linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR       2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34        CONFIG_DEFAULT_SECURITY;
  35
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38        .name   = "default",
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
  42{
  43        /* verify the security_operations structure exists */
  44        if (!ops)
  45                return -EINVAL;
  46        security_fixup_ops(ops);
  47        return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
  51{
  52        initcall_t *call;
  53        call = __security_initcall_start;
  54        while (call < __security_initcall_end) {
  55                (*call) ();
  56                call++;
  57        }
  58}
  59
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67        printk(KERN_INFO "Security Framework initialized\n");
  68
  69        security_fixup_ops(&default_security_ops);
  70        security_ops = &default_security_ops;
  71        do_security_initcalls();
  72
  73        return 0;
  74}
  75
  76void reset_security_ops(void)
  77{
  78        security_ops = &default_security_ops;
  79}
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84        strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85        return 1;
  86}
  87__setup("security=", choose_lsm);
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *      -The passed LSM is the one chosen by user at boot time,
  99 *      -or the passed LSM is configured as the default and the user did not
 100 *       choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105        return !strcmp(ops->name, chosen_lsm);
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122        if (verify(ops)) {
 123                printk(KERN_DEBUG "%s could not verify "
 124                       "security_operations structure.\n", __func__);
 125                return -EINVAL;
 126        }
 127
 128        if (security_ops != &default_security_ops)
 129                return -EAGAIN;
 130
 131        security_ops = ops;
 132
 133        return 0;
 134}
 135
 136/* Security operations */
 137
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141        int rc;
 142        rc = yama_ptrace_access_check(child, mode);
 143        if (rc)
 144                return rc;
 145#endif
 146        return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152        int rc;
 153        rc = yama_ptrace_traceme(parent);
 154        if (rc)
 155                return rc;
 156#endif
 157        return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161                     kernel_cap_t *effective,
 162                     kernel_cap_t *inheritable,
 163                     kernel_cap_t *permitted)
 164{
 165        return security_ops->capget(target, effective, inheritable, permitted);
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169                    const kernel_cap_t *effective,
 170                    const kernel_cap_t *inheritable,
 171                    const kernel_cap_t *permitted)
 172{
 173        return security_ops->capset(new, old,
 174                                    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178                     int cap)
 179{
 180        return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184                             int cap)
 185{
 186        return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191        return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196        return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201        return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206        return security_ops->settime(ts, tz);
 207}
 208
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 211        return security_ops->vm_enough_memory(mm, pages);
 212}
 213
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216        return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221        int ret;
 222
 223        ret = security_ops->bprm_check_security(bprm);
 224        if (ret)
 225                return ret;
 226        return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231        security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236        security_ops->bprm_committed_creds(bprm);
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241        return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246        return security_ops->sb_alloc_security(sb);
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251        security_ops->sb_free_security(sb);
 252}
 253
 254int security_sb_copy_data(char *orig, char *copy)
 255{
 256        return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 261{
 262        return security_ops->sb_remount(sb, data);
 263}
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267        return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272        return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277        return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283        return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288        return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293        return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297                                struct security_mnt_opts *opts,
 298                                unsigned long kern_flags,
 299                                unsigned long *set_kern_flags)
 300{
 301        return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302                                                set_kern_flags);
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307                                struct super_block *newsb)
 308{
 309        return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 314{
 315        return security_ops->sb_parse_opts_str(options, opts);
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321        inode->i_security = NULL;
 322        return security_ops->inode_alloc_security(inode);
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327        integrity_inode_free(inode);
 328        security_ops->inode_free_security(inode);
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332                                        struct qstr *name, void **ctx,
 333                                        u32 *ctxlen)
