, struct file *filp)
1117{
1118        /*
1119         *      It was possible the inode is NULL we were
1120         *      closing an unfinished socket.
1121         */
1122
1123        if (!inode) {
1124                printk(KERN_DEBUG "sock_close: NULL inode\n");
1125                return 0;
1126        }
1127        sock_release(SOCKET_I(inode));
1128        return 0;
1129}
1130
1131/*
1132 *      Update the socket async list
1133 *
1134 *      Fasync_list locking strategy.
1135 *
1136 *      1. fasync_list is modified only under process context socket lock
1137 *         i.e. under semaphore.
1138 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 *         or under socket lock
1140 */
1141
1142static int sock_fasync(int fd, struct file *filp, int on)
1143{
1144        struct socket *sock = filp->private_data;
1145        struct sock *sk = sock->sk;
1146        struct socket_wq *wq;
1147
1148        if (sk == NULL)
1149                return -EINVAL;
1150
1151        lock_sock(sk);
1152        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1153        fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155        if (!wq->fasync_list)
1156                sock_reset_flag(sk, SOCK_FASYNC);
1157        else
1158                sock_set_flag(sk, SOCK_FASYNC);
1159
1160        release_sock(sk);
1161        return 0;
1162}
1163
1164/* This function may be called only under socket lock or callback_lock or rcu_lock */
1165
1166int sock_wake_async(struct socket *sock, int how, int band)
1167{
1168        struct socket_wq *wq;
1169
1170        if (!sock)
1171                return -1;
1172        rcu_read_lock();
1173        wq = rcu_dereference(sock->wq);
1174        if (!wq || !wq->fasync_list) {
1175                rcu_read_unlock();
1176                return -1;
1177        }
1178        switch (how) {
1179        case SOCK_WAKE_WAITD:
1180                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1181                        break;
1182                goto call_kill;
1183        case SOCK_WAKE_SPACE:
1184                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1185                        break;
1186                /* fall through */
1187        case SOCK_WAKE_IO:
1188call_kill:
1189                kill_fasync(&wq->fasync_list, SIGIO, band);
1190                break;
1191        case SOCK_WAKE_URG:
1192                kill_fasync(&wq->fasync_list, SIGURG, band);
1193        }
1194        rcu_read_unlock();
1195        return 0;
1196}
1197EXPORT_SYMBOL(sock_wake_async);
1198
1199int __sock_create(struct net *net, int family, int type, int protocol,
1200                         struct socket **res, int kern)
1201{
1202        int err;
1203        struct socket *sock;
1204        const struct net_proto_family *pf;
1205
1206        /*
1207         *      Check protocol is in range
1208         */
1209        if (family < 0 || family >= NPROTO)
1210                return -EAFNOSUPPORT;
1211        if (type < 0 || type >= SOCK_MAX)
1212                return -EINVAL;
1213
1214        /* Compatibility.
1215
1216           This uglymoron is moved from INET layer to here to avoid
1217           deadlock in module load.
1218         */
1219        if (family == PF_INET && type == SOCK_PACKET) {
1220                static int warned;
1221                if (!warned) {
1222                        warned = 1;
1223                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1224                               current->comm);
1225                }
1226                family = PF_PACKET;
1227        }
1228
1229        err = security_socket_create(family, type, protocol, kern);
1230        if (err)
1231                return err;
1232
1233        /*
1234         *      Allocate the socket and allow the family to set things up. if
1235         *      the protocol is 0, the family is instructed to select an appropriate
1236         *      default.
1237         */
1238        sock = sock_alloc();
1239        if (!sock) {
1240                net_warn_ratelimited("socket: no more sockets\n");
1241                return -ENFILE; /* Not exactly a match, but its the
1242                                   closest posix thing */
1243        }
1244
1245        sock->type = type;
1246
1247#ifdef CONFIG_MODULES
1248        /* Attempt to load a protocol module if the find failed.
1249         *
1250         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1251         * requested real, full-featured networking support upon configuration.
1252         * Otherwise module support will break!
1253         */
1254        if (rcu_access_pointer(net_families[family]) == NULL)
1255                request_module("net-pf-%d", family);
1256#endif
1257
1258        rcu_read_lock();
1259        pf = rcu_dereference(net_families[family]);
1260        err = -EAFNOSUPPORT;
1261        if (!pf)
1262                goto out_release;
1263
1264        /*
1265         * We will call the ->create function, that possibly is in a loadable
1266         * module, so we have to bump that loadable module refcnt first.
1267         */
1268        if (!try_module_get(pf->owner))
1269                goto out_release;
1270
1271        /* Now protected by module ref count */
1272        rcu_read_unlock();
1273
1274        err = pf->create(net, sock, protocol, kern);
1275        if (err < 0)
1276                goto out_module_put;
1277
1278        /*
1279         * Now to bump the refcnt of the [loadable] module that owns this
1280         * socket at sock_release time we decrement its refcnt.
1281         */
1282        if (!try_module_get(sock->ops->owner))
1283                goto out_module_busy;
1284
1285        /*
1286         * Now that we're done with the ->create function, the [loadable]
1287         * module can have its refcnt decremented
1288         */
1289        module_put(pf->owner);
1290        err = security_socket_post_create(sock, family, type, protocol, kern);
1291        if (err)
1292                goto out_sock_release;
1293        *res = sock;
1294
1295        return 0;
1296
1297out_module_busy:
1298        err = -EAFNOSUPPORT;
1299out_module_put:
1300        sock->ops = NULL;
1301        module_put(pf->owner);
1302out_sock_release:
1303        sock_release(sock);
1304        return err;
1305
1306out_release:
1307        rcu_read_unlock();
1308        goto out_sock_release;
1309}
1310EXPORT_SYMBOL(__sock_create);
1311
1312int sock_create(int family, int type, int protocol, struct socket **res)
1313{
1314        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315}
1316EXPORT_SYMBOL(sock_create);
1317
1318int sock_create_kern(int family, int type, int protocol, struct socket **res)
1319{
1320        return __sock_create(&init_net, family, type, protocol, res, 1);
1321}
1322EXPORT_SYMBOL(sock_create_kern);
1323
1324SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325{
1326        int retval;
1327        struct socket *sock;
1328        int flags;
1329
1330        /* Check the SOCK_* constants for consistency.  */
1331        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1332        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1333        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1334        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335
1336        flags = type & ~SOCK_TYPE_MASK;
1337        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338                return -EINVAL;
1339        type &= SOCK_TYPE_MASK;
1340
1341        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1342                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343
1344        retval = sock_create(family, type, protocol, &sock);
1345        if (retval < 0)
1346                goto out;
1347
1348        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1349        if (retval < 0)
1350                goto out_release;
1351
1352out:
1353        /* It may be already another descriptor 8) Not kernel problem. */
1354        return retval;
1355
1356out_release:
1357        sock_release(sock);
1358        return retval;
1359}
1360
1361/*
1362 *      Create a pair of connected sockets.
1363 */
1364
1365SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366                int __user *, usockvec)
1367{
1368        struct socket *sock1, *sock2;
1369        int fd1, fd2, err;
1370        struct file *newfile1, *newfile2;
1371        int flags;
1372
1373        flags = type & ~SOCK_TYPE_MASK;
1374        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375                return -EINVAL;
1376        type &= SOCK_TYPE_MASK;
1377
1378        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380
1381        /*
1382         * Obtain the first socket and check if the underlying protocol
1383         * supports the socketpair call.
