linux/drivers/edac/edac_mc_sysfs.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
   4 *
   5 * This file may be distributed under the terms of the
   6 * GNU General Public License.
   7 *
   8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
   9 *
  10 * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
  11 *      The entire API were re-written, and ported to use struct device
  12 *
  13 */
  14
  15#include <linux/ctype.h>
  16#include <linux/slab.h>
  17#include <linux/edac.h>
  18#include <linux/bug.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/uaccess.h>
  21
  22#include "edac_core.h"
  23#include "edac_module.h"
  24
  25/* MC EDAC Controls, setable by module parameter, and sysfs */
  26static int edac_mc_log_ue = 1;
  27static int edac_mc_log_ce = 1;
  28static int edac_mc_panic_on_ue;
  29static int edac_mc_poll_msec = 1000;
  30
  31/* Getter functions for above */
  32int edac_mc_get_log_ue(void)
  33{
  34        return edac_mc_log_ue;
  35}
  36
  37int edac_mc_get_log_ce(void)
  38{
  39        return edac_mc_log_ce;
  40}
  41
  42int edac_mc_get_panic_on_ue(void)
  43{
  44        return edac_mc_panic_on_ue;
  45}
  46
  47/* this is temporary */
  48int edac_mc_get_poll_msec(void)
  49{
  50        return edac_mc_poll_msec;
  51}
  52
  53static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
  54{
  55        long l;
  56        int ret;
  57
  58        if (!val)
  59                return -EINVAL;
  60
  61        ret = kstrtol(val, 0, &l);
  62        if (ret)
  63                return ret;
  64        if ((int)l != l)
  65                return -EINVAL;
  66        *((int *)kp->arg) = l;
  67
  68        /* notify edac_mc engine to reset the poll period */
  69        edac_mc_reset_delay_period(l);
  70
  71        return 0;
  72}
  73
  74/* Parameter declarations for above */
  75module_param(edac_mc_panic_on_ue, int, 0644);
  76MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
  77module_param(edac_mc_log_ue, int, 0644);
  78MODULE_PARM_DESC(edac_mc_log_ue,
  79                 "Log uncorrectable error to console: 0=off 1=on");
  80module_param(edac_mc_log_ce, int, 0644);
  81MODULE_PARM_DESC(edac_mc_log_ce,
  82                 "Log correctable error to console: 0=off 1=on");
  83module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
  84                  &edac_mc_poll_msec, 0644);
  85MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
  86
  87static struct device *mci_pdev;
  88
  89/*
  90 * various constants for Memory Controllers
  91 */
  92static const char * const mem_types[] = {
  93        [MEM_EMPTY] = "Empty",
  94        [MEM_RESERVED] = "Reserved",
  95        [MEM_UNKNOWN] = "Unknown",
  96        [MEM_FPM] = "FPM",
  97        [MEM_EDO] = "EDO",
  98        [MEM_BEDO] = "BEDO",
  99        [MEM_SDR] = "Unbuffered-SDR",
 100        [MEM_RDR] = "Registered-SDR",
 101        [MEM_DDR] = "Unbuffered-DDR",
 102        [MEM_RDDR] = "Registered-DDR",
 103        [MEM_RMBS] = "RMBS",
 104        [MEM_DDR2] = "Unbuffered-DDR2",
 105        [MEM_FB_DDR2] = "FullyBuffered-DDR2",
 106        [MEM_RDDR2] = "Registered-DDR2",
 107        [MEM_XDR] = "XDR",
 108        [MEM_DDR3] = "Unbuffered-DDR3",
 109        [MEM_RDDR3] = "Registered-DDR3"
 110};
 111
 112static const char * const dev_types[] = {
 113        [DEV_UNKNOWN] = "Unknown",
 114        [DEV_X1] = "x1",
 115        [DEV_X2] = "x2",
 116        [DEV_X4] = "x4",
 117        [DEV_X8] = "x8",
 118        [DEV_X16] = "x16",
 119        [DEV_X32] = "x32",
 120        [DEV_X64] = "x64"
 121};
 122
 123static const char * const edac_caps[] = {
 124        [EDAC_UNKNOWN] = "Unknown",
 125        [EDAC_NONE] = "None",
 126        [EDAC_RESERVED] = "Reserved",
 127        [EDAC_PARITY] = "PARITY",
 128        [EDAC_EC] = "EC",
 129        [EDAC_SECDED] = "SECDED",
 130        [EDAC_S2ECD2ED] = "S2ECD2ED",
 131        [EDAC_S4ECD4ED] = "S4ECD4ED",
 132        [EDAC_S8ECD8ED] = "S8ECD8ED",
 133        [EDAC_S16ECD16ED] = "S16ECD16ED"
 134};
 135
 136#ifdef CONFIG_EDAC_LEGACY_SYSFS
 137/*
 138 * EDAC sysfs CSROW data structures and methods
 139 */
 140
 141#define to_csrow(k) container_of(k, struct csrow_info, dev)
 142
 143/*
 144 * We need it to avoid namespace conflicts between the legacy API
 145 * and the per-dimm/per-rank one
 146 */
 147#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
 148        static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
 149
 150struct dev_ch_attribute {
 151        struct device_attribute attr;
 152        int channel;
 153};
 154
 155#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
 156        struct dev_ch_attribute dev_attr_legacy_##_name = \
 157                { __ATTR(_name, _mode, _show, _store), (_var) }
 158
 159#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
 160
 161/* Set of more default csrow<id> attribute show/store functions */
 162static ssize_t csrow_ue_count_show(struct device *dev,
 163                                   struct device_attribute *mattr, char *data)
