linux/include/linux/hyperv.h
<<
>>
Prefs
   1/*
   2 *
   3 * Copyright (c) 2011, Microsoft Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  16 * Place - Suite 330, Boston, MA 02111-1307 USA.
  17 *
  18 * Authors:
  19 *   Haiyang Zhang <haiyangz@microsoft.com>
  20 *   Hank Janssen  <hjanssen@microsoft.com>
  21 *   K. Y. Srinivasan <kys@microsoft.com>
  22 *
  23 */
  24
  25#ifndef _HYPERV_H
  26#define _HYPERV_H
  27
  28#include <linux/types.h>
  29
  30
  31/*
  32 * Implementation of host controlled snapshot of the guest.
  33 */
  34
  35#define VSS_OP_REGISTER 128
  36
  37enum hv_vss_op {
  38        VSS_OP_CREATE = 0,
  39        VSS_OP_DELETE,
  40        VSS_OP_HOT_BACKUP,
  41        VSS_OP_GET_DM_INFO,
  42        VSS_OP_BU_COMPLETE,
  43        /*
  44         * Following operations are only supported with IC version >= 5.0
  45         */
  46        VSS_OP_FREEZE, /* Freeze the file systems in the VM */
  47        VSS_OP_THAW, /* Unfreeze the file systems */
  48        VSS_OP_AUTO_RECOVER,
  49        VSS_OP_COUNT /* Number of operations, must be last */
  50};
  51
  52
  53/*
  54 * Header for all VSS messages.
  55 */
  56struct hv_vss_hdr {
  57        __u8 operation;
  58        __u8 reserved[7];
  59} __attribute__((packed));
  60
  61
  62/*
  63 * Flag values for the hv_vss_check_feature. Linux supports only
  64 * one value.
  65 */
  66#define VSS_HBU_NO_AUTO_RECOVERY        0x00000005
  67
  68struct hv_vss_check_feature {
  69        __u32 flags;
  70} __attribute__((packed));
  71
  72struct hv_vss_check_dm_info {
  73        __u32 flags;
  74} __attribute__((packed));
  75
  76struct hv_vss_msg {
  77        union {
  78                struct hv_vss_hdr vss_hdr;
  79                int error;
  80        };
  81        union {
  82                struct hv_vss_check_feature vss_cf;
  83                struct hv_vss_check_dm_info dm_info;
  84        };
  85} __attribute__((packed));
  86
  87/*
  88 * An implementation of HyperV key value pair (KVP) functionality for Linux.
  89 *
  90 *
  91 * Copyright (C) 2010, Novell, Inc.
  92 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
  93 *
  94 */
  95
  96/*
  97 * Maximum value size - used for both key names and value data, and includes
  98 * any applicable NULL terminators.
  99 *
 100 * Note:  This limit is somewhat arbitrary, but falls easily within what is
 101 * supported for all native guests (back to Win 2000) and what is reasonable
 102 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
 103 * limited to 255 character key names.
 104 *
 105 * MSDN recommends not storing data values larger than 2048 bytes in the
 106 * registry.
 107 *
 108 * Note:  This value is used in defining the KVP exchange message - this value
 109 * cannot be modified without affecting the message size and compatibility.
 110 */
 111
 112/*
 113 * bytes, including any null terminators
 114 */
 115#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
 116
 117
 118/*
 119 * Maximum key size - the registry limit for the length of an entry name
 120 * is 256 characters, including the null terminator
 121 */
 122
 123#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
 124
 125/*
 126 * In Linux, we implement the KVP functionality in two components:
 127 * 1) The kernel component which is packaged as part of the hv_utils driver
 128 * is responsible for communicating with the host and responsible for
 129 * implementing the host/guest protocol. 2) A user level daemon that is
 130 * responsible for data gathering.
 131 *
 132 * Host/Guest Protocol: The host iterates over an index and expects the guest
 133 * to assign a key name to the index and also return the value corresponding to
 134 * the key. The host will have atmost one KVP transaction outstanding at any
 135 * given point in time. The host side iteration stops when the guest returns
 136 * an error. Microsoft has specified the following mapping of key names to
 137 * host specified index:
 138 *
 139 *      Index           Key Name
 140 *      0               FullyQualifiedDomainName
 141 *      1               IntegrationServicesVersion
 142 *      2               NetworkAddressIPv4
 143 *      3               NetworkAddressIPv6
 144 *      4               OSBuildNumber
 145 *      5               OSName
 146 *      6               OSMajorVersion
 147 *      7               OSMinorVersion
 148 *      8               OSVersion
 149 *      9               ProcessorArchitecture
 150 *
 151 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
 152 *
 153 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
 154 * data gathering functionality in a user mode daemon. The user level daemon
 155 * is also responsible for binding the key name to the index as well. The
 156 * kernel and user-level daemon communicate using a connector channel.
 157 *
 158 * The user mode component first registers with the
 159 * the kernel component. Subsequently, the kernel component requests, data
 160 * for the specified keys. In response to this message the user mode component
 161 * fills in the value corresponding to the specified key. We overload the
 162 * sequence field in the cn_msg header to define our KVP message types.
 163 *
 164 *
 165 * The kernel component simply acts as a conduit for communication between the
 166 * Windows host and the user-level daemon. The kernel component passes up the
 167 * index received from the Host to the user-level daemon. If the index is
 168 * valid (supported), the corresponding key as well as its
 169 * value (both are strings) is returned. If the index is invalid
 170 * (not supported), a NULL key string is returned.
 171 */
 172
 173
 174/*
 175 * Registry value types.
 176 */
 177
 178#define REG_SZ 1
 179#define REG_U32 4
 180#define REG_U64 8
 181
 182/*
 183 * As we look at expanding the KVP functionality to include
 184 * IP injection functionality, we need to maintain binary
 185 * compatibility with older daemons.
 186 *
 187 * The KVP opcodes are defined by the host and it was unfortunate
 188 * that I chose to treat the registration operation as part of the
 189 * KVP operations defined by the host.
 190 * Here is the level of compatibility
 191 * (between the user level daemon and the kernel KVP driver) that we
 192 * will implement:
 193 *
 194 * An older daemon will always be supported on a newer driver.
 195 * A given user level daemon will require a minimal version of the
 196 * kernel driver.