 334{
 335        return security_ops->dentry_init_security(dentry, mode, name,
 336                                                        ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341                                 const struct qstr *qstr,
 342                                 const initxattrs initxattrs, void *fs_data)
 343{
 344        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346        int ret;
 347
 348        if (unlikely(IS_PRIVATE(inode)))
 349                return 0;
 350
 351        if (!initxattrs)
 352                return security_ops->inode_init_security(inode, dir, qstr,
 353                                                         NULL, NULL, NULL);
 354        memset(new_xattrs, 0, sizeof(new_xattrs));
 355        lsm_xattr = new_xattrs;
 356        ret = security_ops->inode_init_security(inode, dir, qstr,
 357                                                &lsm_xattr->name,
 358                                                &lsm_xattr->value,
 359                                                &lsm_xattr->value_len);
 360        if (ret)
 361                goto out;
 362
 363        evm_xattr = lsm_xattr + 1;
 364        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365        if (ret)
 366                goto out;
 367        ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 370                kfree(xattr->value);
 371        return (ret == -EOPNOTSUPP) ? 0 : ret;
 372}
 373EXPORT_SYMBOL(security_inode_init_security);
 374
 375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 376                                     const struct qstr *qstr, const char **name,
 377                                     void **value, size_t *len)
 378{
 379        if (unlikely(IS_PRIVATE(inode)))
 380                return -EOPNOTSUPP;
 381        return security_ops->inode_init_security(inode, dir, qstr, name, value,
 382                                                 len);
 383}
 384EXPORT_SYMBOL(security_old_inode_init_security);
 385
 386#ifdef CONFIG_SECURITY_PATH
 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 388                        unsigned int dev)
 389{
 390        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391                return 0;
 392        return security_ops->path_mknod(dir, dentry, mode, dev);
 393}
 394EXPORT_SYMBOL(security_path_mknod);
 395
 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 397{
 398        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 399                return 0;
 400        return security_ops->path_mkdir(dir, dentry, mode);
 401}
 402EXPORT_SYMBOL(security_path_mkdir);
 403
 404int security_path_rmdir(struct path *dir, struct dentry *dentry)
 405{
 406        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 407                return 0;
 408        return security_ops->path_rmdir(dir, dentry);
 409}
 410
 411int security_path_unlink(struct path *dir, struct dentry *dentry)
 412{
 413        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 414                return 0;
 415        return security_ops->path_unlink(dir, dentry);
 416}
 417EXPORT_SYMBOL(security_path_unlink);
 418
 419int security_path_symlink(struct path *dir, struct dentry *dentry,
 420                          const char *old_name)
 421{
 422        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 423                return 0;
 424        return security_ops->path_symlink(dir, dentry, old_name);
 425}
 426
 427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 428                       struct dentry *new_dentry)
 429{
 430        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 431                return 0;
 432        return security_ops->path_link(old_dentry, new_dir, new_dentry);
 433}
 434
 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 436                         struct path *new_dir, struct dentry *new_dentry)
 437{
 438        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 439                     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 440                return 0;
 441        return security_ops->path_rename(old_dir, old_dentry, new_dir,
 442                                         new_dentry);
 443}
 444EXPORT_SYMBOL(security_path_rename);
 445
 446int security_path_truncate(struct path *path)
 447{
 448        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 449                return 0;
 450        return security_ops->path_truncate(path);
 451}
 452
 453int security_path_chmod(struct path *path, umode_t mode)
 454{
 455        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 456                return 0;
 457        return security_ops->path_chmod(path, mode);
 458}
 459
 460int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 461{
 462        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 463                return 0;
 464        return security_ops->path_chown(path, uid, gid);
 465}
 466
 467int security_path_chroot(struct path *path)
 468{
 469        return security_ops->path_chroot(path);
 470}
 471#endif
 472
 473int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 474{
 475        if (unlikely(IS_PRIVATE(dir)))
 476                return 0;
 477        return security_ops->inode_create(dir, dentry, mode);
 478}
 479EXPORT_SYMBOL_GPL(security_inode_create);
 480
 481int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 482                         struct dentry *new_dentry)
 483{
 484        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 485                return 0;
 486        return security_ops->inode_link(old_dentry, dir, new_dentry);
 487}
 488
 489int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 490{
 491        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 492                return 0;
 493        return security_ops->inode_unlink(dir, dentry);
 494}
 495
 496int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 497                            const char *old_name)
 498{
 499        if (unlikely(IS_PRIVATE(dir)))
 500                return 0;
 501        return security_ops->inode_symlink(dir, dentry, old_name);
 502}
 503
 504int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 505{
 506        if (unlikely(IS_PRIVATE(dir)))
 507                return 0;
