1
2
3
4
5
6
7
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/mutex.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
20#include <linux/ioport.h>
21#include <linux/hardirq.h>
22#include <linux/elf.h>
23#include <linux/elfcore.h>
24#include <generated/utsrelease.h>
25#include <linux/utsname.h>
26#include <linux/numa.h>
27#include <linux/suspend.h>
28#include <linux/device.h>
29#include <linux/freezer.h>
30#include <linux/pm.h>
31#include <linux/cpu.h>
32#include <linux/console.h>
33#include <linux/vmalloc.h>
34#include <linux/swap.h>
35#include <linux/syscore_ops.h>
36
37#include <asm/page.h>
38#include <asm/uaccess.h>
39#include <asm/io.h>
40#include <asm/system.h>
41#include <asm/sections.h>
42
43
44note_buf_t __percpu *crash_notes;
45
46
47static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
48u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
49size_t vmcoreinfo_size;
50size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
51
52
53struct resource crashk_res = {
54 .name = "Crash kernel",
55 .start = 0,
56 .end = 0,
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
58};
59
60int kexec_should_crash(struct task_struct *p)
61{
62 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
63 return 1;
64 return 0;
65}
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111#define KIMAGE_NO_DEST (-1UL)
112
113static int kimage_is_destination_range(struct kimage *image,
114 unsigned long start, unsigned long end);
115static struct page *kimage_alloc_page(struct kimage *image,
116 gfp_t gfp_mask,
117 unsigned long dest);
118
119static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
120 unsigned long nr_segments,
121 struct kexec_segment __user *segments)
122{
123 size_t segment_bytes;
124 struct kimage *image;
125 unsigned long i;
126 int result;
127
128
129 result = -ENOMEM;
130 image = kzalloc(sizeof(*image), GFP_KERNEL);
131 if (!image)
132 goto out;
133
134 image->head = 0;
135 image->entry = &image->head;
136 image->last_entry = &image->head;
137 image->control_page = ~0;
138 image->start = entry;
139 image->type = KEXEC_TYPE_DEFAULT;
140
141
142 INIT_LIST_HEAD(&image->control_pages);
143
144
145 INIT_LIST_HEAD(&image->dest_pages);
146
147
148 INIT_LIST_HEAD(&image->unuseable_pages);
149
150
151 image->nr_segments = nr_segments;
152 segment_bytes = nr_segments * sizeof(*segments);
153 result = copy_from_user(image->segment, segments, segment_bytes);
154 if (result) {
155 result = -EFAULT;
156 goto out;
157 }
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 result = -EADDRNOTAVAIL;
173 for (i = 0; i < nr_segments; i++) {
174 unsigned long mstart, mend;
175
176 mstart = image->segment[i].mem;
177 mend = mstart + image->segment[i].memsz;
178 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
179 goto out;
180 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
181 goto out;
182 }
183
184
185
186
187
188
189 result = -EINVAL;
190 for (i = 0; i < nr_segments; i++) {
191 unsigned long mstart, mend;
192 unsigned long j;
193
194 mstart = image->segment[i].mem;
195 mend = mstart + image->segment[i].memsz;
196 for (j = 0; j < i; j++) {
197 unsigned long pstart, pend;
198 pstart = image->segment[j].mem;
199 pend = pstart + image->segment[j].memsz;
200
201 if ((mend > pstart) && (mstart < pend))
202 goto out;
203 }
204 }
205
206
207
208
209
210
211 result = -EINVAL;
212 for (i = 0; i < nr_segments; i++) {
213 if (image->segment[i].bufsz > image->segment[i].memsz)
214 goto out;
215 }
216
217 result = 0;
218out:
219 if (result == 0)
220 *rimage = image;
221 else
222 kfree(image);
223
224 return result;
225
226}
227
228static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
229 unsigned long nr_segments,
230 struct kexec_segment __user *segments)
231{
232 int result;
233 struct kimage *image;
234
235
236 image = NULL;
237 result = do_kimage_alloc(&image, entry, nr_segments, segments);
238 if (result)
239 goto out;