 164{
 165        struct csrow_info *csrow = to_csrow(dev);
 166
 167        return sprintf(data, "%u\n", csrow->ue_count);
 168}
 169
 170static ssize_t csrow_ce_count_show(struct device *dev,
 171                                   struct device_attribute *mattr, char *data)
 172{
 173        struct csrow_info *csrow = to_csrow(dev);
 174
 175        return sprintf(data, "%u\n", csrow->ce_count);
 176}
 177
 178static ssize_t csrow_size_show(struct device *dev,
 179                               struct device_attribute *mattr, char *data)
 180{
 181        struct csrow_info *csrow = to_csrow(dev);
 182        int i;
 183        u32 nr_pages = 0;
 184
 185        for (i = 0; i < csrow->nr_channels; i++)
 186                nr_pages += csrow->channels[i]->dimm->nr_pages;
 187        return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
 188}
 189
 190static ssize_t csrow_mem_type_show(struct device *dev,
 191                                   struct device_attribute *mattr, char *data)
 192{
 193        struct csrow_info *csrow = to_csrow(dev);
 194
 195        return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
 196}
 197
 198static ssize_t csrow_dev_type_show(struct device *dev,
 199                                   struct device_attribute *mattr, char *data)
 200{
 201        struct csrow_info *csrow = to_csrow(dev);
 202
 203        return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
 204}
 205
 206static ssize_t csrow_edac_mode_show(struct device *dev,
 207                                    struct device_attribute *mattr,
 208                                    char *data)
 209{
 210        struct csrow_info *csrow = to_csrow(dev);
 211
 212        return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
 213}
 214
 215/* show/store functions for DIMM Label attributes */
 216static ssize_t channel_dimm_label_show(struct device *dev,
 217                                       struct device_attribute *mattr,
 218                                       char *data)
 219{
 220        struct csrow_info *csrow = to_csrow(dev);
 221        unsigned chan = to_channel(mattr);
 222        struct rank_info *rank = csrow->channels[chan];
 223
 224        /* if field has not been initialized, there is nothing to send */
 225        if (!rank->dimm->label[0])
 226                return 0;
 227
 228        return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
 229                        rank->dimm->label);
 230}
 231
 232static ssize_t channel_dimm_label_store(struct device *dev,
 233                                        struct device_attribute *mattr,
 234                                        const char *data, size_t count)
 235{
 236        struct csrow_info *csrow = to_csrow(dev);
 237        unsigned chan = to_channel(mattr);
 238        struct rank_info *rank = csrow->channels[chan];
 239
 240        ssize_t max_size = 0;
 241
 242        max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
 243        strncpy(rank->dimm->label, data, max_size);
 244        rank->dimm->label[max_size] = '\0';
 245
 246        return max_size;
 247}
 248
 249/* show function for dynamic chX_ce_count attribute */
 250static ssize_t channel_ce_count_show(struct device *dev,
 251                                     struct device_attribute *mattr, char *data)
 252{
 253        struct csrow_info *csrow = to_csrow(dev);
 254        unsigned chan = to_channel(mattr);
 255        struct rank_info *rank = csrow->channels[chan];
 256
 257        return sprintf(data, "%u\n", rank->ce_count);
 258}
 259
 260/* cwrow<id>/attribute files */
 261DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
 262DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
 263DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
 264DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
 265DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
 266DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
 267
 268/* default attributes of the CSROW<id> object */
 269static struct attribute *csrow_attrs[] = {
 270        &dev_attr_legacy_dev_type.attr,
 271        &dev_attr_legacy_mem_type.attr,
 272        &dev_attr_legacy_edac_mode.attr,
 273        &dev_attr_legacy_size_mb.attr,
 274        &dev_attr_legacy_ue_count.attr,
 275        &dev_attr_legacy_ce_count.attr,
 276        NULL,
 277};
 278
 279static struct attribute_group csrow_attr_grp = {
 280        .attrs  = csrow_attrs,
 281};
 282
 283static const struct attribute_group *csrow_attr_groups[] = {
 284        &csrow_attr_grp,
 285        NULL
 286};
 287
 288static void csrow_attr_release(struct device *dev)
 289{
 290        struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
 291
 292        edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
 293        kfree(csrow);
 294}
 295
 296static struct device_type csrow_attr_type = {
 297        .groups         = csrow_attr_groups,
 298        .release        = csrow_attr_release,
 299};