 508        return security_ops->inode_mkdir(dir, dentry, mode);
 509}
 510EXPORT_SYMBOL_GPL(security_inode_mkdir);
 511
 512int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 513{
 514        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 515                return 0;
 516        return security_ops->inode_rmdir(dir, dentry);
 517}
 518
 519int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 520{
 521        if (unlikely(IS_PRIVATE(dir)))
 522                return 0;
 523        return security_ops->inode_mknod(dir, dentry, mode, dev);
 524}
 525
 526int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 527                           struct inode *new_dir, struct dentry *new_dentry)
 528{
 529        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 530            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 531                return 0;
 532        return security_ops->inode_rename(old_dir, old_dentry,
 533                                           new_dir, new_dentry);
 534}
 535
 536int security_inode_readlink(struct dentry *dentry)
 537{
 538        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 539                return 0;
 540        return security_ops->inode_readlink(dentry);
 541}
 542
 543int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 544{
 545        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 546                return 0;
 547        return security_ops->inode_follow_link(dentry, nd);
 548}
 549
 550int security_inode_permission(struct inode *inode, int mask)
 551{
 552        if (unlikely(IS_PRIVATE(inode)))
 553                return 0;
 554        return security_ops->inode_permission(inode, mask);
 555}
 556
 557int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 558{
 559        int ret;
 560
 561        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 562                return 0;
 563        ret = security_ops->inode_setattr(dentry, attr);
 564        if (ret)
 565                return ret;
 566        return evm_inode_setattr(dentry, attr);
 567}
 568EXPORT_SYMBOL_GPL(security_inode_setattr);
 569
 570int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 571{
 572        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 573                return 0;
 574        return security_ops->inode_getattr(mnt, dentry);
 575}
 576
 577int security_inode_setxattr(struct dentry *dentry, const char *name,
 578                            const void *value, size_t size, int flags)
 579{
 580        int ret;
 581
 582        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 583                return 0;
 584        ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 585        if (ret)
 586                return ret;
 587        ret = ima_inode_setxattr(dentry, name, value, size);
 588        if (ret)
 589                return ret;
 590        return evm_inode_setxattr(dentry, name, value, size);
 591}
 592
 593void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 594                                  const void *value, size_t size, int flags)
 595{
 596        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 597                return;
 598        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 599        evm_inode_post_setxattr(dentry, name, value, size);
 600}
 601
 602int security_inode_getxattr(struct dentry *dentry, const char *name)
 603{
 604        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 605                return 0;
 606        return security_ops->inode_getxattr(dentry, name);
 607}
 608
 609int security_inode_listxattr(struct dentry *dentry)
 610{
 611        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 612                return 0;
 613        return security_ops->inode_listxattr(dentry);
 614}
 615
 616int security_inode_removexattr(struct dentry *dentry, const char *name)
 617{
 618        int ret;
 619
 620        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 621                return 0;
 622        ret = security_ops->inode_removexattr(dentry, name);
 623        if (ret)
 624                return ret;
 625        ret = ima_inode_removexattr(dentry, name);
 626        if (ret)
 627                return ret;
 628        return evm_inode_removexattr(dentry, name);
 629}
 630
 631int security_inode_need_killpriv(struct dentry *dentry)
 632{
 633        return security_ops->inode_need_killpriv(dentry);
 634}
 635
 636int security_inode_killpriv(struct dentry *dentry)
 637{
 638        return security_ops->inode_killpriv(dentry);
 639}
 640
 641int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 642{
 643        if (unlikely(IS_PRIVATE(inode)))
 644                return -EOPNOTSUPP;
 645        return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 646}
 647
 648int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 649{
 650        if (unlikely(IS_PRIVATE(inode)))
 651                return -EOPNOTSUPP;
 652        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 653}
 654
 655int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 656{
 657        if (unlikely(IS_PRIVATE(inode)))
 658                return 0;
 659        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 660}
 661EXPORT_SYMBOL(security_inode_listsecurity);
 662
 663void security_inode_getsecid(const struct inode *inode, u32 *secid)
 664{
 665        security_ops->inode_getsecid(inode, secid);
 666}
 667
 668int security_file_permission(struct file *file, int mask)
 669{
 670        int ret;
 671
 672        ret = security_ops->file_permission(file, mask);
 673        if (ret)
 674                return ret;
 675
 676        return fsnotify_perm(file, mask);
 677}
 678
 679int security_file_alloc(struct file *file)
 680{
 681        return security_ops->file_alloc_security(file);
 682}
 683
 684void security_file_free(struct file *file)
 685{
 686        security_ops->file_free_security(file);
 687}
 688
 689int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 690{
 691        return security_ops->file_ioctl(file, cmd, arg);
 692}
 693
 694static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 695{
 696        /*
 697         * Does we have PROT_READ and does the application expect
 698         * it to imply PROT_EXEC?  If not, nothing to talk about...