240
241 *rimage = image;
242
243
244
245
246
247
248 result = -ENOMEM;
249 image->control_code_page = kimage_alloc_control_pages(image,
250 get_order(KEXEC_CONTROL_PAGE_SIZE));
251 if (!image->control_code_page) {
252 printk(KERN_ERR "Could not allocate control_code_buffer\n");
253 goto out;
254 }
255
256 image->swap_page = kimage_alloc_control_pages(image, 0);
257 if (!image->swap_page) {
258 printk(KERN_ERR "Could not allocate swap buffer\n");
259 goto out;
260 }
261
262 result = 0;
263 out:
264 if (result == 0)
265 *rimage = image;
266 else
267 kfree(image);
268
269 return result;
270}
271
272static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
273 unsigned long nr_segments,
274 struct kexec_segment __user *segments)
275{
276 int result;
277 struct kimage *image;
278 unsigned long i;
279
280 image = NULL;
281
282 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
283 result = -EADDRNOTAVAIL;
284 goto out;
285 }
286
287
288 result = do_kimage_alloc(&image, entry, nr_segments, segments);
289 if (result)
290 goto out;
291
292
293
294
295 image->control_page = crashk_res.start;
296 image->type = KEXEC_TYPE_CRASH;
297
298
299
300
301
302
303
304
305
306
307 result = -EADDRNOTAVAIL;
308 for (i = 0; i < nr_segments; i++) {
309 unsigned long mstart, mend;
310
311 mstart = image->segment[i].mem;
312 mend = mstart + image->segment[i].memsz - 1;
313
314 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
315 goto out;
316 }
317
318
319
320
321
322
323 result = -ENOMEM;
324 image->control_code_page = kimage_alloc_control_pages(image,
325 get_order(KEXEC_CONTROL_PAGE_SIZE));
326 if (!image->control_code_page) {
327 printk(KERN_ERR "Could not allocate control_code_buffer\n");
328 goto out;
329 }
330
331 result = 0;
332out:
333 if (result == 0)
334 *rimage = image;
335 else
336 kfree(image);
337
338 return result;
339}
340
341static int kimage_is_destination_range(struct kimage *image,
342 unsigned long start,
343 unsigned long end)
344{
345 unsigned long i;
346
347 for (i = 0; i < image->nr_segments; i++) {
348 unsigned long mstart, mend;
349
350 mstart = image->segment[i].mem;
351 mend = mstart + image->segment[i].memsz;
352 if ((end > mstart) && (start < mend))
353 return 1;
354 }
355
356 return 0;
357}
358
359static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
360{
361 struct page *pages;
362
363 pages = alloc_pages(gfp_mask, order);
364 if (pages) {
365 unsigned int count, i;
366 pages->mapping = NULL;
367 set_page_private(pages, order);
368 count = 1 << order;
369 for (i = 0; i < count; i++)
370 SetPageReserved(pages + i);
371 }
372
373 return pages;
374}
375
376static void kimage_free_pages(struct page *page)
377{
378 unsigned int order, count, i;
379
380 order = page_private(page);
381 count = 1 << order;
382 for (i = 0; i < count; i++)
383 ClearPageReserved(page + i);
384 __free_pages(page, order);
385}
386
387static void kimage_free_page_list(struct list_head *list)
388{
389 struct list_head *pos, *next;
390
391 list_for_each_safe(pos, next, list) {
392 struct page *page;
393
394 page = list_entry(pos, struct page, lru);
395 list_del(&page->lru);
396 kimage_free_pages(page);
397 }
398}
399
400static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
401 unsigned int order)
402{
403
404
405
406
407
408
409
410
411
412
413
414
415
416 struct list_head extra_pages;
417 struct page *pages;
418 unsigned int count;
419
420 count = 1 << order;
421 INIT_LIST_HEAD(&extra_pages);
422
423
424
425
426 do {
427 unsigned long pfn, epfn, addr, eaddr;
428
429 pages = kimage_alloc_pages(GFP_KERNEL, order);
430 if (!pages)
431 break;
432 pfn = page_to_pfn(pages);
433 epfn = pfn + count;
434 addr = pfn << PAGE_SHIFT;
435 eaddr = epfn << PAGE_SHIFT;
436 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
437 kimage_is_destination_range(image, addr, eaddr)) {
438 list_add(&pages->lru, &extra_pages);
439 pages = NULL;
440 }
441 } while (!pages);
