linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/slab.h>
  14#include <linux/bootmem.h>
  15#include <linux/export.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/bug.h>
  21#include <asm/io.h>
  22#include <asm/processor.h>
  23
  24#include "internal.h"
  25
  26#ifndef CONFIG_NEED_MULTIPLE_NODES
  27struct pglist_data __refdata contig_page_data = {
  28        .bdata = &bootmem_node_data[0]
  29};
  30EXPORT_SYMBOL(contig_page_data);
  31#endif
  32
  33unsigned long max_low_pfn;
  34unsigned long min_low_pfn;
  35unsigned long max_pfn;
  36
  37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  38
  39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  40
  41static int bootmem_debug;
  42
  43static int __init bootmem_debug_setup(char *buf)
  44{
  45        bootmem_debug = 1;
  46        return 0;
  47}
  48early_param("bootmem_debug", bootmem_debug_setup);
  49
  50#define bdebug(fmt, args...) ({                         \
  51        if (unlikely(bootmem_debug))                    \
  52                printk(KERN_INFO                        \
  53                        "bootmem::%s " fmt,             \
  54                        __func__, ## args);             \
  55})
  56
  57static unsigned long __init bootmap_bytes(unsigned long pages)
  58{
  59        unsigned long bytes = DIV_ROUND_UP(pages, 8);
  60
  61        return ALIGN(bytes, sizeof(long));
  62}
  63
  64/**
  65 * bootmem_bootmap_pages - calculate bitmap size in pages
  66 * @pages: number of pages the bitmap has to represent
  67 */
  68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  69{
  70        unsigned long bytes = bootmap_bytes(pages);
  71
  72        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  73}
  74
  75/*
  76 * link bdata in order
  77 */
  78static void __init link_bootmem(bootmem_data_t *bdata)
  79{
  80        bootmem_data_t *ent;
  81
  82        list_for_each_entry(ent, &bdata_list, list) {
  83                if (bdata->node_min_pfn < ent->node_min_pfn) {
  84                        list_add_tail(&bdata->list, &ent->list);
  85                        return;
  86                }
  87        }
  88
  89        list_add_tail(&bdata->list, &bdata_list);
  90}
  91
  92/*
  93 * Called once to set up the allocator itself.
  94 */
  95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  96        unsigned long mapstart, unsigned long start, unsigned long end)
  97{
  98        unsigned long mapsize;
  99
 100        mminit_validate_memmodel_limits(&start, &end);
 101        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 102        bdata->node_min_pfn = start;
 103        bdata->node_low_pfn = end;
 104        link_bootmem(bdata);
 105
 106        /*
 107         * Initially all pages are reserved - setup_arch() has to
 108         * register free RAM areas explicitly.
 109         */
 110        mapsize = bootmap_bytes(end - start);
 111        memset(bdata->node_bootmem_map, 0xff, mapsize);
 112
 113        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 114                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 115
 116        return mapsize;
 117}
 118
 119/**
 120 * init_bootmem_node - register a node as boot memory
 121 * @pgdat: node to register
 122 * @freepfn: pfn where the bitmap for this node is to be placed
 123 * @startpfn: first pfn on the node
 124 * @endpfn: first pfn after the node
 125 *
 126 * Returns the number of bytes needed to hold the bitmap for this node.
 127 */
 128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 129                                unsigned long startpfn, unsigned long endpfn)
 130{
 131        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 132}
 133
 134/**
 135 * init_bootmem - register boot memory
 136 * @start: pfn where the bitmap is to be placed
 137 * @pages: number of available physical pages
 138 *
 139 * Returns the number of bytes needed to hold the bitmap.
 140 */
 141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 142{
 143        max_low_pfn = pages;
 144        min_low_pfn = start;
 145        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 146}
 147
 148/*
 149 * free_bootmem_late - free bootmem pages directly to page allocator
 150 * @addr: starting physical address of the range
 151 * @size: size of the range in bytes
 152 *
 153 * This is only useful when the bootmem allocator has already been torn
 154 * down, but we are still initializing the system.  Pages are given directly
 155 * to the page allocator, no bootmem metadata is updated because it is gone.