1384         */
1385
1386        err = sock_create(family, type, protocol, &sock1);
1387        if (err < 0)
1388                goto out;
1389
1390        err = sock_create(family, type, protocol, &sock2);
1391        if (err < 0)
1392                goto out_release_1;
1393
1394        err = sock1->ops->socketpair(sock1, sock2);
1395        if (err < 0)
1396                goto out_release_both;
1397
1398        fd1 = sock_alloc_file(sock1, &newfile1, flags);
1399        if (unlikely(fd1 < 0)) {
1400                err = fd1;
1401                goto out_release_both;
1402        }
1403
1404        fd2 = sock_alloc_file(sock2, &newfile2, flags);
1405        if (unlikely(fd2 < 0)) {
1406                err = fd2;
1407                fput(newfile1);
1408                put_unused_fd(fd1);
1409                sock_release(sock2);
1410                goto out;
1411        }
1412
1413        audit_fd_pair(fd1, fd2);
1414        fd_install(fd1, newfile1);
1415        fd_install(fd2, newfile2);
1416        /* fd1 and fd2 may be already another descriptors.
1417         * Not kernel problem.
1418         */
1419
1420        err = put_user(fd1, &usockvec[0]);
1421        if (!err)
1422                err = put_user(fd2, &usockvec[1]);
1423        if (!err)
1424                return 0;
1425
1426        sys_close(fd2);
1427        sys_close(fd1);
1428        return err;
1429
1430out_release_both:
1431        sock_release(sock2);
1432out_release_1:
1433        sock_release(sock1);
1434out:
1435        return err;
1436}
1437
1438/*
1439 *      Bind a name to a socket. Nothing much to do here since it's
1440 *      the protocol's responsibility to handle the local address.
1441 *
1442 *      We move the socket address to kernel space before we call
1443 *      the protocol layer (having also checked the address is ok).
1444 */
1445
1446SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447{
1448        struct socket *sock;
1449        struct sockaddr_storage address;
1450        int err, fput_needed;
1451
1452        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1453        if (sock) {
1454                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1455                if (err >= 0) {
1456                        err = security_socket_bind(sock,
1457                                                   (struct sockaddr *)&address,
1458                                                   addrlen);
1459                        if (!err)
1460                                err = sock->ops->bind(sock,
1461                                                      (struct sockaddr *)
1462                                                      &address, addrlen);
1463                }
1464                fput_light(sock->file, fput_needed);
1465        }
1466        return err;
1467}
1468
1469/*
1470 *      Perform a listen. Basically, we allow the protocol to do anything
1471 *      necessary for a listen, and if that works, we mark the socket as
1472 *      ready for listening.
1473 */
1474
1475SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476{
1477        struct socket *sock;
1478        int err, fput_needed;
1479        int somaxconn;
1480
1481        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482        if (sock) {
1483                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1484                if ((unsigned int)backlog > somaxconn)
1485                        backlog = somaxconn;
1486
1487                err = security_socket_listen(sock, backlog);
1488                if (!err)
1489                        err = sock->ops->listen(sock, backlog);
1490
1491                fput_light(sock->file, fput_needed);
1492        }
1493        return err;
1494}
1495
1496/*
1497 *      For accept, we attempt to create a new socket, set up the link
1498 *      with the client, wake up the client, then return the new
1499 *      connected fd. We collect the address of the connector in kernel
1500 *      space and move it to user at the very end. This is unclean because
1501 *      we open the socket then return an error.
1502 *
1503 *      1003.1g adds the ability to recvmsg() to query connection pending
1504 *      status to recvmsg. We need to add that support in a way thats
1505 *      clean when we restucture accept also.
1506 */
1507
1508SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1509                int __user *, upeer_addrlen, int, flags)
1510{
1511        struct socket *sock, *newsock;
1512        struct file *newfile;
1513        int err, len, newfd, fput_needed;
1514        struct sockaddr_storage address;
1515
1516        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517                return -EINVAL;
1518
1519        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1523        if (!sock)
1524                goto out;
1525
1526        err = -ENFILE;
1527        newsock = sock_alloc();
1528        if (!newsock)
1529                goto out_put;
1530
1531        newsock->type = sock->type;
1532        newsock->ops = sock->ops;
1533
1534        /*
1535         * We don't need try_module_get here, as the listening socket (sock)
1536         * has the protocol module (sock->ops->owner) held.
1537         */
1538        __module_get(newsock->ops->owner);
1539
1540        newfd = sock_alloc_file(newsock, &newfile, flags);
1541        if (unlikely(newfd < 0)) {
1542                err = newfd;
1543                sock_release(newsock);
1544                goto out_put;
1545        }
1546
1547        err = security_socket_accept(sock, newsock);
1548        if (err)
1549                goto out_fd;
1550
1551        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1552        if (err < 0)
1553                goto out_fd;
1554
1555        if (upeer_sockaddr) {
1556                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557                                          &len, 2) < 0) {
1558                        err = -ECONNABORTED;
1559                        goto out_fd;
1560                }
1561                err = move_addr_to_user(&address,
1562                                        len, upeer_sockaddr, upeer_addrlen);
1563                if (err < 0)
1564                        goto out_fd;
1565        }
1566
1567        /* File flags are not inherited via accept() unlike another OSes. */
1568
1569        fd_install(newfd, newfile);
1570        err = newfd;
1571
1572out_put:
1573        fput_light(sock->file, fput_needed);
1574out:
1575        return err;
1576out_fd:
1577        fput(newfile);
1578        put_unused_fd(newfd);
1579        goto out_put;
1580}
1581
1582SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583                int __user *, upeer_addrlen)
1584{
1585        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586}
1587
1588/*
1589 *      Attempt to connect to a socket with the server address.  The address
1590 *      is in user space so we verify it is OK and move it to kernel space.
1591 *
1592 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593 *      break bindings
1594 *
1595 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596 *      other SEQPACKET protocols that take time to connect() as it doesn't
1597 *      include the -EINPROGRESS status for such sockets.
1598 */
1599
1600SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601                int, addrlen)
1602{
1603        struct socket *sock;
1604        struct sockaddr_storage address;
1605        int err, fput_needed;
1606
1607        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608        if (!sock)
1609                goto out;
1610        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611        if (err < 0)
1612                goto out_put;
1613
1614        err =
1615            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616        if (err)
1617                goto out_put;
1618
1619        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620                                 sock->file->f_flags);
1621out_put:
1622        fput_light(sock->file, fput_needed);
1623out:
1624        return err;
1625}
1626
1627/*
1628 *      Get the local address ('name') of a socket object. Move the obtained
1629 *      name to user space.
1630 */
1631
1632SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633                int __user *, usockaddr_len)
1634{
1635        struct socket *sock;
1636        struct sockaddr_storage address;
1637        int len, err, fput_needed;
1638
1639        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640        if (!sock)
1641                goto out;
1642
1643        err = security_socket_getsockname(sock);
1644        if (err)
1645                goto out_put;
1646
1647        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648        if (err)
1649                goto out_put;
1650        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651
1652out_put:
1653        fput_light(sock->file, fput_needed);
1654out:
1655        return err;
1656}
1657
1658/*
1659 *      Get the remote address ('name') of a socket object. Move the obtained
1660 *      name to user space.
1661 */
1662
1663SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664                int __user *, usockaddr_len)
1665{
1666        struct socket *sock;
1667        struct sockaddr_storage address;
1668        int len, err, fput_needed;
1669
1670        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671        if (sock != NULL) {
1672                err = security_socket_getpeername(sock);
1673                if (err) {
1674                        fput_light(sock->file, fput_needed);
1675                        return err;
1676                }
1677
1678                err =
1679                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680                                       1);
1681                if (!err)
1682                        err = move_addr_to_user(&address, len, usockaddr,
1683                                                usockaddr_len);
1684                fput_light(sock->file, fput_needed);
1685        }
1686        return err;
1687}
1688
1689/*
1690 *      Send a datagram to a given address. We move the address into kernel
1691 *      space and check the user space data area is readable before invoking
1692 *      the protocol.
