linux/drivers/hwmon/abituguru.c
<<
>>
Prefs
   1/*
   2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18/*
  19 * This driver supports the sensor part of the first and second revision of
  20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
  21 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/sched.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/mutex.h>
  32#include <linux/err.h>
  33#include <linux/delay.h>
  34#include <linux/platform_device.h>
  35#include <linux/hwmon.h>
  36#include <linux/hwmon-sysfs.h>
  37#include <linux/dmi.h>
  38#include <linux/io.h>
  39
  40/* Banks */
  41#define ABIT_UGURU_ALARM_BANK                   0x20 /* 1x 3 bytes */
  42#define ABIT_UGURU_SENSOR_BANK1                 0x21 /* 16x volt and temp */
  43#define ABIT_UGURU_FAN_PWM                      0x24 /* 3x 5 bytes */
  44#define ABIT_UGURU_SENSOR_BANK2                 0x26 /* fans */
  45/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  46#define ABIT_UGURU_MAX_BANK1_SENSORS            16
  47/*
  48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  50 */
  51/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  52#define ABIT_UGURU_MAX_BANK2_SENSORS            6
  53/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  54#define ABIT_UGURU_MAX_PWMS                     5
  55/* uGuru sensor bank 1 flags */                      /* Alarm if: */
  56#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE       0x01 /*  temp over warn */
  57#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE       0x02 /*  volt over max */
  58#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE        0x04 /*  volt under min */
  59#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG         0x10 /* temp is over warn */
  60#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG         0x20 /* volt is over max */
  61#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG          0x40 /* volt is under min */
  62/* uGuru sensor bank 2 flags */                      /* Alarm if: */
  63#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE         0x01 /*   fan under min */
  64/* uGuru sensor bank common flags */
  65#define ABIT_UGURU_BEEP_ENABLE                  0x08 /* beep if alarm */
  66#define ABIT_UGURU_SHUTDOWN_ENABLE              0x80 /* shutdown if alarm */
  67/* uGuru fan PWM (speed control) flags */
  68#define ABIT_UGURU_FAN_PWM_ENABLE               0x80 /* enable speed control */
  69/* Values used for conversion */
  70#define ABIT_UGURU_FAN_MAX                      15300 /* RPM */
  71/* Bank1 sensor types */
  72#define ABIT_UGURU_IN_SENSOR                    0
  73#define ABIT_UGURU_TEMP_SENSOR                  1
  74#define ABIT_UGURU_NC                           2
  75/*
  76 * In many cases we need to wait for the uGuru to reach a certain status, most
  77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  78 * can best busy wait. This define gives the total amount of reads to try.
  79 */
  80#define ABIT_UGURU_WAIT_TIMEOUT                 125
  81/*
  82 * However sometimes older versions of the uGuru seem to be distracted and they
  83 * do not respond for a long time. To handle this we sleep before each of the
  84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  85 */
  86#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP           5
  87/*
  88 * Normally all expected status in abituguru_ready, are reported after the
  89 * first read, but sometimes not and we need to poll.
  90 */
  91#define ABIT_UGURU_READY_TIMEOUT                5
  92/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  93#define ABIT_UGURU_MAX_RETRIES                  3
  94#define ABIT_UGURU_RETRY_DELAY                  (HZ/5)
  95/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  96#define ABIT_UGURU_MAX_TIMEOUTS                 2
  97/* utility macros */
  98#define ABIT_UGURU_NAME                         "abituguru"
  99#define ABIT_UGURU_DEBUG(level, format, arg...)         \
 100        do {                                            \
 101                if (level <= verbose)                   \
 102                        pr_debug(format , ## arg);      \
 103        } while (0)
 104
 105/* Macros to help calculate the sysfs_names array length */
 106/*
 107 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 108 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 109 */
 110#define ABITUGURU_IN_NAMES_LENGTH       (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
 111/*
 112 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 113 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 114 */
 115#define ABITUGURU_TEMP_NAMES_LENGTH     (13 + 11 + 12 + 13 + 20 + 12 + 16)
 116/*
 117 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 118 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 119 */
 120#define ABITUGURU_FAN_NAMES_LENGTH      (11 + 9 + 11 + 18 + 10 + 14)
 121/*
 122 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 123 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 124 */
 125#define ABITUGURU_PWM_NAMES_LENGTH      (12 + 24 + 2 * 21 + 2 * 22)
 126/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 127#define ABITUGURU_SYSFS_NAMES_LENGTH    ( \
 128        ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 129        ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 130        ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 131
 132/*
 133 * All the macros below are named identical to the oguru and oguru2 programs
 134 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 135 * logical. I could come up with better names, but I prefer keeping the names
 136 * identical so that this driver can be compared with his work more easily.
 137 */
 138/* Two i/o-ports are used by uGuru */
 139#define ABIT_UGURU_BASE                         0x00E0
 140/* Used to tell uGuru what to read and to read the actual data */
 141#define ABIT_UGURU_CMD                          0x00
 142/* Mostly used to check if uGuru is busy */
 143#define ABIT_UGURU_DATA                         0x04
 144#define ABIT_UGURU_REGION_LENGTH                5
 145/* uGuru status' */
 146#define ABIT_UGURU_STATUS_WRITE                 0x00 /* Ready to be written */
 147#define ABIT_UGURU_STATUS_READ                  0x01 /* Ready to be read */
 148#define ABIT_UGURU_STATUS_INPUT                 0x08 /* More input */
 149#define ABIT_UGURU_STATUS_READY                 0x09 /* Ready to be written */
 150
 151/* Constants */
 152/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 153static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 154/*
 155 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 156 * correspond to 300-3000 RPM
 157 */
 158static const u8 abituguru_bank2_min_threshold = 5;
 159static const u8 abituguru_bank2_max_threshold = 50;
 160/*
 161 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 162 * are temperature trip points.
 163 */
 164static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 165/*
 166 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 167 * special case the minium allowed pwm% setting for this is 30% (77) on
 168 * some MB's this special case is handled in the code!
 169 */
 170static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 171static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 172
 173
 174/* Insmod parameters */
 175static bool force;
 176module_param(force, bool, 0);
 177MODULE_PARM_DESC(force, "Set to one to force detection.");
 178static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 179        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 180module_param_array(bank1_types, int, NULL, 0);
 181MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 182        "   -1 autodetect\n"
 183        "    0 volt sensor\n"
 184        "    1 temp sensor\n"
 185        "    2 not connected");
 186static int fan_sensors;
 187module_param(fan_sensors, int, 0);
 188MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 189        "(0 = autodetect)");
 190static int pwms;
 191module_param(pwms, int, 0);
 192MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 193        "(0 = autodetect)");
 194
 195/* Default verbose is 2, since this driver is still in the testing phase */
 196static int verbose = 2;
 197module_param(verbose, int, 0644);
 198MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 199        "   0 normal output\n"
 200        "   1 + verbose error reporting\n"
 201        "   2 + sensors type probing info\n"
 202        "   3 + retryable error reporting");
 203
 204
 205/*
 206 * For the Abit uGuru, we need to keep some data in memory.