 197 * If we cannot handle the version differences, we will fail gracefully
 198 * (this can happen when we have a user level daemon that is more
 199 * advanced than the KVP driver.
 200 *
 201 * We will use values used in this handshake for determining if we have
 202 * workable user level daemon and the kernel driver. We begin by taking the
 203 * registration opcode out of the KVP opcode namespace. We will however,
 204 * maintain compatibility with the existing user-level daemon code.
 205 */
 206
 207/*
 208 * Daemon code not supporting IP injection (legacy daemon).
 209 */
 210
 211#define KVP_OP_REGISTER 4
 212
 213/*
 214 * Daemon code supporting IP injection.
 215 * The KVP opcode field is used to communicate the
 216 * registration information; so define a namespace that
 217 * will be distinct from the host defined KVP opcode.
 218 */
 219
 220#define KVP_OP_REGISTER1 100
 221
 222enum hv_kvp_exchg_op {
 223        KVP_OP_GET = 0,
 224        KVP_OP_SET,
 225        KVP_OP_DELETE,
 226        KVP_OP_ENUMERATE,
 227        KVP_OP_GET_IP_INFO,
 228        KVP_OP_SET_IP_INFO,
 229        KVP_OP_COUNT /* Number of operations, must be last. */
 230};
 231
 232enum hv_kvp_exchg_pool {
 233        KVP_POOL_EXTERNAL = 0,
 234        KVP_POOL_GUEST,
 235        KVP_POOL_AUTO,
 236        KVP_POOL_AUTO_EXTERNAL,
 237        KVP_POOL_AUTO_INTERNAL,
 238        KVP_POOL_COUNT /* Number of pools, must be last. */
 239};
 240
 241/*
 242 * Some Hyper-V status codes.
 243 */
 244
 245#define HV_S_OK                         0x00000000
 246#define HV_E_FAIL                       0x80004005
 247#define HV_S_CONT                       0x80070103
 248#define HV_ERROR_NOT_SUPPORTED          0x80070032
 249#define HV_ERROR_MACHINE_LOCKED         0x800704F7
 250#define HV_ERROR_DEVICE_NOT_CONNECTED   0x8007048F
 251#define HV_INVALIDARG                   0x80070057
 252#define HV_GUID_NOTFOUND                0x80041002
 253
 254#define ADDR_FAMILY_NONE        0x00
 255#define ADDR_FAMILY_IPV4        0x01
 256#define ADDR_FAMILY_IPV6        0x02
 257
 258#define MAX_ADAPTER_ID_SIZE     128
 259#define MAX_IP_ADDR_SIZE        1024
 260#define MAX_GATEWAY_SIZE        512
 261
 262
 263struct hv_kvp_ipaddr_value {
 264        __u16   adapter_id[MAX_ADAPTER_ID_SIZE];
 265        __u8    addr_family;
 266        __u8    dhcp_enabled;
 267        __u16   ip_addr[MAX_IP_ADDR_SIZE];
 268        __u16   sub_net[MAX_IP_ADDR_SIZE];
 269        __u16   gate_way[MAX_GATEWAY_SIZE];
 270        __u16   dns_addr[MAX_IP_ADDR_SIZE];
 271} __attribute__((packed));
 272
 273
 274struct hv_kvp_hdr {
 275        __u8 operation;
 276        __u8 pool;
 277        __u16 pad;
 278} __attribute__((packed));
 279
 280struct hv_kvp_exchg_msg_value {
 281        __u32 value_type;
 282        __u32 key_size;
 283        __u32 value_size;
 284        __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 285        union {
 286                __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
 287                __u32 value_u32;
 288                __u64 value_u64;
 289        };
 290} __attribute__((packed));
 291
 292struct hv_kvp_msg_enumerate {
 293        __u32 index;
 294        struct hv_kvp_exchg_msg_value data;
 295} __attribute__((packed));
 296
 297struct hv_kvp_msg_get {
 298        struct hv_kvp_exchg_msg_value data;
 299};
 300
 301struct hv_kvp_msg_set {
 302        struct hv_kvp_exchg_msg_value data;
 303};
 304
 305struct hv_kvp_msg_delete {
 306        __u32 key_size;
 307        __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 308};
 309
 310struct hv_kvp_register {
 311        __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 312};
 313
 314struct hv_kvp_msg {
 315        union {
 316                struct hv_kvp_hdr       kvp_hdr;
 317                int error;
 318        };
 319        union {
 320                struct hv_kvp_msg_get           kvp_get;
 321                struct hv_kvp_msg_set           kvp_set;
 322                struct hv_kvp_msg_delete        kvp_delete;
 323                struct hv_kvp_msg_enumerate     kvp_enum_data;
 324                struct hv_kvp_ipaddr_value      kvp_ip_val;
 325                struct hv_kvp_register          kvp_register;
 326        } body;
 327} __attribute__((packed));
 328
 329struct hv_kvp_ip_msg {
 330        __u8 operation;
 331        __u8 pool;
 332        struct hv_kvp_ipaddr_value      kvp_ip_val;
 333} __attribute__((packed));
 334
 335#ifdef __KERNEL__
 336#include <linux/scatterlist.h>
 337#include <linux/list.h>
 338#include <linux/uuid.h>
 339#include <linux/timer.h>
 340#include <linux/workqueue.h>
 341#include <linux/completion.h>
 342#include <linux/device.h>
 343#include <linux/mod_devicetable.h>
 344
 345
 346#define MAX_PAGE_BUFFER_COUNT                           19
 347#define MAX_MULTIPAGE_BUFFER_COUNT                      32 /* 128K */
 348
 349#pragma pack(push, 1)
 350
 351/* Single-page buffer */
 352struct hv_page_buffer {
 353        u32 len;
 354        u32 offset;
 355        u64 pfn;
 356};
 357
 358/* Multiple-page buffer */
 359struct hv_multipage_buffer {
 360        /* Length and Offset determines the # of pfns in the array */
 361        u32 len;
 362        u32 offset;
 363        u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
 364};
 365
 366/* 0x18 includes the proprietary packet header */
 367#define MAX_PAGE_BUFFER_PACKET          (0x18 +                 \
 368                                        (sizeof(struct hv_page_buffer) * \
 369                                         MAX_PAGE_BUFFER_COUNT))
 370#define MAX_MULTIPAGE_BUFFER_PACKET     (0x18 +                 \
 371                                         sizeof(struct hv_multipage_buffer))
 372
 373
 374#pragma pack(pop)
 375
 376struct hv_ring_buffer {
 377        /* Offset in bytes from the start of ring data below */
 378        u32 write_index;
 379
 380        /* Offset in bytes from the start of ring data below */
 381        u32 read_index;
 382
 383        u32 interrupt_mask;
 384
 385        /*
 386         * Win8 uses some of the reserved bits to implement
 387         * interrupt driven flow management. On the send side
 388         * we can request that the receiver interrupt the sender
 389         * when the ring transitions from being full to being able
 390         * to handle a message of size "pending_send_sz".