 699         */
 700        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 701                return prot;
 702        if (!(current->personality & READ_IMPLIES_EXEC))
 703                return prot;
 704        /*
 705         * if that's an anonymous mapping, let it.
 706         */
 707        if (!file)
 708                return prot | PROT_EXEC;
 709        /*
 710         * ditto if it's not on noexec mount, except that on !MMU we need
 711         * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 712         */
 713        if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 714#ifndef CONFIG_MMU
 715                unsigned long caps = 0;
 716                struct address_space *mapping = file->f_mapping;
 717                if (mapping && mapping->backing_dev_info)
 718                        caps = mapping->backing_dev_info->capabilities;
 719                if (!(caps & BDI_CAP_EXEC_MAP))
 720                        return prot;
 721#endif
 722                return prot | PROT_EXEC;
 723        }
 724        /* anything on noexec mount won't get PROT_EXEC */
 725        return prot;
 726}
 727
 728int security_mmap_file(struct file *file, unsigned long prot,
 729                        unsigned long flags)
 730{
 731        int ret;
 732        ret = security_ops->mmap_file(file, prot,
 733                                        mmap_prot(file, prot), flags);
 734        if (ret)
 735                return ret;
 736        return ima_file_mmap(file, prot);
 737}
 738
 739int security_mmap_addr(unsigned long addr)
 740{
 741        return security_ops->mmap_addr(addr);
 742}
 743
 744int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 745                            unsigned long prot)
 746{
 747        return security_ops->file_mprotect(vma, reqprot, prot);
 748}
 749
 750int security_file_lock(struct file *file, unsigned int cmd)
 751{
 752        return security_ops->file_lock(file, cmd);
 753}
 754
 755int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 756{
 757        return security_ops->file_fcntl(file, cmd, arg);
 758}
 759
 760int security_file_set_fowner(struct file *file)
 761{
 762        return security_ops->file_set_fowner(file);
 763}
 764
 765int security_file_send_sigiotask(struct task_struct *tsk,
 766                                  struct fown_struct *fown, int sig)
 767{
 768        return security_ops->file_send_sigiotask(tsk, fown, sig);
 769}
 770
 771int security_file_receive(struct file *file)
 772{
 773        return security_ops->file_receive(file);
 774}
 775
 776int security_file_open(struct file *file, const struct cred *cred)
 777{
 778        int ret;
 779
 780        ret = security_ops->file_open(file, cred);
 781        if (ret)
 782                return ret;
 783
 784        return fsnotify_perm(file, MAY_OPEN);
 785}
 786
 787int security_task_create(unsigned long clone_flags)
 788{
 789        return security_ops->task_create(clone_flags);
 790}
 791
 792void security_task_free(struct task_struct *task)
 793{
 794#ifdef CONFIG_SECURITY_YAMA_STACKED
 795        yama_task_free(task);
 796#endif
 797        security_ops->task_free(task);
 798}
 799
 800int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 801{
 802        return security_ops->cred_alloc_blank(cred, gfp);
 803}
 804
 805void security_cred_free(struct cred *cred)
 806{
 807        security_ops->cred_free(cred);
 808}
 809
 810int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 811{
 812        return security_ops->cred_prepare(new, old, gfp);
 813}
 814
 815void security_transfer_creds(struct cred *new, const struct cred *old)
 816{
 817        security_ops->cred_transfer(new, old);
 818}
 819
 820int security_kernel_act_as(struct cred *new, u32 secid)
 821{
 822        return security_ops->kernel_act_as(new, secid);
 823}
 824
 825int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 826{
 827        return security_ops->kernel_create_files_as(new, inode);
 828}
 829
 830int security_kernel_module_request(char *kmod_name)
 831{
 832        return security_ops->kernel_module_request(kmod_name);
 833}
 834
 835int security_kernel_module_from_file(struct file *file)
 836{
 837        int ret;
 838
 839        ret = security_ops->kernel_module_from_file(file);
 840        if (ret)
 841                return ret;
 842        return ima_module_check(file);
 843}
 844
 845int security_task_fix_setuid(struct cred *new, const struct cred *old,
 846                             int flags)
