linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR       2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34        CONFIG_DEFAULT_SECURITY;
  35
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38        .name   = "default",
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
  42{
  43        /* verify the security_operations structure exists */
  44        if (!ops)
  45                return -EINVAL;
  46        security_fixup_ops(ops);
  47        return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
  51{
  52        initcall_t *call;
  53        call = __security_initcall_start;
  54        while (call < __security_initcall_end) {
  55                (*call) ();
  56                call++;
  57        }
  58}
  59
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67        printk(KERN_INFO "Security Framework initialized\n");
  68
  69        security_fixup_ops(&default_security_ops);
  70        security_ops = &default_security_ops;
  71        do_security_initcalls();
  72
  73        return 0;
  74}
  75
  76void reset_security_ops(void)
  77{
  78        security_ops = &default_security_ops;
  79}
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84        strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85        return 1;
  86}
  87__setup("security=", choose_lsm);
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *      -The passed LSM is the one chosen by user at boot time,
  99 *      -or the passed LSM is configured as the default and the user did not
 100 *       choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105        return !strcmp(ops->name, chosen_lsm);
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122        if (verify(ops)) {
 123                printk(KERN_DEBUG "%s could not verify "
 124                       "security_operations structure.\n", __func__);
 125                return -EINVAL;
 126        }
 127
 128        if (security_ops != &default_security_ops)
 129                return -EAGAIN;
 130
 131        security_ops = ops;
 132
 133        return 0;
 134}
 135
 136/* Security operations */
 137
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141        int rc;
 142        rc = yama_ptrace_access_check(child, mode);
 143        if (rc)
 144                return rc;
 145#endif
 146        return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152        int rc;
 153        rc = yama_ptrace_traceme(parent);
 154        if (rc)
 155                return rc;
 156#endif
 157        return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161                     kernel_cap_t *effective,
 162                     kernel_cap_t *inheritable,
 163                     kernel_cap_t *permitted)
 164{
 165        return security_ops->capget(target, effective, inheritable, permitted);
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169                    const kernel_cap_t *effective,
 170                    const kernel_cap_t *inheritable,
 171                    const kernel_cap_t *permitted)
 172{
 173        return security_ops->capset(new, old,
 174                                    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178                     int cap)
 179{
 180        return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184                             int cap)
 185{
 186        return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191        return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196        return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201        return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206        return security_ops->settime(ts, tz);
 207}
 208
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 211        return security_ops->vm_enough_memory(mm, pages);
 212}
 213
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216        return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221        int ret;
 222
 223        ret = security_ops->bprm_check_security(bprm);
 224        if (ret)
 225                return ret;
 226        return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231        security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236        security_ops->bprm_committed_creds(bprm);
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241        return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246        return security_ops->sb_alloc_security(sb);
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251        security_ops->sb_free_security(sb);
 252}
 253
 254int security_sb_copy_data(char *orig, char *copy)
 255{
 256        return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 261{
 262        return security_ops->sb_remount(sb, data);
 263}
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267        return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272        return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277        return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283        return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288        return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293        return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297                                struct security_mnt_opts *opts,
 298                                unsigned long kern_flags,
 299                                unsigned long *set_kern_flags)
 300{
 301        return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302                                                set_kern_flags);
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307                                struct super_block *newsb)
 308{
 309        return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 314{
 315        return security_ops->sb_parse_opts_str(options, opts);
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321        inode->i_security = NULL;
 322        return security_ops->inode_alloc_security(inode);
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327        integrity_inode_free(inode);
 328        security_ops->inode_free_security(inode);
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332                                        struct qstr *name, void **ctx,
 333                                        u32 *ctxlen)
 334{