442
443 if (pages) {
444
445 list_add(&pages->lru, &image->control_pages);
446
447
448
449
450
451
452
453 }
454
455
456
457
458
459
460
461 kimage_free_page_list(&extra_pages);
462
463 return pages;
464}
465
466static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
467 unsigned int order)
468{
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490 unsigned long hole_start, hole_end, size;
491 struct page *pages;
492
493 pages = NULL;
494 size = (1 << order) << PAGE_SHIFT;
495 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
496 hole_end = hole_start + size - 1;
497 while (hole_end <= crashk_res.end) {
498 unsigned long i;
499
500 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
501 break;
502 if (hole_end > crashk_res.end)
503 break;
504
505 for (i = 0; i < image->nr_segments; i++) {
506 unsigned long mstart, mend;
507
508 mstart = image->segment[i].mem;
509 mend = mstart + image->segment[i].memsz - 1;
510 if ((hole_end >= mstart) && (hole_start <= mend)) {
511
512 hole_start = (mend + (size - 1)) & ~(size - 1);
513 hole_end = hole_start + size - 1;
514 break;
515 }
516 }
517
518 if (i == image->nr_segments) {
519 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
520 break;
521 }
522 }
523 if (pages)
524 image->control_page = hole_end;
525
526 return pages;
527}
528
529
530struct page *kimage_alloc_control_pages(struct kimage *image,
531 unsigned int order)
532{
533 struct page *pages = NULL;
534
535 switch (image->type) {
536 case KEXEC_TYPE_DEFAULT:
537 pages = kimage_alloc_normal_control_pages(image, order);
538 break;
539 case KEXEC_TYPE_CRASH:
540 pages = kimage_alloc_crash_control_pages(image, order);
541 break;
542 }
543
544 return pages;
545}
546
547static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
548{
549 if (*image->entry != 0)
550 image->entry++;
551
552 if (image->entry == image->last_entry) {
553 kimage_entry_t *ind_page;
554 struct page *page;
555
556 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
557 if (!page)
558 return -ENOMEM;
559
560 ind_page = page_address(page);
561 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
562 image->entry = ind_page;
563 image->last_entry = ind_page +
564 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
565 }
566 *image->entry = entry;
567 image->entry++;
568 *image->entry = 0;
569
570 return 0;
571}
572
573static int kimage_set_destination(struct kimage *image,
574 unsigned long destination)
575{
576 int result;
577
578 destination &= PAGE_MASK;
579 result = kimage_add_entry(image, destination | IND_DESTINATION);
580 if (result == 0)
581 image->destination = destination;
582
583 return result;
584}
585
586
587static int kimage_add_page(struct kimage *image, unsigned long page)
588{
589 int result;
590
591 page &= PAGE_MASK;
592 result = kimage_add_entry(image, page | IND_SOURCE);
593 if (result == 0)
594 image->destination += PAGE_SIZE;
595
596 return result;
597}
598
599
600static void kimage_free_extra_pages(struct kimage *image)
601{
602
603 kimage_free_page_list(&image->dest_pages);
604
605
606 kimage_free_page_list(&image->unuseable_pages);
607
608}
609static void kimage_terminate(struct kimage *image)
610{
611 if (*image->entry != 0)
612 image->entry++;
613
614 *image->entry = IND_DONE;
615}
616
617#define for_each_kimage_entry(image, ptr, entry) \
618 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
619 ptr = (entry & IND_INDIRECTION)? \
620 phys_to_virt((entry & PAGE_MASK)): ptr +1)
621
622static void kimage_free_entry(kimage_entry_t entry)
623{
624 struct page *page;
625
626 page = pfn_to_page(entry >> PAGE_SHIFT);
627 kimage_free_pages(page);
628}
629
630static void kimage_free(struct kimage *image)
631{
632 kimage_entry_t *ptr, entry;
633 kimage_entry_t ind = 0;
634
635 if (!image)
636 return;
637
638 kimage_free_extra_pages(image);
639 for_each_kimage_entry(image, ptr, entry) {
640 if (entry & IND_INDIRECTION) {
641