 207 * The structure is dynamically allocated, at the same time when a new
 208 * abituguru device is allocated.
 209 */
 210struct abituguru_data {
 211        struct device *hwmon_dev;       /* hwmon registered device */
 212        struct mutex update_lock;       /* protect access to data and uGuru */
 213        unsigned long last_updated;     /* In jiffies */
 214        unsigned short addr;            /* uguru base address */
 215        char uguru_ready;               /* is the uguru in ready state? */
 216        unsigned char update_timeouts;  /*
 217                                         * number of update timeouts since last
 218                                         * successful update
 219                                         */
 220
 221        /*
 222         * The sysfs attr and their names are generated automatically, for bank1
 223         * we cannot use a predefined array because we don't know beforehand
 224         * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 225         * easier todo things the same way.  For in sensors we have 9 (temp 7)
 226         * sysfs entries per sensor, for bank2 and pwms 6.
 227         */
 228        struct sensor_device_attribute_2 sysfs_attr[
 229                ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 230                ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 231        /* Buffer to store the dynamically generated sysfs names */
 232        char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 233
 234        /* Bank 1 data */
 235        /* number of and addresses of [0] in, [1] temp sensors */
 236        u8 bank1_sensors[2];
 237        u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 238        u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 239        /*
 240         * This array holds 3 entries per sensor for the bank 1 sensor settings
 241         * (flags, min, max for voltage / flags, warn, shutdown for temp).
 242         */
 243        u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 244        /*
 245         * Maximum value for each sensor used for scaling in mV/millidegrees
 246         * Celsius.
 247         */
 248        int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 249
 250        /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 251        u8 bank2_sensors; /* actual number of bank2 sensors found */
 252        u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 253        u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 254
 255        /* Alarms 2 bytes for bank1, 1 byte for bank2 */
 256        u8 alarms[3];
 257
 258        /* Fan PWM (speed control) 5 bytes per PWM */
 259        u8 pwms; /* actual number of pwms found */
 260        u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 261};
 262
 263static const char *never_happen = "This should never happen.";
 264static const char *report_this =
 265        "Please report this to the abituguru maintainer (see MAINTAINERS)";
 266
 267/* wait till the uguru is in the specified state */
 268static int abituguru_wait(struct abituguru_data *data, u8 state)
 269{
 270        int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 271
 272        while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 273                timeout--;
 274                if (timeout == 0)
 275                        return -EBUSY;
 276                /*
 277                 * sleep a bit before our last few tries, see the comment on
 278                 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 279                 */
 280                if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 281                        msleep(0);
 282        }
 283        return 0;
 284}
 285
 286/* Put the uguru in ready for input state */
 287static int abituguru_ready(struct abituguru_data *data)
 288{
 289        int timeout = ABIT_UGURU_READY_TIMEOUT;
 290
 291        if (data->uguru_ready)
 292                return 0;
 293
 294        /* Reset? / Prepare for next read/write cycle */
 295        outb(0x00, data->addr + ABIT_UGURU_DATA);
 296
 297        /* Wait till the uguru is ready */
 298        if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 299                ABIT_UGURU_DEBUG(1,
 300                        "timeout exceeded waiting for ready state\n");
 301                return -EIO;
 302        }
 303
 304        /* Cmd port MUST be read now and should contain 0xAC */
 305        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 306                timeout--;
 307                if (timeout == 0) {
 308                        ABIT_UGURU_DEBUG(1,
 309                           "CMD reg does not hold 0xAC after ready command\n");
 310                        return -EIO;
 311                }
 312                msleep(0);
 313        }
 314
 315        /*
 316         * After this the ABIT_UGURU_DATA port should contain
 317         * ABIT_UGURU_STATUS_INPUT
 318         */
 319        timeout = ABIT_UGURU_READY_TIMEOUT;
 320        while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 321                timeout--;
 322                if (timeout == 0) {
 323                        ABIT_UGURU_DEBUG(1,
 324                                "state != more input after ready command\n");
 325                        return -EIO;
 326                }
 327                msleep(0);
 328        }
 329
 330        data->uguru_ready = 1;
 331        return 0;
 332}
 333
 334/*
 335 * Send the bank and then sensor address to the uGuru for the next read/write
 336 * cycle. This function gets called as the first part of a read/write by
 337 * abituguru_read and abituguru_write. This function should never be
 338 * called by any other function.
 339 */
 340static int abituguru_send_address(struct abituguru_data *data,
 341        u8 bank_addr, u8 sensor_addr, int retries)
 342{
 343        /*
 344         * assume the caller does error handling itself if it has not requested
 345         * any retries, and thus be quiet.
 346         */
 347        int report_errors = retries;
 348
 349        for (;;) {
 350                /*
 351                 * Make sure the uguru is ready and then send the bank address,
 352                 * after this the uguru is no longer "ready".
 353                 */
 354                if (abituguru_ready(data) != 0)
 355                        return -EIO;
 356                outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 357                data->uguru_ready = 0;
 358
 359                /*
 360                 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 361                 * and send the sensor addr
 362                 */
 363                if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 364                        if (retries) {
 365                                ABIT_UGURU_DEBUG(3, "timeout exceeded "
 366                                        "waiting for more input state, %d "
 367                                        "tries remaining\n", retries);
 368                                set_current_state(TASK_UNINTERRUPTIBLE);
 369                                schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 370                                retries--;
 371                                continue;
 372                        }
 373                        if (report_errors)
 374                                ABIT_UGURU_DEBUG(1, "timeout exceeded "
 375                                        "waiting for more input state "
 376                                        "(bank: %d)\n", (int)bank_addr);
 377                        return -EBUSY;
 378                }
 379                outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 380                return 0;
 381        }
 382}
 383
 384/*
 385 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 386 * result in buf, retry the send address part of the read retries times.