 335        return security_ops->dentry_init_security(dentry, mode, name,
 336                                                        ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341                                 const struct qstr *qstr,
 342                                 const initxattrs initxattrs, void *fs_data)
 343{
 344        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346        int ret;
 347
 348        if (unlikely(IS_PRIVATE(inode)))
 349                return 0;
 350
 351        memset(new_xattrs, 0, sizeof new_xattrs);
 352        if (!initxattrs)
 353                return security_ops->inode_init_security(inode, dir, qstr,
 354                                                         NULL, NULL, NULL);
 355        lsm_xattr = new_xattrs;
 356        ret = security_ops->inode_init_security(inode, dir, qstr,
 357                                                &lsm_xattr->name,
 358                                                &lsm_xattr->value,
 359                                                &lsm_xattr->value_len);
 360        if (ret)
 361                goto out;
 362
 363        evm_xattr = lsm_xattr + 1;
 364        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365        if (ret)
 366                goto out;
 367        ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369        for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
 370                kfree(xattr->name);
 371                kfree(xattr->value);
 372        }
 373        return (ret == -EOPNOTSUPP) ? 0 : ret;
 374}
 375EXPORT_SYMBOL(security_inode_init_security);
 376
 377int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 378                                     const struct qstr *qstr, char **name,
 379                                     void **value, size_t *len)
 380{
 381        if (unlikely(IS_PRIVATE(inode)))
 382                return -EOPNOTSUPP;
 383        return security_ops->inode_init_security(inode, dir, qstr, name, value,
 384                                                 len);
 385}
 386EXPORT_SYMBOL(security_old_inode_init_security);
 387
 388#ifdef CONFIG_SECURITY_PATH
 389int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 390                        unsigned int dev)
 391{
 392        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 393                return 0;
 394        return security_ops->path_mknod(dir, dentry, mode, dev);
 395}
 396EXPORT_SYMBOL(security_path_mknod);
 397
 398int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 399{
 400        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 401                return 0;
 402        return security_ops->path_mkdir(dir, dentry, mode);
 403}
 404EXPORT_SYMBOL(security_path_mkdir);
 405
 406int security_path_rmdir(struct path *dir, struct dentry *dentry)
 407{
 408        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 409                return 0;
 410        return security_ops->path_rmdir(dir, dentry);
 411}
 412
 413int security_path_unlink(struct path *dir, struct dentry *dentry)
 414{
 415        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 416                return 0;
 417        return security_ops->path_unlink(dir, dentry);
 418}
 419EXPORT_SYMBOL(security_path_unlink);
 420
 421int security_path_symlink(struct path *dir, struct dentry *dentry,
 422                          const char *old_name)
 423{
 424        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 425                return 0;
 426        return security_ops->path_symlink(dir, dentry, old_name);
 427}
 428
 429int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 430                       struct dentry *new_dentry)
 431{
 432        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 433                return 0;
 434        return security_ops->path_link(old_dentry, new_dir, new_dentry);
 435}
 436
 437int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 438                         struct path *new_dir, struct dentry *new_dentry)
 439{
 440        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 441                     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 442                return 0;
 443        return security_ops->path_rename(old_dir, old_dentry, new_dir,
 444                                         new_dentry);
 445}
 446EXPORT_SYMBOL(security_path_rename);
 447
 448int security_path_truncate(struct path *path)
 449{
 450        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 451                return 0;
 452        return security_ops->path_truncate(path);
 453}
 454
 455int security_path_chmod(struct path *path, umode_t mode)
 456{
 457        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 458                return 0;
 459        return security_ops->path_chmod(path, mode);
 460}
 461
 462int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 463{
 464        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 465                return 0;
 466        return security_ops->path_chown(path, uid, gid);
 467}
 468
 469int security_path_chroot(struct path *path)
 470{
 471        return security_ops->path_chroot(path);
 472}
 473#endif
 474
 475int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 476{
 477        if (unlikely(IS_PRIVATE(dir)))
 478                return 0;
 479        return security_ops->inode_create(dir, dentry, mode);
 480}
 481EXPORT_SYMBOL_GPL(security_inode_create);
 482
 483int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 484                         struct dentry *new_dentry)
 485{
 486        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 487                return 0;
 488        return security_ops->inode_link(old_dentry, dir, new_dentry);
 489}
 490
 491int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 492{
 493        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 494                return 0;
 495        return security_ops->inode_unlink(dir, dentry);
 496}
 497
 498int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 499                            const char *old_name)
 500{
 501        if (unlikely(IS_PRIVATE(dir)))
 502                return 0;
 503        return security_ops->inode_symlink(dir, dentry, old_name);
 504}
 505
 506int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 507{
 508        if (unlikely(IS_PRIVATE(dir)))