 847{
 848        return security_ops->task_fix_setuid(new, old, flags);
 849}
 850
 851int security_task_setpgid(struct task_struct *p, pid_t pgid)
 852{
 853        return security_ops->task_setpgid(p, pgid);
 854}
 855
 856int security_task_getpgid(struct task_struct *p)
 857{
 858        return security_ops->task_getpgid(p);
 859}
 860
 861int security_task_getsid(struct task_struct *p)
 862{
 863        return security_ops->task_getsid(p);
 864}
 865
 866void security_task_getsecid(struct task_struct *p, u32 *secid)
 867{
 868        security_ops->task_getsecid(p, secid);
 869}
 870EXPORT_SYMBOL(security_task_getsecid);
 871
 872int security_task_setnice(struct task_struct *p, int nice)
 873{
 874        return security_ops->task_setnice(p, nice);
 875}
 876
 877int security_task_setioprio(struct task_struct *p, int ioprio)
 878{
 879        return security_ops->task_setioprio(p, ioprio);
 880}
 881
 882int security_task_getioprio(struct task_struct *p)
 883{
 884        return security_ops->task_getioprio(p);
 885}
 886
 887int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 888                struct rlimit *new_rlim)
 889{
 890        return security_ops->task_setrlimit(p, resource, new_rlim);
 891}
 892
 893int security_task_setscheduler(struct task_struct *p)
 894{
 895        return security_ops->task_setscheduler(p);
 896}
 897
 898int security_task_getscheduler(struct task_struct *p)
 899{
 900        return security_ops->task_getscheduler(p);
 901}
 902
 903int security_task_movememory(struct task_struct *p)
 904{
 905        return security_ops->task_movememory(p);
 906}
 907
 908int security_task_kill(struct task_struct *p, struct siginfo *info,
 909                        int sig, u32 secid)
 910{
 911        return security_ops->task_kill(p, info, sig, secid);
 912}
 913
 914int security_task_wait(struct task_struct *p)
 915{
 916        return security_ops->task_wait(p);
 917}
 918
 919int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 920                         unsigned long arg4, unsigned long arg5)
 921{
 922#ifdef CONFIG_SECURITY_YAMA_STACKED
 923        int rc;
 924        rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 925        if (rc != -ENOSYS)
 926                return rc;
 927#endif
 928        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 929}
 930
 931void security_task_to_inode(struct task_struct *p, struct inode *inode)
 932{
 933        security_ops->task_to_inode(p, inode);
 934}
 935
 936int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 937{
 938        return security_ops->ipc_permission(ipcp, flag);
 939}
 940
 941void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 942{
 943        security_ops->ipc_getsecid(ipcp, secid);
 944}
 945
 946int security_msg_msg_alloc(struct msg_msg *msg)
 947{
 948        return security_ops->msg_msg_alloc_security(msg);
 949}
 950
 951void security_msg_msg_free(struct msg_msg *msg)
 952{
 953        security_ops->msg_msg_free_security(msg);
 954}
 955
 956int security_msg_queue_alloc(struct msg_queue *msq)
 957{
 958        return security_ops->msg_queue_alloc_security(msq);
 959}
 960
 961void security_msg_queue_free(struct msg_queue *msq)
 962{
 963        security_ops->msg_queue_free_security(msq);
 964}
 965
 966int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 967{
 968        return security_ops->msg_queue_associate(msq, msqflg);
 969}
 970
 971int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 972{
 973        return security_ops->msg_queue_msgctl(msq, cmd);
 974}
 975
 976int security_msg_queue_msgsnd(struct msg_queue *msq,
 977                               struct msg_msg *msg, int msqflg)
 978{
 979        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 980}
 981
 982int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 983                               struct task_struct *target, long type, int mode)
 984{
 985        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 986}
 987
 988int security_shm_alloc(struct shmid_kernel *shp)
 989{
 990        return security_ops->shm_alloc_security(shp);
 991}
 992
 993void security_shm_free(struct shmid_kernel *shp)
 994{
 995        security_ops->shm_free_security(shp);
 996}
 997
 998int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 999{
1000        return security_ops->shm_associate(shp, shmflg);
1001}
1002
1003int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1004{