1693 */
1694
1695SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696                unsigned int, flags, struct sockaddr __user *, addr,
1697                int, addr_len)
1698{
1699        struct socket *sock;
1700        struct sockaddr_storage address;
1701        int err;
1702        struct msghdr msg;
1703        struct iovec iov;
1704        int fput_needed;
1705
1706        if (len > INT_MAX)
1707                len = INT_MAX;
1708        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709        if (!sock)
1710                goto out;
1711
1712        iov.iov_base = buff;
1713        iov.iov_len = len;
1714        msg.msg_name = NULL;
1715        msg.msg_iov = &iov;
1716        msg.msg_iovlen = 1;
1717        msg.msg_control = NULL;
1718        msg.msg_controllen = 0;
1719        msg.msg_namelen = 0;
1720        if (addr) {
1721                err = move_addr_to_kernel(addr, addr_len, &address);
1722                if (err < 0)
1723                        goto out_put;
1724                msg.msg_name = (struct sockaddr *)&address;
1725                msg.msg_namelen = addr_len;
1726        }
1727        if (sock->file->f_flags & O_NONBLOCK)
1728                flags |= MSG_DONTWAIT;
1729        msg.msg_flags = flags;
1730        err = sock_sendmsg(sock, &msg, len);
1731
1732out_put:
1733        fput_light(sock->file, fput_needed);
1734out:
1735        return err;
1736}
1737
1738/*
1739 *      Send a datagram down a socket.
1740 */
1741
1742SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1743                unsigned int, flags)
1744{
1745        return sys_sendto(fd, buff, len, flags, NULL, 0);
1746}
1747
1748/*
1749 *      Receive a frame from the socket and optionally record the address of the
1750 *      sender. We verify the buffers are writable and if needed move the
1751 *      sender address from kernel to user space.
1752 */
1753
1754SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1755                unsigned int, flags, struct sockaddr __user *, addr,
1756                int __user *, addr_len)
1757{
1758        struct socket *sock;
1759        struct iovec iov;
1760        struct msghdr msg;
1761        struct sockaddr_storage address;
1762        int err, err2;
1763        int fput_needed;
1764
1765        if (size > INT_MAX)
1766                size = INT_MAX;
1767        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768        if (!sock)
1769                goto out;
1770
1771        msg.msg_control = NULL;
1772        msg.msg_controllen = 0;
1773        msg.msg_iovlen = 1;
1774        msg.msg_iov = &iov;
1775        iov.iov_len = size;
1776        iov.iov_base = ubuf;
1777        msg.msg_name = (struct sockaddr *)&address;
1778        msg.msg_namelen = sizeof(address);
1779        if (sock->file->f_flags & O_NONBLOCK)
1780                flags |= MSG_DONTWAIT;
1781        err = sock_recvmsg(sock, &msg, size, flags);
1782
1783        if (err >= 0 && addr != NULL) {
1784                err2 = move_addr_to_user(&address,
1785                                         msg.msg_namelen, addr, addr_len);
1786                if (err2 < 0)
1787                        err = err2;
1788        }
1789
1790        fput_light(sock->file, fput_needed);
1791out:
1792        return err;
1793}
1794
1795/*
1796 *      Receive a datagram from a socket.
1797 */
1798
1799asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1800                         unsigned int flags)
1801{
1802        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1803}
1804
1805/*
1806 *      Set a socket option. Because we don't know the option lengths we have
1807 *      to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811                char __user *, optval, int, optlen)
1812{
1813        int err, fput_needed;
1814        struct socket *sock;
1815
1816        if (optlen < 0)
1817                return -EINVAL;
1818
1819        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820        if (sock != NULL) {
1821                err = security_socket_setsockopt(sock, level, optname);
1822                if (err)
1823                        goto out_put;
1824
1825                if (level == SOL_SOCKET)
1826                        err =
1827                            sock_setsockopt(sock, level, optname, optval,
1828                                            optlen);
1829                else
1830                        err =
1831                            sock->ops->setsockopt(sock, level, optname, optval,
1832                                                  optlen);
1833out_put:
1834                fput_light(sock->file, fput_needed);
1835        }
1836        return err;
1837}
1838
1839/*
1840 *      Get a socket option. Because we don't know the option lengths we have
1841 *      to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845                char __user *, optval, int __user *, optlen)
1846{
1847        int err, fput_needed;
1848        struct socket *sock;
1849
1850        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851        if (sock != NULL) {
1852                err = security_socket_getsockopt(sock, level, optname);
1853                if (err)
1854                        goto out_put;
1855
1856                if (level == SOL_SOCKET)
1857                        err =
1858                            sock_getsockopt(sock, level, optname, optval,
1859                                            optlen);
1860                else
1861                        err =
1862                            sock->ops->getsockopt(sock, level, optname, optval,
1863                                                  optlen);
1864out_put:
1865                fput_light(sock->file, fput_needed);
1866        }
1867        return err;
1868}
1869
1870/*
1871 *      Shutdown a socket.
1872 */
1873
1874SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875{
1876        int err, fput_needed;
1877        struct socket *sock;
1878
1879        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880        if (sock != NULL) {
1881                err = security_socket_shutdown(sock, how);
1882                if (!err)
1883                        err = sock->ops->shutdown(sock, how);
1884                fput_light(sock->file, fput_needed);
1885        }
1886        return err;
1887}
1888
1889/* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1894#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1895
1896struct used_address {
1897        struct sockaddr_storage name;
1898        unsigned int name_len;
1899};
1900
1901static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1902                         struct msghdr *msg_sys, unsigned int flags,
1903                         struct used_address *used_address)
1904{
1905        struct compat_msghdr __user *msg_compat =
1906            (struct compat_msghdr __user *)msg;
1907        struct sockaddr_storage address;
1908        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911        /* 20 is size of ipv6_pktinfo */
1912        unsigned char *ctl_buf = ctl;
1913        int err, ctl_len, total_len;
1914
1915        err = -EFAULT;
1916        if (MSG_CMSG_COMPAT & flags) {
1917                if (get_compat_msghdr(msg_sys, msg_compat))
1918                        return -EFAULT;
1919        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1920                return -EFAULT;
1921
1922        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1923                err = -EMSGSIZE;
1924                if (msg_sys->msg_iovlen > UIO_MAXIOV)
1925                        goto out;
1926                err = -ENOMEM;
1927                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1928                              GFP_KERNEL);
1929                if (!iov)
1930                        goto out;
1931        }
1932
1933        /* This will also move the address data into kernel space */
1934        if (MSG_CMSG_COMPAT & flags) {
1935                err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1936        } else
1937                err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1938        if (err < 0)
1939                goto out_freeiov;
1940        total_len = err;
1941
1942        err = -ENOBUFS;
1943
1944        if (msg_sys->msg_controllen > INT_MAX)
1945                goto out_freeiov;
1946        ctl_len = msg_sys->msg_controllen;
1947        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948                err =
1949                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1950                                                     sizeof(ctl));
1951                if (err)
1952                        goto out_freeiov;
1953                ctl_buf = msg_sys->msg_control;
1954                ctl_len = msg_sys->msg_controllen;
1955        } else if (ctl_len) {
1956                if (ctl_len > sizeof(ctl)) {
1957                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958                        if (ctl_buf == NULL)
1959                                goto out_freeiov;
1960                }
1961                err = -EFAULT;
1962                /*
1963                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1964                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965                 * checking falls down on this.
1966                 */
1967                if (copy_from_user(ctl_buf,
1968                                   (void __user __force *)msg_sys->msg_control,
1969                                   ctl_len))
1970                        goto out_freectl;
1971                msg_sys->msg_control = ctl_buf;
1972        }
1973        msg_sys->msg_flags = flags;
1974
1975        if (sock->file->f_flags & O_NONBLOCK)
1976                msg_sys->msg_flags |= MSG_DONTWAIT;
1977        /*
1978         * If this is sendmmsg() and current destination address is same as
1979         * previously succeeded address, omit asking LSM's decision.
1980         * used_address->name_len is initialized to UINT_MAX so that the first
1981         * destination address never matches.