 300
 301/*
 302 * possible dynamic channel DIMM Label attribute files
 303 *
 304 */
 305
 306#define EDAC_NR_CHANNELS        6
 307
 308DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
 309        channel_dimm_label_show, channel_dimm_label_store, 0);
 310DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
 311        channel_dimm_label_show, channel_dimm_label_store, 1);
 312DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
 313        channel_dimm_label_show, channel_dimm_label_store, 2);
 314DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
 315        channel_dimm_label_show, channel_dimm_label_store, 3);
 316DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
 317        channel_dimm_label_show, channel_dimm_label_store, 4);
 318DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
 319        channel_dimm_label_show, channel_dimm_label_store, 5);
 320
 321/* Total possible dynamic DIMM Label attribute file table */
 322static struct device_attribute *dynamic_csrow_dimm_attr[] = {
 323        &dev_attr_legacy_ch0_dimm_label.attr,
 324        &dev_attr_legacy_ch1_dimm_label.attr,
 325        &dev_attr_legacy_ch2_dimm_label.attr,
 326        &dev_attr_legacy_ch3_dimm_label.attr,
 327        &dev_attr_legacy_ch4_dimm_label.attr,
 328        &dev_attr_legacy_ch5_dimm_label.attr
 329};
 330
 331/* possible dynamic channel ce_count attribute files */
 332DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
 333                   channel_ce_count_show, NULL, 0);
 334DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
 335                   channel_ce_count_show, NULL, 1);
 336DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
 337                   channel_ce_count_show, NULL, 2);
 338DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
 339                   channel_ce_count_show, NULL, 3);
 340DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
 341                   channel_ce_count_show, NULL, 4);
 342DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
 343                   channel_ce_count_show, NULL, 5);
 344
 345/* Total possible dynamic ce_count attribute file table */
 346static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
 347        &dev_attr_legacy_ch0_ce_count.attr,
 348        &dev_attr_legacy_ch1_ce_count.attr,
 349        &dev_attr_legacy_ch2_ce_count.attr,
 350        &dev_attr_legacy_ch3_ce_count.attr,
 351        &dev_attr_legacy_ch4_ce_count.attr,
 352        &dev_attr_legacy_ch5_ce_count.attr
 353};
 354
 355static inline int nr_pages_per_csrow(struct csrow_info *csrow)
 356{
 357        int chan, nr_pages = 0;
 358
 359        for (chan = 0; chan < csrow->nr_channels; chan++)
 360                nr_pages += csrow->channels[chan]->dimm->nr_pages;
 361
 362        return nr_pages;
 363}
 364
 365/* Create a CSROW object under specifed edac_mc_device */
 366static int edac_create_csrow_object(struct mem_ctl_info *mci,
 367                                    struct csrow_info *csrow, int index)
 368{
 369        int err, chan;
 370
 371        if (csrow->nr_channels >= EDAC_NR_CHANNELS)
 372                return -ENODEV;
 373
 374        csrow->dev.type = &csrow_attr_type;
 375        csrow->dev.bus = mci->bus;
 376        device_initialize(&csrow->dev);
 377        csrow->dev.parent = &mci->dev;
 378        csrow->mci = mci;
 379        dev_set_name(&csrow->dev, "csrow%d", index);
 380        dev_set_drvdata(&csrow->dev, csrow);
 381
 382        edac_dbg(0, "creating (virtual) csrow node %s\n",
 383                 dev_name(&csrow->dev));
 384
 385        err = device_add(&csrow->dev);
 386        if (err < 0)
 387                return err;
 388
 389        for (chan = 0; chan < csrow->nr_channels; chan++) {
 390                /* Only expose populated DIMMs */
 391                if (!csrow->channels[chan]->dimm->nr_pages)
 392                        continue;
 393                err = device_create_file(&csrow->dev,
 394                                         dynamic_csrow_dimm_attr[chan]);
 395                if (err < 0)
 396                        goto error;
 397                err = device_create_file(&csrow->dev,
 398                                         dynamic_csrow_ce_count_attr[chan]);
 399                if (err < 0) {
 400                        device_remove_file(&csrow->dev,
 401                                           dynamic_csrow_dimm_attr[chan]);
 402                        goto error;
 403                }
 404        }
 405
 406        return 0;
 407
 408error:
 409        for (--chan; chan >= 0; chan--) {
 410                device_remove_file(&csrow->dev,
 411                                        dynamic_csrow_dimm_attr[chan]);
 412                device_remove_file(&csrow->dev,
 413                                           dynamic_csrow_ce_count_attr[chan]);
 414        }
 415        put_device(&csrow->dev);
 416
 417        return err;
 418}
 419
 420/* Create a CSROW object under specifed edac_mc_device */
