linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81        .prereset               = ata_std_prereset,
  82        .postreset              = ata_std_postreset,
  83        .error_handler          = ata_std_error_handler,
  84        .sched_eh               = ata_std_sched_eh,
  85        .end_eh                 = ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89        .inherits               = &ata_base_port_ops,
  90
  91        .qc_defer               = ata_std_qc_defer,
  92        .hardreset              = sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96                                        u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104        const char      *name;
 105        unsigned int    cbl;
 106        int             spd_limit;
 107        unsigned long   xfer_mask;
 108        unsigned int    horkage_on;
 109        unsigned int    horkage_off;
 110        unsigned int    lflags;
 111};
 112
 113struct ata_force_ent {
 114        int                     port;
 115        int                     device;
 116        struct ata_force_param  param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175        return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *      ata_link_next - link iteration helper
 180 *      @link: the previous link, NULL to start
 181 *      @ap: ATA port containing links to iterate
 182 *      @mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *      LOCKING:
 185 *      Host lock or EH context.
 186 *
 187 *      RETURNS:
 188 *      Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191                               enum ata_link_iter_mode mode)
 192{
 193        BUG_ON(mode != ATA_LITER_EDGE &&
 194               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196        /* NULL link indicates start of iteration */
 197        if (!link)
 198                switch (mode) {
 199                case ATA_LITER_EDGE:
 200                case ATA_LITER_PMP_FIRST:
 201                        if (sata_pmp_attached(ap))
 202                                return ap->pmp_link;
 203                        /* fall through */
 204                case ATA_LITER_HOST_FIRST:
 205                        return &ap->link;
 206                }
 207
 208        /* we just iterated over the host link, what's next? */
 209        if (link == &ap->link)
 210                switch (mode) {
 211                case ATA_LITER_HOST_FIRST:
 212                        if (sata_pmp_attached(ap))
 213                                return ap->pmp_link;
 214                        /* fall through */
 215                case ATA_LITER_PMP_FIRST:
 216                        if (unlikely(ap->slave_link))
 217                                return ap->slave_link;
 218                        /* fall through */
 219                case ATA_LITER_EDGE:
 220                        return NULL;
 221                }
 222
 223        /* slave_link excludes PMP */
 224        if (unlikely(link == ap->slave_link))
 225                return NULL;
 226
 227        /* we were over a PMP link */
 228        if (++link < ap->pmp_link + ap->nr_pmp_links)
 229                return link;
 230
 231        if (mode == ATA_LITER_PMP_FIRST)
 232                return &ap->link;
 233
 234        return NULL;
 235}
 236
 237/**
 238 *      ata_dev_next - device iteration helper
 239 *      @dev: the previous device, NULL to start
 240 *      @link: ATA link containing devices to iterate
 241 *      @mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *      LOCKING:
 244 *      Host lock or EH context.
 245 *
 246 *      RETURNS:
 247 *      Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250                                enum ata_dev_iter_mode mode)
 251{
 252        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255        /* NULL dev indicates start of iteration */
 256        if (!dev)
 257                switch (mode) {
 258                case ATA_DITER_ENABLED:
 259                case ATA_DITER_ALL:
 260                        dev = link->device;
 261                        goto check;
 262                case ATA_DITER_ENABLED_REVERSE:
 263                case ATA_DITER_ALL_REVERSE:
 264                        dev = link->device + ata_link_max_devices(link) - 1;
 265                        goto check;
 266                }
 267
 268 next:
 269        /* move to the next one */
 270        switch (mode) {
 271        case ATA_DITER_ENABLED:
 272        case ATA_DITER_ALL:
 273                if (++dev < link->device + ata_link_max_devices(link))
 274                        goto check;
 275                return NULL;
 276        case ATA_DITER_ENABLED_REVERSE:
 277        case ATA_DITER_ALL_REVERSE:
 278                if (--dev >= link->device)
 279                        goto check;
 280                return NULL;
 281        }
 282
 283 check:
 284        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285            !ata_dev_enabled(dev))
 286                goto next;
 287        return dev;
 288}
 289
 290/**
 291 *      ata_dev_phys_link - find physical link for a device
 292 *      @dev: ATA device to look up physical link for
 293 *
 294 *      Look up physical link which @dev is attached to.  Note that
 295 *      this is different from @dev->link only when @dev is on slave
 296 *      link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *      LOCKING:
 299 *      Don't care.
 300 *
 301 *      RETURNS:
 302 *      Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306        struct ata_port *ap = dev->link->ap;
 307
 308        if (!ap->slave_link)
 309                return dev->link;
 310        if (!dev->devno)
 311                return &ap->link;
 312        return ap->slave_link;
 313}
 314
 315/**
 316 *      ata_force_cbl - force cable type according to libata.force
 317 *      @ap: ATA port of interest
 318 *
 319 *      Force cable type according to libata.force and whine about it.
 320 *      The last entry which has matching port number is used, so it
 321 *      can be specified as part of device force parameters.  For
 322 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *      same effect.
 324 *
 325 *      LOCKING:
 326 *      EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330        int i;
 331
 332        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333                const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335                if (fe->port != -1 && fe->port != ap->print_id)
 336                        continue;
 337
 338                if (fe->param.cbl == ATA_CBL_NONE)
 339                        continue;
 340
 341                ap->cbl = fe->param.cbl;
 342                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343                return;
 344        }
 345}
 346
 347/**
 348 *      ata_force_link_limits - force link limits according to libata.force
 349 *      @link: ATA link of interest
 350 *
 351 *      Force link flags and SATA spd limit according to libata.force
 352 *      and whine about it.  When only the port part is specified
 353 *      (e.g. 1:), the limit applies to all links connected to both
 354 *      the host link and all fan-out ports connected via PMP.  If the
 355 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *      first fan-out link not the host link.  Device number 15 always
 357 *      points to the host link whether PMP is attached or not.  If the
 358 *      controller has slave link, device number 16 points to it.
 359 *
 360 *      LOCKING:
 361 *      EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365        bool did_spd = false;
 366        int linkno = link->pmp;
 367        int i;
 368
 369        if (ata_is_host_link(link))
 370                linkno += 15;
 371
 372        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373                const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375                if (fe->port != -1 && fe->port != link->ap->print_id)
 376                        continue;
 377
 378                if (fe->device != -1 && fe->device != linkno)
 379                        continue;
 380
 381                /* only honor the first spd limit */
 382                if (!did_spd && fe->param.spd_limit) {
 383                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385                                        fe->param.name);
 386                        did_spd = true;
 387                }
 388
 389                /* let lflags stack */
 390                if (fe->param.lflags) {
 391                        link->flags |= fe->param.lflags;
 392                        ata_link_notice(link,
 393                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 394                                        fe->param.lflags, link->flags);
 395                }
 396        }
 397}
 398
 399/**
 400 *      ata_force_xfermask - force xfermask according to libata.force
 401 *      @dev: ATA device of interest
 402 *
 403 *      Force xfer_mask according to libata.force and whine about it.
 404 *      For consistency with link selection, device number 15 selects
 405 *      the first device connected to the host link.
 406 *
 407 *      LOCKING:
 408 *      EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412        int devno = dev->link->pmp + dev->devno;
 413        int alt_devno = devno;
 414        int i;
 415
 416        /* allow n.15/16 for devices attached to host port */
 417        if (ata_is_host_link(dev->link))
 418                alt_devno += 15;
 419
 420        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421                const struct ata_force_ent *fe = &ata_force_tbl[i];
 422                unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425                        continue;
 426
 427                if (fe->device != -1 && fe->device != devno &&
 428                    fe->device != alt_devno)
 429                        continue;
 430
 431                if (!fe->param.xfer_mask)
 432                        continue;
 433
 434                ata_unpack_xfermask(fe->param.xfer_mask,
 435                                    &pio_mask, &mwdma_mask, &udma_mask);
 436                if (udma_mask)
 437                        dev->udma_mask = udma_mask;
 438                else if (mwdma_mask) {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = mwdma_mask;
 441                } else {
 442                        dev->udma_mask = 0;
 443                        dev->mwdma_mask = 0;
 444                        dev->pio_mask = pio_mask;
 445                }
 446
 447                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448                               fe->param.name);
 449                return;
 450        }
 451}
 452
 453/**
 454 *      ata_force_horkage - force horkage according to libata.force
 455 *      @dev: ATA device of interest
 456 *
 457 *      Force horkage according to libata.force and whine about it.
 458 *      For consistency with link selection, device number 15 selects
 459 *      the first device connected to the host link.
 460 *
 461 *      LOCKING:
 462 *      EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466        int devno = dev->link->pmp + dev->devno;
 467        int alt_devno = devno;
 468        int i;
 469
 470        /* allow n.15/16 for devices attached to host port */
 471        if (ata_is_host_link(dev->link))
 472                alt_devno += 15;
 473
 474        for (i = 0; i < ata_force_tbl_size; i++) {
 475                const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478                        continue;
 479
 480                if (fe->device != -1 && fe->device != devno &&
 481                    fe->device != alt_devno)
 482                        continue;
 483
 484                if (!(~dev->horkage & fe->param.horkage_on) &&
 485                    !(dev->horkage & fe->param.horkage_off))
 486                        continue;
 487
 488                dev->horkage |= fe->param.horkage_on;
 489                dev->horkage &= ~fe->param.horkage_off;
 490
 491                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492                               fe->param.name);
 493        }
 494}
 495
 496/**
 497 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *      @opcode: SCSI opcode
 499 *
 500 *      Determine ATAPI command type from @opcode.
 501 *
 502 *      LOCKING:
 503 *      None.
 504 *
 505 *      RETURNS:
 506 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510        switch (opcode) {
 511        case GPCMD_READ_10:
 512        case GPCMD_READ_12:
 513                return ATAPI_READ;
 514
 515        case GPCMD_WRITE_10:
 516        case GPCMD_WRITE_12:
 517        case GPCMD_WRITE_AND_VERIFY_10:
 518                return ATAPI_WRITE;
 519
 520        case GPCMD_READ_CD:
 521        case GPCMD_READ_CD_MSF:
 522                return ATAPI_READ_CD;
 523
 524        case ATA_16:
 525        case ATA_12:
 526                if (atapi_passthru16)
 527                        return ATAPI_PASS_THRU;
 528                /* fall thru */
 529        default:
 530                return ATAPI_MISC;
 531        }
 532}
 533
 534/**
 535 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *      @tf: Taskfile to convert
 537 *      @pmp: Port multiplier port
 538 *      @is_cmd: This FIS is for command
 539 *      @fis: Buffer into which data will output
 540 *
 541 *      Converts a standard ATA taskfile to a Serial ATA
 542 *      FIS structure (Register - Host to Device).
 543 *
 544 *      LOCKING:
 545 *      Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 550        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 551        if (is_cmd)
 552                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 553
 554        fis[2] = tf->command;
 555        fis[3] = tf->feature;
 556
 557        fis[4] = tf->lbal;
 558        fis[5] = tf->lbam;
 559        fis[6] = tf->lbah;
 560        fis[7] = tf->device;
 561
 562        fis[8] = tf->hob_lbal;
 563        fis[9] = tf->hob_lbam;
 564        fis[10] = tf->hob_lbah;
 565        fis[11] = tf->hob_feature;
 566
 567        fis[12] = tf->nsect;
 568        fis[13] = tf->hob_nsect;
 569        fis[14] = 0;
 570        fis[15] = tf->ctl;
 571
 572        fis[16] = tf->auxiliary & 0xff;
 573        fis[17] = (tf->auxiliary >> 8) & 0xff;
 574        fis[18] = (tf->auxiliary >> 16) & 0xff;
 575        fis[19] = (tf->auxiliary >> 24) & 0xff;
 576}
 577
 578/**
 579 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *      @fis: Buffer from which data will be input
 581 *      @tf: Taskfile to output
 582 *
 583 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *      LOCKING:
 586 *      Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591        tf->command     = fis[2];       /* status */
 592        tf->feature     = fis[3];       /* error */
 593
 594        tf->lbal        = fis[4];
 595        tf->lbam        = fis[5];
 596        tf->lbah        = fis[6];
 597        tf->device      = fis[7];
 598
 599        tf->hob_lbal    = fis[8];
 600        tf->hob_lbam    = fis[9];
 601        tf->hob_lbah    = fis[10];
 602
 603        tf->nsect       = fis[12];
 604        tf->hob_nsect   = fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608        /* pio multi */
 609        ATA_CMD_READ_MULTI,
 610        ATA_CMD_WRITE_MULTI,
 611        ATA_CMD_READ_MULTI_EXT,
 612        ATA_CMD_WRITE_MULTI_EXT,
 613        0,
 614        0,
 615        0,
 616        ATA_CMD_WRITE_MULTI_FUA_EXT,
 617        /* pio */
 618        ATA_CMD_PIO_READ,
 619        ATA_CMD_PIO_WRITE,
 620        ATA_CMD_PIO_READ_EXT,
 621        ATA_CMD_PIO_WRITE_EXT,
 622        0,
 623        0,
 624        0,
 625        0,
 626        /* dma */
 627        ATA_CMD_READ,
 628        ATA_CMD_WRITE,
 629        ATA_CMD_READ_EXT,
 630        ATA_CMD_WRITE_EXT,
 631        0,
 632        0,
 633        0,
 634        ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *      @tf: command to examine and configure
 640 *      @dev: device tf belongs to
 641 *
 642 *      Examine the device configuration and tf->flags to calculate
 643 *      the proper read/write commands and protocol to use.
 644 *
 645 *      LOCKING:
 646 *      caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650        u8 cmd;
 651
 652        int index, fua, lba48, write;
 653
 654        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658        if (dev->flags & ATA_DFLAG_PIO) {
 659                tf->protocol = ATA_PROT_PIO;
 660                index = dev->multi_count ? 0 : 8;
 661        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662                /* Unable to use DMA due to host limitation */
 663                tf->protocol = ATA_PROT_PIO;
 664                index = dev->multi_count ? 0 : 8;
 665        } else {
 666                tf->protocol = ATA_PROT_DMA;
 667                index = 16;
 668        }
 669
 670        cmd = ata_rw_cmds[index + fua + lba48 + write];
 671        if (cmd) {
 672                tf->command = cmd;
 673                return 0;
 674        }
 675        return -1;
 676}
 677
 678/**
 679 *      ata_tf_read_block - Read block address from ATA taskfile
 680 *      @tf: ATA taskfile of interest
 681 *      @dev: ATA device @tf belongs to
 682 *
 683 *      LOCKING:
 684 *      None.
 685 *
 686 *      Read block address from @tf.  This function can handle all
 687 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *      flags select the address format to use.
 689 *
 690 *      RETURNS:
 691 *      Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695        u64 block = 0;
 696
 697        if (tf->flags & ATA_TFLAG_LBA) {
 698                if (tf->flags & ATA_TFLAG_LBA48) {
 699                        block |= (u64)tf->hob_lbah << 40;
 700                        block |= (u64)tf->hob_lbam << 32;
 701                        block |= (u64)tf->hob_lbal << 24;
 702                } else
 703                        block |= (tf->device & 0xf) << 24;
 704
 705                block |= tf->lbah << 16;
 706                block |= tf->lbam << 8;
 707                block |= tf->lbal;
 708        } else {
 709                u32 cyl, head, sect;
 710
 711                cyl = tf->lbam | (tf->lbah << 8);
 712                head = tf->device & 0xf;
 713                sect = tf->lbal;
 714
 715                if (!sect) {
 716                        ata_dev_warn(dev,
 717                                     "device reported invalid CHS sector 0\n");
 718                        sect = 1; /* oh well */
 719                }
 720
 721                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722        }
 723
 724        return block;
 725}
 726
 727/**
 728 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *      @tf: Target ATA taskfile
 730 *      @dev: ATA device @tf belongs to
 731 *      @block: Block address
 732 *      @n_block: Number of blocks
 733 *      @tf_flags: RW/FUA etc...
 734 *      @tag: tag
 735 *
 736 *      LOCKING:
 737 *      None.
 738 *
 739 *      Build ATA taskfile @tf for read/write request described by
 740 *      @block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *      RETURNS:
 743 *
 744 *      0 on success, -ERANGE if the request is too large for @dev,
 745 *      -EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748                    u64 block, u32 n_block, unsigned int tf_flags,
 749                    unsigned int tag)
 750{
 751        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752        tf->flags |= tf_flags;
 753
 754        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755                /* yay, NCQ */
 756                if (!lba_48_ok(block, n_block))
 757                        return -ERANGE;
 758
 759                tf->protocol = ATA_PROT_NCQ;
 760                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762                if (tf->flags & ATA_TFLAG_WRITE)
 763                        tf->command = ATA_CMD_FPDMA_WRITE;
 764                else
 765                        tf->command = ATA_CMD_FPDMA_READ;
 766
 767                tf->nsect = tag << 3;
 768                tf->hob_feature = (n_block >> 8) & 0xff;
 769                tf->feature = n_block & 0xff;
 770
 771                tf->hob_lbah = (block >> 40) & 0xff;
 772                tf->hob_lbam = (block >> 32) & 0xff;
 773                tf->hob_lbal = (block >> 24) & 0xff;
 774                tf->lbah = (block >> 16) & 0xff;
 775                tf->lbam = (block >> 8) & 0xff;
 776                tf->lbal = block & 0xff;
 777
 778                tf->device = ATA_LBA;
 779                if (tf->flags & ATA_TFLAG_FUA)
 780                        tf->device |= 1 << 7;
 781        } else if (dev->flags & ATA_DFLAG_LBA) {
 782                tf->flags |= ATA_TFLAG_LBA;
 783
 784                if (lba_28_ok(block, n_block)) {
 785                        /* use LBA28 */
 786                        tf->device |= (block >> 24) & 0xf;
 787                } else if (lba_48_ok(block, n_block)) {
 788                        if (!(dev->flags & ATA_DFLAG_LBA48))
 789                                return -ERANGE;
 790
 791                        /* use LBA48 */
 792                        tf->flags |= ATA_TFLAG_LBA48;
 793
 794                        tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796                        tf->hob_lbah = (block >> 40) & 0xff;
 797                        tf->hob_lbam = (block >> 32) & 0xff;
 798                        tf->hob_lbal = (block >> 24) & 0xff;
 799                } else
 800                        /* request too large even for LBA48 */
 801                        return -ERANGE;
 802
 803                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804                        return -EINVAL;
 805
 806                tf->nsect = n_block & 0xff;
 807
 808                tf->lbah = (block >> 16) & 0xff;
 809                tf->lbam = (block >> 8) & 0xff;
 810                tf->lbal = block & 0xff;
 811
 812                tf->device |= ATA_LBA;
 813        } else {
 814                /* CHS */
 815                u32 sect, head, cyl, track;
 816
 817                /* The request -may- be too large for CHS addressing. */
 818                if (!lba_28_ok(block, n_block))
 819                        return -ERANGE;
 820
 821                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822                        return -EINVAL;
 823
 824                /* Convert LBA to CHS */
 825                track = (u32)block / dev->sectors;
 826                cyl   = track / dev->heads;
 827                head  = track % dev->heads;
 828                sect  = (u32)block % dev->sectors + 1;
 829
 830                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831                        (u32)block, track, cyl, head, sect);
 832
 833                /* Check whether the converted CHS can fit.