 391         *
 392         * Add necessary state for this enhancement.
 393         */
 394        u32 pending_send_sz;
 395
 396        u32 reserved1[12];
 397
 398        union {
 399                struct {
 400                        u32 feat_pending_send_sz:1;
 401                };
 402                u32 value;
 403        } feature_bits;
 404
 405        /* Pad it to PAGE_SIZE so that data starts on page boundary */
 406        u8      reserved2[4028];
 407
 408        /*
 409         * Ring data starts here + RingDataStartOffset
 410         * !!! DO NOT place any fields below this !!!
 411         */
 412        u8 buffer[0];
 413} __packed;
 414
 415struct hv_ring_buffer_info {
 416        struct hv_ring_buffer *ring_buffer;
 417        u32 ring_size;                  /* Include the shared header */
 418        spinlock_t ring_lock;
 419
 420        u32 ring_datasize;              /* < ring_size */
 421        u32 ring_data_startoffset;
 422};
 423
 424struct hv_ring_buffer_debug_info {
 425        u32 current_interrupt_mask;
 426        u32 current_read_index;
 427        u32 current_write_index;
 428        u32 bytes_avail_toread;
 429        u32 bytes_avail_towrite;
 430};
 431
 432
 433/*
 434 *
 435 * hv_get_ringbuffer_availbytes()
 436 *
 437 * Get number of bytes available to read and to write to
 438 * for the specified ring buffer
 439 */
 440static inline void
 441hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
 442                          u32 *read, u32 *write)
 443{
 444        u32 read_loc, write_loc, dsize;
 445
 446        smp_read_barrier_depends();
 447
 448        /* Capture the read/write indices before they changed */
 449        read_loc = rbi->ring_buffer->read_index;
 450        write_loc = rbi->ring_buffer->write_index;
 451        dsize = rbi->ring_datasize;
 452
 453        *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
 454                read_loc - write_loc;
 455        *read = dsize - *write;
 456}
 457
 458
 459/*
 460 * We use the same version numbering for all Hyper-V modules.
 461 *
 462 * Definition of versioning is as follows;
 463 *
 464 *      Major Number    Changes for these scenarios;
 465 *                      1.      When a new version of Windows Hyper-V
 466 *                              is released.
 467 *                      2.      A Major change has occurred in the
 468 *                              Linux IC's.
 469 *                      (For example the merge for the first time
 470 *                      into the kernel) Every time the Major Number
 471 *                      changes, the Revision number is reset to 0.
 472 *      Minor Number    Changes when new functionality is added
 473 *                      to the Linux IC's that is not a bug fix.
 474 *
 475 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
 476 */
 477#define HV_DRV_VERSION           "3.1"
 478
 479/*
 480 * VMBUS version is 32 bit entity broken up into
 481 * two 16 bit quantities: major_number. minor_number.
 482 *
 483 * 0 . 13 (Windows Server 2008)
 484 * 1 . 1  (Windows 7)
 485 * 2 . 4  (Windows 8)
 486 */
 487
 488#define VERSION_WS2008  ((0 << 16) | (13))
 489#define VERSION_WIN7    ((1 << 16) | (1))
 490#define VERSION_WIN8    ((2 << 16) | (4))
 491
 492#define VERSION_INVAL -1
 493
 494#define VERSION_CURRENT VERSION_WIN8
 495
 496/* Make maximum size of pipe payload of 16K */
 497#define MAX_PIPE_DATA_PAYLOAD           (sizeof(u8) * 16384)
 498
 499/* Define PipeMode values. */
 500#define VMBUS_PIPE_TYPE_BYTE            0x00000000
 501#define VMBUS_PIPE_TYPE_MESSAGE         0x00000004
 502
 503/* The size of the user defined data buffer for non-pipe offers. */
 504#define MAX_USER_DEFINED_BYTES          120
 505
 506/* The size of the user defined data buffer for pipe offers. */
 507#define MAX_PIPE_USER_DEFINED_BYTES     116
 508
 509/*
 510 * At the center of the Channel Management library is the Channel Offer. This
 511 * struct contains the fundamental information about an offer.
 512 */
 513struct vmbus_channel_offer {
 514        uuid_le if_type;
 515        uuid_le if_instance;
 516
 517        /*
 518         * These two fields are not currently used.
 519         */
 520        u64 reserved1;
 521        u64 reserved2;
 522
 523        u16 chn_flags;
 524        u16 mmio_megabytes;             /* in bytes * 1024 * 1024 */
 525
 526        union {
 527                /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
 528                struct {
 529                        unsigned char user_def[MAX_USER_DEFINED_BYTES];
 530                } std;
 531
 532                /*
 533                 * Pipes:
 534                 * The following sructure is an integrated pipe protocol, which
 535                 * is implemented on top of standard user-defined data. Pipe
 536                 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
 537                 * use.
 538                 */
 539                struct {
 540                        u32  pipe_mode;
 541                        unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
 542                } pipe;
 543        } u;
 544        /*
 545         * The sub_channel_index is defined in win8.