 421static int edac_create_csrow_objects(struct mem_ctl_info *mci)
 422{
 423        int err, i, chan;
 424        struct csrow_info *csrow;
 425
 426        for (i = 0; i < mci->nr_csrows; i++) {
 427                csrow = mci->csrows[i];
 428                if (!nr_pages_per_csrow(csrow))
 429                        continue;
 430                err = edac_create_csrow_object(mci, mci->csrows[i], i);
 431                if (err < 0) {
 432                        edac_dbg(1,
 433                                 "failure: create csrow objects for csrow %d\n",
 434                                 i);
 435                        goto error;
 436                }
 437        }
 438        return 0;
 439
 440error:
 441        for (--i; i >= 0; i--) {
 442                csrow = mci->csrows[i];
 443                if (!nr_pages_per_csrow(csrow))
 444                        continue;
 445                for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
 446                        if (!csrow->channels[chan]->dimm->nr_pages)
 447                                continue;
 448                        device_remove_file(&csrow->dev,
 449                                                dynamic_csrow_dimm_attr[chan]);
 450                        device_remove_file(&csrow->dev,
 451                                                dynamic_csrow_ce_count_attr[chan]);
 452                }
 453                put_device(&mci->csrows[i]->dev);
 454        }
 455
 456        return err;
 457}
 458
 459static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
 460{
 461        int i, chan;
 462        struct csrow_info *csrow;
 463
 464        for (i = mci->nr_csrows - 1; i >= 0; i--) {
 465                csrow = mci->csrows[i];
 466                if (!nr_pages_per_csrow(csrow))
 467                        continue;
 468                for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
 469                        if (!csrow->channels[chan]->dimm->nr_pages)
 470                                continue;
 471                        edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
 472                                 i, chan);
 473                        device_remove_file(&csrow->dev,
 474                                                dynamic_csrow_dimm_attr[chan]);
 475                        device_remove_file(&csrow->dev,
 476                                                dynamic_csrow_ce_count_attr[chan]);
 477                }
 478                device_unregister(&mci->csrows[i]->dev);
 479        }
 480}
 481#endif
 482
 483/*
 484 * Per-dimm (or per-rank) devices
 485 */
 486
 487#define to_dimm(k) container_of(k, struct dimm_info, dev)
 488
 489/* show/store functions for DIMM Label attributes */
 490static ssize_t dimmdev_location_show(struct device *dev,
 491                                     struct device_attribute *mattr, char *data)
 492{
 493        struct dimm_info *dimm = to_dimm(dev);
 494
 495        return edac_dimm_info_location(dimm, data, PAGE_SIZE);
 496}
 497
 498static ssize_t dimmdev_label_show(struct device *dev,
 499                                  struct device_attribute *mattr, char *data)
 500{
 501        struct dimm_info *dimm = to_dimm(dev);
 502
 503        /* if field has not been initialized, there is nothing to send */
 504        if (!dimm->label[0])
 505                return 0;
 506
 507        return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
 508}
 509
 510static ssize_t dimmdev_label_store(struct device *dev,
 511                                   struct device_attribute *mattr,
 512                                   const char *data,
 513                                   size_t count)
 514{
 515        struct dimm_info *dimm = to_dimm(dev);
 516
 517        ssize_t max_size = 0;
 518
 519        max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
 520        strncpy(dimm->label, data, max_size);
 521        dimm->label[max_size] = '\0';
 522
 523        return max_size;
 524}
 525
 526static ssize_t dimmdev_size_show(struct device *dev,
 527                                 struct device_attribute *mattr, char *data)
 528{
 529        struct dimm_info *dimm = to_dimm(dev);
 530
 531        return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
 532}
 533
 534static ssize_t dimmdev_mem_type_show(struct device *dev,
 535                                     struct device_attribute *mattr, char *data)
 536{
 537        struct dimm_info *dimm = to_dimm(dev);
 538
 539        return sprintf(data, "%s\n", mem_types[dimm->mtype]);
 540}
 541
 542static ssize_t dimmdev_dev_type_show(struct device *dev,
 543                                     struct device_attribute *mattr, char *data)
 544{
 545        struct dimm_info *dimm = to_dimm(dev);
 546
 547        return sprintf(data, "%s\n", dev_types[dimm->dtype]);
 548}
 549
 550static ssize_t dimmdev_edac_mode_show(struct device *dev,
 551                                      struct device_attribute *mattr,