 156 */
 157void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
 158{
 159        unsigned long cursor, end;
 160
 161        kmemleak_free_part(__va(physaddr), size);
 162
 163        cursor = PFN_UP(physaddr);
 164        end = PFN_DOWN(physaddr + size);
 165
 166        for (; cursor < end; cursor++) {
 167                __free_pages_bootmem(pfn_to_page(cursor), 0);
 168                totalram_pages++;
 169        }
 170}
 171
 172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 173{
 174        struct page *page;
 175        unsigned long start, end, pages, count = 0;
 176
 177        if (!bdata->node_bootmem_map)
 178                return 0;
 179
 180        start = bdata->node_min_pfn;
 181        end = bdata->node_low_pfn;
 182
 183        bdebug("nid=%td start=%lx end=%lx\n",
 184                bdata - bootmem_node_data, start, end);
 185
 186        while (start < end) {
 187                unsigned long *map, idx, vec;
 188                unsigned shift;
 189
 190                map = bdata->node_bootmem_map;
 191                idx = start - bdata->node_min_pfn;
 192                shift = idx & (BITS_PER_LONG - 1);
 193                /*
 194                 * vec holds at most BITS_PER_LONG map bits,
 195                 * bit 0 corresponds to start.
 196                 */
 197                vec = ~map[idx / BITS_PER_LONG];
 198
 199                if (shift) {
 200                        vec >>= shift;
 201                        if (end - start >= BITS_PER_LONG)
 202                                vec |= ~map[idx / BITS_PER_LONG + 1] <<
 203                                        (BITS_PER_LONG - shift);
 204                }
 205                /*
 206                 * If we have a properly aligned and fully unreserved
 207                 * BITS_PER_LONG block of pages in front of us, free
 208                 * it in one go.
 209                 */
 210                if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
 211                        int order = ilog2(BITS_PER_LONG);
 212
 213                        __free_pages_bootmem(pfn_to_page(start), order);
 214                        count += BITS_PER_LONG;
 215                        start += BITS_PER_LONG;
 216                } else {
 217                        unsigned long cur = start;
 218
 219                        start = ALIGN(start + 1, BITS_PER_LONG);
 220                        while (vec && cur != start) {
 221                                if (vec & 1) {
 222                                        page = pfn_to_page(cur);
 223                                        __free_pages_bootmem(page, 0);
 224                                        count++;
 225                                }
 226                                vec >>= 1;
 227                                ++cur;
 228                        }
 229                }
 230        }
 231
 232        page = virt_to_page(bdata->node_bootmem_map);
 233        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 234        pages = bootmem_bootmap_pages(pages);
 235        count += pages;
 236        while (pages--)
 237                __free_pages_bootmem(page++, 0);
 238
 239        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 240
 241        return count;
 242}
 243
 244static int reset_managed_pages_done __initdata;
 245
 246static inline void __init reset_node_managed_pages(pg_data_t *pgdat)
 247{
 248        struct zone *z;
 249
 250        if (reset_managed_pages_done)
 251                return;
 252
 253        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 254                z->managed_pages = 0;
 255}
 256
 257void __init reset_all_zones_managed_pages(void)
 258{
 259        struct pglist_data *pgdat;
 260
 261        for_each_online_pgdat(pgdat)
 262                reset_node_managed_pages(pgdat);
 263        reset_managed_pages_done = 1;
 264}
 265
 266/**
 267 * free_all_bootmem - release free pages to the buddy allocator
 268 *
 269 * Returns the number of pages actually released.