642 if (ind & IND_INDIRECTION)
643 kimage_free_entry(ind);
644
645
646
647 ind = entry;
648 }
649 else if (entry & IND_SOURCE)
650 kimage_free_entry(entry);
651 }
652
653 if (ind & IND_INDIRECTION)
654 kimage_free_entry(ind);
655
656
657 machine_kexec_cleanup(image);
658
659
660 kimage_free_page_list(&image->control_pages);
661 kfree(image);
662}
663
664static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 unsigned long page)
666{
667 kimage_entry_t *ptr, entry;
668 unsigned long destination = 0;
669
670 for_each_kimage_entry(image, ptr, entry) {
671 if (entry & IND_DESTINATION)
672 destination = entry & PAGE_MASK;
673 else if (entry & IND_SOURCE) {
674 if (page == destination)
675 return ptr;
676 destination += PAGE_SIZE;
677 }
678 }
679
680 return NULL;
681}
682
683static struct page *kimage_alloc_page(struct kimage *image,
684 gfp_t gfp_mask,
685 unsigned long destination)
686{
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705 struct page *page;
706 unsigned long addr;
707
708
709
710
711
712 list_for_each_entry(page, &image->dest_pages, lru) {
713 addr = page_to_pfn(page) << PAGE_SHIFT;
714 if (addr == destination) {
715 list_del(&page->lru);
716 return page;
717 }
718 }
719 page = NULL;
720 while (1) {
721 kimage_entry_t *old;
722
723
724 page = kimage_alloc_pages(gfp_mask, 0);
725 if (!page)
726 return NULL;
727
728 if (page_to_pfn(page) >
729 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
730 list_add(&page->lru, &image->unuseable_pages);
731 continue;
732 }
733 addr = page_to_pfn(page) << PAGE_SHIFT;
734
735
736 if (addr == destination)
737 break;
738
739
740 if (!kimage_is_destination_range(image, addr,
741 addr + PAGE_SIZE))
742 break;
743
744
745
746
747
748
749 old = kimage_dst_used(image, addr);
750 if (old) {
751
752 unsigned long old_addr;
753 struct page *old_page;
754
755 old_addr = *old & PAGE_MASK;
756 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
757 copy_highpage(page, old_page);
758 *old = addr | (*old & ~PAGE_MASK);
759
760
761
762
763
764 if (!(gfp_mask & __GFP_HIGHMEM) &&
765 PageHighMem(old_page)) {
766 kimage_free_pages(old_page);
767 continue;
768 }
769 addr = old_addr;
770 page = old_page;
771 break;
772 }
773 else {
774
775
776
777 list_add(&page->lru, &image->dest_pages);
778 }
779 }
780
781 return page;
782}
783
784static int kimage_load_normal_segment(struct kimage *image,
785 struct kexec_segment *segment)
786{
787 unsigned long maddr;
788 unsigned long ubytes, mbytes;
789 int result;
790 unsigned char __user *buf;
791
792 result = 0;
793 buf = segment->buf;
794 ubytes = segment->bufsz;
795 mbytes = segment->memsz;
796 maddr = segment->mem;
797
798 result = kimage_set_destination(image, maddr);
799 if (result < 0)
800 goto out;
801
802 while (mbytes) {
803 struct page *page;
804 char *ptr;
805 size_t uchunk, mchunk;
806
807 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 if (!page) {
809 result = -ENOMEM;
810 goto out;
811 }
812 result = kimage_add_page(image, page_to_pfn(page)
813 << PAGE_SHIFT);
814 if (result < 0)
815 goto out;
816
817 ptr = kmap(page);
818
819 clear_page(ptr);
820 ptr += maddr & ~PAGE_MASK;
821 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
822 if (mchunk > mbytes)
823 mchunk = mbytes;
824
825 uchunk = mchunk;
826 if (uchunk > ubytes)
827 uchunk = ubytes;
828
829 result = copy_from_user(ptr, buf, uchunk);
830 kunmap(page);
831 if (result) {
832 result = -EFAULT;
833 goto out;
834 }
835 ubytes -= uchunk;
836 maddr += mchunk;
837 buf += mchunk;
838 mbytes -= mchunk;
839 }
840out:
841 return result;
842}
843
844static int kimage_load_crash_segment(struct kimage *image,
845 struct kexec_segment *segment)
846{
847
848
849
850
851 unsigned long maddr;
852 unsigned long ubytes, mbytes;
853 int result;
854 unsigned char __user *buf;
855
856 result = 0;
857 buf = segment->buf;
858 ubytes = segment->bufsz;
859 mbytes = segment->memsz;
860 maddr = segment->mem;