 552                                      char *data)
 553{
 554        struct dimm_info *dimm = to_dimm(dev);
 555
 556        return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
 557}
 558
 559/* dimm/rank attribute files */
 560static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
 561                   dimmdev_label_show, dimmdev_label_store);
 562static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
 563static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
 564static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
 565static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
 566static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
 567
 568/* attributes of the dimm<id>/rank<id> object */
 569static struct attribute *dimm_attrs[] = {
 570        &dev_attr_dimm_label.attr,
 571        &dev_attr_dimm_location.attr,
 572        &dev_attr_size.attr,
 573        &dev_attr_dimm_mem_type.attr,
 574        &dev_attr_dimm_dev_type.attr,
 575        &dev_attr_dimm_edac_mode.attr,
 576        NULL,
 577};
 578
 579static struct attribute_group dimm_attr_grp = {
 580        .attrs  = dimm_attrs,
 581};
 582
 583static const struct attribute_group *dimm_attr_groups[] = {
 584        &dimm_attr_grp,
 585        NULL
 586};
 587
 588static void dimm_attr_release(struct device *dev)
 589{
 590        struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
 591
 592        edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
 593        kfree(dimm);
 594}
 595
 596static struct device_type dimm_attr_type = {
 597        .groups         = dimm_attr_groups,
 598        .release        = dimm_attr_release,
 599};
 600
 601/* Create a DIMM object under specifed memory controller device */
 602static int edac_create_dimm_object(struct mem_ctl_info *mci,
 603                                   struct dimm_info *dimm,
 604                                   int index)
 605{
 606        int err;
 607        dimm->mci = mci;
 608
 609        dimm->dev.type = &dimm_attr_type;
 610        dimm->dev.bus = mci->bus;
 611        device_initialize(&dimm->dev);
 612
 613        dimm->dev.parent = &mci->dev;
 614        if (mci->csbased)
 615                dev_set_name(&dimm->dev, "rank%d", index);
 616        else
 617                dev_set_name(&dimm->dev, "dimm%d", index);
 618        dev_set_drvdata(&dimm->dev, dimm);
 619        pm_runtime_forbid(&mci->dev);
 620
 621        err =  device_add(&dimm->dev);
 622
 623        edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
 624
 625        return err;
 626}
 627
 628/*
 629 * Memory controller device
 630 */
 631
 632#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
 633
 634static ssize_t mci_reset_counters_store(struct device *dev,
 635                                        struct device_attribute *mattr,
 636                                        const char *data, size_t count)
 637{
 638        struct mem_ctl_info *mci = to_mci(dev);
 639        int cnt, row, chan, i;
 640        mci->ue_mc = 0;
 641        mci->ce_mc = 0;
 642        mci->ue_noinfo_count = 0;
 643        mci->ce_noinfo_count = 0;
 644
 645        for (row = 0; row < mci->nr_csrows; row++) {
 646                struct csrow_info *ri = mci->csrows[row];
 647
 648                ri->ue_count = 0;
 649                ri->ce_count = 0;
 650
 651                for (chan = 0; chan < ri->nr_channels; chan++)
 652                        ri->channels[chan]->ce_count = 0;
 653        }
 654
 655        cnt = 1;
 656        for (i = 0; i < mci->n_layers; i++) {
 657                cnt *= mci->layers[i].size;
 658                memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
 659                memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
 660        }
 661
 662        mci->start_time = jiffies;
 663        return count;
 664}
 665
 666/* Memory scrubbing interface:
 667 *
 668 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
 669 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
 670 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
 671 *
 672 * Negative value still means that an error has occurred while setting
 673 * the scrub rate.
 674 */
 675static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
 676                                          struct device_attribute *mattr,
 677                                          const char *data, size_t count)
 678{
 679        struct mem_ctl_info *mci = to_mci(dev);
 680        unsigned long bandwidth = 0;
 681        int new_bw = 0;
 682
 683        if (kstrtoul(data, 10, &bandwidth) < 0)
 684                return -EINVAL;
 685
 686        new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
 687        if (new_bw < 0) {
 688                edac_printk(KERN_WARNING, EDAC_MC,
 689                            "Error setting scrub rate to: %lu\n", bandwidth);
 690                return -EINVAL;
 691        }
 692
 693        return count;
 694}
 695
 696/*
 697 * ->get_sdram_scrub_rate() return value semantics same as above.