1005        return security_ops->shm_shmctl(shp, cmd);
1006}
1007
1008int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1009{
1010        return security_ops->shm_shmat(shp, shmaddr, shmflg);
1011}
1012
1013int security_sem_alloc(struct sem_array *sma)
1014{
1015        return security_ops->sem_alloc_security(sma);
1016}
1017
1018void security_sem_free(struct sem_array *sma)
1019{
1020        security_ops->sem_free_security(sma);
1021}
1022
1023int security_sem_associate(struct sem_array *sma, int semflg)
1024{
1025        return security_ops->sem_associate(sma, semflg);
1026}
1027
1028int security_sem_semctl(struct sem_array *sma, int cmd)
1029{
1030        return security_ops->sem_semctl(sma, cmd);
1031}
1032
1033int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1034                        unsigned nsops, int alter)
1035{
1036        return security_ops->sem_semop(sma, sops, nsops, alter);
1037}
1038
1039void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1040{
1041        if (unlikely(inode && IS_PRIVATE(inode)))
1042                return;
1043        security_ops->d_instantiate(dentry, inode);
1044}
1045EXPORT_SYMBOL(security_d_instantiate);
1046
1047int security_getprocattr(struct task_struct *p, char *name, char **value)
1048{
1049        return security_ops->getprocattr(p, name, value);
1050}
1051
1052int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1053{
1054        return security_ops->setprocattr(p, name, value, size);
1055}
1056
1057int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1058{
1059        return security_ops->netlink_send(sk, skb);
1060}
1061
1062int security_ismaclabel(const char *name)
1063{
1064        return security_ops->ismaclabel(name);
1065}
1066EXPORT_SYMBOL(security_ismaclabel);
1067
1068int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1069{
1070        return security_ops->secid_to_secctx(secid, secdata, seclen);
1071}
1072EXPORT_SYMBOL(security_secid_to_secctx);
1073
1074int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1075{
1076        return security_ops->secctx_to_secid(secdata, seclen, secid);
1077}
1078EXPORT_SYMBOL(security_secctx_to_secid);
1079
1080void security_release_secctx(char *secdata, u32 seclen)
1081{
1082        security_ops->release_secctx(secdata, seclen);
1083}
1084EXPORT_SYMBOL(security_release_secctx);
1085
1086int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1087{
1088        return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1089}
1090EXPORT_SYMBOL(security_inode_notifysecctx);
1091
1092int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1093{
1094        return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1095}
1096EXPORT_SYMBOL(security_inode_setsecctx);
1097
1098int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1099{
1100        return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1101}
1102EXPORT_SYMBOL(security_inode_getsecctx);
1103
1104#ifdef CONFIG_SECURITY_NETWORK
1105
1106int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1107{
1108        return security_ops->unix_stream_connect(sock, other, newsk);
1109}
1110EXPORT_SYMBOL(security_unix_stream_connect);
1111
1112int security_unix_may_send(struct socket *sock,  struct socket *other)
1113{
1114        return security_ops->unix_may_send(sock, other);
1115}
1116EXPORT_SYMBOL(security_unix_may_send);
1117
1118int security_socket_create(int family, int type, int protocol, int kern)
1119{
1120        return security_ops->socket_create(family, type, protocol, kern);
1121}
1122
1123int security_socket_post_create(struct socket *sock, int family,
1124                                int type, int protocol, int kern)
1125{
1126        return security_ops->socket_post_create(sock, family, type,
1127                                                protocol, kern);
1128}
1129
1130int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1131{
1132        return security_ops->socket_bind(sock, address, addrlen);
1133}
1134
1135int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1136{
1137        return security_ops->socket_connect(sock, address, addrlen);
1138}
1139
1140int security_socket_listen(struct socket *sock, int backlog)
1141{
1142        return security_ops->socket_listen(sock, backlog);
1143}
1144
1145int security_socket_accept(struct socket *sock, struct socket *newsock)
1146{
1147        return security_ops->socket_accept(sock, newsock);
1148}
1149
1150int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1151{