1982         */
1983        if (used_address && msg_sys->msg_name &&
1984            used_address->name_len == msg_sys->msg_namelen &&
1985            !memcmp(&used_address->name, msg_sys->msg_name,
1986                    used_address->name_len)) {
1987                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1988                goto out_freectl;
1989        }
1990        err = sock_sendmsg(sock, msg_sys, total_len);
1991        /*
1992         * If this is sendmmsg() and sending to current destination address was
1993         * successful, remember it.
1994         */
1995        if (used_address && err >= 0) {
1996                used_address->name_len = msg_sys->msg_namelen;
1997                if (msg_sys->msg_name)
1998                        memcpy(&used_address->name, msg_sys->msg_name,
1999                               used_address->name_len);
2000        }
2001
2002out_freectl:
2003        if (ctl_buf != ctl)
2004                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2005out_freeiov:
2006        if (iov != iovstack)
2007                kfree(iov);
2008out:
2009        return err;
2010}
2011
2012/*
2013 *      BSD sendmsg interface
2014 */
2015
2016SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2017{
2018        int fput_needed, err;
2019        struct msghdr msg_sys;
2020        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021
2022        if (!sock)
2023                goto out;
2024
2025        err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026
2027        fput_light(sock->file, fput_needed);
2028out:
2029        return err;
2030}
2031
2032/*
2033 *      Linux sendmmsg interface
2034 */
2035
2036int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037                   unsigned int flags)
2038{
2039        int fput_needed, err, datagrams;
2040        struct socket *sock;
2041        struct mmsghdr __user *entry;
2042        struct compat_mmsghdr __user *compat_entry;
2043        struct msghdr msg_sys;
2044        struct used_address used_address;
2045
2046        if (vlen > UIO_MAXIOV)
2047                vlen = UIO_MAXIOV;
2048
2049        datagrams = 0;
2050
2051        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052        if (!sock)
2053                return err;
2054
2055        used_address.name_len = UINT_MAX;
2056        entry = mmsg;
2057        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058        err = 0;
2059
2060        while (datagrams < vlen) {
2061                if (MSG_CMSG_COMPAT & flags) {
2062                        err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2063                                            &msg_sys, flags, &used_address);
2064                        if (err < 0)
2065                                break;
2066                        err = __put_user(err, &compat_entry->msg_len);
2067                        ++compat_entry;
2068                } else {
2069                        err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2070                                            &msg_sys, flags, &used_address);
2071                        if (err < 0)
2072                                break;
2073                        err = put_user(err, &entry->msg_len);
2074                        ++entry;
2075                }
2076
2077                if (err)
2078                        break;
2079                ++datagrams;
2080        }
2081
2082        fput_light(sock->file, fput_needed);
2083
2084        /* We only return an error if no datagrams were able to be sent */
2085        if (datagrams != 0)
2086                return datagrams;
2087
2088        return err;
2089}
2090
2091SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2092                unsigned int, vlen, unsigned int, flags)
2093{
2094        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2095}
2096
2097static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2098                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2099{
2100        struct compat_msghdr __user *msg_compat =
2101            (struct compat_msghdr __user *)msg;
2102        struct iovec iovstack[UIO_FASTIOV];
2103        struct iovec *iov = iovstack;
2104        unsigned long cmsg_ptr;
2105        int err, total_len, len;
2106
2107        /* kernel mode address */
2108        struct sockaddr_storage addr;
2109
2110        /* user mode address pointers */
2111        struct sockaddr __user *uaddr;
2112        int __user *uaddr_len;
2113
2114        if (MSG_CMSG_COMPAT & flags) {
2115                if (get_compat_msghdr(msg_sys, msg_compat))
2116                        return -EFAULT;
2117        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2118                return -EFAULT;
2119
2120        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2121                err = -EMSGSIZE;
2122                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123                        goto out;
2124                err = -ENOMEM;
2125                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2126                              GFP_KERNEL);
2127                if (!iov)
2128                        goto out;
2129        }
2130
2131        /*
2132         *      Save the user-mode address (verify_iovec will change the
2133         *      kernel msghdr to use the kernel address space)
2134         */
2135
2136        uaddr = (__force void __user *)msg_sys->msg_name;
2137        uaddr_len = COMPAT_NAMELEN(msg);
2138        if (MSG_CMSG_COMPAT & flags) {
2139                err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2140        } else
2141                err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2142        if (err < 0)
2143                goto out_freeiov;
2144        total_len = err;
2145
2146        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2147        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148
2149        if (sock->file->f_flags & O_NONBLOCK)
2150                flags |= MSG_DONTWAIT;
2151        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2152                                                          total_len, flags);
2153        if (err < 0)
2154                goto out_freeiov;
2155        len = err;
2156
2157        if (uaddr != NULL) {
2158                err = move_addr_to_user(&addr,
2159                                        msg_sys->msg_namelen, uaddr,
2160                                        uaddr_len);
2161                if (err < 0)
2162                        goto out_freeiov;
2163        }
2164        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2165                         COMPAT_FLAGS(msg));
2166        if (err)
2167                goto out_freeiov;
2168        if (MSG_CMSG_COMPAT & flags)
2169                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170                                 &msg_compat->msg_controllen);
2171        else
2172                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173                                 &msg->msg_controllen);
2174        if (err)
2175                goto out_freeiov;
2176        err = len;
2177
2178out_freeiov:
2179        if (iov != iovstack)
2180                kfree(iov);
2181out:
2182        return err;
2183}
2184
2185/*
2186 *      BSD recvmsg interface
2187 */
2188
2189SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2190                unsigned int, flags)
2191{
2192        int fput_needed, err;
2193        struct msghdr msg_sys;
2194        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195
2196        if (!sock)
2197                goto out;
2198
2199        err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200
2201        fput_light(sock->file, fput_needed);
2202out:
2203        return err;
2204}
2205
2206/*
2207 *     Linux recvmmsg interface
2208 */
2209
2210int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2211                   unsigned int flags, struct timespec *timeout)
2212{
2213        int fput_needed, err, datagrams;
2214        struct socket *sock;
2215        struct mmsghdr __user *entry;
2216        struct compat_mmsghdr __user *compat_entry;
2217        struct msghdr msg_sys;
2218        struct timespec end_time;
2219
2220        if (timeout &&
2221            poll_select_set_timeout(&end_time, timeout->tv_sec,
2222                                    timeout->tv_nsec))
2223                return -EINVAL;
2224
2225        datagrams = 0;
2226
2227        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228        if (!sock)
2229                return err;
2230
2231        err = sock_error(sock->sk);
2232        if (err)
2233                goto out_put;
2234
2235        entry = mmsg;
2236        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237
2238        while (datagrams < vlen) {
2239                /*
2240                 * No need to ask LSM for more than the first datagram.
2241                 */
2242                if (MSG_CMSG_COMPAT & flags) {
2243                        err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2244                                            &msg_sys, flags & ~MSG_WAITFORONE,
2245                                            datagrams);
2246                        if (err < 0)
2247                                break;
2248                        err = __put_user(err, &compat_entry->msg_len);
2249                        ++compat_entry;
2250                } else {
2251                        err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2252                                            &msg_sys, flags & ~MSG_WAITFORONE,
2253                                            datagrams);
2254                        if (err < 0)
2255                                break;
2256                        err = put_user(err, &entry->msg_len);
2257                        ++entry;
2258                }
2259
2260                if (err)
2261                        break;
2262                ++datagrams;
2263
2264                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265                if (flags & MSG_WAITFORONE)
2266                        flags |= MSG_DONTWAIT;
2267
2268                if (timeout) {
2269                        ktime_get_ts(timeout);
2270                        *timeout = timespec_sub(end_time, *timeout);
2271                        if (timeout->tv_sec < 0) {
2272                                timeout->tv_sec = timeout->tv_nsec = 0;
2273                                break;
2274                        }
2275
2276                        /* Timeout, return less than vlen datagrams */
2277                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2278                                break;
2279                }
2280
2281                /* Out of band data, return right away */
2282                if (msg_sys.msg_flags & MSG_OOB)
2283                        break;
2284        }
2285
2286out_put:
2287        fput_light(sock->file, fput_needed);
2288
2289        if (err == 0)
2290                return datagrams;
2291
2292        if (datagrams != 0) {
2293                /*
2294                 * We may return less entries than requested (vlen) if the
2295                 * sock is non block and there aren't enough datagrams...