 698 */
 699static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
 700                                         struct device_attribute *mattr,
 701                                         char *data)
 702{
 703        struct mem_ctl_info *mci = to_mci(dev);
 704        int bandwidth = 0;
 705
 706        bandwidth = mci->get_sdram_scrub_rate(mci);
 707        if (bandwidth < 0) {
 708                edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
 709                return bandwidth;
 710        }
 711
 712        return sprintf(data, "%d\n", bandwidth);
 713}
 714
 715/* default attribute files for the MCI object */
 716static ssize_t mci_ue_count_show(struct device *dev,
 717                                 struct device_attribute *mattr,
 718                                 char *data)
 719{
 720        struct mem_ctl_info *mci = to_mci(dev);
 721
 722        return sprintf(data, "%d\n", mci->ue_mc);
 723}
 724
 725static ssize_t mci_ce_count_show(struct device *dev,
 726                                 struct device_attribute *mattr,
 727                                 char *data)
 728{
 729        struct mem_ctl_info *mci = to_mci(dev);
 730
 731        return sprintf(data, "%d\n", mci->ce_mc);
 732}
 733
 734static ssize_t mci_ce_noinfo_show(struct device *dev,
 735                                  struct device_attribute *mattr,
 736                                  char *data)
 737{
 738        struct mem_ctl_info *mci = to_mci(dev);
 739
 740        return sprintf(data, "%d\n", mci->ce_noinfo_count);
 741}
 742
 743static ssize_t mci_ue_noinfo_show(struct device *dev,
 744                                  struct device_attribute *mattr,
 745                                  char *data)
 746{
 747        struct mem_ctl_info *mci = to_mci(dev);
 748
 749        return sprintf(data, "%d\n", mci->ue_noinfo_count);
 750}
 751
 752static ssize_t mci_seconds_show(struct device *dev,
 753                                struct device_attribute *mattr,
 754                                char *data)
 755{
 756        struct mem_ctl_info *mci = to_mci(dev);
 757
 758        return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
 759}
 760
 761static ssize_t mci_ctl_name_show(struct device *dev,
 762                                 struct device_attribute *mattr,
 763                                 char *data)
 764{
 765        struct mem_ctl_info *mci = to_mci(dev);
 766
 767        return sprintf(data, "%s\n", mci->ctl_name);
 768}
 769
 770static ssize_t mci_size_mb_show(struct device *dev,
 771                                struct device_attribute *mattr,
 772                                char *data)
 773{
 774        struct mem_ctl_info *mci = to_mci(dev);
 775        int total_pages = 0, csrow_idx, j;
 776
 777        for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
 778                struct csrow_info *csrow = mci->csrows[csrow_idx];
 779
 780                for (j = 0; j < csrow->nr_channels; j++) {
 781                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 782
 783                        total_pages += dimm->nr_pages;
 784                }
 785        }
 786
 787        return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
 788}
 789
 790static ssize_t mci_max_location_show(struct device *dev,
 791                                     struct device_attribute *mattr,
 792                                     char *data)
 793{
 794        struct mem_ctl_info *mci = to_mci(dev);
 795        int i;
 796        char *p = data;
 797
 798        for (i = 0; i < mci->n_layers; i++) {
 799                p += sprintf(p, "%s %d ",
 800                             edac_layer_name[mci->layers[i].type],
 801                             mci->layers[i].size - 1);
 802        }
 803
 804        return p - data;
 805}
 806
 807#ifdef CONFIG_EDAC_DEBUG
 808static ssize_t edac_fake_inject_write(struct file *file,
 809                                      const char __user *data,
 810                                      size_t count, loff_t *ppos)
 811{
 812        struct device *dev = file->private_data;
 813        struct mem_ctl_info *mci = to_mci(dev);
 814        static enum hw_event_mc_err_type type;
 815        u16 errcount = mci->fake_inject_count;
 816
 817        if (!errcount)
 818                errcount = 1;
 819
 820        type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
 821                                   : HW_EVENT_ERR_CORRECTED;
 822
 823        printk(KERN_DEBUG
 824               "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
 825                errcount,
 826                (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
 827                errcount > 1 ? "s" : "",
 828                mci->fake_inject_layer[0],
 829                mci->fake_inject_layer[1],