 270 */
 271unsigned long __init free_all_bootmem(void)
 272{
 273        unsigned long total_pages = 0;
 274        bootmem_data_t *bdata;
 275
 276        reset_all_zones_managed_pages();
 277
 278        list_for_each_entry(bdata, &bdata_list, list)
 279                total_pages += free_all_bootmem_core(bdata);
 280
 281        totalram_pages += total_pages;
 282
 283        return total_pages;
 284}
 285
 286static void __init __free(bootmem_data_t *bdata,
 287                        unsigned long sidx, unsigned long eidx)
 288{
 289        unsigned long idx;
 290
 291        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 292                sidx + bdata->node_min_pfn,
 293                eidx + bdata->node_min_pfn);
 294
 295        if (bdata->hint_idx > sidx)
 296                bdata->hint_idx = sidx;
 297
 298        for (idx = sidx; idx < eidx; idx++)
 299                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 300                        BUG();
 301}
 302
 303static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 304                        unsigned long eidx, int flags)
 305{
 306        unsigned long idx;
 307        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 308
 309        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 310                bdata - bootmem_node_data,
 311                sidx + bdata->node_min_pfn,
 312                eidx + bdata->node_min_pfn,
 313                flags);
 314
 315        for (idx = sidx; idx < eidx; idx++)
 316                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 317                        if (exclusive) {
 318                                __free(bdata, sidx, idx);
 319                                return -EBUSY;
 320                        }
 321                        bdebug("silent double reserve of PFN %lx\n",
 322                                idx + bdata->node_min_pfn);
 323                }
 324        return 0;
 325}
 326
 327static int __init mark_bootmem_node(bootmem_data_t *bdata,
 328                                unsigned long start, unsigned long end,
 329                                int reserve, int flags)
 330{
 331        unsigned long sidx, eidx;
 332
 333        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 334                bdata - bootmem_node_data, start, end, reserve, flags);
 335
 336        BUG_ON(start < bdata->node_min_pfn);
 337        BUG_ON(end > bdata->node_low_pfn);
 338
 339        sidx = start - bdata->node_min_pfn;
 340        eidx = end - bdata->node_min_pfn;
 341
 342        if (reserve)
 343                return __reserve(bdata, sidx, eidx, flags);
 344        else
 345                __free(bdata, sidx, eidx);
 346        return 0;
 347}
 348
 349static int __init mark_bootmem(unsigned long start, unsigned long end,
 350                                int reserve, int flags)
 351{
 352        unsigned long pos;
 353        bootmem_data_t *bdata;
 354
 355        pos = start;
 356        list_for_each_entry(bdata, &bdata_list, list) {
 357                int err;
 358                unsigned long max;
 359
 360                if (pos < bdata->node_min_pfn ||
 361                    pos >= bdata->node_low_pfn) {
 362                        BUG_ON(pos != start);
 363                        continue;
 364                }
 365
 366                max = min(bdata->node_low_pfn, end);
 367
 368                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 369                if (reserve && err) {
 370                        mark_bootmem(start, pos, 0, 0);
 371                        return err;
 372                }
 373
 374                if (max == end)
 375                        return 0;
 376                pos = bdata->node_low_pfn;
 377        }
 378        BUG();
 379}
 380
 381/**
 382 * free_bootmem_node - mark a page range as usable
 383 * @pgdat: node the range resides on
 384 * @physaddr: starting address of the range
 385 * @size: size of the range in bytes
 386 *
 387 * Partial pages will be considered reserved and left as they are.
 388 *
 389 * The range must reside completely on the specified node.
 390 */
 391void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 392                              unsigned long size)
 393{
 394        unsigned long start, end;
 395
 396        kmemleak_free_part(__va(physaddr), size);
 397
 398        start = PFN_UP(physaddr);
 399        end = PFN_DOWN(physaddr + size);
 400
 401        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 402}
 403
 404/**
 405 * free_bootmem - mark a page range as usable
 406 * @addr: starting physical address of the range
 407 * @size: size of the range in bytes
 408 *
 409 * Partial pages will be considered reserved and left as they are.
 410 *
 411 * The range must be contiguous but may span node boundaries.