 834                   Cylinder: 0-65535
 835                   Head: 0-15
 836                   Sector: 1-255*/
 837                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838                        return -ERANGE;
 839
 840                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841                tf->lbal = sect;
 842                tf->lbam = cyl;
 843                tf->lbah = cyl >> 8;
 844                tf->device |= head;
 845        }
 846
 847        return 0;
 848}
 849
 850/**
 851 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *      @pio_mask: pio_mask
 853 *      @mwdma_mask: mwdma_mask
 854 *      @udma_mask: udma_mask
 855 *
 856 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *      unsigned int xfer_mask.
 858 *
 859 *      LOCKING:
 860 *      None.
 861 *
 862 *      RETURNS:
 863 *      Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866                                unsigned long mwdma_mask,
 867                                unsigned long udma_mask)
 868{
 869        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *      @xfer_mask: xfer_mask to unpack
 877 *      @pio_mask: resulting pio_mask
 878 *      @mwdma_mask: resulting mwdma_mask
 879 *      @udma_mask: resulting udma_mask
 880 *
 881 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *      Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887        if (pio_mask)
 888                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889        if (mwdma_mask)
 890                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891        if (udma_mask)
 892                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896        int shift, bits;
 897        u8 base;
 898} ata_xfer_tbl[] = {
 899        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902        { -1, },
 903};
 904
 905/**
 906 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *      @xfer_mask: xfer_mask of interest
 908 *
 909 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *      bit of @xfer_mask is considered.
 911 *
 912 *      LOCKING:
 913 *      None.
 914 *
 915 *      RETURNS:
 916 *      Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920        int highbit = fls(xfer_mask) - 1;
 921        const struct ata_xfer_ent *ent;
 922
 923        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925                        return ent->base + highbit - ent->shift;
 926        return 0xff;
 927}
 928
 929/**
 930 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *      @xfer_mode: XFER_* of interest
 932 *
 933 *      Return matching xfer_mask for @xfer_mode.
 934 *
 935 *      LOCKING:
 936 *      None.
 937 *
 938 *      RETURNS:
 939 *      Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943        const struct ata_xfer_ent *ent;
 944
 945        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948                                & ~((1 << ent->shift) - 1);
 949        return 0;
 950}
 951
 952/**
 953 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *      @xfer_mode: XFER_* of interest
 955 *
 956 *      Return matching xfer_shift for @xfer_mode.
 957 *
 958 *      LOCKING:
 959 *      None.
 960 *
 961 *      RETURNS:
 962 *      Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966        const struct ata_xfer_ent *ent;
 967
 968        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970                        return ent->shift;
 971        return -1;
 972}
 973
 974/**
 975 *      ata_mode_string - convert xfer_mask to string
 976 *      @xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *      Determine string which represents the highest speed
 979 *      (highest bit in @modemask).
 980 *
 981 *      LOCKING:
 982 *      None.
 983 *
 984 *      RETURNS:
 985 *      Constant C string representing highest speed listed in
 986 *      @mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990        static const char * const xfer_mode_str[] = {
 991                "PIO0",
 992                "PIO1",
 993                "PIO2",
 994                "PIO3",
 995                "PIO4",
 996                "PIO5",
 997                "PIO6",
 998                "MWDMA0",
 999                "MWDMA1",
1000                "MWDMA2",
1001                "MWDMA3",
1002                "MWDMA4",
1003                "UDMA/16",
1004                "UDMA/25",
1005                "UDMA/33",
1006                "UDMA/44",
1007                "UDMA/66",
1008                "UDMA/100",
1009                "UDMA/133",
1010                "UDMA7",
1011        };
1012        int highbit;
1013
1014        highbit = fls(xfer_mask) - 1;
1015        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016                return xfer_mode_str[highbit];
1017        return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022        static const char * const spd_str[] = {
1023                "1.5 Gbps",
1024                "3.0 Gbps",
1025                "6.0 Gbps",
1026        };
1027
1028        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029                return "<unknown>";
1030        return spd_str[spd - 1];
1031}
1032
1033/**
1034 *      ata_dev_classify - determine device type based on ATA-spec signature
1035 *      @tf: ATA taskfile register set for device to be identified
1036 *
1037 *      Determine from taskfile register contents whether a device is
1038 *      ATA or ATAPI, as per "Signature and persistence" section
1039 *      of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *      LOCKING:
1042 *      None.
1043 *
1044 *      RETURNS:
1045 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *      %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050        /* Apple's open source Darwin code hints that some devices only
1051         * put a proper signature into the LBA mid/high registers,
1052         * So, we only check those.  It's sufficient for uniqueness.
1053         *
1054         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055         * signatures for ATA and ATAPI devices attached on SerialATA,
1056         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057         * spec has never mentioned about using different signatures
1058         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059         * Multiplier specification began to use 0x69/0x96 to identify
1060         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062         * 0x69/0x96 shortly and described them as reserved for
1063         * SerialATA.
1064         *
1065         * We follow the current spec and consider that 0x69/0x96
1066         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068         * SEMB signature.  This is worked around in
1069         * ata_dev_read_id().
1070         */
1071        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072                DPRINTK("found ATA device by sig\n");
1073                return ATA_DEV_ATA;
1074        }
1075
1076        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077                DPRINTK("found ATAPI device by sig\n");
1078                return ATA_DEV_ATAPI;
1079        }
1080
1081        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082                DPRINTK("found PMP device by sig\n");
1083                return ATA_DEV_PMP;
1084        }
1085
1086        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088                return ATA_DEV_SEMB;
1089        }
1090
1091        DPRINTK("unknown device\n");
1092        return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *      @id: IDENTIFY DEVICE results we will examine
1098 *      @s: string into which data is output
1099 *      @ofs: offset into identify device page
1100 *      @len: length of string to return. must be an even number.
1101 *
1102 *      The strings in the IDENTIFY DEVICE page are broken up into
1103 *      16-bit chunks.  Run through the string, and output each
1104 *      8-bit chunk linearly, regardless of platform.
1105 *
1106 *      LOCKING:
1107 *      caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111                   unsigned int ofs, unsigned int len)
1112{
1113        unsigned int c;
1114
1115        BUG_ON(len & 1);
1116
1117        while (len > 0) {
1118                c = id[ofs] >> 8;
1119                *s = c;
1120                s++;
1121
1122                c = id[ofs] & 0xff;
1123                *s = c;
1124                s++;
1125
1126                ofs++;
1127                len -= 2;
1128        }
1129}
1130
1131/**
1132 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *      @id: IDENTIFY DEVICE results we will examine
1134 *      @s: string into which data is output
1135 *      @ofs: offset into identify device page
1136 *      @len: length of string to return. must be an odd number.
1137 *
1138 *      This function is identical to ata_id_string except that it
1139 *      trims trailing spaces and terminates the resulting string with
1140 *      null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *      LOCKING:
1143 *      caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146                     unsigned int ofs, unsigned int len)
1147{
1148        unsigned char *p;
1149
1150        ata_id_string(id, s, ofs, len - 1);
1151
1152        p = s + strnlen(s, len - 1);
1153        while (p > s && p[-1] == ' ')
1154                p--;
1155        *p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160        if (ata_id_has_lba(id)) {
1161                if (ata_id_has_lba48(id))
1162                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163                else
1164                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165        } else {
1166                if (ata_id_current_chs_valid(id))
1167                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168                               id[ATA_ID_CUR_SECTORS];
1169                else
1170                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171                               id[ATA_ID_SECTORS];
1172        }
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177        u64 sectors = 0;
1178
1179        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182        sectors |= (tf->lbah & 0xff) << 16;
1183        sectors |= (tf->lbam & 0xff) << 8;
1184        sectors |= (tf->lbal & 0xff);
1185
1186        return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191        u64 sectors = 0;
1192
1193        sectors |= (tf->device & 0x0f) << 24;
1194        sectors |= (tf->lbah & 0xff) << 16;
1195        sectors |= (tf->lbam & 0xff) << 8;
1196        sectors |= (tf->lbal & 0xff);
1197
1198        return sectors;
1199}
1200
1201/**
1202 *      ata_read_native_max_address - Read native max address
1203 *      @dev: target device
1204 *      @max_sectors: out parameter for the result native max address
1205 *
1206 *      Perform an LBA48 or LBA28 native size query upon the device in
1207 *      question.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted by the drive.
1211 *      -EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215        unsigned int err_mask;
1216        struct ata_taskfile tf;
1217        int lba48 = ata_id_has_lba48(dev->id);
1218
1219        ata_tf_init(dev, &tf);
1220
1221        /* always clear all address registers */
1222        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224        if (lba48) {
1225                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226                tf.flags |= ATA_TFLAG_LBA48;
1227        } else
1228                tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230        tf.protocol |= ATA_PROT_NODATA;
1231        tf.device |= ATA_LBA;
1232
1233        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234        if (err_mask) {
1235                ata_dev_warn(dev,
1236                             "failed to read native max address (err_mask=0x%x)\n",
1237                             err_mask);
1238                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239                        return -EACCES;
1240                return -EIO;
1241        }
1242
1243        if (lba48)
1244                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245        else
1246                *max_sectors = ata_tf_to_lba(&tf) + 1;
1247        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248                (*max_sectors)--;
1249        return 0;
1250}
1251
1252/**
1253 *      ata_set_max_sectors - Set max sectors
1254 *      @dev: target device
1255 *      @new_sectors: new max sectors value to set for the device
1256 *
1257 *      Set max sectors of @dev to @new_sectors.
1258 *
1259 *      RETURNS:
1260 *      0 on success, -EACCES if command is aborted or denied (due to
1261 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *      errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266        unsigned int err_mask;
1267        struct ata_taskfile tf;
1268        int lba48 = ata_id_has_lba48(dev->id);
1269
1270        new_sectors--;
1271
1272        ata_tf_init(dev, &tf);
1273
1274        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276        if (lba48) {
1277                tf.command = ATA_CMD_SET_MAX_EXT;
1278                tf.flags |= ATA_TFLAG_LBA48;
1279
1280                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283        } else {
1284                tf.command = ATA_CMD_SET_MAX;
1285
1286                tf.device |= (new_sectors >> 24) & 0xf;
1287        }
1288
1289        tf.protocol |= ATA_PROT_NODATA;
1290        tf.device |= ATA_LBA;
1291
1292        tf.lbal = (new_sectors >> 0) & 0xff;
1293        tf.lbam = (new_sectors >> 8) & 0xff;
1294        tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297        if (err_mask) {
1298                ata_dev_warn(dev,
1299                             "failed to set max address (err_mask=0x%x)\n",
1300                             err_mask);
1301                if (err_mask == AC_ERR_DEV &&
1302                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303                        return -EACCES;
1304                return -EIO;
1305        }
1306
1307        return 0;
1308}
1309
1310/**
1311 *      ata_hpa_resize          -       Resize a device with an HPA set
1312 *      @dev: Device to resize
1313 *
1314 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *      it if required to the full size of the media. The caller must check
1316 *      the drive has the HPA feature set enabled.
1317 *
1318 *      RETURNS:
1319 *      0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323        struct ata_eh_context *ehc = &dev->link->eh_context;
1324        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326        u64 sectors = ata_id_n_sectors(dev->id);
1327        u64 native_sectors;
1328        int rc;
1329
1330        /* do we need to do it? */
1331        if (dev->class != ATA_DEV_ATA ||
1332            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334                return 0;
1335
1336        /* read native max address */
1337        rc = ata_read_native_max_address(dev, &native_sectors);
1338        if (rc) {
1339                /* If device aborted the command or HPA isn't going to
1340                 * be unlocked, skip HPA resizing.
1341                 */
1342                if (rc == -EACCES || !unlock_hpa) {
1343                        ata_dev_warn(dev,
1344                                     "HPA support seems broken, skipping HPA handling\n");
1345                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347                        /* we can continue if device aborted the command */
1348                        if (rc == -EACCES)
1349                                rc = 0;
1350                }
1351
1352                return rc;
1353        }
1354        dev->n_native_sectors = native_sectors;
1355
1356        /* nothing to do? */
1357        if (native_sectors <= sectors || !unlock_hpa) {
1358                if (!print_info || native_sectors == sectors)
1359                        return 0;
1360
1361                if (native_sectors > sectors)
1362                        ata_dev_info(dev,
1363                                "HPA detected: current %llu, native %llu\n",
1364                                (unsigned long long)sectors,
1365                                (unsigned long long)native_sectors);
1366                else if (native_sectors < sectors)
1367                        ata_dev_warn(dev,
1368                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1369                                (unsigned long long)native_sectors,
1370                                (unsigned long long)sectors);
1371                return 0;
1372        }
1373
1374        /* let's unlock HPA */
1375        rc = ata_set_max_sectors(dev, native_sectors);
1376        if (rc == -EACCES) {
1377                /* if device aborted the command, skip HPA resizing */
1378                ata_dev_warn(dev,
1379                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380                             (unsigned long long)sectors,
1381                             (unsigned long long)native_sectors);
1382                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383                return 0;
1384        } else if (rc)
1385                return rc;
1386
1387        /* re-read IDENTIFY data */
1388        rc = ata_dev_reread_id(dev, 0);
1389        if (rc) {
1390                ata_dev_err(dev,
1391                            "failed to re-read IDENTIFY data after HPA resizing\n");
1392                return rc;
1393        }
1394
1395        if (print_info) {
1396                u64 new_sectors = ata_id_n_sectors(dev->id);
1397                ata_dev_info(dev,
1398                        "HPA unlocked: %llu -> %llu, native %llu\n",
1399                        (unsigned long long)sectors,
1400                        (unsigned long long)new_sectors,
1401                        (unsigned long long)native_sectors);
1402        }
1403
1404        return 0;
1405}
1406
1407/**
1408 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *      @id: IDENTIFY DEVICE page to dump
1410 *
1411 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *      page.
1413 *
1414 *      LOCKING:
1415 *      caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420        DPRINTK("49==0x%04x  "
1421                "53==0x%04x  "
1422                "63==0x%04x  "
1423                "64==0x%04x  "
1424                "75==0x%04x  \n",
1425                id[49],
1426                id[53],
1427                id[63],
1428                id[64],
1429                id[75]);
1430        DPRINTK("80==0x%04x  "
1431                "81==0x%04x  "
1432                "82==0x%04x  "
1433                "83==0x%04x  "
1434                "84==0x%04x  \n",
1435                id[80],
1436                id[81],
1437                id[82],
1438                id[83],
1439                id[84]);
1440        DPRINTK("88==0x%04x  "
1441                "93==0x%04x\n",
1442                id[88],
1443                id[93]);
1444}
1445
1446/**
1447 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *      @id: IDENTIFY data to compute xfer mask from
1449 *
1450 *      Compute the xfermask for this device. This is not as trivial
1451 *      as it seems if we must consider early devices correctly.
1452 *
1453 *      FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *      LOCKING:
1456 *      None.
1457 *
1458 *      RETURNS:
1459 *      Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463        unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465        /* Usual case. Word 53 indicates word 64 is valid */
1466        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468                pio_mask <<= 3;
1469                pio_mask |= 0x7;
1470        } else {
1471                /* If word 64 isn't valid then Word 51 high byte holds
1472                 * the PIO timing number for the maximum. Turn it into
1473                 * a mask.
1474                 */
1475                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476                if (mode < 5)   /* Valid PIO range */
1477                        pio_mask = (2 << mode) - 1;
1478                else
1479                        pio_mask = 1;
1480
1481                /* But wait.. there's more. Design your standards by
1482                 * committee and you too can get a free iordy field to
1483                 * process. However its the speeds not the modes that
1484                 * are supported... Note drivers using the timing API
1485                 * will get this right anyway
1486                 */
1487        }
1488
1489        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491        if (ata_id_is_cfa(id)) {
1492                /*
1493                 *      Process compact flash extended modes
1494                 */
1495                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498                if (pio)
1499                        pio_mask |= (1 << 5);
1500                if (pio > 1)
1501                        pio_mask |= (1 << 6);
1502                if (dma)
1503                        mwdma_mask |= (1 << 3);
1504                if (dma > 1)
1505                        mwdma_mask |= (1 << 4);
1506        }
1507
1508        udma_mask = 0;
1509        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517        struct completion *waiting = qc->private_data;
1518
1519        complete(waiting);
1520}
1521
1522/**
1523 *      ata_exec_internal_sg - execute libata internal command
1524 *      @dev: Device to which the command is sent
1525 *      @tf: Taskfile registers for the command and the result
1526 *      @cdb: CDB for packet command
1527 *      @dma_dir: Data tranfer direction of the command
1528 *      @sgl: sg list for the data buffer of the command
1529 *      @n_elem: Number of sg entries
1530 *      @timeout: Timeout in msecs (0 for default)
1531 *
1532 *      Executes libata internal command with timeout.  @tf contains
1533 *      command on entry and result on return.  Timeout and error
1534 *      conditions are reported via return value.  No recovery action
1535 *      is taken after a command times out.  It's caller's duty to
1536 *      clean up after timeout.
1537 *
1538 *      LOCKING:
1539 *      None.  Should be called with kernel context, might sleep.
1540 *
1541 *      RETURNS:
1542 *      Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545                              struct ata_taskfile *tf, const u8 *cdb,
1546                              int dma_dir, struct scatterlist *sgl,
1547                              unsigned int n_elem, unsigned long timeout)
1548{
1549        struct ata_link *link = dev->link;
1550        struct ata_port *ap = link->ap;
1551        u8 command = tf->command;
1552        int auto_timeout = 0;
1553        struct ata_queued_cmd *qc;
1554        unsigned int tag, preempted_tag;
1555        u32 preempted_sactive, preempted_qc_active;
1556        int preempted_nr_active_links;
1557        DECLARE_COMPLETION_ONSTACK(wait);
1558        unsigned long flags;
1559        unsigned int err_mask;
1560        int rc;
1561
1562        spin_lock_irqsave(ap->lock, flags);
1563
1564        /* no internal command while frozen */
1565        if (ap->pflags & ATA_PFLAG_FROZEN) {
1566                spin_unlock_irqrestore(ap->lock, flags);
1567                return AC_ERR_SYSTEM;
1568        }
1569
1570        /* initialize internal qc */
1571
1572        /* XXX: Tag 0 is used for drivers with legacy EH as some
1573         * drivers choke if any other tag is given.  This breaks
1574         * ata_tag_internal() test for those drivers.  Don't use new
1575         * EH stuff without converting to it.