 509                return 0;
 510        return security_ops->inode_mkdir(dir, dentry, mode);
 511}
 512EXPORT_SYMBOL_GPL(security_inode_mkdir);
 513
 514int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 515{
 516        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 517                return 0;
 518        return security_ops->inode_rmdir(dir, dentry);
 519}
 520
 521int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 522{
 523        if (unlikely(IS_PRIVATE(dir)))
 524                return 0;
 525        return security_ops->inode_mknod(dir, dentry, mode, dev);
 526}
 527
 528int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 529                           struct inode *new_dir, struct dentry *new_dentry)
 530{
 531        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 532            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 533                return 0;
 534        return security_ops->inode_rename(old_dir, old_dentry,
 535                                           new_dir, new_dentry);
 536}
 537
 538int security_inode_readlink(struct dentry *dentry)
 539{
 540        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 541                return 0;
 542        return security_ops->inode_readlink(dentry);
 543}
 544
 545int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 546{
 547        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 548                return 0;
 549        return security_ops->inode_follow_link(dentry, nd);
 550}
 551
 552int security_inode_permission(struct inode *inode, int mask)
 553{
 554        if (unlikely(IS_PRIVATE(inode)))
 555                return 0;
 556        return security_ops->inode_permission(inode, mask);
 557}
 558
 559int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 560{
 561        int ret;
 562
 563        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 564                return 0;
 565        ret = security_ops->inode_setattr(dentry, attr);
 566        if (ret)
 567                return ret;
 568        return evm_inode_setattr(dentry, attr);
 569}
 570EXPORT_SYMBOL_GPL(security_inode_setattr);
 571
 572int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 573{
 574        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 575                return 0;
 576        return security_ops->inode_getattr(mnt, dentry);
 577}
 578
 579int security_inode_setxattr(struct dentry *dentry, const char *name,
 580                            const void *value, size_t size, int flags)
 581{
 582        int ret;
 583
 584        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 585                return 0;
 586        ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 587        if (ret)
 588                return ret;
 589        ret = ima_inode_setxattr(dentry, name, value, size);
 590        if (ret)
 591                return ret;
 592        return evm_inode_setxattr(dentry, name, value, size);
 593}
 594
 595void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 596                                  const void *value, size_t size, int flags)
 597{
 598        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 599                return;
 600        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 601        evm_inode_post_setxattr(dentry, name, value, size);
 602}
 603
 604int security_inode_getxattr(struct dentry *dentry, const char *name)
 605{
 606        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 607                return 0;
 608        return security_ops->inode_getxattr(dentry, name);
 609}
 610
 611int security_inode_listxattr(struct dentry *dentry)
 612{
 613        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 614                return 0;
 615        return security_ops->inode_listxattr(dentry);
 616}
 617
 618int security_inode_removexattr(struct dentry *dentry, const char *name)
 619{
 620        int ret;
 621
 622        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 623                return 0;
 624        ret = security_ops->inode_removexattr(dentry, name);
 625        if (ret)
 626                return ret;
 627        ret = ima_inode_removexattr(dentry, name);
 628        if (ret)
 629                return ret;
 630        return evm_inode_removexattr(dentry, name);
 631}
 632
 633int security_inode_need_killpriv(struct dentry *dentry)
 634{
 635        return security_ops->inode_need_killpriv(dentry);
 636}
 637
 638int security_inode_killpriv(struct dentry *dentry)
 639{
 640        return security_ops->inode_killpriv(dentry);
 641}
 642
 643int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 644{
 645        if (unlikely(IS_PRIVATE(inode)))
 646                return -EOPNOTSUPP;
 647        return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 648}
 649
 650int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 651{
 652        if (unlikely(IS_PRIVATE(inode)))
 653                return -EOPNOTSUPP;
 654        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 655}
 656
 657int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 658{
 659        if (unlikely(IS_PRIVATE(inode)))
 660                return 0;
 661        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 662}
 663EXPORT_SYMBOL(security_inode_listsecurity);
 664
 665void security_inode_getsecid(const struct inode *inode, u32 *secid)
 666{
 667        security_ops->inode_getsecid(inode, secid);
 668}
 669
 670int security_file_permission(struct file *file, int mask)
 671{
 672        int ret;
 673
 674        ret = security_ops->file_permission(file, mask);
 675        if (ret)
 676                return ret;
 677
 678        return fsnotify_perm(file, mask);
 679}
 680
 681int security_file_alloc(struct file *file)
 682{
 683        return security_ops->file_alloc_security(file);
 684}
 685
 686void security_file_free(struct file *file)
 687{
 688        security_ops->file_free_security(file);
 689}
 690
 691int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 692{
 693        return security_ops->file_ioctl(file, cmd, arg);
 694}
 695
 696static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 697{
 698        /*
 699         * Does we have PROT_READ and does the application expect
 700         * it to imply PROT_EXEC?  If not, nothing to talk about...