2296                 */
2297                if (err != -EAGAIN) {
2298                        /*
2299                         * ... or  if recvmsg returns an error after we
2300                         * received some datagrams, where we record the
2301                         * error to return on the next call or if the
2302                         * app asks about it using getsockopt(SO_ERROR).
2303                         */
2304                        sock->sk->sk_err = -err;
2305                }
2306
2307                return datagrams;
2308        }
2309
2310        return err;
2311}
2312
2313SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2314                unsigned int, vlen, unsigned int, flags,
2315                struct timespec __user *, timeout)
2316{
2317        int datagrams;
2318        struct timespec timeout_sys;
2319
2320        if (!timeout)
2321                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324                return -EFAULT;
2325
2326        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327
2328        if (datagrams > 0 &&
2329            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330                datagrams = -EFAULT;
2331
2332        return datagrams;
2333}
2334
2335#ifdef __ARCH_WANT_SYS_SOCKETCALL
2336/* Argument list sizes for sys_socketcall */
2337#define AL(x) ((x) * sizeof(unsigned long))
2338static const unsigned char nargs[21] = {
2339        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342        AL(4), AL(5), AL(4)
2343};
2344
2345#undef AL
2346
2347/*
2348 *      System call vectors.
2349 *
2350 *      Argument checking cleaned up. Saved 20% in size.
2351 *  This function doesn't need to set the kernel lock because
2352 *  it is set by the callees.
2353 */
2354
2355SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356{
2357        unsigned long a[6];
2358        unsigned long a0, a1;
2359        int err;
2360        unsigned int len;
2361
2362        if (call < 1 || call > SYS_SENDMMSG)
2363                return -EINVAL;
2364
2365        len = nargs[call];
2366        if (len > sizeof(a))
2367                return -EINVAL;
2368
2369        /* copy_from_user should be SMP safe. */
2370        if (copy_from_user(a, args, len))
2371                return -EFAULT;
2372
2373        audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374
2375        a0 = a[0];
2376        a1 = a[1];
2377
2378        switch (call) {
2379        case SYS_SOCKET:
2380                err = sys_socket(a0, a1, a[2]);
2381                break;
2382        case SYS_BIND:
2383                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2384                break;
2385        case SYS_CONNECT:
2386                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2387                break;
2388        case SYS_LISTEN:
2389                err = sys_listen(a0, a1);
2390                break;
2391        case SYS_ACCEPT:
2392                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2393                                  (int __user *)a[2], 0);
2394                break;
2395        case SYS_GETSOCKNAME:
2396                err =
2397                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2398                                    (int __user *)a[2]);
2399                break;
2400        case SYS_GETPEERNAME:
2401                err =
2402                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2403                                    (int __user *)a[2]);
2404                break;
2405        case SYS_SOCKETPAIR:
2406                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2407                break;
2408        case SYS_SEND:
2409                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2410                break;
2411        case SYS_SENDTO:
2412                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2413                                 (struct sockaddr __user *)a[4], a[5]);
2414                break;
2415        case SYS_RECV:
2416                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2417                break;
2418        case SYS_RECVFROM:
2419                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2420                                   (struct sockaddr __user *)a[4],
2421                                   (int __user *)a[5]);
2422                break;
2423        case SYS_SHUTDOWN:
2424                err = sys_shutdown(a0, a1);
2425                break;
2426        case SYS_SETSOCKOPT:
2427                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2428                break;
2429        case SYS_GETSOCKOPT:
2430                err =
2431                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2432                                   (int __user *)a[4]);
2433                break;
2434        case SYS_SENDMSG:
2435                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2436                break;
2437        case SYS_SENDMMSG:
2438                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2439                break;
2440        case SYS_RECVMSG:
2441                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2442                break;
2443        case SYS_RECVMMSG:
2444                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2445                                   (struct timespec __user *)a[4]);
2446                break;
2447        case SYS_ACCEPT4:
2448                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2449                                  (int __user *)a[2], a[3]);
2450                break;
2451        default:
2452                err = -EINVAL;
2453                break;
2454        }
2455        return err;
2456}
2457
2458#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2459
2460/**
2461 *      sock_register - add a socket protocol handler
2462 *      @ops: description of protocol
2463 *
2464 *      This function is called by a protocol handler that wants to
2465 *      advertise its address family, and have it linked into the
2466 *      socket interface. The value ops->family coresponds to the
2467 *      socket system call protocol family.
2468 */
2469int sock_register(const struct net_proto_family *ops)
2470{
2471        int err;
2472
2473        if (ops->family >= NPROTO) {
2474                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2475                       NPROTO);
2476                return -ENOBUFS;
2477        }
2478
2479        spin_lock(&net_family_lock);
2480        if (rcu_dereference_protected(net_families[ops->family],
2481                                      lockdep_is_held(&net_family_lock)))
2482                err = -EEXIST;
2483        else {
2484                rcu_assign_pointer(net_families[ops->family], ops);
2485                err = 0;
2486        }
2487        spin_unlock(&net_family_lock);
2488
2489        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2490        return err;
2491}
2492EXPORT_SYMBOL(sock_register);
2493
2494/**
2495 *      sock_unregister - remove a protocol handler
2496 *      @family: protocol family to remove
2497 *
2498 *      This function is called by a protocol handler that wants to
2499 *      remove its address family, and have it unlinked from the
2500 *      new socket creation.
2501 *
2502 *      If protocol handler is a module, then it can use module reference
2503 *      counts to protect against new references. If protocol handler is not
2504 *      a module then it needs to provide its own protection in
2505 *      the ops->create routine.
2506 */
2507void sock_unregister(int family)
2508{
2509        BUG_ON(family < 0 || family >= NPROTO);
2510
2511        spin_lock(&net_family_lock);
2512        RCU_INIT_POINTER(net_families[family], NULL);
2513        spin_unlock(&net_family_lock);
2514
2515        synchronize_rcu();
2516
2517        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518}
2519EXPORT_SYMBOL(sock_unregister);
2520
2521static int __init sock_init(void)
2522{
2523        int err;
2524        /*
2525         *      Initialize the network sysctl infrastructure.
2526         */
2527        err = net_sysctl_init();
2528        if (err)
2529                goto out;
2530
2531        /*
2532         *      Initialize sock SLAB cache.
2533         */
2534
2535        sk_init();
2536
2537        /*
2538         *      Initialize skbuff SLAB cache
2539         */
2540        skb_init();
2541
2542        /*
2543         *      Initialize the protocols module.
2544         */
2545
2546        init_inodecache();
2547
2548        err = register_filesystem(&sock_fs_type);
2549        if (err)
2550                goto out_fs;
2551        sock_mnt = kern_mount(&sock_fs_type);
2552        if (IS_ERR(sock_mnt)) {
2553                err = PTR_ERR(sock_mnt);
2554                goto out_mount;
2555        }
2556
2557        /* The real protocol initialization is performed in later initcalls.