861 while (mbytes) {
862 struct page *page;
863 char *ptr;
864 size_t uchunk, mchunk;
865
866 page = pfn_to_page(maddr >> PAGE_SHIFT);
867 if (!page) {
868 result = -ENOMEM;
869 goto out;
870 }
871 ptr = kmap(page);
872 ptr += maddr & ~PAGE_MASK;
873 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
874 if (mchunk > mbytes)
875 mchunk = mbytes;
876
877 uchunk = mchunk;
878 if (uchunk > ubytes) {
879 uchunk = ubytes;
880
881 memset(ptr + uchunk, 0, mchunk - uchunk);
882 }
883 result = copy_from_user(ptr, buf, uchunk);
884 kexec_flush_icache_page(page);
885 kunmap(page);
886 if (result) {
887 result = -EFAULT;
888 goto out;
889 }
890 ubytes -= uchunk;
891 maddr += mchunk;
892 buf += mchunk;
893 mbytes -= mchunk;
894 }
895out:
896 return result;
897}
898
899static int kimage_load_segment(struct kimage *image,
900 struct kexec_segment *segment)
901{
902 int result = -ENOMEM;
903
904 switch (image->type) {
905 case KEXEC_TYPE_DEFAULT:
906 result = kimage_load_normal_segment(image, segment);
907 break;
908 case KEXEC_TYPE_CRASH:
909 result = kimage_load_crash_segment(image, segment);
910 break;
911 }
912
913 return result;
914}
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936struct kimage *kexec_image;
937struct kimage *kexec_crash_image;
938
939static DEFINE_MUTEX(kexec_mutex);
940
941SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
942 struct kexec_segment __user *, segments, unsigned long, flags)
943{
944 struct kimage **dest_image, *image;
945 int result;
946
947
948 if (!capable(CAP_SYS_BOOT))
949 return -EPERM;
950
951
952
953
954
955 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
956 return -EINVAL;
957
958
959 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
960 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
961 return -EINVAL;
962
963
964
965
966 if (nr_segments > KEXEC_SEGMENT_MAX)
967 return -EINVAL;
968
969 image = NULL;
970 result = 0;
971
972
973
974
975
976
977
978
979
980 if (!mutex_trylock(&kexec_mutex))
981 return -EBUSY;
982
983 dest_image = &kexec_image;
984 if (flags & KEXEC_ON_CRASH)
985 dest_image = &kexec_crash_image;
986 if (nr_segments > 0) {
987 unsigned long i;
988
989
990 if ((flags & KEXEC_ON_CRASH) == 0)
991 result = kimage_normal_alloc(&image, entry,
992 nr_segments, segments);
993
994 else if (flags & KEXEC_ON_CRASH) {
995
996
997
998 kimage_free(xchg(&kexec_crash_image, NULL));
999 result = kimage_crash_alloc(&image, entry,
1000 nr_segments, segments);
1001 crash_map_reserved_pages();
1002 }
1003 if (result)
1004 goto out;
1005
1006 if (flags & KEXEC_PRESERVE_CONTEXT)
1007 image->preserve_context = 1;
1008 result = machine_kexec_prepare(image);
1009 if (result)
1010 goto out;
1011
1012 for (i = 0; i < nr_segments; i++) {
1013 result = kimage_load_segment(image, &image->segment[i]);
1014 if (result)
1015 goto out;
1016 }
1017 kimage_terminate(image);
1018 if (flags & KEXEC_ON_CRASH)
1019 crash_unmap_reserved_pages();
1020 }
1021
1022 image = xchg(dest_image, image);
1023
1024out:
1025 mutex_unlock(&kexec_mutex);
1026 kimage_free(image);
1027
1028 return result;
1029}
1030
1031
1032
1033
1034
1035
1036
1037void __weak crash_map_reserved_pages(void)
1038{}
1039
1040void __weak crash_unmap_reserved_pages(void)
1041{}
1042
1043#ifdef CONFIG_COMPAT
1044asmlinkage long compat_sys_kexec_load(unsigned long entry,
1045 unsigned long nr_segments,
1046 struct compat_kexec_segment __user *segments,
1047 unsigned long flags)
1048{
1049 struct compat_kexec_segment in;
1050 struct kexec_segment out, __user *ksegments;
1051 unsigned long i, result;
1052
1053
1054
1055
1056 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1057 return -EINVAL;
1058
1059 if (nr_segments > KEXEC_SEGMENT_MAX)
1060 return -EINVAL;
1061
1062 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1063 for (i=0; i < nr_segments; i++) {
1064 result = copy_from_user(&in, &segments[i], sizeof(in));
1065 if (result)
1066 return -EFAULT;