 412 */
 413void __init free_bootmem(unsigned long physaddr, unsigned long size)
 414{
 415        unsigned long start, end;
 416
 417        kmemleak_free_part(__va(physaddr), size);
 418
 419        start = PFN_UP(physaddr);
 420        end = PFN_DOWN(physaddr + size);
 421
 422        mark_bootmem(start, end, 0, 0);
 423}
 424
 425/**
 426 * reserve_bootmem_node - mark a page range as reserved
 427 * @pgdat: node the range resides on
 428 * @physaddr: starting address of the range
 429 * @size: size of the range in bytes
 430 * @flags: reservation flags (see linux/bootmem.h)
 431 *
 432 * Partial pages will be reserved.
 433 *
 434 * The range must reside completely on the specified node.
 435 */
 436int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 437                                 unsigned long size, int flags)
 438{
 439        unsigned long start, end;
 440
 441        start = PFN_DOWN(physaddr);
 442        end = PFN_UP(physaddr + size);
 443
 444        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 445}
 446
 447/**
 448 * reserve_bootmem - mark a page range as reserved
 449 * @addr: starting address of the range
 450 * @size: size of the range in bytes
 451 * @flags: reservation flags (see linux/bootmem.h)
 452 *
 453 * Partial pages will be reserved.
 454 *
 455 * The range must be contiguous but may span node boundaries.
 456 */
 457int __init reserve_bootmem(unsigned long addr, unsigned long size,
 458                            int flags)
 459{
 460        unsigned long start, end;
 461
 462        start = PFN_DOWN(addr);
 463        end = PFN_UP(addr + size);
 464
 465        return mark_bootmem(start, end, 1, flags);
 466}
 467
 468static unsigned long __init align_idx(struct bootmem_data *bdata,
 469                                      unsigned long idx, unsigned long step)
 470{
 471        unsigned long base = bdata->node_min_pfn;
 472
 473        /*
 474         * Align the index with respect to the node start so that the
 475         * combination of both satisfies the requested alignment.
 476         */
 477
 478        return ALIGN(base + idx, step) - base;
 479}
 480
 481static unsigned long __init align_off(struct bootmem_data *bdata,
 482                                      unsigned long off, unsigned long align)
 483{
 484        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 485
 486        /* Same as align_idx for byte offsets */
 487
 488        return ALIGN(base + off, align) - base;
 489}
 490
 491static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
 492                                        unsigned long size, unsigned long align,
 493                                        unsigned long goal, unsigned long limit)
 494{
 495        unsigned long fallback = 0;
 496        unsigned long min, max, start, sidx, midx, step;
 497
 498        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 499                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 500                align, goal, limit);
 501
 502        BUG_ON(!size);
 503        BUG_ON(align & (align - 1));
 504        BUG_ON(limit && goal + size > limit);
 505
 506        if (!bdata->node_bootmem_map)
 507                return NULL;
 508
 509        min = bdata->node_min_pfn;
 510        max = bdata->node_low_pfn;
 511
 512        goal >>= PAGE_SHIFT;
 513        limit >>= PAGE_SHIFT;
 514
 515        if (limit && max > limit)
 516                max = limit;
 517        if (max <= min)
 518                return NULL;
 519
 520        step = max(align >> PAGE_SHIFT, 1UL);
 521
 522        if (goal && min < goal && goal < max)
 523                start = ALIGN(goal, step);
 524        else
 525                start = ALIGN(min, step);
 526
 527        sidx = start - bdata->node_min_pfn;
 528        midx = max - bdata->node_min_pfn;
 529
 530        if (bdata->hint_idx > sidx) {
 531                /*
 532                 * Handle the valid case of sidx being zero and still
 533                 * catch the fallback below.