 546         */
 547        u16 sub_channel_index;
 548        u16 reserved3;
 549} __packed;
 550
 551/* Server Flags */
 552#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE        1
 553#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES    2
 554#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS            4
 555#define VMBUS_CHANNEL_NAMED_PIPE_MODE                   0x10
 556#define VMBUS_CHANNEL_LOOPBACK_OFFER                    0x100
 557#define VMBUS_CHANNEL_PARENT_OFFER                      0x200
 558#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION    0x400
 559
 560struct vmpacket_descriptor {
 561        u16 type;
 562        u16 offset8;
 563        u16 len8;
 564        u16 flags;
 565        u64 trans_id;
 566} __packed;
 567
 568struct vmpacket_header {
 569        u32 prev_pkt_start_offset;
 570        struct vmpacket_descriptor descriptor;
 571} __packed;
 572
 573struct vmtransfer_page_range {
 574        u32 byte_count;
 575        u32 byte_offset;
 576} __packed;
 577
 578struct vmtransfer_page_packet_header {
 579        struct vmpacket_descriptor d;
 580        u16 xfer_pageset_id;
 581        u8  sender_owns_set;
 582        u8 reserved;
 583        u32 range_cnt;
 584        struct vmtransfer_page_range ranges[1];
 585} __packed;
 586
 587struct vmgpadl_packet_header {
 588        struct vmpacket_descriptor d;
 589        u32 gpadl;
 590        u32 reserved;
 591} __packed;
 592
 593struct vmadd_remove_transfer_page_set {
 594        struct vmpacket_descriptor d;
 595        u32 gpadl;
 596        u16 xfer_pageset_id;
 597        u16 reserved;
 598} __packed;
 599
 600/*
 601 * This structure defines a range in guest physical space that can be made to
 602 * look virtually contiguous.
 603 */
 604struct gpa_range {
 605        u32 byte_count;
 606        u32 byte_offset;
 607        u64 pfn_array[0];
 608};
 609
 610/*
 611 * This is the format for an Establish Gpadl packet, which contains a handle by
 612 * which this GPADL will be known and a set of GPA ranges associated with it.
 613 * This can be converted to a MDL by the guest OS.  If there are multiple GPA
 614 * ranges, then the resulting MDL will be "chained," representing multiple VA
 615 * ranges.
 616 */
 617struct vmestablish_gpadl {
 618        struct vmpacket_descriptor d;
 619        u32 gpadl;
 620        u32 range_cnt;
 621        struct gpa_range range[1];
 622} __packed;
 623
 624/*
 625 * This is the format for a Teardown Gpadl packet, which indicates that the
 626 * GPADL handle in the Establish Gpadl packet will never be referenced again.
 627 */
 628struct vmteardown_gpadl {
 629        struct vmpacket_descriptor d;
 630        u32 gpadl;
 631        u32 reserved;   /* for alignment to a 8-byte boundary */
 632} __packed;
 633
 634/*
 635 * This is the format for a GPA-Direct packet, which contains a set of GPA
 636 * ranges, in addition to commands and/or data.
 637 */
 638struct vmdata_gpa_direct {
 639        struct vmpacket_descriptor d;
 640        u32 reserved;
 641        u32 range_cnt;
 642        struct gpa_range range[1];
 643} __packed;
 644
 645/* This is the format for a Additional Data Packet. */
 646struct vmadditional_data {
 647        struct vmpacket_descriptor d;
 648        u64 total_bytes;
 649        u32 offset;
 650        u32 byte_cnt;
 651        unsigned char data[1];
 652} __packed;
 653
 654union vmpacket_largest_possible_header {
 655        struct vmpacket_descriptor simple_hdr;
 656        struct vmtransfer_page_packet_header xfer_page_hdr;
 657        struct vmgpadl_packet_header gpadl_hdr;
 658        struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
 659        struct vmestablish_gpadl establish_gpadl_hdr;
 660        struct vmteardown_gpadl teardown_gpadl_hdr;
 661        struct vmdata_gpa_direct data_gpa_direct_hdr;
 662};
 663
 664#define VMPACKET_DATA_START_ADDRESS(__packet)   \
 665        (void *)(((unsigned char *)__packet) +  \
 666         ((struct vmpacket_descriptor)__packet)->offset8 * 8)
 667
 668#define VMPACKET_DATA_LENGTH(__packet)          \
 669        ((((struct vmpacket_descriptor)__packet)->len8 -        \
 670          ((struct vmpacket_descriptor)__packet)->offset8) * 8)
 671
 672#define VMPACKET_TRANSFER_MODE(__packet)        \
 673        (((struct IMPACT)__packet)->type)
 674
 675enum vmbus_packet_type {
 676        VM_PKT_INVALID                          = 0x0,
 677        VM_PKT_SYNCH                            = 0x1,
 678        VM_PKT_ADD_XFER_PAGESET                 = 0x2,
 679        VM_PKT_RM_XFER_PAGESET                  = 0x3,
 680        VM_PKT_ESTABLISH_GPADL                  = 0x4,
 681        VM_PKT_TEARDOWN_GPADL                   = 0x5,
 682        VM_PKT_DATA_INBAND                      = 0x6,
 683        VM_PKT_DATA_USING_XFER_PAGES            = 0x7,
 684        VM_PKT_DATA_USING_GPADL                 = 0x8,
 685        VM_PKT_DATA_USING_GPA_DIRECT            = 0x9,
 686        VM_PKT_CANCEL_REQUEST                   = 0xa,
 687        VM_PKT_COMP                             = 0xb,
 688        VM_PKT_DATA_USING_ADDITIONAL_PKT        = 0xc,
 689        VM_PKT_ADDITIONAL_DATA                  = 0xd
 690};
 691
 692#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED     1
 693
 694
 695/* Version 1 messages */
 696enum vmbus_channel_message_type {
 697        CHANNELMSG_INVALID                      =  0,
 698        CHANNELMSG_OFFERCHANNEL         =  1,
 699        CHANNELMSG_RESCIND_CHANNELOFFER =  2,
 700        CHANNELMSG_REQUESTOFFERS                =  3,
 701        CHANNELMSG_ALLOFFERS_DELIVERED  =  4,
 702        CHANNELMSG_OPENCHANNEL          =  5,
 703        CHANNELMSG_OPENCHANNEL_RESULT           =  6,
 704        CHANNELMSG_CLOSECHANNEL         =  7,
 705        CHANNELMSG_GPADL_HEADER         =  8,
 706        CHANNELMSG_GPADL_BODY                   =  9,
 707        CHANNELMSG_GPADL_CREATED                = 10,
 708        CHANNELMSG_GPADL_TEARDOWN               = 11,
 709        CHANNELMSG_GPADL_TORNDOWN               = 12,
 710        CHANNELMSG_RELID_RELEASED               = 13,
 711        CHANNELMSG_INITIATE_CONTACT             = 14,
 712        CHANNELMSG_VERSION_RESPONSE             = 15,
 713        CHANNELMSG_UNLOAD                       = 16,
 714#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
 715        CHANNELMSG_VIEWRANGE_ADD                = 17,
 716        CHANNELMSG_VIEWRANGE_REMOVE             = 18,
 717#endif
 718        CHANNELMSG_COUNT
 719};
 720
 721struct vmbus_channel_message_header {
 722        enum vmbus_channel_message_type msgtype;
 723        u32 padding;
 724} __packed;
 725
 726/* Query VMBus Version parameters */
 727struct vmbus_channel_query_vmbus_version {
 728        struct vmbus_channel_message_header header;
 729        u32 version;
 730} __packed;
 731
 732/* VMBus Version Supported parameters */
 733struct vmbus_channel_version_supported {
 734        struct vmbus_channel_message_header header;
 735        u8 version_supported;
 736} __packed;
 737
 738/* Offer Channel parameters */
 739struct vmbus_channel_offer_channel {
 740        struct vmbus_channel_message_header header;
 741        struct vmbus_channel_offer offer;
 742        u32 child_relid;
 743        u8 monitorid;
 744        /*
 745         * win7 and beyond splits this field into a bit field.