 387 */
 388static int abituguru_read(struct abituguru_data *data,
 389        u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 390{
 391        int i;
 392
 393        /* Send the address */
 394        i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 395        if (i)
 396                return i;
 397
 398        /* And read the data */
 399        for (i = 0; i < count; i++) {
 400                if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 401                        ABIT_UGURU_DEBUG(retries ? 1 : 3,
 402                                "timeout exceeded waiting for "
 403                                "read state (bank: %d, sensor: %d)\n",
 404                                (int)bank_addr, (int)sensor_addr);
 405                        break;
 406                }
 407                buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 408        }
 409
 410        /* Last put the chip back in ready state */
 411        abituguru_ready(data);
 412
 413        return i;
 414}
 415
 416/*
 417 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 418 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 419 */
 420static int abituguru_write(struct abituguru_data *data,
 421        u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 422{
 423        /*
 424         * We use the ready timeout as we have to wait for 0xAC just like the
 425         * ready function
 426         */
 427        int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 428
 429        /* Send the address */
 430        i = abituguru_send_address(data, bank_addr, sensor_addr,
 431                ABIT_UGURU_MAX_RETRIES);
 432        if (i)
 433                return i;
 434
 435        /* And write the data */
 436        for (i = 0; i < count; i++) {
 437                if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 438                        ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 439                                "write state (bank: %d, sensor: %d)\n",
 440                                (int)bank_addr, (int)sensor_addr);
 441                        break;
 442                }
 443                outb(buf[i], data->addr + ABIT_UGURU_CMD);
 444        }
 445
 446        /*
 447         * Now we need to wait till the chip is ready to be read again,
 448         * so that we can read 0xAC as confirmation that our write has
 449         * succeeded.
 450         */
 451        if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 452                ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 453                        "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 454                        (int)sensor_addr);
 455                return -EIO;
 456        }
 457
 458        /* Cmd port MUST be read now and should contain 0xAC */
 459        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 460                timeout--;
 461                if (timeout == 0) {
 462                        ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 463                                "write (bank: %d, sensor: %d)\n",
 464                                (int)bank_addr, (int)sensor_addr);
 465                        return -EIO;
 466                }
 467                msleep(0);
 468        }
 469
 470        /* Last put the chip back in ready state */
 471        abituguru_ready(data);
 472
 473        return i;
 474}
 475
 476/*
 477 * Detect sensor type. Temp and Volt sensors are enabled with
 478 * different masks and will ignore enable masks not meant for them.
 479 * This enables us to test what kind of sensor we're dealing with.
 480 * By setting the alarm thresholds so that we will always get an
 481 * alarm for sensor type X and then enabling the sensor as sensor type
 482 * X, if we then get an alarm it is a sensor of type X.
 483 */
 484static int
 485abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 486                                   u8 sensor_addr)
 487{
 488        u8 val, test_flag, buf[3];
 489        int i, ret = -ENODEV; /* error is the most common used retval :| */
 490
 491        /* If overriden by the user return the user selected type */
 492        if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 493                        bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 494                ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 495                        "%d because of \"bank1_types\" module param\n",
 496                        bank1_types[sensor_addr], (int)sensor_addr);
 497                return bank1_types[sensor_addr];
 498        }
 499
 500        /* First read the sensor and the current settings */
 501        if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 502                        1, ABIT_UGURU_MAX_RETRIES) != 1)
 503                return -ENODEV;
 504
 505        /* Test val is sane / usable for sensor type detection. */
 506        if ((val < 10u) || (val > 250u)) {
 507                pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 508                        "unable to determine sensor type, skipping sensor\n",
 509                        (int)sensor_addr, (int)val);
 510                /*
 511                 * assume no sensor is there for sensors for which we can't
 512                 * determine the sensor type because their reading is too close
 513                 * to their limits, this usually means no sensor is there.
 514                 */
 515                return ABIT_UGURU_NC;
 516        }
 517
 518        ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 519        /*
 520         * Volt sensor test, enable volt low alarm, set min value ridicously
 521         * high, or vica versa if the reading is very high. If its a volt
 522         * sensor this should always give us an alarm.
 523         */
 524        if (val <= 240u) {
 525                buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 526                buf[1] = 245;
 527                buf[2] = 250;
 528                test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 529        } else {
 530                buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 531                buf[1] = 5;
 532                buf[2] = 10;
 533                test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 534        }
 535
 536        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 537                        buf, 3) != 3)
 538                goto abituguru_detect_bank1_sensor_type_exit;
 539        /*
 540         * Now we need 20 ms to give the uguru time to read the sensors
 541         * and raise a voltage alarm
 542         */
 543        set_current_state(TASK_UNINTERRUPTIBLE);
 544        schedule_timeout(HZ/50);
 545        /* Check for alarm and check the alarm is a volt low alarm. */
 546        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 547                        ABIT_UGURU_MAX_RETRIES) != 3)
 548                goto abituguru_detect_bank1_sensor_type_exit;
 549        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 550                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 551                                sensor_addr, buf, 3,
 552                                ABIT_UGURU_MAX_RETRIES) != 3)
 553                        goto abituguru_detect_bank1_sensor_type_exit;
 554                if (buf[0] & test_flag) {
 555                        ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 556                        ret = ABIT_UGURU_IN_SENSOR;
 557                        goto abituguru_detect_bank1_sensor_type_exit;
 558                } else
 559                        ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 560                                "sensor test, but volt range flag not set\n");
 561        } else
 562                ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 563                        "test\n");
 564
 565        /*
 566         * Temp sensor test, enable sensor as a temp sensor, set beep value
 567         * ridicously low (but not too low, otherwise uguru ignores it).
 568         * If its a temp sensor this should always give us an alarm.
 569         */
 570        buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 571        buf[1] = 5;
 572        buf[2] = 10;
 573        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 574                        buf, 3) != 3)
 575                goto abituguru_detect_bank1_sensor_type_exit;
 576        /*
 577         * Now we need 50 ms to give the uguru time to read the sensors
 578         * and raise a temp alarm
 579         */
 580        set_current_state(TASK_UNINTERRUPTIBLE);
 581        schedule_timeout(HZ/20);
 582        /* Check for alarm and check the alarm is a temp high alarm. */
 583        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 584                        ABIT_UGURU_MAX_RETRIES) != 3)
 585                goto abituguru_detect_bank1_sensor_type_exit;
 586        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 587                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 588                                sensor_addr, buf, 3,
 589                                ABIT_UGURU_MAX_RETRIES) != 3)
 590                        goto abituguru_detect_bank1_sensor_type_exit;
 591                if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 592                        ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 593                        ret = ABIT_UGURU_TEMP_SENSOR;
 594                        goto abituguru_detect_bank1_sensor_type_exit;
 595                } else
 596                        ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 597                                "sensor test, but temp high flag not set\n");
 598        } else
 599                ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 600                        "test\n");
 601
 602        ret = ABIT_UGURU_NC;
 603abituguru_detect_bank1_sensor_type_exit:
 604        /*
 605         * Restore original settings, failing here is really BAD, it has been
 606         * reported that some BIOS-es hang when entering the uGuru menu with
 607         * invalid settings present in the uGuru, so we try this 3 times.