1576         */
1577        if (ap->ops->error_handler)
1578                tag = ATA_TAG_INTERNAL;
1579        else
1580                tag = 0;
1581
1582        if (test_and_set_bit(tag, &ap->qc_allocated))
1583                BUG();
1584        qc = __ata_qc_from_tag(ap, tag);
1585
1586        qc->tag = tag;
1587        qc->scsicmd = NULL;
1588        qc->ap = ap;
1589        qc->dev = dev;
1590        ata_qc_reinit(qc);
1591
1592        preempted_tag = link->active_tag;
1593        preempted_sactive = link->sactive;
1594        preempted_qc_active = ap->qc_active;
1595        preempted_nr_active_links = ap->nr_active_links;
1596        link->active_tag = ATA_TAG_POISON;
1597        link->sactive = 0;
1598        ap->qc_active = 0;
1599        ap->nr_active_links = 0;
1600
1601        /* prepare & issue qc */
1602        qc->tf = *tf;
1603        if (cdb)
1604                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606        /* some SATA bridges need us to indicate data xfer direction */
1607        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608            dma_dir == DMA_FROM_DEVICE)
1609                qc->tf.feature |= ATAPI_DMADIR;
1610
1611        qc->flags |= ATA_QCFLAG_RESULT_TF;
1612        qc->dma_dir = dma_dir;
1613        if (dma_dir != DMA_NONE) {
1614                unsigned int i, buflen = 0;
1615                struct scatterlist *sg;
1616
1617                for_each_sg(sgl, sg, n_elem, i)
1618                        buflen += sg->length;
1619
1620                ata_sg_init(qc, sgl, n_elem);
1621                qc->nbytes = buflen;
1622        }
1623
1624        qc->private_data = &wait;
1625        qc->complete_fn = ata_qc_complete_internal;
1626
1627        ata_qc_issue(qc);
1628
1629        spin_unlock_irqrestore(ap->lock, flags);
1630
1631        if (!timeout) {
1632                if (ata_probe_timeout)
1633                        timeout = ata_probe_timeout * 1000;
1634                else {
1635                        timeout = ata_internal_cmd_timeout(dev, command);
1636                        auto_timeout = 1;
1637                }
1638        }
1639
1640        if (ap->ops->error_handler)
1641                ata_eh_release(ap);
1642
1643        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645        if (ap->ops->error_handler)
1646                ata_eh_acquire(ap);
1647
1648        ata_sff_flush_pio_task(ap);
1649
1650        if (!rc) {
1651                spin_lock_irqsave(ap->lock, flags);
1652
1653                /* We're racing with irq here.  If we lose, the
1654                 * following test prevents us from completing the qc
1655                 * twice.  If we win, the port is frozen and will be
1656                 * cleaned up by ->post_internal_cmd().
1657                 */
1658                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659                        qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661                        if (ap->ops->error_handler)
1662                                ata_port_freeze(ap);
1663                        else
1664                                ata_qc_complete(qc);
1665
1666                        if (ata_msg_warn(ap))
1667                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668                                             command);
1669                }
1670
1671                spin_unlock_irqrestore(ap->lock, flags);
1672        }
1673
1674        /* do post_internal_cmd */
1675        if (ap->ops->post_internal_cmd)
1676                ap->ops->post_internal_cmd(qc);
1677
1678        /* perform minimal error analysis */
1679        if (qc->flags & ATA_QCFLAG_FAILED) {
1680                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681                        qc->err_mask |= AC_ERR_DEV;
1682
1683                if (!qc->err_mask)
1684                        qc->err_mask |= AC_ERR_OTHER;
1685
1686                if (qc->err_mask & ~AC_ERR_OTHER)
1687                        qc->err_mask &= ~AC_ERR_OTHER;
1688        }
1689
1690        /* finish up */
1691        spin_lock_irqsave(ap->lock, flags);
1692
1693        *tf = qc->result_tf;
1694        err_mask = qc->err_mask;
1695
1696        ata_qc_free(qc);
1697        link->active_tag = preempted_tag;
1698        link->sactive = preempted_sactive;
1699        ap->qc_active = preempted_qc_active;
1700        ap->nr_active_links = preempted_nr_active_links;
1701
1702        spin_unlock_irqrestore(ap->lock, flags);
1703
1704        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705                ata_internal_cmd_timed_out(dev, command);
1706
1707        return err_mask;
1708}
1709
1710/**
1711 *      ata_exec_internal - execute libata internal command
1712 *      @dev: Device to which the command is sent
1713 *      @tf: Taskfile registers for the command and the result
1714 *      @cdb: CDB for packet command
1715 *      @dma_dir: Data tranfer direction of the command
1716 *      @buf: Data buffer of the command
1717 *      @buflen: Length of data buffer
1718 *      @timeout: Timeout in msecs (0 for default)
1719 *
1720 *      Wrapper around ata_exec_internal_sg() which takes simple
1721 *      buffer instead of sg list.
1722 *
1723 *      LOCKING:
1724 *      None.  Should be called with kernel context, might sleep.
1725 *
1726 *      RETURNS:
1727 *      Zero on success, AC_ERR_* mask on failure
1728 */
1729unsigned ata_exec_internal(struct ata_device *dev,
1730                           struct ata_taskfile *tf, const u8 *cdb,
1731                           int dma_dir, void *buf, unsigned int buflen,
1732                           unsigned long timeout)
1733{
1734        struct scatterlist *psg = NULL, sg;
1735        unsigned int n_elem = 0;
1736
1737        if (dma_dir != DMA_NONE) {
1738                WARN_ON(!buf);
1739                sg_init_one(&sg, buf, buflen);
1740                psg = &sg;
1741                n_elem++;
1742        }
1743
1744        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745                                    timeout);
1746}
1747
1748/**
1749 *      ata_do_simple_cmd - execute simple internal command
1750 *      @dev: Device to which the command is sent
1751 *      @cmd: Opcode to execute
1752 *
1753 *      Execute a 'simple' command, that only consists of the opcode
1754 *      'cmd' itself, without filling any other registers
1755 *
1756 *      LOCKING:
1757 *      Kernel thread context (may sleep).
1758 *
1759 *      RETURNS:
1760 *      Zero on success, AC_ERR_* mask on failure
1761 */
1762unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763{
1764        struct ata_taskfile tf;
1765
1766        ata_tf_init(dev, &tf);
1767
1768        tf.command = cmd;
1769        tf.flags |= ATA_TFLAG_DEVICE;
1770        tf.protocol = ATA_PROT_NODATA;
1771
1772        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773}
1774
1775/**
1776 *      ata_pio_need_iordy      -       check if iordy needed
1777 *      @adev: ATA device
1778 *
1779 *      Check if the current speed of the device requires IORDY. Used
1780 *      by various controllers for chip configuration.
1781 */
1782unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783{
1784        /* Don't set IORDY if we're preparing for reset.  IORDY may
1785         * lead to controller lock up on certain controllers if the
1786         * port is not occupied.  See bko#11703 for details.
1787         */
1788        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789                return 0;
1790        /* Controller doesn't support IORDY.  Probably a pointless
1791         * check as the caller should know this.
1792         */
1793        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794                return 0;
1795        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796        if (ata_id_is_cfa(adev->id)
1797            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798                return 0;
1799        /* PIO3 and higher it is mandatory */
1800        if (adev->pio_mode > XFER_PIO_2)
1801                return 1;
1802        /* We turn it on when possible */
1803        if (ata_id_has_iordy(adev->id))
1804                return 1;
1805        return 0;
1806}
1807
1808/**
1809 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1810 *      @adev: ATA device
1811 *
1812 *      Compute the highest mode possible if we are not using iordy. Return
1813 *      -1 if no iordy mode is available.
1814 */
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1817        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820                /* Is the speed faster than the drive allows non IORDY ? */
1821                if (pio) {
1822                        /* This is cycle times not frequency - watch the logic! */
1823                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1824                                return 3 << ATA_SHIFT_PIO;
1825                        return 7 << ATA_SHIFT_PIO;
1826                }
1827        }
1828        return 3 << ATA_SHIFT_PIO;
1829}
1830
1831/**
1832 *      ata_do_dev_read_id              -       default ID read method
1833 *      @dev: device
1834 *      @tf: proposed taskfile
1835 *      @id: data buffer
1836 *
1837 *      Issue the identify taskfile and hand back the buffer containing
1838 *      identify data. For some RAID controllers and for pre ATA devices
1839 *      this function is wrapped or replaced by the driver
1840 */
1841unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842                                        struct ata_taskfile *tf, u16 *id)
1843{
1844        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846}
1847
1848/**
1849 *      ata_dev_read_id - Read ID data from the specified device
1850 *      @dev: target device
1851 *      @p_class: pointer to class of the target device (may be changed)
1852 *      @flags: ATA_READID_* flags
1853 *      @id: buffer to read IDENTIFY data into
1854 *
1855 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 *      for pre-ATA4 drives.
1859 *
1860 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 *      now we abort if we hit that case.
1862 *
1863 *      LOCKING:
1864 *      Kernel thread context (may sleep)
1865 *
1866 *      RETURNS:
1867 *      0 on success, -errno otherwise.
1868 */
1869int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870                    unsigned int flags, u16 *id)
1871{
1872        struct ata_port *ap = dev->link->ap;
1873        unsigned int class = *p_class;
1874        struct ata_taskfile tf;
1875        unsigned int err_mask = 0;
1876        const char *reason;
1877        bool is_semb = class == ATA_DEV_SEMB;
1878        int may_fallback = 1, tried_spinup = 0;
1879        int rc;
1880
1881        if (ata_msg_ctl(ap))
1882                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884retry:
1885        ata_tf_init(dev, &tf);
1886
1887        switch (class) {
1888        case ATA_DEV_SEMB:
1889                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1890        case ATA_DEV_ATA:
1891                tf.command = ATA_CMD_ID_ATA;
1892                break;
1893        case ATA_DEV_ATAPI:
1894                tf.command = ATA_CMD_ID_ATAPI;
1895                break;
1896        default:
1897                rc = -ENODEV;
1898                reason = "unsupported class";
1899                goto err_out;
1900        }
1901
1902        tf.protocol = ATA_PROT_PIO;
1903
1904        /* Some devices choke if TF registers contain garbage.  Make
1905         * sure those are properly initialized.
1906         */
1907        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909        /* Device presence detection is unreliable on some
1910         * controllers.  Always poll IDENTIFY if available.
1911         */
1912        tf.flags |= ATA_TFLAG_POLLING;
1913
1914        if (ap->ops->read_id)
1915                err_mask = ap->ops->read_id(dev, &tf, id);
1916        else
1917                err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919        if (err_mask) {
1920                if (err_mask & AC_ERR_NODEV_HINT) {
1921                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1922                        return -ENOENT;
1923                }
1924
1925                if (is_semb) {
1926                        ata_dev_info(dev,
1927                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928                        /* SEMB is not supported yet */
1929                        *p_class = ATA_DEV_SEMB_UNSUP;
1930                        return 0;
1931                }
1932
1933                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934                        /* Device or controller might have reported
1935                         * the wrong device class.  Give a shot at the
1936                         * other IDENTIFY if the current one is
1937                         * aborted by the device.
1938                         */
1939                        if (may_fallback) {
1940                                may_fallback = 0;
1941
1942                                if (class == ATA_DEV_ATA)
1943                                        class = ATA_DEV_ATAPI;
1944                                else
1945                                        class = ATA_DEV_ATA;
1946                                goto retry;
1947                        }
1948
1949                        /* Control reaches here iff the device aborted
1950                         * both flavors of IDENTIFYs which happens
1951                         * sometimes with phantom devices.
1952                         */
1953                        ata_dev_dbg(dev,
1954                                    "both IDENTIFYs aborted, assuming NODEV\n");
1955                        return -ENOENT;
1956                }
1957
1958                rc = -EIO;
1959                reason = "I/O error";
1960                goto err_out;
1961        }
1962
1963        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965                            "class=%d may_fallback=%d tried_spinup=%d\n",
1966                            class, may_fallback, tried_spinup);
1967                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969        }
1970
1971        /* Falling back doesn't make sense if ID data was read
1972         * successfully at least once.
1973         */
1974        may_fallback = 0;
1975
1976        swap_buf_le16(id, ATA_ID_WORDS);
1977
1978        /* sanity check */
1979        rc = -EINVAL;
1980        reason = "device reports invalid type";
1981
1982        if (class == ATA_DEV_ATA) {
1983                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984                        goto err_out;
1985                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986                                                        ata_id_is_ata(id)) {
1987                        ata_dev_dbg(dev,
1988                                "host indicates ignore ATA devices, ignored\n");
1989                        return -ENOENT;
1990                }
1991        } else {
1992                if (ata_id_is_ata(id))
1993                        goto err_out;
1994        }
1995
1996        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997                tried_spinup = 1;
1998                /*
1999                 * Drive powered-up in standby mode, and requires a specific
2000                 * SET_FEATURES spin-up subcommand before it will accept
2001                 * anything other than the original IDENTIFY command.
2002                 */
2003                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004                if (err_mask && id[2] != 0x738c) {
2005                        rc = -EIO;
2006                        reason = "SPINUP failed";
2007                        goto err_out;
2008                }
2009                /*
2010                 * If the drive initially returned incomplete IDENTIFY info,
2011                 * we now must reissue the IDENTIFY command.
2012                 */
2013                if (id[2] == 0x37c8)
2014                        goto retry;
2015        }
2016
2017        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018                /*
2019                 * The exact sequence expected by certain pre-ATA4 drives is:
2020                 * SRST RESET
2021                 * IDENTIFY (optional in early ATA)
2022                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023                 * anything else..
2024                 * Some drives were very specific about that exact sequence.
2025                 *
2026                 * Note that ATA4 says lba is mandatory so the second check
2027                 * should never trigger.
2028                 */
2029                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031                        if (err_mask) {
2032                                rc = -EIO;
2033                                reason = "INIT_DEV_PARAMS failed";
2034                                goto err_out;
2035                        }
2036
2037                        /* current CHS translation info (id[53-58]) might be
2038                         * changed. reread the identify device info.
2039                         */
2040                        flags &= ~ATA_READID_POSTRESET;
2041                        goto retry;
2042                }
2043        }
2044
2045        *p_class = class;
2046
2047        return 0;
2048
2049 err_out:
2050        if (ata_msg_warn(ap))
2051                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052                             reason, err_mask);
2053        return rc;
2054}
2055
2056static int ata_do_link_spd_horkage(struct ata_device *dev)
2057{
2058        struct ata_link *plink = ata_dev_phys_link(dev);
2059        u32 target, target_limit;
2060
2061        if (!sata_scr_valid(plink))
2062                return 0;
2063
2064        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065                target = 1;
2066        else
2067                return 0;
2068
2069        target_limit = (1 << target) - 1;
2070
2071        /* if already on stricter limit, no need to push further */
2072        if (plink->sata_spd_limit <= target_limit)
2073                return 0;
2074
2075        plink->sata_spd_limit = target_limit;
2076
2077        /* Request another EH round by returning -EAGAIN if link is
2078         * going faster than the target speed.  Forward progress is
2079         * guaranteed by setting sata_spd_limit to target_limit above.
2080         */
2081        if (plink->sata_spd > target) {
2082                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083                             sata_spd_string(target));
2084                return -EAGAIN;
2085        }
2086        return 0;
2087}
2088
2089static inline u8 ata_dev_knobble(struct ata_device *dev)
2090{
2091        struct ata_port *ap = dev->link->ap;
2092
2093        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094                return 0;
2095
2096        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097}
2098
2099static int ata_dev_config_ncq(struct ata_device *dev,
2100                               char *desc, size_t desc_sz)
2101{
2102        struct ata_port *ap = dev->link->ap;
2103        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104        unsigned int err_mask;
2105        char *aa_desc = "";
2106
2107        if (!ata_id_has_ncq(dev->id)) {
2108                desc[0] = '\0';
2109                return 0;
2110        }
2111        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112                snprintf(desc, desc_sz, "NCQ (not used)");
2113                return 0;
2114        }
2115        if (ap->flags & ATA_FLAG_NCQ) {
2116                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117                dev->flags |= ATA_DFLAG_NCQ;
2118        }
2119
2120        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122                ata_id_has_fpdma_aa(dev->id)) {
2123                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124                        SATA_FPDMA_AA);
2125                if (err_mask) {
2126                        ata_dev_err(dev,
2127                                    "failed to enable AA (error_mask=0x%x)\n",
2128                                    err_mask);
2129                        if (err_mask != AC_ERR_DEV) {
2130                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131                                return -EIO;
2132                        }
2133                } else
2134                        aa_desc = ", AA";
2135        }
2136
2137        if (hdepth >= ddepth)
2138                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139        else
2140                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141                        ddepth, aa_desc);
2142
2143        if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144            ata_id_has_ncq_send_and_recv(dev->id)) {
2145                err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146                                             0, ap->sector_buf, 1);
2147                if (err_mask) {
2148                        ata_dev_dbg(dev,
2149                                    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150                                    err_mask);
2151                } else {
2152                        dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2153                        memcpy(dev->ncq_send_recv_cmds, ap->sector_buf,
2154                                ATA_LOG_NCQ_SEND_RECV_SIZE);
2155                }
2156        }
2157
2158        return 0;
2159}
2160
2161/**
2162 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2163 *      @dev: Target device to configure
2164 *
2165 *      Configure @dev according to @dev->id.  Generic and low-level
2166 *      driver specific fixups are also applied.