 746         */
 747        u8 monitor_allocated:1;
 748        u8 reserved:7;
 749        /*
 750         * These are new fields added in win7 and later.
 751         * Do not access these fields without checking the
 752         * negotiated protocol.
 753         *
 754         * If "is_dedicated_interrupt" is set, we must not set the
 755         * associated bit in the channel bitmap while sending the
 756         * interrupt to the host.
 757         *
 758         * connection_id is to be used in signaling the host.
 759         */
 760        u16 is_dedicated_interrupt:1;
 761        u16 reserved1:15;
 762        u32 connection_id;
 763} __packed;
 764
 765/* Rescind Offer parameters */
 766struct vmbus_channel_rescind_offer {
 767        struct vmbus_channel_message_header header;
 768        u32 child_relid;
 769} __packed;
 770
 771/*
 772 * Request Offer -- no parameters, SynIC message contains the partition ID
 773 * Set Snoop -- no parameters, SynIC message contains the partition ID
 774 * Clear Snoop -- no parameters, SynIC message contains the partition ID
 775 * All Offers Delivered -- no parameters, SynIC message contains the partition
 776 *                         ID
 777 * Flush Client -- no parameters, SynIC message contains the partition ID
 778 */
 779
 780/* Open Channel parameters */
 781struct vmbus_channel_open_channel {
 782        struct vmbus_channel_message_header header;
 783
 784        /* Identifies the specific VMBus channel that is being opened. */
 785        u32 child_relid;
 786
 787        /* ID making a particular open request at a channel offer unique. */
 788        u32 openid;
 789
 790        /* GPADL for the channel's ring buffer. */
 791        u32 ringbuffer_gpadlhandle;
 792
 793        /*
 794         * Starting with win8, this field will be used to specify
 795         * the target virtual processor on which to deliver the interrupt for
 796         * the host to guest communication.
 797         * Prior to win8, incoming channel interrupts would only
 798         * be delivered on cpu 0. Setting this value to 0 would
 799         * preserve the earlier behavior.
 800         */
 801        u32 target_vp;
 802
 803        /*
 804        * The upstream ring buffer begins at offset zero in the memory
 805        * described by RingBufferGpadlHandle. The downstream ring buffer
 806        * follows it at this offset (in pages).
 807        */
 808        u32 downstream_ringbuffer_pageoffset;
 809
 810        /* User-specific data to be passed along to the server endpoint. */
 811        unsigned char userdata[MAX_USER_DEFINED_BYTES];
 812} __packed;
 813
 814/* Open Channel Result parameters */
 815struct vmbus_channel_open_result {
 816        struct vmbus_channel_message_header header;
 817        u32 child_relid;
 818        u32 openid;
 819        u32 status;
 820} __packed;
 821
 822/* Close channel parameters; */
 823struct vmbus_channel_close_channel {
 824        struct vmbus_channel_message_header header;
 825        u32 child_relid;
 826} __packed;
 827
 828/* Channel Message GPADL */
 829#define GPADL_TYPE_RING_BUFFER          1
 830#define GPADL_TYPE_SERVER_SAVE_AREA     2
 831#define GPADL_TYPE_TRANSACTION          8
 832
 833/*
 834 * The number of PFNs in a GPADL message is defined by the number of
 835 * pages that would be spanned by ByteCount and ByteOffset.  If the
 836 * implied number of PFNs won't fit in this packet, there will be a
 837 * follow-up packet that contains more.