1152        return security_ops->socket_sendmsg(sock, msg, size);
1153}
1154
1155int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1156                            int size, int flags)
1157{
1158        return security_ops->socket_recvmsg(sock, msg, size, flags);
1159}
1160
1161int security_socket_getsockname(struct socket *sock)
1162{
1163        return security_ops->socket_getsockname(sock);
1164}
1165
1166int security_socket_getpeername(struct socket *sock)
1167{
1168        return security_ops->socket_getpeername(sock);
1169}
1170
1171int security_socket_getsockopt(struct socket *sock, int level, int optname)
1172{
1173        return security_ops->socket_getsockopt(sock, level, optname);
1174}
1175
1176int security_socket_setsockopt(struct socket *sock, int level, int optname)
1177{
1178        return security_ops->socket_setsockopt(sock, level, optname);
1179}
1180
1181int security_socket_shutdown(struct socket *sock, int how)
1182{
1183        return security_ops->socket_shutdown(sock, how);
1184}
1185
1186int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1187{
1188        return security_ops->socket_sock_rcv_skb(sk, skb);
1189}
1190EXPORT_SYMBOL(security_sock_rcv_skb);
1191
1192int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1193                                      int __user *optlen, unsigned len)
1194{
1195        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1196}
1197
1198int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1199{
1200        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1201}
1202EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1203
1204int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1205{
1206        return security_ops->sk_alloc_security(sk, family, priority);
1207}
1208
1209void security_sk_free(struct sock *sk)
1210{
1211        security_ops->sk_free_security(sk);
1212}
1213
1214void security_sk_clone(const struct sock *sk, struct sock *newsk)
1215{
1216        security_ops->sk_clone_security(sk, newsk);
1217}
1218EXPORT_SYMBOL(security_sk_clone);
1219
1220void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1221{
1222        security_ops->sk_getsecid(sk, &fl->flowi_secid);
1223}
1224EXPORT_SYMBOL(security_sk_classify_flow);
1225
1226void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1227{
1228        security_ops->req_classify_flow(req, fl);
1229}
1230EXPORT_SYMBOL(security_req_classify_flow);
1231
1232void security_sock_graft(struct sock *sk, struct socket *parent)
1233{
1234        security_ops->sock_graft(sk, parent);
1235}
1236EXPORT_SYMBOL(security_sock_graft);
1237
1238int security_inet_conn_request(struct sock *sk,
1239                        struct sk_buff *skb, struct request_sock *req)
1240{
1241        return security_ops->inet_conn_request(sk, skb, req);
1242}
1243EXPORT_SYMBOL(security_inet_conn_request);
1244
1245void security_inet_csk_clone(struct sock *newsk,
1246                        const struct request_sock *req)
1247{
1248        security_ops->inet_csk_clone(newsk, req);
1249}
1250
1251void security_inet_conn_established(struct sock *sk,
1252                        struct sk_buff *skb)
1253{
1254        security_ops->inet_conn_established(sk, skb);
1255}
1256
1257int security_secmark_relabel_packet(u32 secid)
1258{
1259        return security_ops->secmark_relabel_packet(secid);
1260}
1261EXPORT_SYMBOL(security_secmark_relabel_packet);
1262
1263void security_secmark_refcount_inc(void)
1264{
1265        security_ops->secmark_refcount_inc();
1266}
1267EXPORT_SYMBOL(security_secmark_refcount_inc);
1268
1269void security_secmark_refcount_dec(void)
1270{
1271        security_ops->secmark_refcount_dec();
1272}
1273EXPORT_SYMBOL(security_secmark_refcount_dec);
1274
1275int security_tun_dev_alloc_security(void **security)
1276{
1277        return security_ops->tun_dev_alloc_security(security);
1278}
1279EXPORT_SYMBOL(security_tun_dev_alloc_security);
1280
1281void security_tun_dev_free_security(void *security)
1282{
1283        security_ops->tun_dev_free_security(security);
1284}
1285EXPORT_SYMBOL(security_tun_dev_free_security);
1286
1287int security_tun_dev_create(void)
1288{
1289        return security_ops->tun_dev_create();
1290}
1291EXPORT_SYMBOL(security_tun_dev_create);
1292
1293int security_tun_dev_attach_queue(void *security)
1294{
1295        return security_ops->tun_dev_attach_queue(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_attach_queue);
1298
1299int security_tun_dev_attach(struct sock *sk, void *security)