2167 *
2168 *      LOCKING:
2169 *      Kernel thread context (may sleep)
2170 *
2171 *      RETURNS:
2172 *      0 on success, -errno otherwise
2173 */
2174int ata_dev_configure(struct ata_device *dev)
2175{
2176        struct ata_port *ap = dev->link->ap;
2177        struct ata_eh_context *ehc = &dev->link->eh_context;
2178        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2179        const u16 *id = dev->id;
2180        unsigned long xfer_mask;
2181        unsigned int err_mask;
2182        char revbuf[7];         /* XYZ-99\0 */
2183        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2184        char modelbuf[ATA_ID_PROD_LEN+1];
2185        int rc;
2186
2187        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2188                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2189                return 0;
2190        }
2191
2192        if (ata_msg_probe(ap))
2193                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2194
2195        /* set horkage */
2196        dev->horkage |= ata_dev_blacklisted(dev);
2197        ata_force_horkage(dev);
2198
2199        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2200                ata_dev_info(dev, "unsupported device, disabling\n");
2201                ata_dev_disable(dev);
2202                return 0;
2203        }
2204
2205        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2206            dev->class == ATA_DEV_ATAPI) {
2207                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2208                             atapi_enabled ? "not supported with this driver"
2209                             : "disabled");
2210                ata_dev_disable(dev);
2211                return 0;
2212        }
2213
2214        rc = ata_do_link_spd_horkage(dev);
2215        if (rc)
2216                return rc;
2217
2218        /* let ACPI work its magic */
2219        rc = ata_acpi_on_devcfg(dev);
2220        if (rc)
2221                return rc;
2222
2223        /* massage HPA, do it early as it might change IDENTIFY data */
2224        rc = ata_hpa_resize(dev);
2225        if (rc)
2226                return rc;
2227
2228        /* print device capabilities */
2229        if (ata_msg_probe(ap))
2230                ata_dev_dbg(dev,
2231                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233                            __func__,
2234                            id[49], id[82], id[83], id[84],
2235                            id[85], id[86], id[87], id[88]);
2236
2237        /* initialize to-be-configured parameters */
2238        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2239        dev->max_sectors = 0;
2240        dev->cdb_len = 0;
2241        dev->n_sectors = 0;
2242        dev->cylinders = 0;
2243        dev->heads = 0;
2244        dev->sectors = 0;
2245        dev->multi_count = 0;
2246
2247        /*
2248         * common ATA, ATAPI feature tests
2249         */
2250
2251        /* find max transfer mode; for printk only */
2252        xfer_mask = ata_id_xfermask(id);
2253
2254        if (ata_msg_probe(ap))
2255                ata_dump_id(id);
2256
2257        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259                        sizeof(fwrevbuf));
2260
2261        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262                        sizeof(modelbuf));
2263
2264        /* ATA-specific feature tests */
2265        if (dev->class == ATA_DEV_ATA) {
2266                if (ata_id_is_cfa(id)) {
2267                        /* CPRM may make this media unusable */
2268                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2269                                ata_dev_warn(dev,
2270        "supports DRM functions and may not be fully accessible\n");
2271                        snprintf(revbuf, 7, "CFA");
2272                } else {
2273                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2274                        /* Warn the user if the device has TPM extensions */
2275                        if (ata_id_has_tpm(id))
2276                                ata_dev_warn(dev,
2277        "supports DRM functions and may not be fully accessible\n");
2278                }
2279
2280                dev->n_sectors = ata_id_n_sectors(id);
2281
2282                /* get current R/W Multiple count setting */
2283                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284                        unsigned int max = dev->id[47] & 0xff;
2285                        unsigned int cnt = dev->id[59] & 0xff;
2286                        /* only recognize/allow powers of two here */
2287                        if (is_power_of_2(max) && is_power_of_2(cnt))
2288                                if (cnt <= max)
2289                                        dev->multi_count = cnt;
2290                }
2291
2292                if (ata_id_has_lba(id)) {
2293                        const char *lba_desc;
2294                        char ncq_desc[24];
2295
2296                        lba_desc = "LBA";
2297                        dev->flags |= ATA_DFLAG_LBA;
2298                        if (ata_id_has_lba48(id)) {
2299                                dev->flags |= ATA_DFLAG_LBA48;
2300                                lba_desc = "LBA48";
2301
2302                                if (dev->n_sectors >= (1UL << 28) &&
2303                                    ata_id_has_flush_ext(id))
2304                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2305                        }
2306
2307                        /* config NCQ */
2308                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309                        if (rc)
2310                                return rc;
2311
2312                        /* print device info to dmesg */
2313                        if (ata_msg_drv(ap) && print_info) {
2314                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315                                             revbuf, modelbuf, fwrevbuf,
2316                                             ata_mode_string(xfer_mask));
2317                                ata_dev_info(dev,
2318                                             "%llu sectors, multi %u: %s %s\n",
2319                                        (unsigned long long)dev->n_sectors,
2320                                        dev->multi_count, lba_desc, ncq_desc);
2321                        }
2322                } else {
2323                        /* CHS */
2324
2325                        /* Default translation */
2326                        dev->cylinders  = id[1];
2327                        dev->heads      = id[3];
2328                        dev->sectors    = id[6];
2329
2330                        if (ata_id_current_chs_valid(id)) {
2331                                /* Current CHS translation is valid. */
2332                                dev->cylinders = id[54];
2333                                dev->heads     = id[55];
2334                                dev->sectors   = id[56];
2335                        }
2336
2337                        /* print device info to dmesg */
2338                        if (ata_msg_drv(ap) && print_info) {
2339                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340                                             revbuf,    modelbuf, fwrevbuf,
2341                                             ata_mode_string(xfer_mask));
2342                                ata_dev_info(dev,
2343                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344                                             (unsigned long long)dev->n_sectors,
2345                                             dev->multi_count, dev->cylinders,
2346                                             dev->heads, dev->sectors);
2347                        }
2348                }
2349
2350                /* Check and mark DevSlp capability. Get DevSlp timing variables
2351                 * from SATA Settings page of Identify Device Data Log.
2352                 */
2353                if (ata_id_has_devslp(dev->id)) {
2354                        u8 *sata_setting = ap->sector_buf;
2355                        int i, j;
2356
2357                        dev->flags |= ATA_DFLAG_DEVSLP;
2358                        err_mask = ata_read_log_page(dev,
2359                                                     ATA_LOG_SATA_ID_DEV_DATA,
2360                                                     ATA_LOG_SATA_SETTINGS,
2361                                                     sata_setting,
2362                                                     1);
2363                        if (err_mask)
2364                                ata_dev_dbg(dev,
2365                                            "failed to get Identify Device Data, Emask 0x%x\n",
2366                                            err_mask);
2367                        else
2368                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2370                                        dev->devslp_timing[i] = sata_setting[j];
2371                                }
2372                }
2373
2374                dev->cdb_len = 16;
2375        }
2376
2377        /* ATAPI-specific feature tests */
2378        else if (dev->class == ATA_DEV_ATAPI) {
2379                const char *cdb_intr_string = "";
2380                const char *atapi_an_string = "";
2381                const char *dma_dir_string = "";
2382                u32 sntf;
2383
2384                rc = atapi_cdb_len(id);
2385                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2386                        if (ata_msg_warn(ap))
2387                                ata_dev_warn(dev, "unsupported CDB len\n");
2388                        rc = -EINVAL;
2389                        goto err_out_nosup;
2390                }
2391                dev->cdb_len = (unsigned int) rc;
2392
2393                /* Enable ATAPI AN if both the host and device have
2394                 * the support.  If PMP is attached, SNTF is required
2395                 * to enable ATAPI AN to discern between PHY status
2396                 * changed notifications and ATAPI ANs.
2397                 */
2398                if (atapi_an &&
2399                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2400                    (!sata_pmp_attached(ap) ||
2401                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2402                        /* issue SET feature command to turn this on */
2403                        err_mask = ata_dev_set_feature(dev,
2404                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2405                        if (err_mask)
2406                                ata_dev_err(dev,
2407                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408                                            err_mask);
2409                        else {
2410                                dev->flags |= ATA_DFLAG_AN;
2411                                atapi_an_string = ", ATAPI AN";
2412                        }
2413                }
2414
2415                if (ata_id_cdb_intr(dev->id)) {
2416                        dev->flags |= ATA_DFLAG_CDB_INTR;
2417                        cdb_intr_string = ", CDB intr";
2418                }
2419
2420                if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2421                        dev->flags |= ATA_DFLAG_DMADIR;
2422                        dma_dir_string = ", DMADIR";
2423                }
2424
2425                if (ata_id_has_da(dev->id)) {
2426                        dev->flags |= ATA_DFLAG_DA;
2427                        zpodd_init(dev);
2428                }
2429
2430                /* print device info to dmesg */
2431                if (ata_msg_drv(ap) && print_info)
2432                        ata_dev_info(dev,
2433                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2434                                     modelbuf, fwrevbuf,
2435                                     ata_mode_string(xfer_mask),
2436                                     cdb_intr_string, atapi_an_string,
2437                                     dma_dir_string);
2438        }
2439
2440        /* determine max_sectors */
2441        dev->max_sectors = ATA_MAX_SECTORS;
2442        if (dev->flags & ATA_DFLAG_LBA48)
2443                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446           200 sectors */
2447        if (ata_dev_knobble(dev)) {
2448                if (ata_msg_drv(ap) && print_info)
2449                        ata_dev_info(dev, "applying bridge limits\n");
2450                dev->udma_mask &= ATA_UDMA5;
2451                dev->max_sectors = ATA_MAX_SECTORS;
2452        }
2453
2454        if ((dev->class == ATA_DEV_ATAPI) &&
2455            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2456                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2457                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458        }
2459
2460        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2461                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462                                         dev->max_sectors);
2463
2464        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2465                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2466
2467        if (ap->ops->dev_config)
2468                ap->ops->dev_config(dev);
2469
2470        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2471                /* Let the user know. We don't want to disallow opens for
2472                   rescue purposes, or in case the vendor is just a blithering
2473                   idiot. Do this after the dev_config call as some controllers
2474                   with buggy firmware may want to avoid reporting false device
2475                   bugs */
2476
2477                if (print_info) {
2478                        ata_dev_warn(dev,
2479"Drive reports diagnostics failure. This may indicate a drive\n");
2480                        ata_dev_warn(dev,
2481"fault or invalid emulation. Contact drive vendor for information.\n");
2482                }
2483        }
2484
2485        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2486                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2487                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2488        }
2489
2490        return 0;
2491
2492err_out_nosup:
2493        if (ata_msg_probe(ap))
2494                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2495        return rc;
2496}
2497
2498/**
2499 *      ata_cable_40wire        -       return 40 wire cable type
2500 *      @ap: port
2501 *
2502 *      Helper method for drivers which want to hardwire 40 wire cable
2503 *      detection.
2504 */
2505
2506int ata_cable_40wire(struct ata_port *ap)
2507{
2508        return ATA_CBL_PATA40;
2509}
2510
2511/**
2512 *      ata_cable_80wire        -       return 80 wire cable type
2513 *      @ap: port
2514 *
2515 *      Helper method for drivers which want to hardwire 80 wire cable
2516 *      detection.
2517 */
2518
2519int ata_cable_80wire(struct ata_port *ap)
2520{
2521        return ATA_CBL_PATA80;
2522}
2523
2524/**
2525 *      ata_cable_unknown       -       return unknown PATA cable.
2526 *      @ap: port
2527 *
2528 *      Helper method for drivers which have no PATA cable detection.
2529 */
2530
2531int ata_cable_unknown(struct ata_port *ap)
2532{
2533        return ATA_CBL_PATA_UNK;
2534}
2535
2536/**
2537 *      ata_cable_ignore        -       return ignored PATA cable.
2538 *      @ap: port
2539 *
2540 *      Helper method for drivers which don't use cable type to limit
2541 *      transfer mode.
2542 */
2543int ata_cable_ignore(struct ata_port *ap)
2544{
2545        return ATA_CBL_PATA_IGN;
2546}
2547
2548/**
2549 *      ata_cable_sata  -       return SATA cable type
2550 *      @ap: port
2551 *
2552 *      Helper method for drivers which have SATA cables
2553 */
2554
2555int ata_cable_sata(struct ata_port *ap)
2556{
2557        return ATA_CBL_SATA;
2558}
2559
2560/**
2561 *      ata_bus_probe - Reset and probe ATA bus
2562 *      @ap: Bus to probe
2563 *
2564 *      Master ATA bus probing function.  Initiates a hardware-dependent
2565 *      bus reset, then attempts to identify any devices found on
2566 *      the bus.
2567 *
2568 *      LOCKING:
2569 *      PCI/etc. bus probe sem.
2570 *
2571 *      RETURNS:
2572 *      Zero on success, negative errno otherwise.
2573 */
2574
2575int ata_bus_probe(struct ata_port *ap)
2576{
2577        unsigned int classes[ATA_MAX_DEVICES];
2578        int tries[ATA_MAX_DEVICES];
2579        int rc;
2580        struct ata_device *dev;
2581
2582        ata_for_each_dev(dev, &ap->link, ALL)
2583                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2584
2585 retry:
2586        ata_for_each_dev(dev, &ap->link, ALL) {
2587                /* If we issue an SRST then an ATA drive (not ATAPI)
2588                 * may change configuration and be in PIO0 timing. If
2589                 * we do a hard reset (or are coming from power on)
2590                 * this is true for ATA or ATAPI. Until we've set a
2591                 * suitable controller mode we should not touch the
2592                 * bus as we may be talking too fast.
2593                 */
2594                dev->pio_mode = XFER_PIO_0;
2595                dev->dma_mode = 0xff;
2596
2597                /* If the controller has a pio mode setup function
2598                 * then use it to set the chipset to rights. Don't
2599                 * touch the DMA setup as that will be dealt with when
2600                 * configuring devices.
2601                 */
2602                if (ap->ops->set_piomode)
2603                        ap->ops->set_piomode(ap, dev);
2604        }
2605
2606        /* reset and determine device classes */
2607        ap->ops->phy_reset(ap);
2608
2609        ata_for_each_dev(dev, &ap->link, ALL) {
2610                if (dev->class != ATA_DEV_UNKNOWN)
2611                        classes[dev->devno] = dev->class;
2612                else
2613                        classes[dev->devno] = ATA_DEV_NONE;
2614
2615                dev->class = ATA_DEV_UNKNOWN;
2616        }
2617
2618        /* read IDENTIFY page and configure devices. We have to do the identify
2619           specific sequence bass-ackwards so that PDIAG- is released by
2620           the slave device */
2621
2622        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2623                if (tries[dev->devno])
2624                        dev->class = classes[dev->devno];
2625
2626                if (!ata_dev_enabled(dev))
2627                        continue;
2628
2629                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2630                                     dev->id);
2631                if (rc)
2632                        goto fail;
2633        }
2634
2635        /* Now ask for the cable type as PDIAG- should have been released */
2636        if (ap->ops->cable_detect)
2637                ap->cbl = ap->ops->cable_detect(ap);
2638
2639        /* We may have SATA bridge glue hiding here irrespective of
2640         * the reported cable types and sensed types.  When SATA
2641         * drives indicate we have a bridge, we don't know which end
2642         * of the link the bridge is which is a problem.
2643         */
2644        ata_for_each_dev(dev, &ap->link, ENABLED)
2645                if (ata_id_is_sata(dev->id))
2646                        ap->cbl = ATA_CBL_SATA;
2647
2648        /* After the identify sequence we can now set up the devices. We do
2649           this in the normal order so that the user doesn't get confused */
2650
2651        ata_for_each_dev(dev, &ap->link, ENABLED) {
2652                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2653                rc = ata_dev_configure(dev);
2654                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2655                if (rc)
2656                        goto fail;
2657        }
2658
2659        /* configure transfer mode */
2660        rc = ata_set_mode(&ap->link, &dev);
2661        if (rc)
2662                goto fail;
2663
2664        ata_for_each_dev(dev, &ap->link, ENABLED)
2665                return 0;
2666
2667        return -ENODEV;
2668
2669 fail:
2670        tries[dev->devno]--;
2671
2672        switch (rc) {
2673        case -EINVAL:
2674                /* eeek, something went very wrong, give up */
2675                tries[dev->devno] = 0;
2676                break;
2677
2678        case -ENODEV:
2679                /* give it just one more chance */
2680                tries[dev->devno] = min(tries[dev->devno], 1);
2681        case -EIO:
2682                if (tries[dev->devno] == 1) {
2683                        /* This is the last chance, better to slow
2684                         * down than lose it.
2685                         */
2686                        sata_down_spd_limit(&ap->link, 0);
2687                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2688                }
2689        }
2690
2691        if (!tries[dev->devno])
2692                ata_dev_disable(dev);
2693
2694        goto retry;
2695}
2696
2697/**
2698 *      sata_print_link_status - Print SATA link status
2699 *      @link: SATA link to printk link status about
2700 *
2701 *      This function prints link speed and status of a SATA link.
2702 *
2703 *      LOCKING:
2704 *      None.
2705 */
2706static void sata_print_link_status(struct ata_link *link)
2707{
2708        u32 sstatus, scontrol, tmp;
2709
2710        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2711                return;
2712        sata_scr_read(link, SCR_CONTROL, &scontrol);
2713
2714        if (ata_phys_link_online(link)) {
2715                tmp = (sstatus >> 4) & 0xf;
2716                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2717                              sata_spd_string(tmp), sstatus, scontrol);
2718        } else {
2719                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2720                              sstatus, scontrol);
2721        }
2722}
2723
2724/**
2725 *      ata_dev_pair            -       return other device on cable
2726 *      @adev: device
2727 *
2728 *      Obtain the other device on the same cable, or if none is
2729 *      present NULL is returned
2730 */
2731
2732struct ata_device *ata_dev_pair(struct ata_device *adev)
2733{
2734        struct ata_link *link = adev->link;
2735        struct ata_device *pair = &link->device[1 - adev->devno];
2736        if (!ata_dev_enabled(pair))
2737                return NULL;
2738        return pair;
2739}
2740
2741/**
2742 *      sata_down_spd_limit - adjust SATA spd limit downward
2743 *      @link: Link to adjust SATA spd limit for
2744 *      @spd_limit: Additional limit
2745 *
2746 *      Adjust SATA spd limit of @link downward.  Note that this
2747 *      function only adjusts the limit.  The change must be applied
2748 *      using sata_set_spd().
2749 *
2750 *      If @spd_limit is non-zero, the speed is limited to equal to or
2751 *      lower than @spd_limit if such speed is supported.  If
2752 *      @spd_limit is slower than any supported speed, only the lowest
2753 *      supported speed is allowed.
2754 *
2755 *      LOCKING:
2756 *      Inherited from caller.
2757 *
2758 *      RETURNS:
2759 *      0 on success, negative errno on failure
2760 */
2761int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2762{
2763        u32 sstatus, spd, mask;
2764        int rc, bit;
2765
2766        if (!sata_scr_valid(link))
2767                return -EOPNOTSUPP;
2768
2769        /* If SCR can be read, use it to determine the current SPD.
2770         * If not, use cached value in link->sata_spd.
2771         */
2772        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2773        if (rc == 0 && ata_sstatus_online(sstatus))
2774                spd = (sstatus >> 4) & 0xf;
2775        else
2776                spd = link->sata_spd;
2777
2778        mask = link->sata_spd_limit;
2779        if (mask <= 1)
2780                return -EINVAL;
2781
2782        /* unconditionally mask off the highest bit */
2783        bit = fls(mask) - 1;
2784        mask &= ~(1 << bit);
2785
2786        /* Mask off all speeds higher than or equal to the current
2787         * one.  Force 1.5Gbps if current SPD is not available.
2788         */
2789        if (spd > 1)
2790                mask &= (1 << (spd - 1)) - 1;
2791        else
2792                mask &= 1;
2793
2794        /* were we already at the bottom? */
2795        if (!mask)
2796                return -EINVAL;
2797
2798        if (spd_limit) {
2799                if (mask & ((1 << spd_limit) - 1))
2800                        mask &= (1 << spd_limit) - 1;
2801                else {
2802                        bit = ffs(mask) - 1;
2803                        mask = 1 << bit;
2804                }
2805        }
2806
2807        link->sata_spd_limit = mask;
2808
2809        ata_link_warn(link, "limiting SATA link speed to %s\n",
2810                      sata_spd_string(fls(mask)));
2811
2812        return 0;
2813}
2814
2815static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2816{
2817        struct ata_link *host_link = &link->ap->link;
2818        u32 limit, target, spd;
2819
2820        limit = link->sata_spd_limit;
2821
2822        /* Don't configure downstream link faster than upstream link.
2823         * It doesn't speed up anything and some PMPs choke on such
2824         * configuration.
2825         */
2826        if (!ata_is_host_link(link) && host_link->sata_spd)
2827                limit &= (1 << host_link->sata_spd) - 1;
2828
2829        if (limit == UINT_MAX)
2830                target = 0;
2831        else
2832                target = fls(limit);
2833
2834        spd = (*scontrol >> 4) & 0xf;
2835        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2836
2837        return spd != target;
2838}
2839
2840/**
2841 *      sata_set_spd_needed - is SATA spd configuration needed
2842 *      @link: Link in question
2843 *
2844 *      Test whether the spd limit in SControl matches
2845 *      @link->sata_spd_limit.  This function is used to determine
2846 *      whether hardreset is necessary to apply SATA spd
2847 *      configuration.