 838 */
 839struct vmbus_channel_gpadl_header {
 840        struct vmbus_channel_message_header header;
 841        u32 child_relid;
 842        u32 gpadl;
 843        u16 range_buflen;
 844        u16 rangecount;
 845        struct gpa_range range[0];
 846} __packed;
 847
 848/* This is the followup packet that contains more PFNs. */
 849struct vmbus_channel_gpadl_body {
 850        struct vmbus_channel_message_header header;
 851        u32 msgnumber;
 852        u32 gpadl;
 853        u64 pfn[0];
 854} __packed;
 855
 856struct vmbus_channel_gpadl_created {
 857        struct vmbus_channel_message_header header;
 858        u32 child_relid;
 859        u32 gpadl;
 860        u32 creation_status;
 861} __packed;
 862
 863struct vmbus_channel_gpadl_teardown {
 864        struct vmbus_channel_message_header header;
 865        u32 child_relid;
 866        u32 gpadl;
 867} __packed;
 868
 869struct vmbus_channel_gpadl_torndown {
 870        struct vmbus_channel_message_header header;
 871        u32 gpadl;
 872} __packed;
 873
 874#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
 875struct vmbus_channel_view_range_add {
 876        struct vmbus_channel_message_header header;
 877        PHYSICAL_ADDRESS viewrange_base;
 878        u64 viewrange_length;
 879        u32 child_relid;
 880} __packed;
 881
 882struct vmbus_channel_view_range_remove {
 883        struct vmbus_channel_message_header header;
 884        PHYSICAL_ADDRESS viewrange_base;
 885        u32 child_relid;
 886} __packed;
 887#endif
 888
 889struct vmbus_channel_relid_released {
 890        struct vmbus_channel_message_header header;
 891        u32 child_relid;
 892} __packed;
 893
 894struct vmbus_channel_initiate_contact {
 895        struct vmbus_channel_message_header header;
 896        u32 vmbus_version_requested;
 897        u32 padding2;
 898        u64 interrupt_page;
 899        u64 monitor_page1;
 900        u64 monitor_page2;
 901} __packed;
 902
 903struct vmbus_channel_version_response {
 904        struct vmbus_channel_message_header header;
 905        u8 version_supported;
 906} __packed;
 907
 908enum vmbus_channel_state {
 909        CHANNEL_OFFER_STATE,
 910        CHANNEL_OPENING_STATE,
 911        CHANNEL_OPEN_STATE,
 912        CHANNEL_OPENED_STATE,
 913};
 914
 915struct vmbus_channel_debug_info {
 916        u32 relid;
 917        enum vmbus_channel_state state;
 918        uuid_le interfacetype;
 919        uuid_le interface_instance;
 920        u32 monitorid;
 921        u32 servermonitor_pending;
 922        u32 servermonitor_latency;
 923        u32 servermonitor_connectionid;
 924        u32 clientmonitor_pending;
 925        u32 clientmonitor_latency;
 926        u32 clientmonitor_connectionid;
 927
 928        struct hv_ring_buffer_debug_info inbound;
 929        struct hv_ring_buffer_debug_info outbound;
 930};
 931
 932/*
 933 * Represents each channel msg on the vmbus connection This is a
 934 * variable-size data structure depending on the msg type itself
 935 */
 936struct vmbus_channel_msginfo {
 937        /* Bookkeeping stuff */
 938        struct list_head msglistentry;
 939
 940        /* So far, this is only used to handle gpadl body message */
 941        struct list_head submsglist;
 942
 943        /* Synchronize the request/response if needed */
 944        struct completion  waitevent;
 945        union {
 946                struct vmbus_channel_version_supported version_supported;
 947                struct vmbus_channel_open_result open_result;
 948                struct vmbus_channel_gpadl_torndown gpadl_torndown;
 949                struct vmbus_channel_gpadl_created gpadl_created;
 950                struct vmbus_channel_version_response version_response;
 951        } response;
 952
 953        u32 msgsize;
 954        /*
 955         * The channel message that goes out on the "wire".
 956         * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
 957         */
 958        unsigned char msg[0];
 959};
 960
 961struct vmbus_close_msg {
 962        struct vmbus_channel_msginfo info;
 963        struct vmbus_channel_close_channel msg;
 964};
 965
 966/* Define connection identifier type. */
 967union hv_connection_id {
 968        u32 asu32;
 969        struct {
 970                u32 id:24;
 971                u32 reserved:8;
 972        } u;
 973};
 974
 975/* Definition of the hv_signal_event hypercall input structure. */
 976struct hv_input_signal_event {
 977        union hv_connection_id connectionid;
 978        u16 flag_number;
 979        u16 rsvdz;
 980};
 981
 982struct hv_input_signal_event_buffer {
 983        u64 align8;
 984        struct hv_input_signal_event event;
 985};
 986
 987struct vmbus_channel {
 988        struct list_head listentry;
 989
 990        struct hv_device *device_obj;
 991
 992        struct work_struct work;
 993
 994        enum vmbus_channel_state state;
 995
 996        struct vmbus_channel_offer_channel offermsg;
 997        /*
 998         * These are based on the OfferMsg.MonitorId.
 999         * Save it here for easy access.
1000         */
1001        u8 monitor_grp;
1002        u8 monitor_bit;
1003
1004        u32 ringbuffer_gpadlhandle;
1005
1006        /* Allocated memory for ring buffer */
1007        void *ringbuffer_pages;
1008        u32 ringbuffer_pagecount;
1009        struct hv_ring_buffer_info outbound;    /* send to parent */
1010        struct hv_ring_buffer_info inbound;     /* receive from parent */
1011        spinlock_t inbound_lock;
1012        struct workqueue_struct *controlwq;
1013
1014        struct vmbus_close_msg close_msg;
1015
1016        /* Channel callback are invoked in this workqueue context */
1017        /* HANDLE dataWorkQueue; */
1018
1019        void (*onchannel_callback)(void *context);
1020        void *channel_callback_context;
1021
1022        /*
1023         * A channel can be marked for efficient (batched)
1024         * reading:
1025         * If batched_reading is set to "true", we read until the
1026         * channel is empty and hold off interrupts from the host
1027         * during the entire read process.
1028         * If batched_reading is set to "false", the client is not
1029         * going to perform batched reading.
1030         *
1031         * By default we will enable batched reading; specific
1032         * drivers that don't want this behavior can turn it off.
1033         */
1034
1035        bool batched_reading;
1036
1037        bool is_dedicated_interrupt;
1038        struct hv_input_signal_event_buffer sig_buf;
1039        struct hv_input_signal_event *sig_event;
1040
1041        /*
1042         * Starting with win8, this field will be used to specify
1043         * the target virtual processor on which to deliver the interrupt for
1044         * the host to guest communication.
1045         * Prior to win8, incoming channel interrupts would only
1046         * be delivered on cpu 0. Setting this value to 0 would
1047         * preserve the earlier behavior.
1048         */
1049        u32 target_vp;
1050        /*
1051         * Support for sub-channels. For high performance devices,
1052         * it will be useful to have multiple sub-channels to support
1053         * a scalable communication infrastructure with the host.
1054         * The support for sub-channels is implemented as an extention
1055         * to the current infrastructure.
1056         * The initial offer is considered the primary channel and this
1057         * offer message will indicate if the host supports sub-channels.
1058         * The guest is free to ask for sub-channels to be offerred and can
1059         * open these sub-channels as a normal "primary" channel. However,
1060         * all sub-channels will have the same type and instance guids as the
1061         * primary channel. Requests sent on a given channel will result in a
1062         * response on the same channel.