 608         */
 609        for (i = 0; i < 3; i++)
 610                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 611                                sensor_addr, data->bank1_settings[sensor_addr],
 612                                3) == 3)
 613                        break;
 614        if (i == 3) {
 615                pr_err("Fatal error could not restore original settings. %s %s\n",
 616                       never_happen, report_this);
 617                return -ENODEV;
 618        }
 619        return ret;
 620}
 621
 622/*
 623 * These functions try to find out how many sensors there are in bank2 and how
 624 * many pwms there are. The purpose of this is to make sure that we don't give
 625 * the user the possibility to change settings for non-existent sensors / pwm.
 626 * The uGuru will happily read / write whatever memory happens to be after the
 627 * memory storing the PWM settings when reading/writing to a PWM which is not
 628 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 629 * write to it, unless the user tries to change the settings.
 630 *
 631 * Although the uGuru allows reading (settings) from non existing bank2
 632 * sensors, my version of the uGuru does seem to stop writing to them, the
 633 * write function above aborts in this case with:
 634 * "CMD reg does not hold 0xAC after write"
 635 *
 636 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 637 * they would defeat their purpose. Although for the bank2_sensors detection a
 638 * read/write test would be feasible because of the reaction above, I've
 639 * however opted to stay on the safe side.
 640 */
 641static void
 642abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 643{
 644        int i;
 645
 646        if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 647                data->bank2_sensors = fan_sensors;
 648                ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 649                        "\"fan_sensors\" module param\n",
 650                        (int)data->bank2_sensors);
 651                return;
 652        }
 653
 654        ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 655        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 656                /*
 657                 * 0x89 are the known used bits:
 658                 * -0x80 enable shutdown
 659                 * -0x08 enable beep
 660                 * -0x01 enable alarm
 661                 * All other bits should be 0, but on some motherboards
 662                 * 0x40 (bit 6) is also high for some of the fans??
 663                 */
 664                if (data->bank2_settings[i][0] & ~0xC9) {
 665                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 666                                "to be a fan sensor: settings[0] = %02X\n",
 667                                i, (unsigned int)data->bank2_settings[i][0]);
 668                        break;
 669                }
 670
 671                /* check if the threshold is within the allowed range */
 672                if (data->bank2_settings[i][1] <
 673                                abituguru_bank2_min_threshold) {
 674                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 675                                "to be a fan sensor: the threshold (%d) is "
 676                                "below the minimum (%d)\n", i,
 677                                (int)data->bank2_settings[i][1],
 678                                (int)abituguru_bank2_min_threshold);
 679                        break;
 680                }
 681                if (data->bank2_settings[i][1] >
 682                                abituguru_bank2_max_threshold) {
 683                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 684                                "to be a fan sensor: the threshold (%d) is "
 685                                "above the maximum (%d)\n", i,
 686                                (int)data->bank2_settings[i][1],
 687                                (int)abituguru_bank2_max_threshold);
 688                        break;
 689                }
 690        }
 691
 692        data->bank2_sensors = i;
 693        ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 694                (int)data->bank2_sensors);
 695}
 696
 697static void
 698abituguru_detect_no_pwms(struct abituguru_data *data)
 699{
 700        int i, j;
 701
 702        if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 703                data->pwms = pwms;
 704                ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 705                        "\"pwms\" module param\n", (int)data->pwms);
 706                return;
 707        }
 708
 709        ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 710        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 711                /*
 712                 * 0x80 is the enable bit and the low
 713                 * nibble is which temp sensor to use,
 714                 * the other bits should be 0
 715                 */
 716                if (data->pwm_settings[i][0] & ~0x8F) {
 717                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 718                                "to be a pwm channel: settings[0] = %02X\n",
 719                                i, (unsigned int)data->pwm_settings[i][0]);
 720                        break;
 721                }
 722
 723                /*
 724                 * the low nibble must correspond to one of the temp sensors
 725                 * we've found
 726                 */
 727                for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 728                                j++) {
 729                        if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 730                                        (data->pwm_settings[i][0] & 0x0F))
 731                                break;
 732                }
 733                if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 734                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 735                                "to be a pwm channel: %d is not a valid temp "
 736                                "sensor address\n", i,
 737                                data->pwm_settings[i][0] & 0x0F);
 738                        break;
 739                }
 740
 741                /* check if all other settings are within the allowed range */
 742                for (j = 1; j < 5; j++) {
 743                        u8 min;
 744                        /* special case pwm1 min pwm% */
 745                        if ((i == 0) && ((j == 1) || (j == 2)))
 746                                min = 77;
 747                        else
 748                                min = abituguru_pwm_min[j];
 749                        if (data->pwm_settings[i][j] < min) {
 750                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 751                                        "not seem to be a pwm channel: "
 752                                        "setting %d (%d) is below the minimum "
 753                                        "value (%d)\n", i, j,
 754                                        (int)data->pwm_settings[i][j],
 755                                        (int)min);
 756                                goto abituguru_detect_no_pwms_exit;
 757                        }
 758                        if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 759                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 760                                        "not seem to be a pwm channel: "
 761                                        "setting %d (%d) is above the maximum "
 762                                        "value (%d)\n", i, j,
 763                                        (int)data->pwm_settings[i][j],
 764                                        (int)abituguru_pwm_max[j]);
 765                                goto abituguru_detect_no_pwms_exit;
 766                        }
 767                }
 768
 769                /* check that min temp < max temp and min pwm < max pwm */
 770                if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 771                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 772                                "to be a pwm channel: min pwm (%d) >= "
 773                                "max pwm (%d)\n", i,
 774                                (int)data->pwm_settings[i][1],
 775                                (int)data->pwm_settings[i][2]);
 776                        break;
 777                }
 778                if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 779                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 780                                "to be a pwm channel: min temp (%d) >= "
 781                                "max temp (%d)\n", i,
 782                                (int)data->pwm_settings[i][3],
 783                                (int)data->pwm_settings[i][4]);
 784                        break;
 785                }
 786        }
 787
 788abituguru_detect_no_pwms_exit:
 789        data->pwms = i;
 790        ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 791}
 792
 793/*
 794 * Following are the sysfs callback functions. These functions expect:
 795 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 796 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 797 */
 798static struct abituguru_data *abituguru_update_device(struct device *dev);
 799
 800static ssize_t show_bank1_value(struct device *dev,
 801        struct device_attribute *devattr, char *buf)
 802{
 803        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 804        struct abituguru_data *data = abituguru_update_device(dev);
 805        if (!data)
 806                return -EIO;
 807        return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 808                data->bank1_max_value[attr->index] + 128) / 255);