1067
1068 out.buf = compat_ptr(in.buf);
1069 out.bufsz = in.bufsz;
1070 out.mem = in.mem;
1071 out.memsz = in.memsz;
1072
1073 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1074 if (result)
1075 return -EFAULT;
1076 }
1077
1078 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1079}
1080#endif
1081
1082void crash_kexec(struct pt_regs *regs)
1083{
1084
1085
1086
1087
1088
1089
1090
1091
1092 if (mutex_trylock(&kexec_mutex)) {
1093 if (kexec_crash_image) {
1094 struct pt_regs fixed_regs;
1095
1096 crash_setup_regs(&fixed_regs, regs);
1097 crash_save_vmcoreinfo();
1098 machine_crash_shutdown(&fixed_regs);
1099 machine_kexec(kexec_crash_image);
1100 }
1101 mutex_unlock(&kexec_mutex);
1102 }
1103}
1104
1105size_t crash_get_memory_size(void)
1106{
1107 size_t size = 0;
1108 mutex_lock(&kexec_mutex);
1109 if (crashk_res.end != crashk_res.start)
1110 size = resource_size(&crashk_res);
1111 mutex_unlock(&kexec_mutex);
1112 return size;
1113}
1114
1115void __weak crash_free_reserved_phys_range(unsigned long begin,
1116 unsigned long end)
1117{
1118 unsigned long addr;
1119
1120 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1121 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1122 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1123 free_page((unsigned long)__va(addr));
1124 totalram_pages++;
1125 }
1126}
1127
1128int crash_shrink_memory(unsigned long new_size)
1129{
1130 int ret = 0;
1131 unsigned long start, end;
1132 unsigned long old_size;
1133 struct resource *ram_res;
1134
1135 mutex_lock(&kexec_mutex);
1136
1137 if (kexec_crash_image) {
1138 ret = -ENOENT;
1139 goto unlock;
1140 }
1141 start = crashk_res.start;
1142 end = crashk_res.end;
1143 old_size = (end == 0) ? 0 : end - start + 1;
1144 if (new_size >= old_size) {
1145 ret = (new_size == old_size) ? 0 : -EINVAL;
1146 goto unlock;
1147 }
1148
1149 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1150 if (!ram_res) {
1151 ret = -ENOMEM;
1152 goto unlock;
1153 }
1154
1155 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1156 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1157
1158 crash_map_reserved_pages();
1159 crash_free_reserved_phys_range(end, crashk_res.end);
1160
1161 if ((start == end) && (crashk_res.parent != NULL))
1162 release_resource(&crashk_res);
1163
1164 ram_res->start = end;
1165 ram_res->end = crashk_res.end;
1166 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1167 ram_res->name = "System RAM";
1168
1169 crashk_res.end = end - 1;
1170
1171 insert_resource(&iomem_resource, ram_res);
1172 crash_unmap_reserved_pages();
1173
1174unlock:
1175 mutex_unlock(&kexec_mutex);
1176 return ret;
1177}
1178
1179static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1180 size_t data_len)
1181{
1182 struct elf_note note;
1183
1184 note.n_namesz = strlen(name) + 1;
1185 note.n_descsz = data_len;
1186 note.n_type = type;
1187 memcpy(buf, ¬e, sizeof(note));
1188 buf += (sizeof(note) + 3)/4;
1189 memcpy(buf, name, note.n_namesz);
1190 buf += (note.n_namesz + 3)/4;
1191 memcpy(buf, data, note.n_descsz);
1192 buf += (note.n_descsz + 3)/4;
1193
1194 return buf;
1195}
1196
1197static void final_note(u32 *buf)
1198{
1199 struct elf_note note;
1200
1201 note.n_namesz = 0;
1202 note.n_descsz = 0;
1203 note.n_type = 0;
1204 memcpy(buf, ¬e, sizeof(note));
1205}
1206
1207void crash_save_cpu(struct pt_regs *regs, int cpu)
1208{
1209 struct elf_prstatus prstatus;
1210 u32 *buf;
1211
1212 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1213 return;
1214
1215
1216
1217
1218
1219
1220
1221
1222 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1223 if (!buf)
1224 return;
1225 memset(&prstatus, 0, sizeof(prstatus));
1226 prstatus.pr_pid = current->pid;
1227 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1228 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1229 &prstatus, sizeof(prstatus));
1230 final_note(buf);
1231}
1232