1063         */
1064
1065        /*
1066         * Sub-channel creation callback. This callback will be called in
1067         * process context when a sub-channel offer is received from the host.
1068         * The guest can open the sub-channel in the context of this callback.
1069         */
1070        void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1071
1072        spinlock_t sc_lock;
1073        /*
1074         * All Sub-channels of a primary channel are linked here.
1075         */
1076        struct list_head sc_list;
1077        /*
1078         * The primary channel this sub-channel belongs to.
1079         * This will be NULL for the primary channel.
1080         */
1081        struct vmbus_channel *primary_channel;
1082};
1083
1084static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1085{
1086        c->batched_reading = state;
1087}
1088
1089void vmbus_onmessage(void *context);
1090
1091int vmbus_request_offers(void);
1092
1093/*
1094 * APIs for managing sub-channels.
1095 */
1096
1097void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1098                        void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1099
1100/*
1101 * Retrieve the (sub) channel on which to send an outgoing request.
1102 * When a primary channel has multiple sub-channels, we choose a
1103 * channel whose VCPU binding is closest to the VCPU on which
1104 * this call is being made.
1105 */
1106struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1107
1108/*
1109 * Check if sub-channels have already been offerred. This API will be useful
1110 * when the driver is unloaded after establishing sub-channels. In this case,
1111 * when the driver is re-loaded, the driver would have to check if the
1112 * subchannels have already been established before attempting to request
1113 * the creation of sub-channels.
1114 * This function returns TRUE to indicate that subchannels have already been
1115 * created.
1116 * This function should be invoked after setting the callback function for
1117 * sub-channel creation.
1118 */
1119bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1120
1121/* The format must be the same as struct vmdata_gpa_direct */
1122struct vmbus_channel_packet_page_buffer {
1123        u16 type;
1124        u16 dataoffset8;
1125        u16 length8;
1126        u16 flags;
1127        u64 transactionid;
1128        u32 reserved;
1129        u32 rangecount;
1130        struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1131} __packed;
1132
1133/* The format must be the same as struct vmdata_gpa_direct */
1134struct vmbus_channel_packet_multipage_buffer {
1135        u16 type;
1136        u16 dataoffset8;
1137        u16 length8;
1138        u16 flags;
1139        u64 transactionid;
1140        u32 reserved;
1141        u32 rangecount;         /* Always 1 in this case */
1142        struct hv_multipage_buffer range;
1143} __packed;
1144
1145
1146extern int vmbus_open(struct vmbus_channel *channel,
1147                            u32 send_ringbuffersize,
1148                            u32 recv_ringbuffersize,
1149                            void *userdata,
1150                            u32 userdatalen,
1151                            void(*onchannel_callback)(void *context),
1152                            void *context);
1153
1154extern void vmbus_close(struct vmbus_channel *channel);
1155
1156extern int vmbus_sendpacket(struct vmbus_channel *channel,
1157                                  const void *buffer,
1158                                  u32 bufferLen,
1159                                  u64 requestid,
1160                                  enum vmbus_packet_type type,
1161                                  u32 flags);
1162
1163extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1164                                            struct hv_page_buffer pagebuffers[],
1165                                            u32 pagecount,
1166                                            void *buffer,
1167                                            u32 bufferlen,
1168                                            u64 requestid);
1169
1170extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1171                                        struct hv_multipage_buffer *mpb,
1172                                        void *buffer,
1173                                        u32 bufferlen,
1174                                        u64 requestid);
1175
1176extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1177                                      void *kbuffer,
1178                                      u32 size,
1179                                      u32 *gpadl_handle);
1180
1181extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1182                                     u32 gpadl_handle);
1183
1184extern int vmbus_recvpacket(struct vmbus_channel *channel,
1185                                  void *buffer,
1186                                  u32 bufferlen,
1187                                  u32 *buffer_actual_len,
1188                                  u64 *requestid);
1189
1190extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1191                                     void *buffer,
1192                                     u32 bufferlen,
1193                                     u32 *buffer_actual_len,
1194                                     u64 *requestid);
1195
1196
1197extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1198                                     struct vmbus_channel_debug_info *debug);
1199
1200extern void vmbus_ontimer(unsigned long data);
1201
1202struct hv_dev_port_info {
1203        u32 int_mask;
1204        u32 read_idx;
1205        u32 write_idx;
1206        u32 bytes_avail_toread;
1207        u32 bytes_avail_towrite;
1208};
1209
1210/* Base driver object */
1211struct hv_driver {
1212        const char *name;
1213
1214        /* the device type supported by this driver */
1215        uuid_le dev_type;
1216        const struct hv_vmbus_device_id *id_table;
1217
1218        struct device_driver driver;
1219
1220        int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1221        int (*remove)(struct hv_device *);
1222        void (*shutdown)(struct hv_device *);
1223
1224};
1225
1226/* Base device object */
1227struct hv_device {
1228        /* the device type id of this device */
1229        uuid_le dev_type;
1230
1231        /* the device instance id of this device */
1232        uuid_le dev_instance;
1233
1234        struct device device;
1235
1236        struct vmbus_channel *channel;
1237};
1238
1239
1240static inline struct hv_device *device_to_hv_device(struct device *d)
1241{
1242        return container_of(d, struct hv_device, device);
1243}
1244
1245static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1246{
1247        return container_of(d, struct hv_driver, driver);
1248}
1249
1250static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1251{
1252        dev_set_drvdata(&dev->device, data);
1253}
1254
1255static inline void *hv_get_drvdata(struct hv_device *dev)
1256{
1257        return dev_get_drvdata(&dev->device);
1258}
1259
1260/* Vmbus interface */
1261#define vmbus_driver_register(driver)   \
1262        __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1263int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1264                                         struct module *owner,
1265                                         const char *mod_name);
1266void vmbus_driver_unregister(struct hv_driver *hv_driver);
1267
1268/**
1269 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1270 *
1271 * This macro is used to create a struct hv_vmbus_device_id that matches a
1272 * specific device.
1273 */
1274#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,    \
1275                     g8, g9, ga, gb, gc, gd, ge, gf)    \
1276        .guid = { g0, g1, g2, g3, g4, g5, g6, g7,       \
1277                  g8, g9, ga, gb, gc, gd, ge, gf },
1278
1279/*
1280 * GUID definitions of various offer types - services offered to the guest.