 830                mci->fake_inject_layer[2]
 831               );
 832        edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
 833                             mci->fake_inject_layer[0],
 834                             mci->fake_inject_layer[1],
 835                             mci->fake_inject_layer[2],
 836                             "FAKE ERROR", "for EDAC testing only");
 837
 838        return count;
 839}
 840
 841static const struct file_operations debug_fake_inject_fops = {
 842        .open = simple_open,
 843        .write = edac_fake_inject_write,
 844        .llseek = generic_file_llseek,
 845};
 846#endif
 847
 848/* default Control file */
 849DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
 850
 851/* default Attribute files */
 852DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
 853DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
 854DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
 855DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
 856DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
 857DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
 858DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
 859DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
 860
 861/* memory scrubber attribute file */
 862DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
 863
 864static struct attribute *mci_attrs[] = {
 865        &dev_attr_reset_counters.attr,
 866        &dev_attr_mc_name.attr,
 867        &dev_attr_size_mb.attr,
 868        &dev_attr_seconds_since_reset.attr,
 869        &dev_attr_ue_noinfo_count.attr,
 870        &dev_attr_ce_noinfo_count.attr,
 871        &dev_attr_ue_count.attr,
 872        &dev_attr_ce_count.attr,
 873        &dev_attr_max_location.attr,
 874        NULL
 875};
 876
 877static struct attribute_group mci_attr_grp = {
 878        .attrs  = mci_attrs,
 879};
 880
 881static const struct attribute_group *mci_attr_groups[] = {
 882        &mci_attr_grp,
 883        NULL
 884};
 885
 886static void mci_attr_release(struct device *dev)
 887{
 888        struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
 889
 890        edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
 891        kfree(mci);
 892}
 893
 894static struct device_type mci_attr_type = {
 895        .groups         = mci_attr_groups,
 896        .release        = mci_attr_release,
 897};
 898
 899#ifdef CONFIG_EDAC_DEBUG
 900static struct dentry *edac_debugfs;
 901
 902int __init edac_debugfs_init(void)
 903{
 904        edac_debugfs = debugfs_create_dir("edac", NULL);
 905        if (IS_ERR(edac_debugfs)) {
 906                edac_debugfs = NULL;
 907                return -ENOMEM;
 908        }
 909        return 0;
 910}
 911
 912void __exit edac_debugfs_exit(void)
 913{
 914        debugfs_remove(edac_debugfs);
 915}
 916
 917int edac_create_debug_nodes(struct mem_ctl_info *mci)
 918{
 919        struct dentry *d, *parent;
 920        char name[80];
 921        int i;
 922
 923        if (!edac_debugfs)
 924                return -ENODEV;
 925
 926        d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
 927        if (!d)
 928                return -ENOMEM;
 929        parent = d;
 930
 931        for (i = 0; i < mci->n_layers; i++) {
 932                sprintf(name, "fake_inject_%s",
 933                             edac_layer_name[mci->layers[i].type]);
 934                d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
 935                                      &mci->fake_inject_layer[i]);
 936                if (!d)
 937                        goto nomem;
 938        }
 939
 940        d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
 941                                &mci->fake_inject_ue);
 942        if (!d)
 943                goto nomem;
 944
 945        d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
 946                                &mci->fake_inject_count);
 947        if (!d)
 948                goto nomem;
 949
 950        d = debugfs_create_file("fake_inject", S_IWUSR, parent,
 951                                &mci->dev,
 952                                &debug_fake_inject_fops);
 953        if (!d)
 954                goto nomem;
 955
 956        mci->debugfs = parent;
 957        return 0;
 958nomem:
 959        debugfs_remove(mci->debugfs);
 960        return -ENOMEM;
 961}
 962#endif
 963
 964/*
 965 * Create a new Memory Controller kobject instance,
 966 *      mc<id> under the 'mc' directory
 967 *
 968 * Return:
 969 *      0       Success
 970 *      !0      Failure
 971 */
 972int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
 973{
 974        int i, err;
 975
 976        /*
 977         * The memory controller needs its own bus, in order to avoid
 978         * namespace conflicts at /sys/bus/edac.