2558         */
2559
2560#ifdef CONFIG_NETFILTER
2561        netfilter_init();
2562#endif
2563
2564#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2565        skb_timestamping_init();
2566#endif
2567
2568out:
2569        return err;
2570
2571out_mount:
2572        unregister_filesystem(&sock_fs_type);
2573out_fs:
2574        goto out;
2575}
2576
2577core_initcall(sock_init);       /* early initcall */
2578
2579#ifdef CONFIG_PROC_FS
2580void socket_seq_show(struct seq_file *seq)
2581{
2582        int cpu;
2583        int counter = 0;
2584
2585        for_each_possible_cpu(cpu)
2586            counter += per_cpu(sockets_in_use, cpu);
2587
2588        /* It can be negative, by the way. 8) */
2589        if (counter < 0)
2590                counter = 0;
2591
2592        seq_printf(seq, "sockets: used %d\n", counter);
2593}
2594#endif                          /* CONFIG_PROC_FS */
2595
2596#ifdef CONFIG_COMPAT
2597static int do_siocgstamp(struct net *net, struct socket *sock,
2598                         unsigned int cmd, void __user *up)
2599{
2600        mm_segment_t old_fs = get_fs();
2601        struct timeval ktv;
2602        int err;
2603
2604        set_fs(KERNEL_DS);
2605        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606        set_fs(old_fs);
2607        if (!err)
2608                err = compat_put_timeval(&ktv, up);
2609
2610        return err;
2611}
2612
2613static int do_siocgstampns(struct net *net, struct socket *sock,
2614                           unsigned int cmd, void __user *up)
2615{
2616        mm_segment_t old_fs = get_fs();
2617        struct timespec kts;
2618        int err;
2619
2620        set_fs(KERNEL_DS);
2621        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622        set_fs(old_fs);
2623        if (!err)
2624                err = compat_put_timespec(&kts, up);
2625
2626        return err;
2627}
2628
2629static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630{
2631        struct ifreq __user *uifr;
2632        int err;
2633
2634        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636                return -EFAULT;
2637
2638        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639        if (err)
2640                return err;
2641
2642        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643                return -EFAULT;
2644
2645        return 0;
2646}
2647
2648static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649{
2650        struct compat_ifconf ifc32;
2651        struct ifconf ifc;
2652        struct ifconf __user *uifc;
2653        struct compat_ifreq __user *ifr32;
2654        struct ifreq __user *ifr;
2655        unsigned int i, j;
2656        int err;
2657
2658        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659                return -EFAULT;
2660
2661        memset(&ifc, 0, sizeof(ifc));
2662        if (ifc32.ifcbuf == 0) {
2663                ifc32.ifc_len = 0;
2664                ifc.ifc_len = 0;
2665                ifc.ifc_req = NULL;
2666                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667        } else {
2668                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669                        sizeof(struct ifreq);
2670                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671                ifc.ifc_len = len;
2672                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673                ifr32 = compat_ptr(ifc32.ifcbuf);
2674                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676                                return -EFAULT;
2677                        ifr++;
2678                        ifr32++;
2679                }
2680        }
2681        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682                return -EFAULT;
2683
2684        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685        if (err)
2686                return err;
2687
2688        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689                return -EFAULT;
2690
2691        ifr = ifc.ifc_req;
2692        ifr32 = compat_ptr(ifc32.ifcbuf);
2693        for (i = 0, j = 0;
2694             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697                        return -EFAULT;
2698                ifr32++;
2699                ifr++;
2700        }
2701
2702        if (ifc32.ifcbuf == 0) {
2703                /* Translate from 64-bit structure multiple to
2704                 * a 32-bit one.
2705                 */
2706                i = ifc.ifc_len;
2707                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708                ifc32.ifc_len = i;
2709        } else {
2710                ifc32.ifc_len = i;
2711        }
2712        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713                return -EFAULT;
2714
2715        return 0;
2716}
2717
2718static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719{
2720        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721        bool convert_in = false, convert_out = false;
2722        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723        struct ethtool_rxnfc __user *rxnfc;
2724        struct ifreq __user *ifr;
2725        u32 rule_cnt = 0, actual_rule_cnt;
2726        u32 ethcmd;
2727        u32 data;
2728        int ret;
2729
2730        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731                return -EFAULT;
2732
2733        compat_rxnfc = compat_ptr(data);
2734
2735        if (get_user(ethcmd, &compat_rxnfc->cmd))
2736                return -EFAULT;
2737
2738        /* Most ethtool structures are defined without padding.
2739         * Unfortunately struct ethtool_rxnfc is an exception.
2740         */
2741        switch (ethcmd) {
2742        default:
2743                break;
2744        case ETHTOOL_GRXCLSRLALL:
2745                /* Buffer size is variable */
2746                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747                        return -EFAULT;
2748                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749                        return -ENOMEM;
2750                buf_size += rule_cnt * sizeof(u32);
2751                /* fall through */
2752        case ETHTOOL_GRXRINGS:
2753        case ETHTOOL_GRXCLSRLCNT:
2754        case ETHTOOL_GRXCLSRULE:
2755        case ETHTOOL_SRXCLSRLINS:
2756                convert_out = true;
2757                /* fall through */
2758        case ETHTOOL_SRXCLSRLDEL:
2759                buf_size += sizeof(struct ethtool_rxnfc);
2760                convert_in = true;
2761                break;
2762        }
2763
2764        ifr = compat_alloc_user_space(buf_size);
2765        rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768                return -EFAULT;
2769
2770        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771                     &ifr->ifr_ifru.ifru_data))
2772                return -EFAULT;
2773
2774        if (convert_in) {
2775                /* We expect there to be holes between fs.m_ext and
2776                 * fs.ring_cookie and at the end of fs, but nowhere else.
2777                 */
2778                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779                             sizeof(compat_rxnfc->fs.m_ext) !=
2780                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781                             sizeof(rxnfc->fs.m_ext));
2782                BUILD_BUG_ON(
2783                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785                        offsetof(struct ethtool_rxnfc, fs.location) -
2786                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788                if (copy_in_user(rxnfc, compat_rxnfc,
2789                                 (void *)(&rxnfc->fs.m_ext + 1) -
2790                                 (void *)rxnfc) ||
2791                    copy_in_user(&rxnfc->fs.ring_cookie,
2792                                 &compat_rxnfc->fs.ring_cookie,
2793                                 (void *)(&rxnfc->fs.location + 1) -
2794                                 (void *)&rxnfc->fs.ring_cookie) ||
2795                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796                                 sizeof(rxnfc->rule_cnt)))
2797                        return -EFAULT;
2798        }
2799
2800        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801        if (ret)
2802                return ret;
2803
2804        if (convert_out) {
2805                if (copy_in_user(compat_rxnfc, rxnfc,
2806                                 (const void *)(&rxnfc->fs.m_ext + 1) -
2807                                 (const void *)rxnfc) ||
2808                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809                                 &rxnfc->fs.ring_cookie,
2810                                 (const void *)(&rxnfc->fs.location + 1) -
2811                                 (const void *)&rxnfc->fs.ring_cookie) ||
2812                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813                                 sizeof(rxnfc->rule_cnt)))
2814                        return -EFAULT;
2815
2816                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817                        /* As an optimisation, we only copy the actual
2818                         * number of rules that the underlying
2819                         * function returned.  Since Mallory might
2820                         * change the rule count in user memory, we
2821                         * check that it is less than the rule count
2822                         * originally given (as the user buffer size),
2823                         * which has been range-checked.