 701         */
 702        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 703                return prot;
 704        if (!(current->personality & READ_IMPLIES_EXEC))
 705                return prot;
 706        /*
 707         * if that's an anonymous mapping, let it.
 708         */
 709        if (!file)
 710                return prot | PROT_EXEC;
 711        /*
 712         * ditto if it's not on noexec mount, except that on !MMU we need
 713         * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 714         */
 715        if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 716#ifndef CONFIG_MMU
 717                unsigned long caps = 0;
 718                struct address_space *mapping = file->f_mapping;
 719                if (mapping && mapping->backing_dev_info)
 720                        caps = mapping->backing_dev_info->capabilities;
 721                if (!(caps & BDI_CAP_EXEC_MAP))
 722                        return prot;
 723#endif
 724                return prot | PROT_EXEC;
 725        }
 726        /* anything on noexec mount won't get PROT_EXEC */
 727        return prot;
 728}
 729
 730int security_mmap_file(struct file *file, unsigned long prot,
 731                        unsigned long flags)
 732{
 733        int ret;
 734        ret = security_ops->mmap_file(file, prot,
 735                                        mmap_prot(file, prot), flags);
 736        if (ret)
 737                return ret;
 738        return ima_file_mmap(file, prot);
 739}
 740
 741int security_mmap_addr(unsigned long addr)
 742{
 743        return security_ops->mmap_addr(addr);
 744}
 745
 746int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 747                            unsigned long prot)
 748{
 749        return security_ops->file_mprotect(vma, reqprot, prot);
 750}
 751
 752int security_file_lock(struct file *file, unsigned int cmd)
 753{
 754        return security_ops->file_lock(file, cmd);
 755}
 756
 757int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 758{
 759        return security_ops->file_fcntl(file, cmd, arg);
 760}
 761
 762int security_file_set_fowner(struct file *file)
 763{
 764        return security_ops->file_set_fowner(file);
 765}
 766
 767int security_file_send_sigiotask(struct task_struct *tsk,
 768                                  struct fown_struct *fown, int sig)
 769{
 770        return security_ops->file_send_sigiotask(tsk, fown, sig);
 771}
 772
 773int security_file_receive(struct file *file)
 774{
 775        return security_ops->file_receive(file);
 776}
 777
 778int security_file_open(struct file *file, const struct cred *cred)
 779{
 780        int ret;
 781
 782        ret = security_ops->file_open(file, cred);
 783        if (ret)
 784                return ret;
 785
 786        return fsnotify_perm(file, MAY_OPEN);
 787}
 788
 789int security_task_create(unsigned long clone_flags)
 790{
 791        return security_ops->task_create(clone_flags);
 792}
 793
 794void security_task_free(struct task_struct *task)
 795{
 796#ifdef CONFIG_SECURITY_YAMA_STACKED
 797        yama_task_free(task);
 798#endif
 799        security_ops->task_free(task);
 800}
 801
 802int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 803{
 804        return security_ops->cred_alloc_blank(cred, gfp);
 805}
 806
 807void security_cred_free(struct cred *cred)
 808{
 809        security_ops->cred_free(cred);
 810}
 811
 812int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 813{
 814        return security_ops->cred_prepare(new, old, gfp);
 815}
 816
 817void security_transfer_creds(struct cred *new, const struct cred *old)
 818{
 819        security_ops->cred_transfer(new, old);
 820}
 821
 822int security_kernel_act_as(struct cred *new, u32 secid)
 823{
 824        return security_ops->kernel_act_as(new, secid);
 825}
 826
 827int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 828{
 829        return security_ops->kernel_create_files_as(new, inode);
 830}
 831
 832int security_kernel_module_request(char *kmod_name)
 833{
 834        return security_ops->kernel_module_request(kmod_name);
 835}
 836
 837int security_kernel_module_from_file(struct file *file)
 838{
 839        int ret;
 840
 841        ret = security_ops->kernel_module_from_file(file);
 842        if (ret)
 843                return ret;
 844        return ima_module_check(file);
 845}
 846
 847int security_task_fix_setuid(struct cred *new, const struct cred *old,
 848                             int flags)
 849{
 850        return security_ops->task_fix_setuid(new, old, flags);
 851}
 852