 534                 */
 535                fallback = sidx + 1;
 536                sidx = align_idx(bdata, bdata->hint_idx, step);
 537        }
 538
 539        while (1) {
 540                int merge;
 541                void *region;
 542                unsigned long eidx, i, start_off, end_off;
 543find_block:
 544                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 545                sidx = align_idx(bdata, sidx, step);
 546                eidx = sidx + PFN_UP(size);
 547
 548                if (sidx >= midx || eidx > midx)
 549                        break;
 550
 551                for (i = sidx; i < eidx; i++)
 552                        if (test_bit(i, bdata->node_bootmem_map)) {
 553                                sidx = align_idx(bdata, i, step);
 554                                if (sidx == i)
 555                                        sidx += step;
 556                                goto find_block;
 557                        }
 558
 559                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 560                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 561                        start_off = align_off(bdata, bdata->last_end_off, align);
 562                else
 563                        start_off = PFN_PHYS(sidx);
 564
 565                merge = PFN_DOWN(start_off) < sidx;
 566                end_off = start_off + size;
 567
 568                bdata->last_end_off = end_off;
 569                bdata->hint_idx = PFN_UP(end_off);
 570
 571                /*
 572                 * Reserve the area now:
 573                 */
 574                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 575                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 576                        BUG();
 577
 578                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 579                                start_off);
 580                memset(region, 0, size);
 581                /*
 582                 * The min_count is set to 0 so that bootmem allocated blocks
 583                 * are never reported as leaks.
 584                 */
 585                kmemleak_alloc(region, size, 0, 0);
 586                return region;
 587        }
 588
 589        if (fallback) {
 590                sidx = align_idx(bdata, fallback - 1, step);
 591                fallback = 0;
 592                goto find_block;
 593        }
 594
 595        return NULL;
 596}
 597
 598static void * __init alloc_bootmem_core(unsigned long size,
 599                                        unsigned long align,
 600                                        unsigned long goal,
 601                                        unsigned long limit)
 602{
 603        bootmem_data_t *bdata;
 604        void *region;
 605
 606        if (WARN_ON_ONCE(slab_is_available()))
 607                return kzalloc(size, GFP_NOWAIT);
 608
 609        list_for_each_entry(bdata, &bdata_list, list) {
 610                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 611                        continue;
 612                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 613                        break;
 614
 615                region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
 616                if (region)
 617                        return region;
 618        }
 619
 620        return NULL;
 621}
 622
 623static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 624                                              unsigned long align,
 625                                              unsigned long goal,
 626                                              unsigned long limit)
 627{
 628        void *ptr;
 629
 630restart:
 631        ptr = alloc_bootmem_core(size, align, goal, limit);
 632        if (ptr)
 633                return ptr;
 634        if (goal) {
 635                goal = 0;
 636                goto restart;
 637        }
 638
 639        return NULL;
 640}
 641
 642/**
 643 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 644 * @size: size of the request in bytes
 645 * @align: alignment of the region
 646 * @goal: preferred starting address of the region
 647 *
 648 * The goal is dropped if it can not be satisfied and the allocation will
 649 * fall back to memory below @goal.
 650 *
 651 * Allocation may happen on any node in the system.
 652 *
 653 * Returns NULL on failure.
 654 */
 655void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 656                                        unsigned long goal)
 657{
 658        unsigned long limit = 0;
 659
 660        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 661}
 662
 663static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 664                                        unsigned long goal, unsigned long limit)
 665{
 666        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 667
 668        if (mem)
 669                return mem;
 670        /*
 671         * Whoops, we cannot satisfy the allocation request.
 672         */
 673        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 674        panic("Out of memory");
 675        return NULL;
 676}
 677
 678/**
 679 * __alloc_bootmem - allocate boot memory
 680 * @size: size of the request in bytes
 681 * @align: alignment of the region
 682 * @goal: preferred starting address of the region
 683 *
 684 * The goal is dropped if it can not be satisfied and the allocation will
 685 * fall back to memory below @goal.
 686 *
 687 * Allocation may happen on any node in the system.
 688 *
 689 * The function panics if the request can not be satisfied.