2848 *
2849 *      LOCKING:
2850 *      Inherited from caller.
2851 *
2852 *      RETURNS:
2853 *      1 if SATA spd configuration is needed, 0 otherwise.
2854 */
2855static int sata_set_spd_needed(struct ata_link *link)
2856{
2857        u32 scontrol;
2858
2859        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2860                return 1;
2861
2862        return __sata_set_spd_needed(link, &scontrol);
2863}
2864
2865/**
2866 *      sata_set_spd - set SATA spd according to spd limit
2867 *      @link: Link to set SATA spd for
2868 *
2869 *      Set SATA spd of @link according to sata_spd_limit.
2870 *
2871 *      LOCKING:
2872 *      Inherited from caller.
2873 *
2874 *      RETURNS:
2875 *      0 if spd doesn't need to be changed, 1 if spd has been
2876 *      changed.  Negative errno if SCR registers are inaccessible.
2877 */
2878int sata_set_spd(struct ata_link *link)
2879{
2880        u32 scontrol;
2881        int rc;
2882
2883        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2884                return rc;
2885
2886        if (!__sata_set_spd_needed(link, &scontrol))
2887                return 0;
2888
2889        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2890                return rc;
2891
2892        return 1;
2893}
2894
2895/*
2896 * This mode timing computation functionality is ported over from
2897 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2898 */
2899/*
2900 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2901 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2902 * for UDMA6, which is currently supported only by Maxtor drives.
2903 *
2904 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2905 */
2906
2907static const struct ata_timing ata_timing[] = {
2908/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2909        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2910        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2911        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2912        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2913        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2914        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2915        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2916
2917        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2918        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2919        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2920
2921        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2922        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2923        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2924        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2925        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2926
2927/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2928        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2929        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2930        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2931        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2932        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2933        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2934        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2935
2936        { 0xFF }
2937};
2938
2939#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2940#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2941
2942static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2943{
2944        q->setup        = EZ(t->setup      * 1000,  T);
2945        q->act8b        = EZ(t->act8b      * 1000,  T);
2946        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2947        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2948        q->active       = EZ(t->active     * 1000,  T);
2949        q->recover      = EZ(t->recover    * 1000,  T);
2950        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2951        q->cycle        = EZ(t->cycle      * 1000,  T);
2952        q->udma         = EZ(t->udma       * 1000, UT);
2953}
2954
2955void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2956                      struct ata_timing *m, unsigned int what)
2957{
2958        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2959        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2960        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2961        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2962        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2963        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2964        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2965        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2966        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2967}
2968
2969const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2970{
2971        const struct ata_timing *t = ata_timing;
2972
2973        while (xfer_mode > t->mode)
2974                t++;
2975
2976        if (xfer_mode == t->mode)
2977                return t;
2978
2979        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2980                        __func__, xfer_mode);
2981
2982        return NULL;
2983}
2984
2985int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2986                       struct ata_timing *t, int T, int UT)
2987{
2988        const u16 *id = adev->id;
2989        const struct ata_timing *s;
2990        struct ata_timing p;
2991
2992        /*
2993         * Find the mode.
2994         */
2995
2996        if (!(s = ata_timing_find_mode(speed)))
2997                return -EINVAL;
2998
2999        memcpy(t, s, sizeof(*s));
3000
3001        /*
3002         * If the drive is an EIDE drive, it can tell us it needs extended
3003         * PIO/MW_DMA cycle timing.
3004         */
3005
3006        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
3007                memset(&p, 0, sizeof(p));
3008
3009                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3010                        if (speed <= XFER_PIO_2)
3011                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3012                        else if ((speed <= XFER_PIO_4) ||
3013                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3014                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3015                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3016                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3017
3018                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3019        }
3020
3021        /*
3022         * Convert the timing to bus clock counts.
3023         */
3024
3025        ata_timing_quantize(t, t, T, UT);
3026
3027        /*
3028         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3029         * S.M.A.R.T * and some other commands. We have to ensure that the
3030         * DMA cycle timing is slower/equal than the fastest PIO timing.
3031         */
3032
3033        if (speed > XFER_PIO_6) {
3034                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3035                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3036        }
3037
3038        /*
3039         * Lengthen active & recovery time so that cycle time is correct.
3040         */
3041
3042        if (t->act8b + t->rec8b < t->cyc8b) {
3043                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3044                t->rec8b = t->cyc8b - t->act8b;
3045        }
3046
3047        if (t->active + t->recover < t->cycle) {
3048                t->active += (t->cycle - (t->active + t->recover)) / 2;
3049                t->recover = t->cycle - t->active;
3050        }
3051
3052        /* In a few cases quantisation may produce enough errors to
3053           leave t->cycle too low for the sum of active and recovery
3054           if so we must correct this */
3055        if (t->active + t->recover > t->cycle)
3056                t->cycle = t->active + t->recover;
3057
3058        return 0;
3059}
3060
3061/**
3062 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3063 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3064 *      @cycle: cycle duration in ns
3065 *
3066 *      Return matching xfer mode for @cycle.  The returned mode is of
3067 *      the transfer type specified by @xfer_shift.  If @cycle is too
3068 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3069 *      than the fastest known mode, the fasted mode is returned.
3070 *
3071 *      LOCKING:
3072 *      None.
3073 *
3074 *      RETURNS:
3075 *      Matching xfer_mode, 0xff if no match found.
3076 */
3077u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3078{
3079        u8 base_mode = 0xff, last_mode = 0xff;
3080        const struct ata_xfer_ent *ent;
3081        const struct ata_timing *t;
3082
3083        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3084                if (ent->shift == xfer_shift)
3085                        base_mode = ent->base;
3086
3087        for (t = ata_timing_find_mode(base_mode);
3088             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3089                unsigned short this_cycle;
3090
3091                switch (xfer_shift) {
3092                case ATA_SHIFT_PIO:
3093                case ATA_SHIFT_MWDMA:
3094                        this_cycle = t->cycle;
3095                        break;
3096                case ATA_SHIFT_UDMA:
3097                        this_cycle = t->udma;
3098                        break;
3099                default:
3100                        return 0xff;
3101                }
3102
3103                if (cycle > this_cycle)
3104                        break;
3105
3106                last_mode = t->mode;
3107        }
3108
3109        return last_mode;
3110}
3111
3112/**
3113 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3114 *      @dev: Device to adjust xfer masks
3115 *      @sel: ATA_DNXFER_* selector
3116 *
3117 *      Adjust xfer masks of @dev downward.  Note that this function
3118 *      does not apply the change.  Invoking ata_set_mode() afterwards
3119 *      will apply the limit.
3120 *
3121 *      LOCKING:
3122 *      Inherited from caller.
3123 *
3124 *      RETURNS:
3125 *      0 on success, negative errno on failure
3126 */
3127int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3128{
3129        char buf[32];
3130        unsigned long orig_mask, xfer_mask;
3131        unsigned long pio_mask, mwdma_mask, udma_mask;
3132        int quiet, highbit;
3133
3134        quiet = !!(sel & ATA_DNXFER_QUIET);
3135        sel &= ~ATA_DNXFER_QUIET;
3136
3137        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3138                                                  dev->mwdma_mask,
3139                                                  dev->udma_mask);
3140        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3141
3142        switch (sel) {
3143        case ATA_DNXFER_PIO:
3144                highbit = fls(pio_mask) - 1;
3145                pio_mask &= ~(1 << highbit);
3146                break;
3147
3148        case ATA_DNXFER_DMA:
3149                if (udma_mask) {
3150                        highbit = fls(udma_mask) - 1;
3151                        udma_mask &= ~(1 << highbit);
3152                        if (!udma_mask)
3153                                return -ENOENT;
3154                } else if (mwdma_mask) {
3155                        highbit = fls(mwdma_mask) - 1;
3156                        mwdma_mask &= ~(1 << highbit);
3157                        if (!mwdma_mask)
3158                                return -ENOENT;
3159                }
3160                break;
3161
3162        case ATA_DNXFER_40C:
3163                udma_mask &= ATA_UDMA_MASK_40C;
3164                break;
3165
3166        case ATA_DNXFER_FORCE_PIO0:
3167                pio_mask &= 1;
3168        case ATA_DNXFER_FORCE_PIO:
3169                mwdma_mask = 0;
3170                udma_mask = 0;
3171                break;
3172
3173        default:
3174                BUG();
3175        }
3176
3177        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3178
3179        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3180                return -ENOENT;
3181
3182        if (!quiet) {
3183                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3184                        snprintf(buf, sizeof(buf), "%s:%s",
3185                                 ata_mode_string(xfer_mask),
3186                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3187                else
3188                        snprintf(buf, sizeof(buf), "%s",
3189                                 ata_mode_string(xfer_mask));
3190
3191                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3192        }
3193
3194        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3195                            &dev->udma_mask);
3196
3197        return 0;
3198}
3199
3200static int ata_dev_set_mode(struct ata_device *dev)
3201{
3202        struct ata_port *ap = dev->link->ap;
3203        struct ata_eh_context *ehc = &dev->link->eh_context;
3204        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3205        const char *dev_err_whine = "";
3206        int ign_dev_err = 0;
3207        unsigned int err_mask = 0;
3208        int rc;
3209
3210        dev->flags &= ~ATA_DFLAG_PIO;
3211        if (dev->xfer_shift == ATA_SHIFT_PIO)
3212                dev->flags |= ATA_DFLAG_PIO;
3213
3214        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3215                dev_err_whine = " (SET_XFERMODE skipped)";
3216        else {
3217                if (nosetxfer)
3218                        ata_dev_warn(dev,
3219                                     "NOSETXFER but PATA detected - can't "
3220                                     "skip SETXFER, might malfunction\n");
3221                err_mask = ata_dev_set_xfermode(dev);
3222        }
3223
3224        if (err_mask & ~AC_ERR_DEV)
3225                goto fail;
3226
3227        /* revalidate */
3228        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3229        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3230        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3231        if (rc)
3232                return rc;
3233
3234        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3235                /* Old CFA may refuse this command, which is just fine */
3236                if (ata_id_is_cfa(dev->id))
3237                        ign_dev_err = 1;
3238                /* Catch several broken garbage emulations plus some pre
3239                   ATA devices */
3240                if (ata_id_major_version(dev->id) == 0 &&
3241                                        dev->pio_mode <= XFER_PIO_2)
3242                        ign_dev_err = 1;
3243                /* Some very old devices and some bad newer ones fail
3244                   any kind of SET_XFERMODE request but support PIO0-2
3245                   timings and no IORDY */
3246                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3247                        ign_dev_err = 1;
3248        }
3249        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3250           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3251        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3252            dev->dma_mode == XFER_MW_DMA_0 &&
3253            (dev->id[63] >> 8) & 1)
3254                ign_dev_err = 1;
3255
3256        /* if the device is actually configured correctly, ignore dev err */
3257        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3258                ign_dev_err = 1;
3259
3260        if (err_mask & AC_ERR_DEV) {
3261                if (!ign_dev_err)
3262                        goto fail;
3263                else
3264                        dev_err_whine = " (device error ignored)";
3265        }
3266
3267        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3268                dev->xfer_shift, (int)dev->xfer_mode);
3269
3270        ata_dev_info(dev, "configured for %s%s\n",
3271                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3272                     dev_err_whine);
3273
3274        return 0;
3275
3276 fail:
3277        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3278        return -EIO;
3279}
3280
3281/**
3282 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3283 *      @link: link on which timings will be programmed
3284 *      @r_failed_dev: out parameter for failed device
3285 *
3286 *      Standard implementation of the function used to tune and set
3287 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3288 *      ata_dev_set_mode() fails, pointer to the failing device is
3289 *      returned in @r_failed_dev.
3290 *
3291 *      LOCKING:
3292 *      PCI/etc. bus probe sem.
3293 *
3294 *      RETURNS:
3295 *      0 on success, negative errno otherwise
3296 */
3297
3298int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3299{
3300        struct ata_port *ap = link->ap;
3301        struct ata_device *dev;
3302        int rc = 0, used_dma = 0, found = 0;
3303
3304        /* step 1: calculate xfer_mask */
3305        ata_for_each_dev(dev, link, ENABLED) {
3306                unsigned long pio_mask, dma_mask;
3307                unsigned int mode_mask;
3308
3309                mode_mask = ATA_DMA_MASK_ATA;
3310                if (dev->class == ATA_DEV_ATAPI)
3311                        mode_mask = ATA_DMA_MASK_ATAPI;
3312                else if (ata_id_is_cfa(dev->id))
3313                        mode_mask = ATA_DMA_MASK_CFA;
3314
3315                ata_dev_xfermask(dev);
3316                ata_force_xfermask(dev);
3317
3318                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3319
3320                if (libata_dma_mask & mode_mask)
3321                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3322                                                     dev->udma_mask);
3323                else
3324                        dma_mask = 0;
3325
3326                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3327                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3328
3329                found = 1;
3330                if (ata_dma_enabled(dev))
3331                        used_dma = 1;
3332        }
3333        if (!found)
3334                goto out;
3335
3336        /* step 2: always set host PIO timings */
3337        ata_for_each_dev(dev, link, ENABLED) {
3338                if (dev->pio_mode == 0xff) {
3339                        ata_dev_warn(dev, "no PIO support\n");
3340                        rc = -EINVAL;
3341                        goto out;
3342                }
3343
3344                dev->xfer_mode = dev->pio_mode;
3345                dev->xfer_shift = ATA_SHIFT_PIO;
3346                if (ap->ops->set_piomode)
3347                        ap->ops->set_piomode(ap, dev);
3348        }
3349
3350        /* step 3: set host DMA timings */
3351        ata_for_each_dev(dev, link, ENABLED) {
3352                if (!ata_dma_enabled(dev))
3353                        continue;
3354
3355                dev->xfer_mode = dev->dma_mode;
3356                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3357                if (ap->ops->set_dmamode)
3358                        ap->ops->set_dmamode(ap, dev);
3359        }
3360
3361        /* step 4: update devices' xfer mode */
3362        ata_for_each_dev(dev, link, ENABLED) {
3363                rc = ata_dev_set_mode(dev);
3364                if (rc)
3365                        goto out;
3366        }
3367
3368        /* Record simplex status. If we selected DMA then the other
3369         * host channels are not permitted to do so.
3370         */
3371        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3372                ap->host->simplex_claimed = ap;
3373
3374 out:
3375        if (rc)
3376                *r_failed_dev = dev;
3377        return rc;
3378}
3379
3380/**
3381 *      ata_wait_ready - wait for link to become ready
3382 *      @link: link to be waited on
3383 *      @deadline: deadline jiffies for the operation
3384 *      @check_ready: callback to check link readiness
3385 *
3386 *      Wait for @link to become ready.  @check_ready should return
3387 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3388 *      link doesn't seem to be occupied, other errno for other error
3389 *      conditions.
3390 *
3391 *      Transient -ENODEV conditions are allowed for
3392 *      ATA_TMOUT_FF_WAIT.
3393 *
3394 *      LOCKING:
3395 *      EH context.
3396 *
3397 *      RETURNS:
3398 *      0 if @linke is ready before @deadline; otherwise, -errno.
3399 */
3400int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3401                   int (*check_ready)(struct ata_link *link))
3402{
3403        unsigned long start = jiffies;
3404        unsigned long nodev_deadline;
3405        int warned = 0;
3406
3407        /* choose which 0xff timeout to use, read comment in libata.h */
3408        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3409                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3410        else
3411                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3412
3413        /* Slave readiness can't be tested separately from master.  On
3414         * M/S emulation configuration, this function should be called
3415         * only on the master and it will handle both master and slave.
3416         */
3417        WARN_ON(link == link->ap->slave_link);
3418
3419        if (time_after(nodev_deadline, deadline))
3420                nodev_deadline = deadline;
3421
3422        while (1) {
3423                unsigned long now = jiffies;
3424                int ready, tmp;
3425
3426                ready = tmp = check_ready(link);
3427                if (ready > 0)
3428                        return 0;
3429
3430                /*
3431                 * -ENODEV could be transient.  Ignore -ENODEV if link
3432                 * is online.  Also, some SATA devices take a long
3433                 * time to clear 0xff after reset.  Wait for
3434                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3435                 * offline.
3436                 *
3437                 * Note that some PATA controllers (pata_ali) explode
3438                 * if status register is read more than once when
3439                 * there's no device attached.
3440                 */
3441                if (ready == -ENODEV) {
3442                        if (ata_link_online(link))
3443                                ready = 0;
3444                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3445                                 !ata_link_offline(link) &&
3446                                 time_before(now, nodev_deadline))
3447                                ready = 0;
3448                }
3449
3450                if (ready)
3451                        return ready;
3452                if (time_after(now, deadline))
3453                        return -EBUSY;
3454
3455                if (!warned && time_after(now, start + 5 * HZ) &&
3456                    (deadline - now > 3 * HZ)) {
3457                        ata_link_warn(link,
3458                                "link is slow to respond, please be patient "
3459                                "(ready=%d)\n", tmp);
3460                        warned = 1;
3461                }
3462
3463                ata_msleep(link->ap, 50);
3464        }
3465}
3466
3467/**
3468 *      ata_wait_after_reset - wait for link to become ready after reset
3469 *      @link: link to be waited on
3470 *      @deadline: deadline jiffies for the operation
3471 *      @check_ready: callback to check link readiness
3472 *
3473 *      Wait for @link to become ready after reset.
3474 *
3475 *      LOCKING:
3476 *      EH context.
3477 *
3478 *      RETURNS:
3479 *      0 if @linke is ready before @deadline; otherwise, -errno.
3480 */
3481int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3482                                int (*check_ready)(struct ata_link *link))
3483{
3484        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3485
3486        return ata_wait_ready(link, deadline, check_ready);
3487}
3488
3489/**
3490 *      sata_link_debounce - debounce SATA phy status
3491 *      @link: ATA link to debounce SATA phy status for
3492 *      @params: timing parameters { interval, duratinon, timeout } in msec
3493 *      @deadline: deadline jiffies for the operation
3494 *
3495 *      Make sure SStatus of @link reaches stable state, determined by
3496 *      holding the same value where DET is not 1 for @duration polled
3497 *      every @interval, before @timeout.  Timeout constraints the
3498 *      beginning of the stable state.  Because DET gets stuck at 1 on
3499 *      some controllers after hot unplugging, this functions waits
3500 *      until timeout then returns 0 if DET is stable at 1.
3501 *
3502 *      @timeout is further limited by @deadline.  The sooner of the
3503 *      two is used.
3504 *
3505 *      LOCKING:
3506 *      Kernel thread context (may sleep)
3507 *
3508 *      RETURNS:
3509 *      0 on success, -errno on failure.