 853int security_task_setpgid(struct task_struct *p, pid_t pgid)
 854{
 855        return security_ops->task_setpgid(p, pgid);
 856}
 857
 858int security_task_getpgid(struct task_struct *p)
 859{
 860        return security_ops->task_getpgid(p);
 861}
 862
 863int security_task_getsid(struct task_struct *p)
 864{
 865        return security_ops->task_getsid(p);
 866}
 867
 868void security_task_getsecid(struct task_struct *p, u32 *secid)
 869{
 870        security_ops->task_getsecid(p, secid);
 871}
 872EXPORT_SYMBOL(security_task_getsecid);
 873
 874int security_task_setnice(struct task_struct *p, int nice)
 875{
 876        return security_ops->task_setnice(p, nice);
 877}
 878
 879int security_task_setioprio(struct task_struct *p, int ioprio)
 880{
 881        return security_ops->task_setioprio(p, ioprio);
 882}
 883
 884int security_task_getioprio(struct task_struct *p)
 885{
 886        return security_ops->task_getioprio(p);
 887}
 888
 889int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 890                struct rlimit *new_rlim)
 891{
 892        return security_ops->task_setrlimit(p, resource, new_rlim);
 893}
 894
 895int security_task_setscheduler(struct task_struct *p)
 896{
 897        return security_ops->task_setscheduler(p);
 898}
 899
 900int security_task_getscheduler(struct task_struct *p)
 901{
 902        return security_ops->task_getscheduler(p);
 903}
 904
 905int security_task_movememory(struct task_struct *p)
 906{
 907        return security_ops->task_movememory(p);
 908}
 909
 910int security_task_kill(struct task_struct *p, struct siginfo *info,
 911                        int sig, u32 secid)
 912{
 913        return security_ops->task_kill(p, info, sig, secid);
 914}
 915
 916int security_task_wait(struct task_struct *p)
 917{
 918        return security_ops->task_wait(p);
 919}
 920
 921int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 922                         unsigned long arg4, unsigned long arg5)
 923{
 924#ifdef CONFIG_SECURITY_YAMA_STACKED
 925        int rc;
 926        rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 927        if (rc != -ENOSYS)
 928                return rc;
 929#endif
 930        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 931}
 932
 933void security_task_to_inode(struct task_struct *p, struct inode *inode)
 934{
 935        security_ops->task_to_inode(p, inode);
 936}
 937
 938int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 939{
 940        return security_ops->ipc_permission(ipcp, flag);
 941}
 942
 943void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 944{
 945        security_ops->ipc_getsecid(ipcp, secid);
 946}
 947
 948int security_msg_msg_alloc(struct msg_msg *msg)
 949{
 950        return security_ops->msg_msg_alloc_security(msg);
 951}
 952
 953void security_msg_msg_free(struct msg_msg *msg)
 954{
 955        security_ops->msg_msg_free_security(msg);
 956}
 957
 958int security_msg_queue_alloc(struct msg_queue *msq)
 959{
 960        return security_ops->msg_queue_alloc_security(msq);
 961}
 962
 963void security_msg_queue_free(struct msg_queue *msq)
 964{
 965        security_ops->msg_queue_free_security(msq);
 966}
 967
 968int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 969{
 970        return security_ops->msg_queue_associate(msq, msqflg);
 971}
 972
 973int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 974{
 975        return security_ops->msg_queue_msgctl(msq, cmd);
 976}
 977
 978int security_msg_queue_msgsnd(struct msg_queue *msq,
 979                               struct msg_msg *msg, int msqflg)
 980{
 981        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 982}
 983
 984int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 985                               struct task_struct *target, long type, int mode)
 986{
 987        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 988}
 989
 990int security_shm_alloc(struct shmid_kernel *shp)
 991{
 992        return security_ops->shm_alloc_security(shp);
 993}
 994
 995void security_shm_free(struct shmid_kernel *shp)
 996{
 997        security_ops->shm_free_security(shp);
 998}
 999
1000int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1001{
1002        return security_ops->shm_associate(shp, shmflg);
1003}
1004
1005int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1006{
1007        return security_ops->shm_shmctl(shp, cmd);
1008}
1009
1010int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1011{
1012        return security_ops->shm_shmat(shp, shmaddr, shmflg);
1013}
1014
1015int security_sem_alloc(struct sem_array *sma)