1300{
1301        return security_ops->tun_dev_attach(sk, security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_attach);
1304
1305int security_tun_dev_open(void *security)
1306{
1307        return security_ops->tun_dev_open(security);
1308}
1309EXPORT_SYMBOL(security_tun_dev_open);
1310
1311void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1312{
1313        security_ops->skb_owned_by(skb, sk);
1314}
1315
1316#endif  /* CONFIG_SECURITY_NETWORK */
1317
1318#ifdef CONFIG_SECURITY_NETWORK_XFRM
1319
1320int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1321{
1322        return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1323}
1324EXPORT_SYMBOL(security_xfrm_policy_alloc);
1325
1326int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1327                              struct xfrm_sec_ctx **new_ctxp)
1328{
1329        return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1330}
1331
1332void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1333{
1334        security_ops->xfrm_policy_free_security(ctx);
1335}
1336EXPORT_SYMBOL(security_xfrm_policy_free);
1337
1338int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1339{
1340        return security_ops->xfrm_policy_delete_security(ctx);
1341}
1342
1343int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1344{
1345        return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1346}
1347EXPORT_SYMBOL(security_xfrm_state_alloc);
1348
1349int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1350                                      struct xfrm_sec_ctx *polsec, u32 secid)
1351{
1352        if (!polsec)
1353                return 0;
1354        /*
1355         * We want the context to be taken from secid which is usually
1356         * from the sock.
1357         */
1358        return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1359}
1360
1361int security_xfrm_state_delete(struct xfrm_state *x)
1362{
1363        return security_ops->xfrm_state_delete_security(x);
1364}
1365EXPORT_SYMBOL(security_xfrm_state_delete);
1366
1367void security_xfrm_state_free(struct xfrm_state *x)
1368{
1369        security_ops->xfrm_state_free_security(x);
1370}
1371
1372int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1373{
1374        return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1375}
1376
1377int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1378                                       struct xfrm_policy *xp,
1379                                       const struct flowi *fl)
1380{
1381        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1382}
1383
1384int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1385{
1386        return security_ops->xfrm_decode_session(skb, secid, 1);
1387}
1388
1389void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1390{
1391        int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1392
1393        BUG_ON(rc);
1394}
1395EXPORT_SYMBOL(security_skb_classify_flow);
1396
1397#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1398
1399#ifdef CONFIG_KEYS
1400
1401int security_key_alloc(struct key *key, const struct cred *cred,
1402                       unsigned long flags)
1403{
1404        return security_ops->key_alloc(key, cred, flags);
1405}
1406
1407void security_key_free(struct key *key)
1408{
1409        security_ops->key_free(key);
1410}
1411
1412int security_key_permission(key_ref_t key_ref,
1413                            const struct cred *cred, key_perm_t perm)
1414{
1415        return security_ops->key_permission(key_ref, cred, perm);
1416}
1417
1418int security_key_getsecurity(struct key *key, char **_buffer)
1419{
1420        return security_ops->key_getsecurity(key, _buffer);
1421}
1422
1423#endif  /* CONFIG_KEYS */
1424
1425#ifdef CONFIG_AUDIT
1426
1427int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1428{
1429        return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1430}
1431
1432int security_audit_rule_known(struct audit_krule *krule)
1433{
1434        return security_ops->audit_rule_known(krule);
1435}
1436
1437void security_audit_rule_free(void *lsmrule)
1438{
1439        security_ops->audit_rule_free(lsmrule);
1440}
1441
1442int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1443                              struct audit_context *actx)
1444{
1445        return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1446}
1447
1448#endif /* CONFIG_AUDIT */
1449
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.