2824                         */
2825                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826                                return -EFAULT;
2827                        if (actual_rule_cnt < rule_cnt)
2828                                rule_cnt = actual_rule_cnt;
2829                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830                                         &rxnfc->rule_locs[0],
2831                                         rule_cnt * sizeof(u32)))
2832                                return -EFAULT;
2833                }
2834        }
2835
2836        return 0;
2837}
2838
2839static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840{
2841        void __user *uptr;
2842        compat_uptr_t uptr32;
2843        struct ifreq __user *uifr;
2844
2845        uifr = compat_alloc_user_space(sizeof(*uifr));
2846        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847                return -EFAULT;
2848
2849        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850                return -EFAULT;
2851
2852        uptr = compat_ptr(uptr32);
2853
2854        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855                return -EFAULT;
2856
2857        return dev_ioctl(net, SIOCWANDEV, uifr);
2858}
2859
2860static int bond_ioctl(struct net *net, unsigned int cmd,
2861                         struct compat_ifreq __user *ifr32)
2862{
2863        struct ifreq kifr;
2864        struct ifreq __user *uifr;
2865        mm_segment_t old_fs;
2866        int err;
2867        u32 data;
2868        void __user *datap;
2869
2870        switch (cmd) {
2871        case SIOCBONDENSLAVE:
2872        case SIOCBONDRELEASE:
2873        case SIOCBONDSETHWADDR:
2874        case SIOCBONDCHANGEACTIVE:
2875                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2876                        return -EFAULT;
2877
2878                old_fs = get_fs();
2879                set_fs(KERNEL_DS);
2880                err = dev_ioctl(net, cmd,
2881                                (struct ifreq __user __force *) &kifr);
2882                set_fs(old_fs);
2883
2884                return err;
2885        case SIOCBONDSLAVEINFOQUERY:
2886        case SIOCBONDINFOQUERY:
2887                uifr = compat_alloc_user_space(sizeof(*uifr));
2888                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889                        return -EFAULT;
2890
2891                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2892                        return -EFAULT;
2893
2894                datap = compat_ptr(data);
2895                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2896                        return -EFAULT;
2897
2898                return dev_ioctl(net, cmd, uifr);
2899        default:
2900                return -ENOIOCTLCMD;
2901        }
2902}
2903
2904static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2905                                 struct compat_ifreq __user *u_ifreq32)
2906{
2907        struct ifreq __user *u_ifreq64;
2908        char tmp_buf[IFNAMSIZ];
2909        void __user *data64;
2910        u32 data32;
2911
2912        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2913                           IFNAMSIZ))
2914                return -EFAULT;
2915        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2916                return -EFAULT;
2917        data64 = compat_ptr(data32);
2918
2919        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2920
2921        /* Don't check these user accesses, just let that get trapped
2922         * in the ioctl handler instead.
2923         */
2924        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2925                         IFNAMSIZ))
2926                return -EFAULT;
2927        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2928                return -EFAULT;
2929
2930        return dev_ioctl(net, cmd, u_ifreq64);
2931}
2932
2933static int dev_ifsioc(struct net *net, struct socket *sock,
2934                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2935{
2936        struct ifreq __user *uifr;
2937        int err;
2938
2939        uifr = compat_alloc_user_space(sizeof(*uifr));
2940        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2941                return -EFAULT;
2942
2943        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2944
2945        if (!err) {
2946                switch (cmd) {
2947                case SIOCGIFFLAGS:
2948                case SIOCGIFMETRIC:
2949                case SIOCGIFMTU:
2950                case SIOCGIFMEM:
2951                case SIOCGIFHWADDR:
2952                case SIOCGIFINDEX:
2953                case SIOCGIFADDR:
2954                case SIOCGIFBRDADDR:
2955                case SIOCGIFDSTADDR:
2956                case SIOCGIFNETMASK:
2957                case SIOCGIFPFLAGS:
2958                case SIOCGIFTXQLEN:
2959                case SIOCGMIIPHY:
2960                case SIOCGMIIREG:
2961                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2962                                err = -EFAULT;
2963                        break;
2964                }
2965        }
2966        return err;
2967}
2968
2969static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2970                        struct compat_ifreq __user *uifr32)
2971{
2972        struct ifreq ifr;
2973        struct compat_ifmap __user *uifmap32;
2974        mm_segment_t old_fs;
2975        int err;
2976
2977        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2978        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2979        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2980        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2981        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2982        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2983        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2984        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2985        if (err)
2986                return -EFAULT;
2987
2988        old_fs = get_fs();
2989        set_fs(KERNEL_DS);
2990        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2991        set_fs(old_fs);
2992
2993        if (cmd == SIOCGIFMAP && !err) {
2994                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3001                if (err)
3002                        err = -EFAULT;
3003        }
3004        return err;
3005}
3006
3007static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3008{
3009        void __user *uptr;
3010        compat_uptr_t uptr32;
3011        struct ifreq __user *uifr;
3012
3013        uifr = compat_alloc_user_space(sizeof(*uifr));
3014        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3015                return -EFAULT;
3016
3017        if (get_user(uptr32, &uifr32->ifr_data))
3018                return -EFAULT;
3019
3020        uptr = compat_ptr(uptr32);
3021
3022        if (put_user(uptr, &uifr->ifr_data))
3023                return -EFAULT;
3024
3025        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3026}
3027
3028struct rtentry32 {
3029        u32             rt_pad1;
3030        struct sockaddr rt_dst;         /* target address               */
3031        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3032        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3033        unsigned short  rt_flags;
3034        short           rt_pad2;
3035        u32             rt_pad3;
3036        unsigned char   rt_tos;
3037        unsigned char   rt_class;
3038        short           rt_pad4;
3039        short           rt_metric;      /* +1 for binary compatibility! */
3040        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3041        u32             rt_mtu;         /* per route MTU/Window         */
3042        u32             rt_window;      /* Window clamping              */
3043        unsigned short  rt_irtt;        /* Initial RTT                  */
3044};
3045
3046struct in6_rtmsg32 {
3047        struct in6_addr         rtmsg_dst;
3048        struct in6_addr         rtmsg_src;
3049        struct in6_addr         rtmsg_gateway;
3050        u32                     rtmsg_type;
3051        u16                     rtmsg_dst_len;
3052        u16                     rtmsg_src_len;
3053        u32                     rtmsg_metric;
3054        u32                     rtmsg_info;
3055        u32                     rtmsg_flags;
3056        s32                     rtmsg_ifindex;
3057};
3058
3059static int routing_ioctl(struct net *net, struct socket *sock,
3060                         unsigned int cmd, void __user *argp)
3061{
3062        int ret;
3063        void *r = NULL;
3064        struct in6_rtmsg r6;
3065        struct rtentry r4;
3066        char devname[16];
3067        u32 rtdev;
3068        mm_segment_t old_fs = get_fs();
3069
3070        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3071                struct in6_rtmsg32 __user *ur6 = argp;
3072                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3073                        3 * sizeof(struct in6_addr));
3074                ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3075                ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3076                ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3077                ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3078                ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3079                ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3080                ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081
3082                r = (void *) &r6;
3083        } else { /* ipv4 */
3084                struct rtentry32 __user *ur4 = argp;