3510 */
3511int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3512                       unsigned long deadline)
3513{
3514        unsigned long interval = params[0];
3515        unsigned long duration = params[1];
3516        unsigned long last_jiffies, t;
3517        u32 last, cur;
3518        int rc;
3519
3520        t = ata_deadline(jiffies, params[2]);
3521        if (time_before(t, deadline))
3522                deadline = t;
3523
3524        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3525                return rc;
3526        cur &= 0xf;
3527
3528        last = cur;
3529        last_jiffies = jiffies;
3530
3531        while (1) {
3532                ata_msleep(link->ap, interval);
3533                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3534                        return rc;
3535                cur &= 0xf;
3536
3537                /* DET stable? */
3538                if (cur == last) {
3539                        if (cur == 1 && time_before(jiffies, deadline))
3540                                continue;
3541                        if (time_after(jiffies,
3542                                       ata_deadline(last_jiffies, duration)))
3543                                return 0;
3544                        continue;
3545                }
3546
3547                /* unstable, start over */
3548                last = cur;
3549                last_jiffies = jiffies;
3550
3551                /* Check deadline.  If debouncing failed, return
3552                 * -EPIPE to tell upper layer to lower link speed.
3553                 */
3554                if (time_after(jiffies, deadline))
3555                        return -EPIPE;
3556        }
3557}
3558
3559/**
3560 *      sata_link_resume - resume SATA link
3561 *      @link: ATA link to resume SATA
3562 *      @params: timing parameters { interval, duratinon, timeout } in msec
3563 *      @deadline: deadline jiffies for the operation
3564 *
3565 *      Resume SATA phy @link and debounce it.
3566 *
3567 *      LOCKING:
3568 *      Kernel thread context (may sleep)
3569 *
3570 *      RETURNS:
3571 *      0 on success, -errno on failure.
3572 */
3573int sata_link_resume(struct ata_link *link, const unsigned long *params,
3574                     unsigned long deadline)
3575{
3576        int tries = ATA_LINK_RESUME_TRIES;
3577        u32 scontrol, serror;
3578        int rc;
3579
3580        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3581                return rc;
3582
3583        /*
3584         * Writes to SControl sometimes get ignored under certain
3585         * controllers (ata_piix SIDPR).  Make sure DET actually is
3586         * cleared.
3587         */
3588        do {
3589                scontrol = (scontrol & 0x0f0) | 0x300;
3590                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3591                        return rc;
3592                /*
3593                 * Some PHYs react badly if SStatus is pounded
3594                 * immediately after resuming.  Delay 200ms before
3595                 * debouncing.
3596                 */
3597                ata_msleep(link->ap, 200);
3598
3599                /* is SControl restored correctly? */
3600                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3601                        return rc;
3602        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3603
3604        if ((scontrol & 0xf0f) != 0x300) {
3605                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3606                             scontrol);
3607                return 0;
3608        }
3609
3610        if (tries < ATA_LINK_RESUME_TRIES)
3611                ata_link_warn(link, "link resume succeeded after %d retries\n",
3612                              ATA_LINK_RESUME_TRIES - tries);
3613
3614        if ((rc = sata_link_debounce(link, params, deadline)))
3615                return rc;
3616
3617        /* clear SError, some PHYs require this even for SRST to work */
3618        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3619                rc = sata_scr_write(link, SCR_ERROR, serror);
3620
3621        return rc != -EINVAL ? rc : 0;
3622}
3623
3624/**
3625 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3626 *      @link: ATA link to manipulate SControl for
3627 *      @policy: LPM policy to configure
3628 *      @spm_wakeup: initiate LPM transition to active state
3629 *
3630 *      Manipulate the IPM field of the SControl register of @link
3631 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3632 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3633 *      the link.  This function also clears PHYRDY_CHG before
3634 *      returning.
3635 *
3636 *      LOCKING:
3637 *      EH context.
3638 *
3639 *      RETURNS:
3640 *      0 on succes, -errno otherwise.
3641 */
3642int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3643                      bool spm_wakeup)
3644{
3645        struct ata_eh_context *ehc = &link->eh_context;
3646        bool woken_up = false;
3647        u32 scontrol;
3648        int rc;
3649
3650        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3651        if (rc)
3652                return rc;
3653
3654        switch (policy) {
3655        case ATA_LPM_MAX_POWER:
3656                /* disable all LPM transitions */
3657                scontrol |= (0x7 << 8);
3658                /* initiate transition to active state */
3659                if (spm_wakeup) {
3660                        scontrol |= (0x4 << 12);
3661                        woken_up = true;
3662                }
3663                break;
3664        case ATA_LPM_MED_POWER:
3665                /* allow LPM to PARTIAL */
3666                scontrol &= ~(0x1 << 8);
3667                scontrol |= (0x6 << 8);
3668                break;
3669        case ATA_LPM_MIN_POWER:
3670                if (ata_link_nr_enabled(link) > 0)
3671                        /* no restrictions on LPM transitions */
3672                        scontrol &= ~(0x7 << 8);
3673                else {
3674                        /* empty port, power off */
3675                        scontrol &= ~0xf;
3676                        scontrol |= (0x1 << 2);
3677                }
3678                break;
3679        default:
3680                WARN_ON(1);
3681        }
3682
3683        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3684        if (rc)
3685                return rc;
3686
3687        /* give the link time to transit out of LPM state */
3688        if (woken_up)
3689                msleep(10);
3690
3691        /* clear PHYRDY_CHG from SError */
3692        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3693        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3694}
3695
3696/**
3697 *      ata_std_prereset - prepare for reset
3698 *      @link: ATA link to be reset
3699 *      @deadline: deadline jiffies for the operation
3700 *
3701 *      @link is about to be reset.  Initialize it.  Failure from
3702 *      prereset makes libata abort whole reset sequence and give up
3703 *      that port, so prereset should be best-effort.  It does its
3704 *      best to prepare for reset sequence but if things go wrong, it
3705 *      should just whine, not fail.
3706 *
3707 *      LOCKING:
3708 *      Kernel thread context (may sleep)
3709 *
3710 *      RETURNS:
3711 *      0 on success, -errno otherwise.
3712 */
3713int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3714{
3715        struct ata_port *ap = link->ap;
3716        struct ata_eh_context *ehc = &link->eh_context;
3717        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3718        int rc;
3719
3720        /* if we're about to do hardreset, nothing more to do */
3721        if (ehc->i.action & ATA_EH_HARDRESET)
3722                return 0;
3723
3724        /* if SATA, resume link */
3725        if (ap->flags & ATA_FLAG_SATA) {
3726                rc = sata_link_resume(link, timing, deadline);
3727                /* whine about phy resume failure but proceed */
3728                if (rc && rc != -EOPNOTSUPP)
3729                        ata_link_warn(link,
3730                                      "failed to resume link for reset (errno=%d)\n",
3731                                      rc);
3732        }
3733
3734        /* no point in trying softreset on offline link */
3735        if (ata_phys_link_offline(link))
3736                ehc->i.action &= ~ATA_EH_SOFTRESET;
3737
3738        return 0;
3739}
3740
3741/**
3742 *      sata_link_hardreset - reset link via SATA phy reset
3743 *      @link: link to reset
3744 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3745 *      @deadline: deadline jiffies for the operation
3746 *      @online: optional out parameter indicating link onlineness
3747 *      @check_ready: optional callback to check link readiness
3748 *
3749 *      SATA phy-reset @link using DET bits of SControl register.
3750 *      After hardreset, link readiness is waited upon using
3751 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3752 *      allowed to not specify @check_ready and wait itself after this
3753 *      function returns.  Device classification is LLD's
3754 *      responsibility.
3755 *
3756 *      *@online is set to one iff reset succeeded and @link is online
3757 *      after reset.
3758 *
3759 *      LOCKING:
3760 *      Kernel thread context (may sleep)
3761 *
3762 *      RETURNS:
3763 *      0 on success, -errno otherwise.
3764 */
3765int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3766                        unsigned long deadline,
3767                        bool *online, int (*check_ready)(struct ata_link *))
3768{
3769        u32 scontrol;
3770        int rc;
3771
3772        DPRINTK("ENTER\n");
3773
3774        if (online)
3775                *online = false;
3776
3777        if (sata_set_spd_needed(link)) {
3778                /* SATA spec says nothing about how to reconfigure
3779                 * spd.  To be on the safe side, turn off phy during
3780                 * reconfiguration.  This works for at least ICH7 AHCI
3781                 * and Sil3124.
3782                 */
3783                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3784                        goto out;
3785
3786                scontrol = (scontrol & 0x0f0) | 0x304;
3787
3788                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3789                        goto out;
3790
3791                sata_set_spd(link);
3792        }
3793
3794        /* issue phy wake/reset */
3795        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3796                goto out;
3797
3798        scontrol = (scontrol & 0x0f0) | 0x301;
3799
3800        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3801                goto out;
3802
3803        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3804         * 10.4.2 says at least 1 ms.
3805         */
3806        ata_msleep(link->ap, 1);
3807
3808        /* bring link back */
3809        rc = sata_link_resume(link, timing, deadline);
3810        if (rc)
3811                goto out;
3812        /* if link is offline nothing more to do */
3813        if (ata_phys_link_offline(link))
3814                goto out;
3815
3816        /* Link is online.  From this point, -ENODEV too is an error. */
3817        if (online)
3818                *online = true;
3819
3820        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3821                /* If PMP is supported, we have to do follow-up SRST.
3822                 * Some PMPs don't send D2H Reg FIS after hardreset if
3823                 * the first port is empty.  Wait only for
3824                 * ATA_TMOUT_PMP_SRST_WAIT.
3825                 */
3826                if (check_ready) {
3827                        unsigned long pmp_deadline;
3828
3829                        pmp_deadline = ata_deadline(jiffies,
3830                                                    ATA_TMOUT_PMP_SRST_WAIT);
3831                        if (time_after(pmp_deadline, deadline))
3832                                pmp_deadline = deadline;
3833                        ata_wait_ready(link, pmp_deadline, check_ready);
3834                }
3835                rc = -EAGAIN;
3836                goto out;
3837        }
3838
3839        rc = 0;
3840        if (check_ready)
3841                rc = ata_wait_ready(link, deadline, check_ready);
3842 out:
3843        if (rc && rc != -EAGAIN) {
3844                /* online is set iff link is online && reset succeeded */
3845                if (online)
3846                        *online = false;
3847                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3848        }
3849        DPRINTK("EXIT, rc=%d\n", rc);
3850        return rc;
3851}
3852
3853/**
3854 *      sata_std_hardreset - COMRESET w/o waiting or classification
3855 *      @link: link to reset
3856 *      @class: resulting class of attached device
3857 *      @deadline: deadline jiffies for the operation
3858 *
3859 *      Standard SATA COMRESET w/o waiting or classification.
3860 *
3861 *      LOCKING:
3862 *      Kernel thread context (may sleep)
3863 *
3864 *      RETURNS:
3865 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3866 */
3867int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3868                       unsigned long deadline)
3869{
3870        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3871        bool online;
3872        int rc;
3873
3874        /* do hardreset */
3875        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3876        return online ? -EAGAIN : rc;
3877}
3878
3879/**
3880 *      ata_std_postreset - standard postreset callback
3881 *      @link: the target ata_link
3882 *      @classes: classes of attached devices
3883 *
3884 *      This function is invoked after a successful reset.  Note that
3885 *      the device might have been reset more than once using
3886 *      different reset methods before postreset is invoked.
3887 *
3888 *      LOCKING:
3889 *      Kernel thread context (may sleep)
3890 */
3891void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3892{
3893        u32 serror;
3894
3895        DPRINTK("ENTER\n");
3896
3897        /* reset complete, clear SError */
3898        if (!sata_scr_read(link, SCR_ERROR, &serror))
3899                sata_scr_write(link, SCR_ERROR, serror);
3900
3901        /* print link status */
3902        sata_print_link_status(link);
3903
3904        DPRINTK("EXIT\n");
3905}
3906
3907/**
3908 *      ata_dev_same_device - Determine whether new ID matches configured device
3909 *      @dev: device to compare against
3910 *      @new_class: class of the new device
3911 *      @new_id: IDENTIFY page of the new device
3912 *
3913 *      Compare @new_class and @new_id against @dev and determine
3914 *      whether @dev is the device indicated by @new_class and
3915 *      @new_id.
3916 *
3917 *      LOCKING:
3918 *      None.
3919 *
3920 *      RETURNS:
3921 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3922 */
3923static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3924                               const u16 *new_id)
3925{
3926        const u16 *old_id = dev->id;
3927        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3928        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3929
3930        if (dev->class != new_class) {
3931                ata_dev_info(dev, "class mismatch %d != %d\n",
3932                             dev->class, new_class);
3933                return 0;
3934        }
3935
3936        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3937        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3938        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3939        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3940
3941        if (strcmp(model[0], model[1])) {
3942                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3943                             model[0], model[1]);
3944                return 0;
3945        }
3946
3947        if (strcmp(serial[0], serial[1])) {
3948                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3949                             serial[0], serial[1]);
3950                return 0;
3951        }
3952
3953        return 1;
3954}
3955
3956/**
3957 *      ata_dev_reread_id - Re-read IDENTIFY data
3958 *      @dev: target ATA device
3959 *      @readid_flags: read ID flags
3960 *
3961 *      Re-read IDENTIFY page and make sure @dev is still attached to
3962 *      the port.
3963 *
3964 *      LOCKING:
3965 *      Kernel thread context (may sleep)
3966 *
3967 *      RETURNS:
3968 *      0 on success, negative errno otherwise
3969 */
3970int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3971{
3972        unsigned int class = dev->class;
3973        u16 *id = (void *)dev->link->ap->sector_buf;
3974        int rc;
3975
3976        /* read ID data */
3977        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3978        if (rc)
3979                return rc;
3980
3981        /* is the device still there? */
3982        if (!ata_dev_same_device(dev, class, id))
3983                return -ENODEV;
3984
3985        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3986        return 0;
3987}
3988
3989/**
3990 *      ata_dev_revalidate - Revalidate ATA device
3991 *      @dev: device to revalidate
3992 *      @new_class: new class code
3993 *      @readid_flags: read ID flags
3994 *
3995 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3996 *      port and reconfigure it according to the new IDENTIFY page.
3997 *
3998 *      LOCKING:
3999 *      Kernel thread context (may sleep)
4000 *
4001 *      RETURNS:
4002 *      0 on success, negative errno otherwise
4003 */
4004int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4005                       unsigned int readid_flags)
4006{
4007        u64 n_sectors = dev->n_sectors;
4008        u64 n_native_sectors = dev->n_native_sectors;
4009        int rc;
4010
4011        if (!ata_dev_enabled(dev))
4012                return -ENODEV;
4013
4014        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4015        if (ata_class_enabled(new_class) &&
4016            new_class != ATA_DEV_ATA &&
4017            new_class != ATA_DEV_ATAPI &&
4018            new_class != ATA_DEV_SEMB) {
4019                ata_dev_info(dev, "class mismatch %u != %u\n",
4020                             dev->class, new_class);
4021                rc = -ENODEV;
4022                goto fail;
4023        }
4024
4025        /* re-read ID */
4026        rc = ata_dev_reread_id(dev, readid_flags);
4027        if (rc)
4028                goto fail;
4029
4030        /* configure device according to the new ID */
4031        rc = ata_dev_configure(dev);
4032        if (rc)
4033                goto fail;
4034
4035        /* verify n_sectors hasn't changed */
4036        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4037            dev->n_sectors == n_sectors)
4038                return 0;
4039
4040        /* n_sectors has changed */
4041        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4042                     (unsigned long long)n_sectors,
4043                     (unsigned long long)dev->n_sectors);
4044
4045        /*
4046         * Something could have caused HPA to be unlocked
4047         * involuntarily.  If n_native_sectors hasn't changed and the
4048         * new size matches it, keep the device.
4049         */
4050        if (dev->n_native_sectors == n_native_sectors &&
4051            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4052                ata_dev_warn(dev,
4053                             "new n_sectors matches native, probably "
4054                             "late HPA unlock, n_sectors updated\n");
4055                /* use the larger n_sectors */
4056                return 0;
4057        }
4058
4059        /*
4060         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4061         * unlocking HPA in those cases.
4062         *
4063         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4064         */
4065        if (dev->n_native_sectors == n_native_sectors &&
4066            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4067            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4068                ata_dev_warn(dev,
4069                             "old n_sectors matches native, probably "
4070                             "late HPA lock, will try to unlock HPA\n");
4071                /* try unlocking HPA */
4072                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4073                rc = -EIO;
4074        } else
4075                rc = -ENODEV;
4076
4077        /* restore original n_[native_]sectors and fail */
4078        dev->n_native_sectors = n_native_sectors;
4079        dev->n_sectors = n_sectors;
4080 fail:
4081        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4082        return rc;
4083}
4084
4085struct ata_blacklist_entry {
4086        const char *model_num;
4087        const char *model_rev;
4088        unsigned long horkage;
4089};
4090
4091static const struct ata_blacklist_entry ata_device_blacklist [] = {
4092        /* Devices with DMA related problems under Linux */
4093        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4094        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4095        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4096        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4097        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4098        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4099        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4100        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4101        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4102        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4103        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4104        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4105        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4106        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4107        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4108        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4109        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4110        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4111        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4112        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4113        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4114        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4115        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4116        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4117        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4118        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4119        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4120        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4121        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4122        /* Odd clown on sil3726/4726 PMPs */
4123        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4124
4125        /* Weird ATAPI devices */
4126        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4127        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4128        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4129
4130        /* Devices we expect to fail diagnostics */
4131
4132        /* Devices where NCQ should be avoided */
4133        /* NCQ is slow */
4134        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4135        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4136        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4137        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4138        /* NCQ is broken */
4139        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4140        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4141        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4142        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4143        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4144
4145        /* Seagate NCQ + FLUSH CACHE firmware bug */
4146        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4147                                                ATA_HORKAGE_FIRMWARE_WARN },
4148
4149        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4150                                                ATA_HORKAGE_FIRMWARE_WARN },
4151
4152        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4153                                                ATA_HORKAGE_FIRMWARE_WARN },
4154
4155        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4156                                                ATA_HORKAGE_FIRMWARE_WARN },
4157
4158        /* Blacklist entries taken from Silicon Image 3124/3132
4159           Windows driver .inf file - also several Linux problem reports */
4160        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4161        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4162        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4163
4164        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4165        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4166
4167        /* devices which puke on READ_NATIVE_MAX */
4168        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4169        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4170        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4171        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4172
4173        /* this one allows HPA unlocking but fails IOs on the area */
4174        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4175
4176        /* Devices which report 1 sector over size HPA */
4177        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4178        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4179        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4180
4181        /* Devices which get the IVB wrong */
4182        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4183        /* Maybe we should just blacklist TSSTcorp... */
4184        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4185
4186        /* Devices that do not need bridging limits applied */
4187        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4188        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4189
4190        /* Devices which aren't very happy with higher link speeds */
4191        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4192        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4193
4194        /*
4195         * Devices which choke on SETXFER.  Applies only if both the
4196         * device and controller are SATA.
4197         */
4198        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4199        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4200        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4201        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4202        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4203
4204        /* End Marker */
4205        { }
4206};
4207
4208/**
4209 *      glob_match - match a text string against a glob-style pattern
4210 *      @text: the string to be examined
4211 *      @pattern: the glob-style pattern to be matched against
4212 *
4213 *      Either/both of text and pattern can be empty strings.
4214 *
4215 *      Match text against a glob-style pattern, with wildcards and simple sets:
4216 *
4217 *              ?       matches any single character.