 690 */
 691void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 692                              unsigned long goal)
 693{
 694        unsigned long limit = 0;
 695
 696        return ___alloc_bootmem(size, align, goal, limit);
 697}
 698
 699void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
 700                                unsigned long size, unsigned long align,
 701                                unsigned long goal, unsigned long limit)
 702{
 703        void *ptr;
 704
 705        if (WARN_ON_ONCE(slab_is_available()))
 706                return kzalloc(size, GFP_NOWAIT);
 707again:
 708
 709        /* do not panic in alloc_bootmem_bdata() */
 710        if (limit && goal + size > limit)
 711                limit = 0;
 712
 713        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
 714        if (ptr)
 715                return ptr;
 716
 717        ptr = alloc_bootmem_core(size, align, goal, limit);
 718        if (ptr)
 719                return ptr;
 720
 721        if (goal) {
 722                goal = 0;
 723                goto again;
 724        }
 725
 726        return NULL;
 727}
 728
 729void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 730                                   unsigned long align, unsigned long goal)
 731{
 732        if (WARN_ON_ONCE(slab_is_available()))
 733                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 734
 735        return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 736}
 737
 738void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 739                                    unsigned long align, unsigned long goal,
 740                                    unsigned long limit)
 741{
 742        void *ptr;
 743
 744        ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 745        if (ptr)
 746                return ptr;
 747
 748        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 749        panic("Out of memory");
 750        return NULL;
 751}
 752
 753/**
 754 * __alloc_bootmem_node - allocate boot memory from a specific node
 755 * @pgdat: node to allocate from
 756 * @size: size of the request in bytes
 757 * @align: alignment of the region
 758 * @goal: preferred starting address of the region
 759 *
 760 * The goal is dropped if it can not be satisfied and the allocation will
 761 * fall back to memory below @goal.
 762 *
 763 * Allocation may fall back to any node in the system if the specified node
 764 * can not hold the requested memory.
 765 *
 766 * The function panics if the request can not be satisfied.
 767 */
 768void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 769                                   unsigned long align, unsigned long goal)
 770{
 771        if (WARN_ON_ONCE(slab_is_available()))
 772                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 773
 774        return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
 775}
 776
 777void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 778                                   unsigned long align, unsigned long goal)
 779{
 780#ifdef MAX_DMA32_PFN
 781        unsigned long end_pfn;
 782
 783        if (WARN_ON_ONCE(slab_is_available()))
 784                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 785
 786        /* update goal according ...MAX_DMA32_PFN */
 787        end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
 788
 789        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 790            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 791                void *ptr;
 792                unsigned long new_goal;
 793
 794                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 795                ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
 796                                                 new_goal, 0);
 797                if (ptr)
 798                        return ptr;
 799        }
 800#endif
 801
 802        return __alloc_bootmem_node(pgdat, size, align, goal);
 803
 804}
 805
 806#ifndef ARCH_LOW_ADDRESS_LIMIT
 807#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 808#endif
 809
 810/**
 811 * __alloc_bootmem_low - allocate low boot memory
 812 * @size: size of the request in bytes
 813 * @align: alignment of the region
 814 * @goal: preferred starting address of the region
 815 *
 816 * The goal is dropped if it can not be satisfied and the allocation will
 817 * fall back to memory below @goal.
 818 *
 819 * Allocation may happen on any node in the system.
 820 *
 821 * The function panics if the request can not be satisfied.
 822 */
 823void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 824                                  unsigned long goal)
 825{
 826        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 827}
 828
 829void * __init __alloc_bootmem_low_nopanic(unsigned long size,
 830                                          unsigned long align,
 831                                          unsigned long goal)
 832{
 833        return ___alloc_bootmem_nopanic(size, align, goal,
 834                                        ARCH_LOW_ADDRESS_LIMIT);
 835}
 836
 837/**
 838 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 839 * @pgdat: node to allocate from
 840 * @size: size of the request in bytes
 841 * @align: alignment of the region
 842 * @goal: preferred starting address of the region
 843 *
 844 * The goal is dropped if it can not be satisfied and the allocation will
 845 * fall back to memory below @goal.
 846 *
 847 * Allocation may fall back to any node in the system if the specified node
 848 * can not hold the requested memory.
 849 *
 850 * The function panics if the request can not be satisfied.
 851 */
 852void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 853                                       unsigned long align, unsigned long goal)
 854{
 855        if (WARN_ON_ONCE(slab_is_available()))
 856                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 857
 858        return ___alloc_bootmem_node(pgdat, size, align,
 859                                     goal, ARCH_LOW_ADDRESS_LIMIT);
 860}
 861
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.