 809}
 810
 811static ssize_t show_bank1_setting(struct device *dev,
 812        struct device_attribute *devattr, char *buf)
 813{
 814        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 815        struct abituguru_data *data = dev_get_drvdata(dev);
 816        return sprintf(buf, "%d\n",
 817                (data->bank1_settings[attr->index][attr->nr] *
 818                data->bank1_max_value[attr->index] + 128) / 255);
 819}
 820
 821static ssize_t show_bank2_value(struct device *dev,
 822        struct device_attribute *devattr, char *buf)
 823{
 824        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 825        struct abituguru_data *data = abituguru_update_device(dev);
 826        if (!data)
 827                return -EIO;
 828        return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 829                ABIT_UGURU_FAN_MAX + 128) / 255);
 830}
 831
 832static ssize_t show_bank2_setting(struct device *dev,
 833        struct device_attribute *devattr, char *buf)
 834{
 835        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 836        struct abituguru_data *data = dev_get_drvdata(dev);
 837        return sprintf(buf, "%d\n",
 838                (data->bank2_settings[attr->index][attr->nr] *
 839                ABIT_UGURU_FAN_MAX + 128) / 255);
 840}
 841
 842static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 843        *devattr, const char *buf, size_t count)
 844{
 845        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 846        struct abituguru_data *data = dev_get_drvdata(dev);
 847        unsigned long val;
 848        ssize_t ret;
 849
 850        ret = kstrtoul(buf, 10, &val);
 851        if (ret)
 852                return ret;
 853
 854        ret = count;
 855        val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 856                data->bank1_max_value[attr->index];
 857        if (val > 255)
 858                return -EINVAL;
 859
 860        mutex_lock(&data->update_lock);
 861        if (data->bank1_settings[attr->index][attr->nr] != val) {
 862                u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 863                data->bank1_settings[attr->index][attr->nr] = val;
 864                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 865                                attr->index, data->bank1_settings[attr->index],
 866                                3) <= attr->nr) {
 867                        data->bank1_settings[attr->index][attr->nr] = orig_val;
 868                        ret = -EIO;
 869                }
 870        }
 871        mutex_unlock(&data->update_lock);
 872        return ret;
 873}
 874
 875static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 876        *devattr, const char *buf, size_t count)
 877{
 878        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 879        struct abituguru_data *data = dev_get_drvdata(dev);
 880        unsigned long val;
 881        ssize_t ret;
 882
 883        ret = kstrtoul(buf, 10, &val);
 884        if (ret)
 885                return ret;
 886
 887        ret = count;
 888        val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 889
 890        /* this check can be done before taking the lock */
 891        if (val < abituguru_bank2_min_threshold ||
 892                        val > abituguru_bank2_max_threshold)
 893                return -EINVAL;
 894
 895        mutex_lock(&data->update_lock);
 896        if (data->bank2_settings[attr->index][attr->nr] != val) {
 897                u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 898                data->bank2_settings[attr->index][attr->nr] = val;
 899                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 900                                attr->index, data->bank2_settings[attr->index],
 901                                2) <= attr->nr) {
 902                        data->bank2_settings[attr->index][attr->nr] = orig_val;
 903                        ret = -EIO;
 904                }
 905        }
 906        mutex_unlock(&data->update_lock);
 907        return ret;
 908}
 909
 910static ssize_t show_bank1_alarm(struct device *dev,
 911        struct device_attribute *devattr, char *buf)
 912{
 913        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 914        struct abituguru_data *data = abituguru_update_device(dev);
 915        if (!data)
 916                return -EIO;
 917        /*
 918         * See if the alarm bit for this sensor is set, and if the
 919         * alarm matches the type of alarm we're looking for (for volt
 920         * it can be either low or high). The type is stored in a few
 921         * readonly bits in the settings part of the relevant sensor.
 922         * The bitmask of the type is passed to us in attr->nr.
 923         */
 924        if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 925                        (data->bank1_settings[attr->index][0] & attr->nr))
 926                return sprintf(buf, "1\n");
 927        else
 928                return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank2_alarm(struct device *dev,
 932        struct device_attribute *devattr, char *buf)
 933{
 934        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935        struct abituguru_data *data = abituguru_update_device(dev);
 936        if (!data)
 937                return -EIO;
 938        if (data->alarms[2] & (0x01 << attr->index))
 939                return sprintf(buf, "1\n");
 940        else
 941                return sprintf(buf, "0\n");
 942}
 943
 944static ssize_t show_bank1_mask(struct device *dev,
 945        struct device_attribute *devattr, char *buf)
 946{
 947        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 948        struct abituguru_data *data = dev_get_drvdata(dev);
 949        if (data->bank1_settings[attr->index][0] & attr->nr)
 950                return sprintf(buf, "1\n");
 951        else
 952                return sprintf(buf, "0\n");
 953}
 954
 955static ssize_t show_bank2_mask(struct device *dev,
 956        struct device_attribute *devattr, char *buf)
 957{
 958        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 959        struct abituguru_data *data = dev_get_drvdata(dev);
 960        if (data->bank2_settings[attr->index][0] & attr->nr)
 961                return sprintf(buf, "1\n");
 962        else
 963                return sprintf(buf, "0\n");
 964}
 965
 966static ssize_t store_bank1_mask(struct device *dev,
 967        struct device_attribute *devattr, const char *buf, size_t count)
 968{
 969        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 970        struct abituguru_data *data = dev_get_drvdata(dev);
 971        ssize_t ret;
 972        u8 orig_val;
 973        unsigned long mask;
 974
 975        ret = kstrtoul(buf, 10, &mask);
 976        if (ret)
 977                return ret;
 978
 979        ret = count;
 980        mutex_lock(&data->update_lock);
 981        orig_val = data->bank1_settings[attr->index][0];
 982
 983        if (mask)
 984                data->bank1_settings[attr->index][0] |= attr->nr;
 985        else
 986                data->bank1_settings[attr->index][0] &= ~attr->nr;
 987
 988        if ((data->bank1_settings[attr->index][0] != orig_val) &&
 989                        (abituguru_write(data,
 990                        ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 991                        data->bank1_settings[attr->index], 3) < 1)) {
 992                data->bank1_settings[attr->index][0] = orig_val;
 993                ret = -EIO;
 994        }
 995        mutex_unlock(&data->update_lock);
 996        return ret;
 997}
 998
 999static ssize_t store_bank2_mask(struct device *dev,
1000        struct device_attribute *devattr, const char *buf, size_t count)
1001{
1002        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1003        struct abituguru_data *data = dev_get_drvdata(dev);
1004        ssize_t ret;
1005        u8 orig_val;
1006        unsigned long mask;
1007
1008        ret = kstrtoul(buf, 10, &mask);
1009        if (ret)
1010                return ret;
1011
1012        ret = count;
1013        mutex_lock(&data->update_lock);
1014        orig_val = data->bank2_settings[attr->index][0];
1015
1016        if (mask)
1017                data->bank2_settings[attr->index][0] |= attr->nr;
1018        else
1019                data->bank2_settings[attr->index][0] &= ~attr->nr;
1020
1021        if ((data->bank2_settings[attr->index][0] != orig_val) &&
1022                        (abituguru_write(data,
1023                        ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1024                        data->bank2_settings[attr->index], 2) < 1)) {
1025                data->bank2_settings[attr->index][0] = orig_val;
1026                ret = -EIO;
1027        }
1028        mutex_unlock(&data->update_lock);
1029        return ret;
1030}
1031
1032/* Fan PWM (speed control) */
1033static ssize_t show_pwm_setting(struct device *dev,
1034        struct device_attribute *devattr, char *buf)
1035{
1036        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1037        struct abituguru_data *data = dev_get_drvdata(dev);
1038        return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1039                abituguru_pwm_settings_multiplier[attr->nr]);
1040}
1041
1042static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1043        *devattr, const char *buf, size_t count)
1044{
1045        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1046        struct abituguru_data *data = dev_get_drvdata(dev);
1047        u8 min;
1048        unsigned long val;
1049        ssize_t ret;
1050
1051        ret = kstrtoul(buf, 10, &val);
1052        if (ret)
1053                return ret;
1054
1055        ret = count;
1056        val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1057                                abituguru_pwm_settings_multiplier[attr->nr];