 979         */
 980        mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
 981        if (!mci->bus->name)
 982                return -ENOMEM;
 983
 984        edac_dbg(0, "creating bus %s\n", mci->bus->name);
 985
 986        err = bus_register(mci->bus);
 987        if (err < 0)
 988                return err;
 989
 990        /* get the /sys/devices/system/edac subsys reference */
 991        mci->dev.type = &mci_attr_type;
 992        device_initialize(&mci->dev);
 993
 994        mci->dev.parent = mci_pdev;
 995        mci->dev.bus = mci->bus;
 996        dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
 997        dev_set_drvdata(&mci->dev, mci);
 998        pm_runtime_forbid(&mci->dev);
 999
1000        edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1001        err = device_add(&mci->dev);
1002        if (err < 0) {
1003                edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1004                bus_unregister(mci->bus);
1005                kfree(mci->bus->name);
1006                return err;
1007        }
1008
1009        if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1010                if (mci->get_sdram_scrub_rate) {
1011                        dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1012                        dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1013                }
1014                if (mci->set_sdram_scrub_rate) {
1015                        dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1016                        dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1017                }
1018                err = device_create_file(&mci->dev,
1019                                         &dev_attr_sdram_scrub_rate);
1020                if (err) {
1021                        edac_dbg(1, "failure: create sdram_scrub_rate\n");
1022                        goto fail2;
1023                }
1024        }
1025        /*
1026         * Create the dimm/rank devices
1027         */
1028        for (i = 0; i < mci->tot_dimms; i++) {
1029                struct dimm_info *dimm = mci->dimms[i];
1030                /* Only expose populated DIMMs */
1031                if (dimm->nr_pages == 0)
1032                        continue;
1033#ifdef CONFIG_EDAC_DEBUG
1034                edac_dbg(1, "creating dimm%d, located at ", i);
1035                if (edac_debug_level >= 1) {
1036                        int lay;
1037                        for (lay = 0; lay < mci->n_layers; lay++)
1038                                printk(KERN_CONT "%s %d ",
1039                                        edac_layer_name[mci->layers[lay].type],
1040                                        dimm->location[lay]);
1041                        printk(KERN_CONT "\n");
1042                }
1043#endif
1044                err = edac_create_dimm_object(mci, dimm, i);
1045                if (err) {
1046                        edac_dbg(1, "failure: create dimm %d obj\n", i);
1047                        goto fail;
1048                }
1049        }
1050
1051#ifdef CONFIG_EDAC_LEGACY_SYSFS
1052        err = edac_create_csrow_objects(mci);
1053        if (err < 0)
1054                goto fail;
1055#endif
1056
1057#ifdef CONFIG_EDAC_DEBUG
1058        edac_create_debug_nodes(mci);
1059#endif
1060        return 0;
1061
1062fail:
1063        for (i--; i >= 0; i--) {
1064                struct dimm_info *dimm = mci->dimms[i];
1065                if (dimm->nr_pages == 0)
1066                        continue;
1067                device_unregister(&dimm->dev);
1068        }
1069fail2:
1070        device_unregister(&mci->dev);
1071        bus_unregister(mci->bus);
1072        kfree(mci->bus->name);
1073        return err;
1074}
1075
1076/*
1077 * remove a Memory Controller instance
1078 */
1079void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1080{
1081        int i;
1082
1083        edac_dbg(0, "\n");
1084
1085#ifdef CONFIG_EDAC_DEBUG
1086        debugfs_remove(mci->debugfs);
1087#endif
1088#ifdef CONFIG_EDAC_LEGACY_SYSFS
1089        edac_delete_csrow_objects(mci);
1090#endif
1091
1092        for (i = 0; i < mci->tot_dimms; i++) {
1093                struct dimm_info *dimm = mci->dimms[i];
1094                if (dimm->nr_pages == 0)
1095                        continue;
1096                edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1097                device_unregister(&dimm->dev);
1098        }
1099}
1100
1101void edac_unregister_sysfs(struct mem_ctl_info *mci)
1102{
1103        edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1104        device_unregister(&mci->dev);
1105        bus_unregister(mci->bus);
1106        kfree(mci->bus->name);
1107}
1108
1109static void mc_attr_release(struct device *dev)
1110{
1111        /*
1112         * There's no container structure here, as this is just the mci
1113         * parent device, used to create the /sys/devices/mc sysfs node.
1114         * So, there are no attributes on it.
1115         */
1116        edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1117        kfree(dev);
1118}
1119
1120static struct device_type mc_attr_type = {
1121        .release        = mc_attr_release,
1122};
1123/*
1124 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1125 */
1126int __init edac_mc_sysfs_init(void)
1127{
1128        struct bus_type *edac_subsys;
1129        int err;
1130
1131        /* get the /sys/devices/system/edac subsys reference */
1132        edac_subsys = edac_get_sysfs_subsys();
1133        if (edac_subsys == NULL) {
1134                edac_dbg(1, "no edac_subsys\n");
1135                err = -EINVAL;
1136                goto out;
1137        }
1138
1139        mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1140        if (!mci_pdev) {
1141                err = -ENOMEM;
1142                goto out_put_sysfs;
1143        }
1144
1145        mci_pdev->bus = edac_subsys;
1146        mci_pdev->type = &mc_attr_type;
1147        device_initialize(mci_pdev);
1148        dev_set_name(mci_pdev, "mc");
1149
1150        err = device_add(mci_pdev);
1151        if (err < 0)
1152                goto out_dev_free;
1153
1154        edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1155
1156        return 0;
1157
1158 out_dev_free:
1159        kfree(mci_pdev);
1160 out_put_sysfs:
1161        edac_put_sysfs_subsys();
1162 out:
1163        return err;
1164}
1165
1166void __exit edac_mc_sysfs_exit(void)
1167{
1168        device_unregister(mci_pdev);
1169        edac_put_sysfs_subsys();
1170}
1171
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.