1281 */
1282
1283/*
1284 * Network GUID
1285 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1286 */
1287#define HV_NIC_GUID \
1288        .guid = { \
1289                        0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1290                        0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1291                }
1292
1293/*
1294 * IDE GUID
1295 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1296 */
1297#define HV_IDE_GUID \
1298        .guid = { \
1299                        0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1300                        0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1301                }
1302
1303/*
1304 * SCSI GUID
1305 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1306 */
1307#define HV_SCSI_GUID \
1308        .guid = { \
1309                        0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1310                        0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1311                }
1312
1313/*
1314 * Shutdown GUID
1315 * {0e0b6031-5213-4934-818b-38d90ced39db}
1316 */
1317#define HV_SHUTDOWN_GUID \
1318        .guid = { \
1319                        0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1320                        0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1321                }
1322
1323/*
1324 * Time Synch GUID
1325 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1326 */
1327#define HV_TS_GUID \
1328        .guid = { \
1329                        0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1330                        0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1331                }
1332
1333/*
1334 * Heartbeat GUID
1335 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1336 */
1337#define HV_HEART_BEAT_GUID \
1338        .guid = { \
1339                        0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1340                        0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1341                }
1342
1343/*
1344 * KVP GUID
1345 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1346 */
1347#define HV_KVP_GUID \
1348        .guid = { \
1349                        0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1350                        0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3,  0xe6 \
1351                }
1352
1353/*
1354 * Dynamic memory GUID
1355 * {525074dc-8985-46e2-8057-a307dc18a502}
1356 */
1357#define HV_DM_GUID \
1358        .guid = { \
1359                        0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1360                        0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1361                }
1362
1363/*
1364 * Mouse GUID
1365 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1366 */
1367#define HV_MOUSE_GUID \
1368        .guid = { \
1369                        0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1370                        0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1371                }
1372
1373/*
1374 * VSS (Backup/Restore) GUID
1375 */
1376#define HV_VSS_GUID \
1377        .guid = { \
1378                        0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1379                        0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4,  0x40 \
1380                }
1381/*
1382 * Synthetic Video GUID
1383 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1384 */
1385#define HV_SYNTHVID_GUID \
1386        .guid = { \
1387                        0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1388                        0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1389                }
1390
1391/*
1392 * Synthetic FC GUID
1393 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1394 */
1395#define HV_SYNTHFC_GUID \
1396        .guid = { \
1397                        0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1398                        0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1399                }
1400
1401/*
1402 * Common header for Hyper-V ICs
1403 */
1404
1405#define ICMSGTYPE_NEGOTIATE             0
1406#define ICMSGTYPE_HEARTBEAT             1
1407#define ICMSGTYPE_KVPEXCHANGE           2
1408#define ICMSGTYPE_SHUTDOWN              3
1409#define ICMSGTYPE_TIMESYNC              4
1410#define ICMSGTYPE_VSS                   5
1411
1412#define ICMSGHDRFLAG_TRANSACTION        1
1413#define ICMSGHDRFLAG_REQUEST            2
1414#define ICMSGHDRFLAG_RESPONSE           4
1415
1416
1417/*
1418 * While we want to handle util services as regular devices,
1419 * there is only one instance of each of these services; so
1420 * we statically allocate the service specific state.
1421 */
1422
1423struct hv_util_service {
1424        u8 *recv_buffer;
1425        void (*util_cb)(void *);
1426        int (*util_init)(struct hv_util_service *);
1427        void (*util_deinit)(void);
1428};
1429
1430struct vmbuspipe_hdr {
1431        u32 flags;
1432        u32 msgsize;
1433} __packed;
1434
1435struct ic_version {
1436        u16 major;
1437        u16 minor;
1438} __packed;
1439
1440struct icmsg_hdr {
1441        struct ic_version icverframe;
1442        u16 icmsgtype;
1443        struct ic_version icvermsg;
1444        u16 icmsgsize;
1445        u32 status;
1446        u8 ictransaction_id;
1447        u8 icflags;
1448        u8 reserved[2];
1449} __packed;
1450
1451struct icmsg_negotiate {
1452        u16 icframe_vercnt;
1453        u16 icmsg_vercnt;
1454        u32 reserved;
1455        struct ic_version icversion_data[1]; /* any size array */
1456} __packed;
1457
1458struct shutdown_msg_data {
1459        u32 reason_code;
1460        u32 timeout_seconds;
1461        u32 flags;
1462        u8  display_message[2048];
1463} __packed;
1464
1465struct heartbeat_msg_data {
1466        u64 seq_num;
1467        u32 reserved[8];
1468} __packed;
1469
1470/* Time Sync IC defs */
1471#define ICTIMESYNCFLAG_PROBE    0
1472#define ICTIMESYNCFLAG_SYNC     1
1473#define ICTIMESYNCFLAG_SAMPLE   2
1474
1475#ifdef __x86_64__
1476#define WLTIMEDELTA     116444736000000000L     /* in 100ns unit */
1477#else
1478#define WLTIMEDELTA     116444736000000000LL
1479#endif
1480
1481struct ictimesync_data {
1482        u64 parenttime;
1483        u64 childtime;
1484        u64 roundtriptime;
1485        u8 flags;
1486} __packed;
1487
1488struct hyperv_service_callback {
1489        u8 msg_type;
1490        char *log_msg;
1491        uuid_le data;
1492        struct vmbus_channel *channel;
1493        void (*callback) (void *context);
1494};
1495
1496#define MAX_SRV_VER     0x7ffffff
1497extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1498                                        struct icmsg_negotiate *, u8 *, int,
1499                                        int);
1500
1501int hv_kvp_init(struct hv_util_service *);
1502void hv_kvp_deinit(void);
1503void hv_kvp_onchannelcallback(void *);
1504
1505int hv_vss_init(struct hv_util_service *);
1506void hv_vss_deinit(void);
1507void hv_vss_onchannelcallback(void *);
1508
1509/*
1510 * Negotiated version with the Host.
1511 */
1512
1513extern __u32 vmbus_proto_version;
1514
1515#endif /* __KERNEL__ */
1516#endif /* _HYPERV_H */
1517