1058
1059        /* special case pwm1 min pwm% */
1060        if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1061                min = 77;
1062        else
1063                min = abituguru_pwm_min[attr->nr];
1064
1065        /* this check can be done before taking the lock */
1066        if (val < min || val > abituguru_pwm_max[attr->nr])
1067                return -EINVAL;
1068
1069        mutex_lock(&data->update_lock);
1070        /* this check needs to be done after taking the lock */
1071        if ((attr->nr & 1) &&
1072                        (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1073                ret = -EINVAL;
1074        else if (!(attr->nr & 1) &&
1075                        (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1076                ret = -EINVAL;
1077        else if (data->pwm_settings[attr->index][attr->nr] != val) {
1078                u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1079                data->pwm_settings[attr->index][attr->nr] = val;
1080                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1081                                attr->index, data->pwm_settings[attr->index],
1082                                5) <= attr->nr) {
1083                        data->pwm_settings[attr->index][attr->nr] =
1084                                orig_val;
1085                        ret = -EIO;
1086                }
1087        }
1088        mutex_unlock(&data->update_lock);
1089        return ret;
1090}
1091
1092static ssize_t show_pwm_sensor(struct device *dev,
1093        struct device_attribute *devattr, char *buf)
1094{
1095        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1096        struct abituguru_data *data = dev_get_drvdata(dev);
1097        int i;
1098        /*
1099         * We need to walk to the temp sensor addresses to find what
1100         * the userspace id of the configured temp sensor is.
1101         */
1102        for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1103                if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1104                                (data->pwm_settings[attr->index][0] & 0x0F))
1105                        return sprintf(buf, "%d\n", i+1);
1106
1107        return -ENXIO;
1108}
1109
1110static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1111        *devattr, const char *buf, size_t count)
1112{
1113        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1114        struct abituguru_data *data = dev_get_drvdata(dev);
1115        ssize_t ret;
1116        unsigned long val;
1117        u8 orig_val;
1118        u8 address;
1119
1120        ret = kstrtoul(buf, 10, &val);
1121        if (ret)
1122                return ret;
1123
1124        if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1125                return -EINVAL;
1126
1127        val -= 1;
1128        ret = count;
1129        mutex_lock(&data->update_lock);
1130        orig_val = data->pwm_settings[attr->index][0];
1131        address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1132        data->pwm_settings[attr->index][0] &= 0xF0;
1133        data->pwm_settings[attr->index][0] |= address;
1134        if (data->pwm_settings[attr->index][0] != orig_val) {
1135                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1136                                    data->pwm_settings[attr->index], 5) < 1) {
1137                        data->pwm_settings[attr->index][0] = orig_val;
1138                        ret = -EIO;
1139                }
1140        }
1141        mutex_unlock(&data->update_lock);
1142        return ret;
1143}
1144
1145static ssize_t show_pwm_enable(struct device *dev,
1146        struct device_attribute *devattr, char *buf)
1147{
1148        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1149        struct abituguru_data *data = dev_get_drvdata(dev);
1150        int res = 0;
1151        if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1152                res = 2;
1153        return sprintf(buf, "%d\n", res);
1154}
1155
1156static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1157        *devattr, const char *buf, size_t count)
1158{
1159        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1160        struct abituguru_data *data = dev_get_drvdata(dev);
1161        u8 orig_val;
1162        ssize_t ret;
1163        unsigned long user_val;
1164
1165        ret = kstrtoul(buf, 10, &user_val);
1166        if (ret)
1167                return ret;
1168
1169        ret = count;
1170        mutex_lock(&data->update_lock);
1171        orig_val = data->pwm_settings[attr->index][0];
1172        switch (user_val) {
1173        case 0:
1174                data->pwm_settings[attr->index][0] &=
1175                        ~ABIT_UGURU_FAN_PWM_ENABLE;
1176                break;
1177        case 2:
1178                data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1179                break;
1180        default:
1181                ret = -EINVAL;
1182        }
1183        if ((data->pwm_settings[attr->index][0] != orig_val) &&
1184                        (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1185                        attr->index, data->pwm_settings[attr->index],
1186                        5) < 1)) {
1187                data->pwm_settings[attr->index][0] = orig_val;
1188                ret = -EIO;
1189        }
1190        mutex_unlock(&data->update_lock);
1191        return ret;
1192}
1193
1194static ssize_t show_name(struct device *dev,
1195        struct device_attribute *devattr, char *buf)
1196{
1197        return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1198}
1199
1200/* Sysfs attr templates, the real entries are generated automatically. */
1201static const
1202struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1203        {
1204        SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1205        SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1206                store_bank1_setting, 1, 0),
1207        SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1208                ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1209        SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1210                store_bank1_setting, 2, 0),
1211        SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1212                ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1213        SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1214                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1215        SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1216                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1217        SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1218                store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1219        SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1220                store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1221        }, {
1222        SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1223        SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1224                ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1225        SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1226                store_bank1_setting, 1, 0),
1227        SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1228                store_bank1_setting, 2, 0),
1229        SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1230                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1231        SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1232                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1233        SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1234                store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1235        }
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1239        SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1240        SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1241        SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1242                store_bank2_setting, 1, 0),
1243        SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1244                store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1245        SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1246                store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1247        SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1248                store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1249};
1250
1251static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1252        SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1253                store_pwm_enable, 0, 0),
1254        SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1255                store_pwm_sensor, 0, 0),
1256        SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1257                store_pwm_setting, 1, 0),
1258        SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1259                store_pwm_setting, 2, 0),
1260        SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1261                store_pwm_setting, 3, 0),
1262        SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1263                store_pwm_setting, 4, 0),
1264};
1265
1266static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267        SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1268};
1269
1270static int abituguru_probe(struct platform_device *pdev)
1271{
1272        struct abituguru_data *data;
1273        int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274        char *sysfs_filename;
1275
1276        /*
1277         * El weirdo probe order, to keep the sysfs order identical to the
1278         * BIOS and window-appliction listing order.