1233static int __init crash_notes_memory_init(void)
1234{
1235
1236 crash_notes = alloc_percpu(note_buf_t);
1237 if (!crash_notes) {
1238 printk("Kexec: Memory allocation for saving cpu register"
1239 " states failed\n");
1240 return -ENOMEM;
1241 }
1242 return 0;
1243}
1244module_init(crash_notes_memory_init)
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261static int __init parse_crashkernel_mem(char *cmdline,
1262 unsigned long long system_ram,
1263 unsigned long long *crash_size,
1264 unsigned long long *crash_base)
1265{
1266 char *cur = cmdline, *tmp;
1267
1268
1269 do {
1270 unsigned long long start, end = ULLONG_MAX, size;
1271
1272
1273 start = memparse(cur, &tmp);
1274 if (cur == tmp) {
1275 pr_warning("crashkernel: Memory value expected\n");
1276 return -EINVAL;
1277 }
1278 cur = tmp;
1279 if (*cur != '-') {
1280 pr_warning("crashkernel: '-' expected\n");
1281 return -EINVAL;
1282 }
1283 cur++;
1284
1285
1286 if (*cur != ':') {
1287 end = memparse(cur, &tmp);
1288 if (cur == tmp) {
1289 pr_warning("crashkernel: Memory "
1290 "value expected\n");
1291 return -EINVAL;
1292 }
1293 cur = tmp;
1294 if (end <= start) {
1295 pr_warning("crashkernel: end <= start\n");
1296 return -EINVAL;
1297 }
1298 }
1299
1300 if (*cur != ':') {
1301 pr_warning("crashkernel: ':' expected\n");
1302 return -EINVAL;
1303 }
1304 cur++;
1305
1306 size = memparse(cur, &tmp);
1307 if (cur == tmp) {
1308 pr_warning("Memory value expected\n");
1309 return -EINVAL;
1310 }
1311 cur = tmp;
1312 if (size >= system_ram) {
1313 pr_warning("crashkernel: invalid size\n");
1314 return -EINVAL;
1315 }
1316
1317
1318 if (system_ram >= start && system_ram < end) {
1319 *crash_size = size;
1320 break;
1321 }
1322 } while (*cur++ == ',');
1323
1324 if (*crash_size > 0) {
1325 while (*cur && *cur != ' ' && *cur != '@')
1326 cur++;
1327 if (*cur == '@') {
1328 cur++;
1329 *crash_base = memparse(cur, &tmp);
1330 if (cur == tmp) {
1331 pr_warning("Memory value expected "
1332 "after '@'\n");
1333 return -EINVAL;
1334 }
1335 }
1336 }
1337
1338 return 0;
1339}
1340
1341
1342
1343
1344
1345
1346
1347
1348static int __init parse_crashkernel_simple(char *cmdline,
1349 unsigned long long *crash_size,
1350 unsigned long long *crash_base)
1351{
1352 char *cur = cmdline;
1353
1354 *crash_size = memparse(cmdline, &cur);
1355 if (cmdline == cur) {
1356 pr_warning("crashkernel: memory value expected\n");
1357 return -EINVAL;
1358 }
1359
1360 if (*cur == '@')
1361 *crash_base = memparse(cur+1, &cur);
1362
1363 return 0;
1364}
1365
1366
1367
1368
1369
1370int __init parse_crashkernel(char *cmdline,
1371 unsigned long long system_ram,
1372 unsigned long long *crash_size,
1373 unsigned long long *crash_base)
1374{
1375 char *p = cmdline, *ck_cmdline = NULL;
1376 char *first_colon, *first_space;
1377
1378 BUG_ON(!crash_size || !crash_base);
1379 *crash_size = 0;
1380 *crash_base = 0;
1381
1382
1383 p = strstr(p, "crashkernel=");
1384 while (p) {
1385 ck_cmdline = p;
1386 p = strstr(p+1, "crashkernel=");
1387 }
1388
1389 if (!ck_cmdline)
1390 return -EINVAL;
1391
1392 ck_cmdline += 12;
1393
1394
1395
1396
1397
1398 first_colon = strchr(ck_cmdline, ':');
1399 first_space = strchr(ck_cmdline, ' ');
1400 if (first_colon && (!first_space || first_colon < first_space))
1401 return parse_crashkernel_mem(ck_cmdline, system_ram,
1402 crash_size, crash_base);
1403 else
1404 return parse_crashkernel_simple(ck_cmdline, crash_size,
1405 crash_base);
1406
1407 return 0;
1408}
1409
1410
1411static void update_vmcoreinfo_note(void)
1412{
1413 u32 *buf = vmcoreinfo_note;
1414
1415 if (!vmcoreinfo_size)
1416 return;
1417 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1418 vmcoreinfo_size);
1419 final_note(buf);
1420}
1421
1422void crash_save_vmcoreinfo(void)
1423{
1424 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1425 update_vmcoreinfo_note();
1426}
1427
1428void vmcoreinfo_append_str(const char *fmt, ...)