4218 *              *       matches any run of characters.
4219 *              [xyz]   matches a single character from the set: x, y, or z.
4220 *              [a-d]   matches a single character from the range: a, b, c, or d.
4221 *              [a-d0-9] matches a single character from either range.
4222 *
4223 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4224 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4225 *
4226 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4227 *
4228 *      This function uses one level of recursion per '*' in pattern.
4229 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4230 *      this will not cause stack problems for any reasonable use here.
4231 *
4232 *      RETURNS:
4233 *      0 on match, 1 otherwise.
4234 */
4235static int glob_match (const char *text, const char *pattern)
4236{
4237        do {
4238                /* Match single character or a '?' wildcard */
4239                if (*text == *pattern || *pattern == '?') {
4240                        if (!*pattern++)
4241                                return 0;  /* End of both strings: match */
4242                } else {
4243                        /* Match single char against a '[' bracketed ']' pattern set */
4244                        if (!*text || *pattern != '[')
4245                                break;  /* Not a pattern set */
4246                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4247                                if (*pattern == '-' && *(pattern - 1) != '[')
4248                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4249                                                ++pattern;
4250                                                break;
4251                                        }
4252                        }
4253                        if (!*pattern || *pattern == ']')
4254                                return 1;  /* No match */
4255                        while (*pattern && *pattern++ != ']');
4256                }
4257        } while (*++text && *pattern);
4258
4259        /* Match any run of chars against a '*' wildcard */
4260        if (*pattern == '*') {
4261                if (!*++pattern)
4262                        return 0;  /* Match: avoid recursion at end of pattern */
4263                /* Loop to handle additional pattern chars after the wildcard */
4264                while (*text) {
4265                        if (glob_match(text, pattern) == 0)
4266                                return 0;  /* Remainder matched */
4267                        ++text;  /* Absorb (match) this char and try again */
4268                }
4269        }
4270        if (!*text && !*pattern)
4271                return 0;  /* End of both strings: match */
4272        return 1;  /* No match */
4273}
4274
4275static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4276{
4277        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4278        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4279        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4280
4281        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4282        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4283
4284        while (ad->model_num) {
4285                if (!glob_match(model_num, ad->model_num)) {
4286                        if (ad->model_rev == NULL)
4287                                return ad->horkage;
4288                        if (!glob_match(model_rev, ad->model_rev))
4289                                return ad->horkage;
4290                }
4291                ad++;
4292        }
4293        return 0;
4294}
4295
4296static int ata_dma_blacklisted(const struct ata_device *dev)
4297{
4298        /* We don't support polling DMA.
4299         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4300         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4301         */
4302        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4303            (dev->flags & ATA_DFLAG_CDB_INTR))
4304                return 1;
4305        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4306}
4307
4308/**
4309 *      ata_is_40wire           -       check drive side detection
4310 *      @dev: device
4311 *
4312 *      Perform drive side detection decoding, allowing for device vendors
4313 *      who can't follow the documentation.
4314 */
4315
4316static int ata_is_40wire(struct ata_device *dev)
4317{
4318        if (dev->horkage & ATA_HORKAGE_IVB)
4319                return ata_drive_40wire_relaxed(dev->id);
4320        return ata_drive_40wire(dev->id);
4321}
4322
4323/**
4324 *      cable_is_40wire         -       40/80/SATA decider
4325 *      @ap: port to consider
4326 *
4327 *      This function encapsulates the policy for speed management
4328 *      in one place. At the moment we don't cache the result but
4329 *      there is a good case for setting ap->cbl to the result when
4330 *      we are called with unknown cables (and figuring out if it
4331 *      impacts hotplug at all).
4332 *
4333 *      Return 1 if the cable appears to be 40 wire.
4334 */
4335
4336static int cable_is_40wire(struct ata_port *ap)
4337{
4338        struct ata_link *link;
4339        struct ata_device *dev;
4340
4341        /* If the controller thinks we are 40 wire, we are. */
4342        if (ap->cbl == ATA_CBL_PATA40)
4343                return 1;
4344
4345        /* If the controller thinks we are 80 wire, we are. */
4346        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4347                return 0;
4348
4349        /* If the system is known to be 40 wire short cable (eg
4350         * laptop), then we allow 80 wire modes even if the drive
4351         * isn't sure.
4352         */
4353        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4354                return 0;
4355
4356        /* If the controller doesn't know, we scan.
4357         *
4358         * Note: We look for all 40 wire detects at this point.  Any
4359         *       80 wire detect is taken to be 80 wire cable because
4360         * - in many setups only the one drive (slave if present) will
4361         *   give a valid detect
4362         * - if you have a non detect capable drive you don't want it
4363         *   to colour the choice
4364         */
4365        ata_for_each_link(link, ap, EDGE) {
4366                ata_for_each_dev(dev, link, ENABLED) {
4367                        if (!ata_is_40wire(dev))
4368                                return 0;
4369                }
4370        }
4371        return 1;
4372}
4373
4374/**
4375 *      ata_dev_xfermask - Compute supported xfermask of the given device
4376 *      @dev: Device to compute xfermask for
4377 *
4378 *      Compute supported xfermask of @dev and store it in
4379 *      dev->*_mask.  This function is responsible for applying all
4380 *      known limits including host controller limits, device
4381 *      blacklist, etc...
4382 *
4383 *      LOCKING:
4384 *      None.
4385 */
4386static void ata_dev_xfermask(struct ata_device *dev)
4387{
4388        struct ata_link *link = dev->link;
4389        struct ata_port *ap = link->ap;
4390        struct ata_host *host = ap->host;
4391        unsigned long xfer_mask;
4392
4393        /* controller modes available */
4394        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4395                                      ap->mwdma_mask, ap->udma_mask);
4396
4397        /* drive modes available */
4398        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4399                                       dev->mwdma_mask, dev->udma_mask);
4400        xfer_mask &= ata_id_xfermask(dev->id);
4401
4402        /*
4403         *      CFA Advanced TrueIDE timings are not allowed on a shared
4404         *      cable
4405         */
4406        if (ata_dev_pair(dev)) {
4407                /* No PIO5 or PIO6 */
4408                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4409                /* No MWDMA3 or MWDMA 4 */
4410                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4411        }
4412
4413        if (ata_dma_blacklisted(dev)) {
4414                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4415                ata_dev_warn(dev,
4416                             "device is on DMA blacklist, disabling DMA\n");
4417        }
4418
4419        if ((host->flags & ATA_HOST_SIMPLEX) &&
4420            host->simplex_claimed && host->simplex_claimed != ap) {
4421                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4422                ata_dev_warn(dev,
4423                             "simplex DMA is claimed by other device, disabling DMA\n");
4424        }
4425
4426        if (ap->flags & ATA_FLAG_NO_IORDY)
4427                xfer_mask &= ata_pio_mask_no_iordy(dev);
4428
4429        if (ap->ops->mode_filter)
4430                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4431
4432        /* Apply cable rule here.  Don't apply it early because when
4433         * we handle hot plug the cable type can itself change.
4434         * Check this last so that we know if the transfer rate was
4435         * solely limited by the cable.
4436         * Unknown or 80 wire cables reported host side are checked
4437         * drive side as well. Cases where we know a 40wire cable
4438         * is used safely for 80 are not checked here.
4439         */
4440        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4441                /* UDMA/44 or higher would be available */
4442                if (cable_is_40wire(ap)) {
4443                        ata_dev_warn(dev,
4444                                     "limited to UDMA/33 due to 40-wire cable\n");
4445                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4446                }
4447
4448        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4449                            &dev->mwdma_mask, &dev->udma_mask);
4450}
4451
4452/**
4453 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4454 *      @dev: Device to which command will be sent
4455 *
4456 *      Issue SET FEATURES - XFER MODE command to device @dev
4457 *      on port @ap.
4458 *
4459 *      LOCKING:
4460 *      PCI/etc. bus probe sem.
4461 *
4462 *      RETURNS:
4463 *      0 on success, AC_ERR_* mask otherwise.
4464 */
4465
4466static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4467{
4468        struct ata_taskfile tf;
4469        unsigned int err_mask;
4470
4471        /* set up set-features taskfile */
4472        DPRINTK("set features - xfer mode\n");
4473
4474        /* Some controllers and ATAPI devices show flaky interrupt
4475         * behavior after setting xfer mode.  Use polling instead.
4476         */
4477        ata_tf_init(dev, &tf);
4478        tf.command = ATA_CMD_SET_FEATURES;
4479        tf.feature = SETFEATURES_XFER;
4480        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4481        tf.protocol = ATA_PROT_NODATA;
4482        /* If we are using IORDY we must send the mode setting command */
4483        if (ata_pio_need_iordy(dev))
4484                tf.nsect = dev->xfer_mode;
4485        /* If the device has IORDY and the controller does not - turn it off */
4486        else if (ata_id_has_iordy(dev->id))
4487                tf.nsect = 0x01;
4488        else /* In the ancient relic department - skip all of this */
4489                return 0;
4490
4491        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4492
4493        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4494        return err_mask;
4495}
4496
4497/**
4498 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4499 *      @dev: Device to which command will be sent
4500 *      @enable: Whether to enable or disable the feature
4501 *      @feature: The sector count represents the feature to set
4502 *
4503 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4504 *      on port @ap with sector count
4505 *
4506 *      LOCKING:
4507 *      PCI/etc. bus probe sem.
4508 *
4509 *      RETURNS:
4510 *      0 on success, AC_ERR_* mask otherwise.
4511 */
4512unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4513{
4514        struct ata_taskfile tf;
4515        unsigned int err_mask;
4516
4517        /* set up set-features taskfile */
4518        DPRINTK("set features - SATA features\n");
4519
4520        ata_tf_init(dev, &tf);
4521        tf.command = ATA_CMD_SET_FEATURES;
4522        tf.feature = enable;
4523        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4524        tf.protocol = ATA_PROT_NODATA;
4525        tf.nsect = feature;
4526
4527        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4528
4529        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4530        return err_mask;
4531}
4532EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4533
4534/**
4535 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4536 *      @dev: Device to which command will be sent
4537 *      @heads: Number of heads (taskfile parameter)
4538 *      @sectors: Number of sectors (taskfile parameter)
4539 *
4540 *      LOCKING:
4541 *      Kernel thread context (may sleep)
4542 *
4543 *      RETURNS:
4544 *      0 on success, AC_ERR_* mask otherwise.
4545 */
4546static unsigned int ata_dev_init_params(struct ata_device *dev,
4547                                        u16 heads, u16 sectors)
4548{
4549        struct ata_taskfile tf;
4550        unsigned int err_mask;
4551
4552        /* Number of sectors per track 1-255. Number of heads 1-16 */
4553        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4554                return AC_ERR_INVALID;
4555
4556        /* set up init dev params taskfile */
4557        DPRINTK("init dev params \n");
4558
4559        ata_tf_init(dev, &tf);
4560        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4561        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4562        tf.protocol = ATA_PROT_NODATA;
4563        tf.nsect = sectors;
4564        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4565
4566        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4567        /* A clean abort indicates an original or just out of spec drive
4568           and we should continue as we issue the setup based on the
4569           drive reported working geometry */
4570        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4571                err_mask = 0;
4572
4573        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4574        return err_mask;
4575}
4576
4577/**
4578 *      ata_sg_clean - Unmap DMA memory associated with command
4579 *      @qc: Command containing DMA memory to be released
4580 *
4581 *      Unmap all mapped DMA memory associated with this command.
4582 *
4583 *      LOCKING:
4584 *      spin_lock_irqsave(host lock)
4585 */
4586void ata_sg_clean(struct ata_queued_cmd *qc)
4587{
4588        struct ata_port *ap = qc->ap;
4589        struct scatterlist *sg = qc->sg;
4590        int dir = qc->dma_dir;
4591
4592        WARN_ON_ONCE(sg == NULL);
4593
4594        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4595
4596        if (qc->n_elem)
4597                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4598
4599        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4600        qc->sg = NULL;
4601}
4602
4603/**
4604 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4605 *      @qc: Metadata associated with taskfile to check
4606 *
4607 *      Allow low-level driver to filter ATA PACKET commands, returning
4608 *      a status indicating whether or not it is OK to use DMA for the
4609 *      supplied PACKET command.
4610 *
4611 *      LOCKING:
4612 *      spin_lock_irqsave(host lock)
4613 *
4614 *      RETURNS: 0 when ATAPI DMA can be used
4615 *               nonzero otherwise
4616 */
4617int atapi_check_dma(struct ata_queued_cmd *qc)
4618{
4619        struct ata_port *ap = qc->ap;
4620
4621        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4622         * few ATAPI devices choke on such DMA requests.
4623         */
4624        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4625            unlikely(qc->nbytes & 15))
4626                return 1;
4627
4628        if (ap->ops->check_atapi_dma)
4629                return ap->ops->check_atapi_dma(qc);
4630
4631        return 0;
4632}
4633
4634/**
4635 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4636 *      @qc: ATA command in question
4637 *
4638 *      Non-NCQ commands cannot run with any other command, NCQ or
4639 *      not.  As upper layer only knows the queue depth, we are
4640 *      responsible for maintaining exclusion.  This function checks
4641 *      whether a new command @qc can be issued.
4642 *
4643 *      LOCKING:
4644 *      spin_lock_irqsave(host lock)
4645 *
4646 *      RETURNS:
4647 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4648 */
4649int ata_std_qc_defer(struct ata_queued_cmd *qc)
4650{
4651        struct ata_link *link = qc->dev->link;
4652
4653        if (qc->tf.protocol == ATA_PROT_NCQ) {
4654                if (!ata_tag_valid(link->active_tag))
4655                        return 0;
4656        } else {
4657                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4658                        return 0;
4659        }
4660
4661        return ATA_DEFER_LINK;
4662}
4663
4664void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4665
4666/**
4667 *      ata_sg_init - Associate command with scatter-gather table.
4668 *      @qc: Command to be associated
4669 *      @sg: Scatter-gather table.
4670 *      @n_elem: Number of elements in s/g table.
4671 *
4672 *      Initialize the data-related elements of queued_cmd @qc
4673 *      to point to a scatter-gather table @sg, containing @n_elem
4674 *      elements.
4675 *
4676 *      LOCKING:
4677 *      spin_lock_irqsave(host lock)
4678 */
4679void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4680                 unsigned int n_elem)
4681{
4682        qc->sg = sg;
4683        qc->n_elem = n_elem;
4684        qc->cursg = qc->sg;
4685}
4686
4687/**
4688 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4689 *      @qc: Command with scatter-gather table to be mapped.
4690 *
4691 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4692 *
4693 *      LOCKING:
4694 *      spin_lock_irqsave(host lock)
4695 *
4696 *      RETURNS:
4697 *      Zero on success, negative on error.
4698 *
4699 */
4700static int ata_sg_setup(struct ata_queued_cmd *qc)
4701{
4702        struct ata_port *ap = qc->ap;
4703        unsigned int n_elem;
4704
4705        VPRINTK("ENTER, ata%u\n", ap->print_id);
4706
4707        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4708        if (n_elem < 1)
4709                return -1;
4710
4711        DPRINTK("%d sg elements mapped\n", n_elem);
4712        qc->orig_n_elem = qc->n_elem;
4713        qc->n_elem = n_elem;
4714        qc->flags |= ATA_QCFLAG_DMAMAP;
4715
4716        return 0;
4717}
4718
4719/**
4720 *      swap_buf_le16 - swap halves of 16-bit words in place
4721 *      @buf:  Buffer to swap
4722 *      @buf_words:  Number of 16-bit words in buffer.
4723 *
4724 *      Swap halves of 16-bit words if needed to convert from
4725 *      little-endian byte order to native cpu byte order, or
4726 *      vice-versa.
4727 *
4728 *      LOCKING:
4729 *      Inherited from caller.
4730 */
4731void swap_buf_le16(u16 *buf, unsigned int buf_words)
4732{
4733#ifdef __BIG_ENDIAN
4734        unsigned int i;
4735
4736        for (i = 0; i < buf_words; i++)
4737                buf[i] = le16_to_cpu(buf[i]);
4738#endif /* __BIG_ENDIAN */
4739}
4740
4741/**
4742 *      ata_qc_new - Request an available ATA command, for queueing
4743 *      @ap: target port
4744 *
4745 *      LOCKING:
4746 *      None.
4747 */
4748
4749static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4750{
4751        struct ata_queued_cmd *qc = NULL;
4752        unsigned int i;
4753
4754        /* no command while frozen */
4755        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4756                return NULL;
4757
4758        /* the last tag is reserved for internal command. */
4759        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4760                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4761                        qc = __ata_qc_from_tag(ap, i);
4762                        break;
4763                }
4764
4765        if (qc)
4766                qc->tag = i;
4767
4768        return qc;
4769}
4770
4771/**
4772 *      ata_qc_new_init - Request an available ATA command, and initialize it
4773 *      @dev: Device from whom we request an available command structure
4774 *
4775 *      LOCKING:
4776 *      None.
4777 */
4778
4779struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4780{
4781        struct ata_port *ap = dev->link->ap;
4782        struct ata_queued_cmd *qc;
4783
4784        qc = ata_qc_new(ap);
4785        if (qc) {
4786                qc->scsicmd = NULL;
4787                qc->ap = ap;
4788                qc->dev = dev;
4789
4790                ata_qc_reinit(qc);
4791        }
4792
4793        return qc;
4794}
4795
4796/**
4797 *      ata_qc_free - free unused ata_queued_cmd
4798 *      @qc: Command to complete
4799 *
4800 *      Designed to free unused ata_queued_cmd object
4801 *      in case something prevents using it.
4802 *
4803 *      LOCKING:
4804 *      spin_lock_irqsave(host lock)
4805 */
4806void ata_qc_free(struct ata_queued_cmd *qc)
4807{
4808        struct ata_port *ap;
4809        unsigned int tag;
4810
4811        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4812        ap = qc->ap;
4813
4814        qc->flags = 0;
4815        tag = qc->tag;
4816        if (likely(ata_tag_valid(tag))) {
4817                qc->tag = ATA_TAG_POISON;
4818                clear_bit(tag, &ap->qc_allocated);
4819        }
4820}
4821
4822void __ata_qc_complete(struct ata_queued_cmd *qc)
4823{
4824        struct ata_port *ap;
4825        struct ata_link *link;
4826
4827        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4828        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4829        ap = qc->ap;
4830        link = qc->dev->link;
4831
4832        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4833                ata_sg_clean(qc);
4834
4835        /* command should be marked inactive atomically with qc completion */
4836        if (qc->tf.protocol == ATA_PROT_NCQ) {
4837                link->sactive &= ~(1 << qc->tag);
4838                if (!link->sactive)
4839                        ap->nr_active_links--;
4840        } else {
4841                link->active_tag = ATA_TAG_POISON;
4842                ap->nr_active_links--;
4843        }
4844
4845        /* clear exclusive status */
4846        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4847                     ap->excl_link == link))
4848                ap->excl_link = NULL;
4849
4850        /* atapi: mark qc as inactive to prevent the interrupt handler
4851         * from completing the command twice later, before the error handler
4852         * is called. (when rc != 0 and atapi request sense is needed)
4853         */
4854        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4855        ap->qc_active &= ~(1 << qc->tag);
4856
4857        /* call completion callback */
4858        qc->complete_fn(qc);
4859}
4860
4861static void fill_result_tf(struct ata_queued_cmd *qc)
4862{
4863        struct ata_port *ap = qc->ap;
4864
4865        qc->result_tf.flags = qc->tf.flags;
4866        ap->ops->qc_fill_rtf(qc);
4867}
4868
4869static void ata_verify_xfer(struct ata_queued_cmd *qc)
4870{
4871        struct ata_device *dev = qc->dev;
4872
4873        if (ata_is_nodata(qc->tf.protocol))
4874                return;
4875
4876        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4877                return;
4878
4879        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4880}
4881
4882/**
4883 *      ata_qc_complete - Complete an active ATA command
4884 *      @qc: Command to complete
4885 *
4886 *      Indicate to the mid and upper layers that an ATA command has
4887 *      completed, with either an ok or not-ok status.