3085                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3086                                        3 * sizeof(struct sockaddr));
3087                ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3088                ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3089                ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3090                ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3091                ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3092                ret |= __get_user(rtdev, &(ur4->rt_dev));
3093                if (rtdev) {
3094                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3095                        r4.rt_dev = (char __user __force *)devname;
3096                        devname[15] = 0;
3097                } else
3098                        r4.rt_dev = NULL;
3099
3100                r = (void *) &r4;
3101        }
3102
3103        if (ret) {
3104                ret = -EFAULT;
3105                goto out;
3106        }
3107
3108        set_fs(KERNEL_DS);
3109        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3110        set_fs(old_fs);
3111
3112out:
3113        return ret;
3114}
3115
3116/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3117 * for some operations; this forces use of the newer bridge-utils that
3118 * use compatible ioctls
3119 */
3120static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121{
3122        compat_ulong_t tmp;
3123
3124        if (get_user(tmp, argp))
3125                return -EFAULT;
3126        if (tmp == BRCTL_GET_VERSION)
3127                return BRCTL_VERSION + 1;
3128        return -EINVAL;
3129}
3130
3131static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3132                         unsigned int cmd, unsigned long arg)
3133{
3134        void __user *argp = compat_ptr(arg);
3135        struct sock *sk = sock->sk;
3136        struct net *net = sock_net(sk);
3137
3138        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3139                return siocdevprivate_ioctl(net, cmd, argp);
3140
3141        switch (cmd) {
3142        case SIOCSIFBR:
3143        case SIOCGIFBR:
3144                return old_bridge_ioctl(argp);
3145        case SIOCGIFNAME:
3146                return dev_ifname32(net, argp);
3147        case SIOCGIFCONF:
3148                return dev_ifconf(net, argp);
3149        case SIOCETHTOOL:
3150                return ethtool_ioctl(net, argp);
3151        case SIOCWANDEV:
3152                return compat_siocwandev(net, argp);
3153        case SIOCGIFMAP:
3154        case SIOCSIFMAP:
3155                return compat_sioc_ifmap(net, cmd, argp);
3156        case SIOCBONDENSLAVE:
3157        case SIOCBONDRELEASE:
3158        case SIOCBONDSETHWADDR:
3159        case SIOCBONDSLAVEINFOQUERY:
3160        case SIOCBONDINFOQUERY:
3161        case SIOCBONDCHANGEACTIVE:
3162                return bond_ioctl(net, cmd, argp);
3163        case SIOCADDRT:
3164        case SIOCDELRT:
3165                return routing_ioctl(net, sock, cmd, argp);
3166        case SIOCGSTAMP:
3167                return do_siocgstamp(net, sock, cmd, argp);
3168        case SIOCGSTAMPNS:
3169                return do_siocgstampns(net, sock, cmd, argp);
3170        case SIOCSHWTSTAMP:
3171                return compat_siocshwtstamp(net, argp);
3172
3173        case FIOSETOWN:
3174        case SIOCSPGRP:
3175        case FIOGETOWN:
3176        case SIOCGPGRP:
3177        case SIOCBRADDBR:
3178        case SIOCBRDELBR:
3179        case SIOCGIFVLAN:
3180        case SIOCSIFVLAN:
3181        case SIOCADDDLCI:
3182        case SIOCDELDLCI:
3183                return sock_ioctl(file, cmd, arg);
3184
3185        case SIOCGIFFLAGS:
3186        case SIOCSIFFLAGS:
3187        case SIOCGIFMETRIC:
3188        case SIOCSIFMETRIC:
3189        case SIOCGIFMTU:
3190        case SIOCSIFMTU:
3191        case SIOCGIFMEM:
3192        case SIOCSIFMEM:
3193        case SIOCGIFHWADDR:
3194        case SIOCSIFHWADDR:
3195        case SIOCADDMULTI:
3196        case SIOCDELMULTI:
3197        case SIOCGIFINDEX:
3198        case SIOCGIFADDR:
3199        case SIOCSIFADDR:
3200        case SIOCSIFHWBROADCAST:
3201        case SIOCDIFADDR:
3202        case SIOCGIFBRDADDR:
3203        case SIOCSIFBRDADDR:
3204        case SIOCGIFDSTADDR:
3205        case SIOCSIFDSTADDR:
3206        case SIOCGIFNETMASK:
3207        case SIOCSIFNETMASK:
3208        case SIOCSIFPFLAGS:
3209        case SIOCGIFPFLAGS:
3210        case SIOCGIFTXQLEN:
3211        case SIOCSIFTXQLEN:
3212        case SIOCBRADDIF:
3213        case SIOCBRDELIF:
3214        case SIOCSIFNAME:
3215        case SIOCGMIIPHY:
3216        case SIOCGMIIREG:
3217        case SIOCSMIIREG:
3218                return dev_ifsioc(net, sock, cmd, argp);
3219
3220        case SIOCSARP:
3221        case SIOCGARP:
3222        case SIOCDARP:
3223        case SIOCATMARK:
3224                return sock_do_ioctl(net, sock, cmd, arg);
3225        }
3226
3227        return -ENOIOCTLCMD;
3228}
3229
3230static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3231                              unsigned long arg)
3232{
3233        struct socket *sock = file->private_data;
3234        int ret = -ENOIOCTLCMD;
3235        struct sock *sk;
3236        struct net *net;
3237
3238        sk = sock->sk;
3239        net = sock_net(sk);
3240
3241        if (sock->ops->compat_ioctl)
3242                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243
3244        if (ret == -ENOIOCTLCMD &&
3245            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246                ret = compat_wext_handle_ioctl(net, cmd, arg);
3247
3248        if (ret == -ENOIOCTLCMD)
3249                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250
3251        return ret;
3252}
3253#endif
3254
3255int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256{
3257        return sock->ops->bind(sock, addr, addrlen);
3258}
3259EXPORT_SYMBOL(kernel_bind);
3260
3261int kernel_listen(struct socket *sock, int backlog)
3262{
3263        return sock->ops->listen(sock, backlog);
3264}
3265EXPORT_SYMBOL(kernel_listen);
3266
3267int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268{
3269        struct sock *sk = sock->sk;
3270        int err;
3271
3272        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273                               newsock);
3274        if (err < 0)
3275                goto done;
3276
3277        err = sock->ops->accept(sock, *newsock, flags);
3278        if (err < 0) {
3279                sock_release(*newsock);
3280                *newsock = NULL;
3281                goto done;
3282        }
3283
3284        (*newsock)->ops = sock->ops;
3285        __module_get((*newsock)->ops->owner);
3286
3287done:
3288        return err;
3289}
3290EXPORT_SYMBOL(kernel_accept);
3291
3292int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293                   int flags)
3294{
3295        return sock->ops->connect(sock, addr, addrlen, flags);
3296}
3297EXPORT_SYMBOL(kernel_connect);
3298
3299int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300                         int *addrlen)
3301{
3302        return sock->ops->getname(sock, addr, addrlen, 0);
3303}
3304EXPORT_SYMBOL(kernel_getsockname);
3305
3306int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307                         int *addrlen)
3308{
3309        return sock->ops->getname(sock, addr, addrlen, 1);
3310}
3311EXPORT_SYMBOL(kernel_getpeername);
3312
3313int kernel_getsockopt(struct socket *sock, int level, int optname,
3314                        char *optval, int *optlen)
3315{
3316        mm_segment_t oldfs = get_fs();
3317        char __user *uoptval;
3318        int __user *uoptlen;
3319        int err;
3320
3321        uoptval = (char __user __force *) optval;
3322        uoptlen = (int __user __force *) optlen;
3323
3324        set_fs(KERNEL_DS);
3325        if (level == SOL_SOCKET)
3326                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327        else
3328                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329                                            uoptlen);
3330        set_fs(oldfs);
3331        return err;
3332}
3333EXPORT_SYMBOL(kernel_getsockopt);
3334
3335int kernel_setsockopt(struct socket *sock, int level, int optname,
3336                        char *optval, unsigned int optlen)
3337{
3338        mm_segment_t oldfs = get_fs();
3339        char __user *uoptval;
3340        int err;
3341
3342        uoptval = (char __user __force *) optval;
3343
3344        set_fs(KERNEL_DS);
3345        if (level == SOL_SOCKET)
3346                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347        else
3348                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349                                            optlen);
3350        set_fs(oldfs);
3351        return err;
3352}
3353EXPORT_SYMBOL(kernel_setsockopt);
3354
3355int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356                    size_t size, int flags)
3357{
3358        sock_update_classid(sock->sk);
3359
3360        if (sock->ops->sendpage)
3361                return sock->ops->sendpage(sock, page, offset, size, flags);
3362
3363        return sock_no_sendpage(sock, page, offset, size, flags);
3364}
3365EXPORT_SYMBOL(kernel_sendpage);
3366
3367int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368{
3369        mm_segment_t oldfs = get_fs();
3370        int err;
3371
3372        set_fs(KERNEL_DS);
3373        err = sock->ops->ioctl(sock, cmd, arg);
3374        set_fs(oldfs);
3375
3376        return err;
3377}
3378EXPORT_SYMBOL(kernel_sock_ioctl);
3379
3380int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381{
3382        return sock->ops->shutdown(sock, how);
3383}
3384EXPORT_SYMBOL(kernel_sock_shutdown);
3385
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.