1429{
1430 va_list args;
1431 char buf[0x50];
1432 int r;
1433
1434 va_start(args, fmt);
1435 r = vsnprintf(buf, sizeof(buf), fmt, args);
1436 va_end(args);
1437
1438 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1439 r = vmcoreinfo_max_size - vmcoreinfo_size;
1440
1441 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1442
1443 vmcoreinfo_size += r;
1444}
1445
1446
1447
1448
1449
1450void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1451{}
1452
1453unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1454{
1455 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1456}
1457
1458static int __init crash_save_vmcoreinfo_init(void)
1459{
1460 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1461 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1462
1463 VMCOREINFO_SYMBOL(init_uts_ns);
1464 VMCOREINFO_SYMBOL(node_online_map);
1465 VMCOREINFO_SYMBOL(swapper_pg_dir);
1466 VMCOREINFO_SYMBOL(_stext);
1467 VMCOREINFO_SYMBOL(vmlist);
1468
1469#ifndef CONFIG_NEED_MULTIPLE_NODES
1470 VMCOREINFO_SYMBOL(mem_map);
1471 VMCOREINFO_SYMBOL(contig_page_data);
1472#endif
1473#ifdef CONFIG_SPARSEMEM
1474 VMCOREINFO_SYMBOL(mem_section);
1475 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1476 VMCOREINFO_STRUCT_SIZE(mem_section);
1477 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1478#endif
1479 VMCOREINFO_STRUCT_SIZE(page);
1480 VMCOREINFO_STRUCT_SIZE(pglist_data);
1481 VMCOREINFO_STRUCT_SIZE(zone);
1482 VMCOREINFO_STRUCT_SIZE(free_area);
1483 VMCOREINFO_STRUCT_SIZE(list_head);
1484 VMCOREINFO_SIZE(nodemask_t);
1485 VMCOREINFO_OFFSET(page, flags);
1486 VMCOREINFO_OFFSET(page, _count);
1487 VMCOREINFO_OFFSET(page, mapping);
1488 VMCOREINFO_OFFSET(page, lru);
1489 VMCOREINFO_OFFSET(pglist_data, node_zones);
1490 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1491#ifdef CONFIG_FLAT_NODE_MEM_MAP
1492 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1493#endif
1494 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1495 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1496 VMCOREINFO_OFFSET(pglist_data, node_id);
1497 VMCOREINFO_OFFSET(zone, free_area);
1498 VMCOREINFO_OFFSET(zone, vm_stat);
1499 VMCOREINFO_OFFSET(zone, spanned_pages);
1500 VMCOREINFO_OFFSET(free_area, free_list);
1501 VMCOREINFO_OFFSET(list_head, next);
1502 VMCOREINFO_OFFSET(list_head, prev);
1503 VMCOREINFO_OFFSET(vm_struct, addr);
1504 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1505 log_buf_kexec_setup();
1506 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1507 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1508 VMCOREINFO_NUMBER(PG_lru);
1509 VMCOREINFO_NUMBER(PG_private);
1510 VMCOREINFO_NUMBER(PG_swapcache);
1511
1512 arch_crash_save_vmcoreinfo();
1513 update_vmcoreinfo_note();
1514
1515 return 0;
1516}
1517
1518module_init(crash_save_vmcoreinfo_init)
1519
1520
1521
1522
1523
1524int kernel_kexec(void)
1525{
1526 int error = 0;
1527
1528 if (!mutex_trylock(&kexec_mutex))
1529 return -EBUSY;
1530 if (!kexec_image) {
1531 error = -EINVAL;
1532 goto Unlock;
1533 }
1534
1535#ifdef CONFIG_KEXEC_JUMP
1536 if (kexec_image->preserve_context) {
1537 lock_system_sleep();
1538 pm_prepare_console();
1539 error = freeze_processes();
1540 if (error) {
1541 error = -EBUSY;
1542 goto Restore_console;
1543 }
1544 suspend_console();
1545 error = dpm_suspend_start(PMSG_FREEZE);
1546 if (error)
1547 goto Resume_console;
1548
1549
1550
1551
1552
1553
1554
1555 error = dpm_suspend_noirq(PMSG_FREEZE);
1556 if (error)
1557 goto Resume_devices;
1558 error = disable_nonboot_cpus();
1559 if (error)
1560 goto Enable_cpus;
1561 local_irq_disable();
1562 error = syscore_suspend();
1563 if (error)
1564 goto Enable_irqs;
1565 } else
1566#endif
1567 {
1568 kernel_restart_prepare(NULL);
1569 printk(KERN_EMERG "Starting new kernel\n");
1570 machine_shutdown();
1571 }
1572
1573 machine_kexec(kexec_image);
1574
1575#ifdef CONFIG_KEXEC_JUMP
1576 if (kexec_image->preserve_context) {
1577 syscore_resume();
1578 Enable_irqs:
1579 local_irq_enable();
1580 Enable_cpus:
1581 enable_nonboot_cpus();
1582 dpm_resume_noirq(PMSG_RESTORE);
1583 Resume_devices:
1584 dpm_resume_end(PMSG_RESTORE);
1585 Resume_console:
1586 resume_console();
1587 thaw_processes();
1588 Restore_console:
1589 pm_restore_console();
1590 unlock_system_sleep();
1591 }
1592#endif
1593
1594 Unlock:
1595 mutex_unlock(&kexec_mutex);
1596 return error;
1597}
1598