4888 *
4889 *      Refrain from calling this function multiple times when
4890 *      successfully completing multiple NCQ commands.
4891 *      ata_qc_complete_multiple() should be used instead, which will
4892 *      properly update IRQ expect state.
4893 *
4894 *      LOCKING:
4895 *      spin_lock_irqsave(host lock)
4896 */
4897void ata_qc_complete(struct ata_queued_cmd *qc)
4898{
4899        struct ata_port *ap = qc->ap;
4900
4901        /* XXX: New EH and old EH use different mechanisms to
4902         * synchronize EH with regular execution path.
4903         *
4904         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4905         * Normal execution path is responsible for not accessing a
4906         * failed qc.  libata core enforces the rule by returning NULL
4907         * from ata_qc_from_tag() for failed qcs.
4908         *
4909         * Old EH depends on ata_qc_complete() nullifying completion
4910         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4911         * not synchronize with interrupt handler.  Only PIO task is
4912         * taken care of.
4913         */
4914        if (ap->ops->error_handler) {
4915                struct ata_device *dev = qc->dev;
4916                struct ata_eh_info *ehi = &dev->link->eh_info;
4917
4918                if (unlikely(qc->err_mask))
4919                        qc->flags |= ATA_QCFLAG_FAILED;
4920
4921                /*
4922                 * Finish internal commands without any further processing
4923                 * and always with the result TF filled.
4924                 */
4925                if (unlikely(ata_tag_internal(qc->tag))) {
4926                        fill_result_tf(qc);
4927                        __ata_qc_complete(qc);
4928                        return;
4929                }
4930
4931                /*
4932                 * Non-internal qc has failed.  Fill the result TF and
4933                 * summon EH.
4934                 */
4935                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4936                        fill_result_tf(qc);
4937                        ata_qc_schedule_eh(qc);
4938                        return;
4939                }
4940
4941                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4942
4943                /* read result TF if requested */
4944                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4945                        fill_result_tf(qc);
4946
4947                /* Some commands need post-processing after successful
4948                 * completion.
4949                 */
4950                switch (qc->tf.command) {
4951                case ATA_CMD_SET_FEATURES:
4952                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4953                            qc->tf.feature != SETFEATURES_WC_OFF)
4954                                break;
4955                        /* fall through */
4956                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4957                case ATA_CMD_SET_MULTI: /* multi_count changed */
4958                        /* revalidate device */
4959                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4960                        ata_port_schedule_eh(ap);
4961                        break;
4962
4963                case ATA_CMD_SLEEP:
4964                        dev->flags |= ATA_DFLAG_SLEEPING;
4965                        break;
4966                }
4967
4968                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4969                        ata_verify_xfer(qc);
4970
4971                __ata_qc_complete(qc);
4972        } else {
4973                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4974                        return;
4975
4976                /* read result TF if failed or requested */
4977                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4978                        fill_result_tf(qc);
4979
4980                __ata_qc_complete(qc);
4981        }
4982}
4983
4984/**
4985 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4986 *      @ap: port in question
4987 *      @qc_active: new qc_active mask
4988 *
4989 *      Complete in-flight commands.  This functions is meant to be
4990 *      called from low-level driver's interrupt routine to complete
4991 *      requests normally.  ap->qc_active and @qc_active is compared
4992 *      and commands are completed accordingly.
4993 *
4994 *      Always use this function when completing multiple NCQ commands
4995 *      from IRQ handlers instead of calling ata_qc_complete()
4996 *      multiple times to keep IRQ expect status properly in sync.
4997 *
4998 *      LOCKING:
4999 *      spin_lock_irqsave(host lock)
5000 *
5001 *      RETURNS:
5002 *      Number of completed commands on success, -errno otherwise.
5003 */
5004int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5005{
5006        int nr_done = 0;
5007        u32 done_mask;
5008
5009        done_mask = ap->qc_active ^ qc_active;
5010
5011        if (unlikely(done_mask & qc_active)) {
5012                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5013                             ap->qc_active, qc_active);
5014                return -EINVAL;
5015        }
5016
5017        while (done_mask) {
5018                struct ata_queued_cmd *qc;
5019                unsigned int tag = __ffs(done_mask);
5020
5021                qc = ata_qc_from_tag(ap, tag);
5022                if (qc) {
5023                        ata_qc_complete(qc);
5024                        nr_done++;
5025                }
5026                done_mask &= ~(1 << tag);
5027        }
5028
5029        return nr_done;
5030}
5031
5032/**
5033 *      ata_qc_issue - issue taskfile to device
5034 *      @qc: command to issue to device
5035 *
5036 *      Prepare an ATA command to submission to device.
5037 *      This includes mapping the data into a DMA-able
5038 *      area, filling in the S/G table, and finally
5039 *      writing the taskfile to hardware, starting the command.
5040 *
5041 *      LOCKING:
5042 *      spin_lock_irqsave(host lock)
5043 */
5044void ata_qc_issue(struct ata_queued_cmd *qc)
5045{
5046        struct ata_port *ap = qc->ap;
5047        struct ata_link *link = qc->dev->link;
5048        u8 prot = qc->tf.protocol;
5049
5050        /* Make sure only one non-NCQ command is outstanding.  The
5051         * check is skipped for old EH because it reuses active qc to
5052         * request ATAPI sense.
5053         */
5054        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5055
5056        if (ata_is_ncq(prot)) {
5057                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5058
5059                if (!link->sactive)
5060                        ap->nr_active_links++;
5061                link->sactive |= 1 << qc->tag;
5062        } else {
5063                WARN_ON_ONCE(link->sactive);
5064
5065                ap->nr_active_links++;
5066                link->active_tag = qc->tag;
5067        }
5068
5069        qc->flags |= ATA_QCFLAG_ACTIVE;
5070        ap->qc_active |= 1 << qc->tag;
5071
5072        /*
5073         * We guarantee to LLDs that they will have at least one
5074         * non-zero sg if the command is a data command.
5075         */
5076        if (WARN_ON_ONCE(ata_is_data(prot) &&
5077                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5078                goto sys_err;
5079
5080        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5081                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5082                if (ata_sg_setup(qc))
5083                        goto sys_err;
5084
5085        /* if device is sleeping, schedule reset and abort the link */
5086        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5087                link->eh_info.action |= ATA_EH_RESET;
5088                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5089                ata_link_abort(link);
5090                return;
5091        }
5092
5093        ap->ops->qc_prep(qc);
5094
5095        qc->err_mask |= ap->ops->qc_issue(qc);
5096        if (unlikely(qc->err_mask))
5097                goto err;
5098        return;
5099
5100sys_err:
5101        qc->err_mask |= AC_ERR_SYSTEM;
5102err:
5103        ata_qc_complete(qc);
5104}
5105
5106/**
5107 *      sata_scr_valid - test whether SCRs are accessible
5108 *      @link: ATA link to test SCR accessibility for
5109 *
5110 *      Test whether SCRs are accessible for @link.
5111 *
5112 *      LOCKING:
5113 *      None.
5114 *
5115 *      RETURNS:
5116 *      1 if SCRs are accessible, 0 otherwise.
5117 */
5118int sata_scr_valid(struct ata_link *link)
5119{
5120        struct ata_port *ap = link->ap;
5121
5122        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5123}
5124
5125/**
5126 *      sata_scr_read - read SCR register of the specified port
5127 *      @link: ATA link to read SCR for
5128 *      @reg: SCR to read
5129 *      @val: Place to store read value
5130 *
5131 *      Read SCR register @reg of @link into *@val.  This function is
5132 *      guaranteed to succeed if @link is ap->link, the cable type of
5133 *      the port is SATA and the port implements ->scr_read.
5134 *
5135 *      LOCKING:
5136 *      None if @link is ap->link.  Kernel thread context otherwise.
5137 *
5138 *      RETURNS:
5139 *      0 on success, negative errno on failure.
5140 */
5141int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5142{
5143        if (ata_is_host_link(link)) {
5144                if (sata_scr_valid(link))
5145                        return link->ap->ops->scr_read(link, reg, val);
5146                return -EOPNOTSUPP;
5147        }
5148
5149        return sata_pmp_scr_read(link, reg, val);
5150}
5151
5152/**
5153 *      sata_scr_write - write SCR register of the specified port
5154 *      @link: ATA link to write SCR for
5155 *      @reg: SCR to write
5156 *      @val: value to write
5157 *
5158 *      Write @val to SCR register @reg of @link.  This function is
5159 *      guaranteed to succeed if @link is ap->link, the cable type of
5160 *      the port is SATA and the port implements ->scr_read.
5161 *
5162 *      LOCKING:
5163 *      None if @link is ap->link.  Kernel thread context otherwise.
5164 *
5165 *      RETURNS:
5166 *      0 on success, negative errno on failure.
5167 */
5168int sata_scr_write(struct ata_link *link, int reg, u32 val)
5169{
5170        if (ata_is_host_link(link)) {
5171                if (sata_scr_valid(link))
5172                        return link->ap->ops->scr_write(link, reg, val);
5173                return -EOPNOTSUPP;
5174        }
5175
5176        return sata_pmp_scr_write(link, reg, val);
5177}
5178
5179/**
5180 *      sata_scr_write_flush - write SCR register of the specified port and flush
5181 *      @link: ATA link to write SCR for
5182 *      @reg: SCR to write
5183 *      @val: value to write
5184 *
5185 *      This function is identical to sata_scr_write() except that this
5186 *      function performs flush after writing to the register.
5187 *
5188 *      LOCKING:
5189 *      None if @link is ap->link.  Kernel thread context otherwise.
5190 *
5191 *      RETURNS:
5192 *      0 on success, negative errno on failure.
5193 */
5194int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5195{
5196        if (ata_is_host_link(link)) {
5197                int rc;
5198
5199                if (sata_scr_valid(link)) {
5200                        rc = link->ap->ops->scr_write(link, reg, val);
5201                        if (rc == 0)
5202                                rc = link->ap->ops->scr_read(link, reg, &val);
5203                        return rc;
5204                }
5205                return -EOPNOTSUPP;
5206        }
5207
5208        return sata_pmp_scr_write(link, reg, val);
5209}
5210
5211/**
5212 *      ata_phys_link_online - test whether the given link is online
5213 *      @link: ATA link to test
5214 *
5215 *      Test whether @link is online.  Note that this function returns
5216 *      0 if online status of @link cannot be obtained, so
5217 *      ata_link_online(link) != !ata_link_offline(link).
5218 *
5219 *      LOCKING:
5220 *      None.
5221 *
5222 *      RETURNS:
5223 *      True if the port online status is available and online.
5224 */
5225bool ata_phys_link_online(struct ata_link *link)
5226{
5227        u32 sstatus;
5228
5229        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5230            ata_sstatus_online(sstatus))
5231                return true;
5232        return false;
5233}
5234
5235/**
5236 *      ata_phys_link_offline - test whether the given link is offline
5237 *      @link: ATA link to test
5238 *
5239 *      Test whether @link is offline.  Note that this function
5240 *      returns 0 if offline status of @link cannot be obtained, so
5241 *      ata_link_online(link) != !ata_link_offline(link).
5242 *
5243 *      LOCKING:
5244 *      None.
5245 *
5246 *      RETURNS:
5247 *      True if the port offline status is available and offline.
5248 */
5249bool ata_phys_link_offline(struct ata_link *link)
5250{
5251        u32 sstatus;
5252
5253        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254            !ata_sstatus_online(sstatus))
5255                return true;
5256        return false;
5257}
5258
5259/**
5260 *      ata_link_online - test whether the given link is online
5261 *      @link: ATA link to test
5262 *
5263 *      Test whether @link is online.  This is identical to
5264 *      ata_phys_link_online() when there's no slave link.  When
5265 *      there's a slave link, this function should only be called on
5266 *      the master link and will return true if any of M/S links is
5267 *      online.
5268 *
5269 *      LOCKING:
5270 *      None.
5271 *
5272 *      RETURNS:
5273 *      True if the port online status is available and online.
5274 */
5275bool ata_link_online(struct ata_link *link)
5276{
5277        struct ata_link *slave = link->ap->slave_link;
5278
5279        WARN_ON(link == slave); /* shouldn't be called on slave link */
5280
5281        return ata_phys_link_online(link) ||
5282                (slave && ata_phys_link_online(slave));
5283}
5284
5285/**
5286 *      ata_link_offline - test whether the given link is offline
5287 *      @link: ATA link to test
5288 *
5289 *      Test whether @link is offline.  This is identical to
5290 *      ata_phys_link_offline() when there's no slave link.  When
5291 *      there's a slave link, this function should only be called on
5292 *      the master link and will return true if both M/S links are
5293 *      offline.
5294 *
5295 *      LOCKING:
5296 *      None.
5297 *
5298 *      RETURNS:
5299 *      True if the port offline status is available and offline.
5300 */
5301bool ata_link_offline(struct ata_link *link)
5302{
5303        struct ata_link *slave = link->ap->slave_link;
5304
5305        WARN_ON(link == slave); /* shouldn't be called on slave link */
5306
5307        return ata_phys_link_offline(link) &&
5308                (!slave || ata_phys_link_offline(slave));
5309}
5310
5311#ifdef CONFIG_PM
5312static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5313                               unsigned int action, unsigned int ehi_flags,
5314                               int *async)
5315{
5316        struct ata_link *link;
5317        unsigned long flags;
5318        int rc = 0;
5319
5320        /* Previous resume operation might still be in
5321         * progress.  Wait for PM_PENDING to clear.
5322         */
5323        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5324                if (async) {
5325                        *async = -EAGAIN;
5326                        return 0;
5327                }
5328                ata_port_wait_eh(ap);
5329                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5330        }
5331
5332        /* request PM ops to EH */
5333        spin_lock_irqsave(ap->lock, flags);
5334
5335        ap->pm_mesg = mesg;
5336        if (async)
5337                ap->pm_result = async;
5338        else
5339                ap->pm_result = &rc;
5340
5341        ap->pflags |= ATA_PFLAG_PM_PENDING;
5342        ata_for_each_link(link, ap, HOST_FIRST) {
5343                link->eh_info.action |= action;
5344                link->eh_info.flags |= ehi_flags;
5345        }
5346
5347        ata_port_schedule_eh(ap);
5348
5349        spin_unlock_irqrestore(ap->lock, flags);
5350
5351        /* wait and check result */
5352        if (!async) {
5353                ata_port_wait_eh(ap);
5354                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5355        }
5356
5357        return rc;
5358}
5359
5360static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5361{
5362        /*
5363         * On some hardware, device fails to respond after spun down
5364         * for suspend.  As the device won't be used before being
5365         * resumed, we don't need to touch the device.  Ask EH to skip
5366         * the usual stuff and proceed directly to suspend.
5367         *
5368         * http://thread.gmane.org/gmane.linux.ide/46764
5369         */
5370        unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5371                                 ATA_EHI_NO_RECOVERY;
5372        return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5373}
5374
5375static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5376{
5377        struct ata_port *ap = to_ata_port(dev);
5378
5379        return __ata_port_suspend_common(ap, mesg, NULL);
5380}
5381
5382static int ata_port_suspend(struct device *dev)
5383{
5384        if (pm_runtime_suspended(dev))
5385                return 0;
5386
5387        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5388}
5389
5390static int ata_port_do_freeze(struct device *dev)
5391{
5392        if (pm_runtime_suspended(dev))
5393                return 0;
5394
5395        return ata_port_suspend_common(dev, PMSG_FREEZE);
5396}
5397
5398static int ata_port_poweroff(struct device *dev)
5399{
5400        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5401}
5402
5403static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5404                                    int *async)
5405{
5406        int rc;
5407
5408        rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5409                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5410        return rc;
5411}
5412
5413static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5414{
5415        struct ata_port *ap = to_ata_port(dev);
5416
5417        return __ata_port_resume_common(ap, mesg, NULL);
5418}
5419
5420static int ata_port_resume(struct device *dev)
5421{
5422        int rc;
5423
5424        rc = ata_port_resume_common(dev, PMSG_RESUME);
5425        if (!rc) {
5426                pm_runtime_disable(dev);
5427                pm_runtime_set_active(dev);
5428                pm_runtime_enable(dev);
5429        }
5430
5431        return rc;
5432}
5433
5434/*
5435 * For ODDs, the upper layer will poll for media change every few seconds,
5436 * which will make it enter and leave suspend state every few seconds. And
5437 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5438 * is very little and the ODD may malfunction after constantly being reset.
5439 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5440 * ODD is attached to the port.
5441 */
5442static int ata_port_runtime_idle(struct device *dev)
5443{
5444        struct ata_port *ap = to_ata_port(dev);
5445        struct ata_link *link;
5446        struct ata_device *adev;
5447
5448        ata_for_each_link(link, ap, HOST_FIRST) {
5449                ata_for_each_dev(adev, link, ENABLED)
5450                        if (adev->class == ATA_DEV_ATAPI &&
5451                            !zpodd_dev_enabled(adev))
5452                                return -EBUSY;
5453        }
5454
5455        return 0;
5456}
5457
5458static int ata_port_runtime_suspend(struct device *dev)
5459{
5460        return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5461}
5462
5463static int ata_port_runtime_resume(struct device *dev)
5464{
5465        return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5466}
5467
5468static const struct dev_pm_ops ata_port_pm_ops = {
5469        .suspend = ata_port_suspend,
5470        .resume = ata_port_resume,
5471        .freeze = ata_port_do_freeze,
5472        .thaw = ata_port_resume,
5473        .poweroff = ata_port_poweroff,
5474        .restore = ata_port_resume,
5475
5476        .runtime_suspend = ata_port_runtime_suspend,
5477        .runtime_resume = ata_port_runtime_resume,
5478        .runtime_idle = ata_port_runtime_idle,
5479};
5480
5481/* sas ports don't participate in pm runtime management of ata_ports,
5482 * and need to resume ata devices at the domain level, not the per-port
5483 * level. sas suspend/resume is async to allow parallel port recovery
5484 * since sas has multiple ata_port instances per Scsi_Host.
5485 */
5486int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5487{
5488        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5489}
5490EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5491
5492int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5493{
5494        return __ata_port_resume_common(ap, PMSG_RESUME, async);
5495}