1279         */
1280        const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1281                0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1282                0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283
1284        data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1285                            GFP_KERNEL);
1286        if (!data)
1287                return -ENOMEM;
1288
1289        data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1290        mutex_init(&data->update_lock);
1291        platform_set_drvdata(pdev, data);
1292
1293        /* See if the uGuru is ready */
1294        if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1295                data->uguru_ready = 1;
1296
1297        /*
1298         * Completely read the uGuru this has 2 purposes:
1299         * - testread / see if one really is there.
1300         * - make an in memory copy of all the uguru settings for future use.
1301         */
1302        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1303                        data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1304                goto abituguru_probe_error;
1305
1306        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1308                                &data->bank1_value[i], 1,
1309                                ABIT_UGURU_MAX_RETRIES) != 1)
1310                        goto abituguru_probe_error;
1311                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1312                                data->bank1_settings[i], 3,
1313                                ABIT_UGURU_MAX_RETRIES) != 3)
1314                        goto abituguru_probe_error;
1315        }
1316        /*
1317         * Note: We don't know how many bank2 sensors / pwms there really are,
1318         * but in order to "detect" this we need to read the maximum amount
1319         * anyways. If we read sensors/pwms not there we'll just read crap
1320         * this can't hurt. We need the detection because we don't want
1321         * unwanted writes, which will hurt!
1322         */
1323        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1324                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1325                                &data->bank2_value[i], 1,
1326                                ABIT_UGURU_MAX_RETRIES) != 1)
1327                        goto abituguru_probe_error;
1328                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1329                                data->bank2_settings[i], 2,
1330                                ABIT_UGURU_MAX_RETRIES) != 2)
1331                        goto abituguru_probe_error;
1332        }
1333        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1334                if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1335                                data->pwm_settings[i], 5,
1336                                ABIT_UGURU_MAX_RETRIES) != 5)
1337                        goto abituguru_probe_error;
1338        }
1339        data->last_updated = jiffies;
1340
1341        /* Detect sensor types and fill the sysfs attr for bank1 */
1342        sysfs_attr_i = 0;
1343        sysfs_filename = data->sysfs_names;
1344        sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1345        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346                res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1347                if (res < 0)
1348                        goto abituguru_probe_error;
1349                if (res == ABIT_UGURU_NC)
1350                        continue;
1351
1352                /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353                for (j = 0; j < (res ? 7 : 9); j++) {
1354                        used = snprintf(sysfs_filename, sysfs_names_free,
1355                                abituguru_sysfs_bank1_templ[res][j].dev_attr.
1356                                attr.name, data->bank1_sensors[res] + res)
1357                                + 1;
1358                        data->sysfs_attr[sysfs_attr_i] =
1359                                abituguru_sysfs_bank1_templ[res][j];
1360                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1361                                sysfs_filename;
1362                        data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1363                        sysfs_filename += used;
1364                        sysfs_names_free -= used;
1365                        sysfs_attr_i++;
1366                }
1367                data->bank1_max_value[probe_order[i]] =
1368                        abituguru_bank1_max_value[res];
1369                data->bank1_address[res][data->bank1_sensors[res]] =
1370                        probe_order[i];
1371                data->bank1_sensors[res]++;
1372        }
1373        /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1374        abituguru_detect_no_bank2_sensors(data);
1375        for (i = 0; i < data->bank2_sensors; i++) {
1376                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1377                        used = snprintf(sysfs_filename, sysfs_names_free,
1378                                abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1379                                i + 1) + 1;
1380                        data->sysfs_attr[sysfs_attr_i] =
1381                                abituguru_sysfs_fan_templ[j];
1382                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1383                                sysfs_filename;
1384                        data->sysfs_attr[sysfs_attr_i].index = i;
1385                        sysfs_filename += used;
1386                        sysfs_names_free -= used;
1387                        sysfs_attr_i++;
1388                }
1389        }
1390        /* Detect number of sensors and fill the sysfs attr for pwms */
1391        abituguru_detect_no_pwms(data);
1392        for (i = 0; i < data->pwms; i++) {
1393                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1394                        used = snprintf(sysfs_filename, sysfs_names_free,
1395                                abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1396                                i + 1) + 1;
1397                        data->sysfs_attr[sysfs_attr_i] =
1398                                abituguru_sysfs_pwm_templ[j];
1399                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1400                                sysfs_filename;
1401                        data->sysfs_attr[sysfs_attr_i].index = i;
1402                        sysfs_filename += used;
1403                        sysfs_names_free -= used;
1404                        sysfs_attr_i++;
1405                }
1406        }
1407        /* Fail safe check, this should never happen! */
1408        if (sysfs_names_free < 0) {
1409                pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1410                       never_happen, report_this);
1411                res = -ENAMETOOLONG;
1412                goto abituguru_probe_error;
1413        }
1414        pr_info("found Abit uGuru\n");
1415
1416        /* Register sysfs hooks */
1417        for (i = 0; i < sysfs_attr_i; i++) {
1418                res = device_create_file(&pdev->dev,
1419                                         &data->sysfs_attr[i].dev_attr);
1420                if (res)
1421                        goto abituguru_probe_error;
1422        }
1423        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1424                res = device_create_file(&pdev->dev,
1425                                         &abituguru_sysfs_attr[i].dev_attr);
1426                if (res)
1427                        goto abituguru_probe_error;
1428        }
1429
1430        data->hwmon_dev = hwmon_device_register(&pdev->dev);
1431        if (!IS_ERR(data->hwmon_dev))
1432                return 0; /* success */
1433
1434        res = PTR_ERR(data->hwmon_dev);
1435abituguru_probe_error:
1436        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1437                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1438        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1439                device_remove_file(&pdev->dev,
1440                        &abituguru_sysfs_attr[i].dev_attr);
1441        return res;
1442}
1443
1444static int abituguru_remove(struct platform_device *pdev)
1445{
1446        int i;
1447        struct abituguru_data *data = platform_get_drvdata(pdev);
1448
1449        hwmon_device_unregister(data->hwmon_dev);
1450        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1451                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1452        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1453                device_remove_file(&pdev->dev,
1454                        &abituguru_sysfs_attr[i].dev_attr);
1455
1456        return 0;
1457}
1458
1459static struct abituguru_data *abituguru_update_device(struct device *dev)
1460{
1461        int i, err;
1462        struct abituguru_data *data = dev_get_drvdata(dev);
1463        /* fake a complete successful read if no update necessary. */
1464        char success = 1;
1465
1466        mutex_lock(&data->update_lock);
1467        if (time_after(jiffies, data->last_updated + HZ)) {
1468                success = 0;
1469                err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1470                                     data->alarms, 3, 0);
1471                if (err != 3)
1472                        goto LEAVE_UPDATE;
1473                for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1475                                             i, &data->bank1_value[i], 1, 0);
1476                        if (err != 1)
1477                                goto LEAVE_UPDATE;
1478                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1479                                             i, data->bank1_settings[i], 3, 0);
1480                        if (err != 3)
1481                                goto LEAVE_UPDATE;
1482                }
1483                for (i = 0; i < data->bank2_sensors; i++) {
1484                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1485                                             &data->bank2_value[i], 1, 0);
1486                        if (err != 1)
1487                                goto LEAVE_UPDATE;
1488                }
1489                /* success! */
1490                success = 1;
1491                data->update_timeouts = 0;
1492LEAVE_UPDATE:
1493                /* handle timeout condition */
1494                if (!success && (err == -EBUSY || err >= 0)) {
1495                        /* No overflow please */
1496                        if (data->update_timeouts < 255u)
1497                                data->update_timeouts++;
1498                        if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1499                                ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1500                                        "try again next update\n");
1501                                /* Just a timeout, fake a successful read */
1502                                success = 1;
1503                        } else
1504                                ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1505                                        "times waiting for more input state\n",
1506                                        (int)data->update_timeouts);
1507                }
1508                /* On success set last_updated */
1509                if (success)
1510                        data->last_updated = jiffies;
1511        }
1512        mutex_unlock(&data->update_lock);
1513
1514        if (success)
1515                return data;
1516        else
1517                return NULL;
1518}
1519
1520#ifdef CONFIG_PM_SLEEP
1521static int abituguru_suspend(struct device *dev)
1522{
1523        struct abituguru_data *data = dev_get_drvdata(dev);
1524        /*
1525         * make sure all communications with the uguru are done and no new
1526         * ones are started
1527         */
1528        mutex_lock(&data->update_lock);
1529        return 0;
1530}
1531
1532static int abituguru_resume(struct device *dev)
1533{
1534        struct abituguru_data *data = dev_get_drvdata(dev);
1535        /* See if the uGuru is still ready */
1536        if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1537                data->uguru_ready = 0;
1538        mutex_unlock(&data->update_lock);
1539        return 0;
1540}
1541
1542static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543#define ABIT_UGURU_PM   (&abituguru_pm)
1544#else
1545#define ABIT_UGURU_PM   NULL
1546#endif /* CONFIG_PM */
1547
1548static struct platform_driver abituguru_driver = {
1549        .driver = {
1550                .owner  = THIS_MODULE,
1551                .name   = ABIT_UGURU_NAME,
1552                .pm     = ABIT_UGURU_PM,
1553        },
1554        .probe          = abituguru_probe,
1555        .remove         = abituguru_remove,
1556};
1557
1558static int __init abituguru_detect(void)
1559{
1560        /*
1561         * See if there is an uguru there. After a reboot uGuru will hold 0x00
1562         * at DATA and 0xAC, when this driver has already been loaded once
1563         * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1564         * scenario but some will hold 0x00.
1565         * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1566         * after reading CMD first, so CMD must be read first!
1567         */
1568        u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1569        u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1570        if (((data_val == 0x00) || (data_val == 0x08)) &&
1571            ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1572                return ABIT_UGURU_BASE;
1573
1574        ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1575                "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1576
1577        if (force) {
1578                pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1579                return ABIT_UGURU_BASE;
1580        }
1581
1582        /* No uGuru found */
1583        return -ENODEV;
1584}
1585
1586static struct platform_device *abituguru_pdev;
1587
1588static int __init abituguru_init(void)
1589{
1590        int address, err;
1591        struct resource res = { .flags = IORESOURCE_IO };
1592        const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1593
1594        /* safety check, refuse to load on non Abit motherboards */
1595        if (!force && (!board_vendor ||
1596                        strcmp(board_vendor, "http://www.abit.com.tw/")))
1597                return -ENODEV;
1598
1599        address = abituguru_detect();
1600        if (address < 0)
1601                return address;
1602
1603        err = platform_driver_register(&abituguru_driver);
1604        if (err)
1605                goto exit;
1606
1607        abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1608        if (!abituguru_pdev) {
1609                pr_err("Device allocation failed\n");
1610                err = -ENOMEM;
1611                goto exit_driver_unregister;
1612        }
1613
1614        res.start = address;
1615        res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1616        res.name = ABIT_UGURU_NAME;
1617
1618        err = platform_device_add_resources(abituguru_pdev, &res, 1);
1619        if (err) {
1620                pr_err("Device resource addition failed (%d)\n", err);
1621                goto exit_device_put;
1622        }
1623
1624        err = platform_device_add(abituguru_pdev);
1625        if (err) {
1626                pr_err("Device addition failed (%d)\n", err);
1627                goto exit_device_put;
1628        }
1629
1630        return 0;
1631
1632exit_device_put:
1633        platform_device_put(abituguru_pdev);
1634exit_driver_unregister:
1635        platform_driver_unregister(&abituguru_driver);
1636exit:
1637        return err;
1638}
1639
1640static void __exit abituguru_exit(void)
1641{
1642        platform_device_unregister(abituguru_pdev);
1643        platform_driver_unregister(&abituguru_driver);
1644}
1645
1646MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1647MODULE_DESCRIPTION("Abit uGuru Sensor device");
1648MODULE_LICENSE("GPL");
1649
1650module_init(abituguru_init);
1651module_exit(abituguru_exit);
1652
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.