1016{
1017        return security_ops->sem_alloc_security(sma);
1018}
1019
1020void security_sem_free(struct sem_array *sma)
1021{
1022        security_ops->sem_free_security(sma);
1023}
1024
1025int security_sem_associate(struct sem_array *sma, int semflg)
1026{
1027        return security_ops->sem_associate(sma, semflg);
1028}
1029
1030int security_sem_semctl(struct sem_array *sma, int cmd)
1031{
1032        return security_ops->sem_semctl(sma, cmd);
1033}
1034
1035int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1036                        unsigned nsops, int alter)
1037{
1038        return security_ops->sem_semop(sma, sops, nsops, alter);
1039}
1040
1041void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1042{
1043        if (unlikely(inode && IS_PRIVATE(inode)))
1044                return;
1045        security_ops->d_instantiate(dentry, inode);
1046}
1047EXPORT_SYMBOL(security_d_instantiate);
1048
1049int security_getprocattr(struct task_struct *p, char *name, char **value)
1050{
1051        return security_ops->getprocattr(p, name, value);
1052}
1053
1054int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1055{
1056        return security_ops->setprocattr(p, name, value, size);
1057}
1058
1059int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1060{
1061        return security_ops->netlink_send(sk, skb);
1062}
1063
1064int security_ismaclabel(const char *name)
1065{
1066        return security_ops->ismaclabel(name);
1067}
1068EXPORT_SYMBOL(security_ismaclabel);
1069
1070int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1071{
1072        return security_ops->secid_to_secctx(secid, secdata, seclen);
1073}
1074EXPORT_SYMBOL(security_secid_to_secctx);
1075
1076int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1077{
1078        return security_ops->secctx_to_secid(secdata, seclen, secid);
1079}
1080EXPORT_SYMBOL(security_secctx_to_secid);
1081
1082void security_release_secctx(char *secdata, u32 seclen)
1083{
1084        security_ops->release_secctx(secdata, seclen);
1085}
1086EXPORT_SYMBOL(security_release_secctx);
1087
1088int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1089{
1090        return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1091}
1092EXPORT_SYMBOL(security_inode_notifysecctx);
1093
1094int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1095{
1096        return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1097}
1098EXPORT_SYMBOL(security_inode_setsecctx);
1099
1100int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1101{
1102        return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1103}
1104EXPORT_SYMBOL(security_inode_getsecctx);
1105
1106#ifdef CONFIG_SECURITY_NETWORK
1107
1108int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1109{
1110        return security_ops->unix_stream_connect(sock, other, newsk);
1111}
1112EXPORT_SYMBOL(security_unix_stream_connect);
1113
1114int security_unix_may_send(struct socket *sock,  struct socket *other)
1115{
1116        return security_ops->unix_may_send(sock, other);
1117}
1118EXPORT_SYMBOL(security_unix_may_send);
1119
1120int security_socket_create(int family, int type, int protocol, int kern)
1121{
1122        return security_ops->socket_create(family, type, protocol, kern);
1123}
1124
1125int security_socket_post_create(struct socket *sock, int family,
1126                                int type, int protocol, int kern)
1127{
1128        return security_ops->socket_post_create(sock, family, type,
1129                                                protocol, kern);
1130}
1131
1132int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1133{
1134        return security_ops->socket_bind(sock, address, addrlen);
1135}
1136
1137int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1138{
1139        return security_ops->socket_connect(sock, address, addrlen);
1140}
1141
1142int security_socket_listen(struct socket *sock, int backlog)
1143{
1144        return security_ops->socket_listen(sock, backlog);
1145}
1146
1147int security_socket_accept(struct socket *sock, struct socket *newsock)
1148{
1149        return security_ops->socket_accept(sock, newsock);
1150}
1151
1152int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1153{
1154        return security_ops->socket_sendmsg(sock, msg, size);
1155}
1156
1157int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1158                            int size, int flags)
1159{
1160        return security_ops->socket_recvmsg(sock, msg, size, flags);
1161}
1162
1163int security_socket_getsockname(struct socket *sock)
1164{
1165        return security_ops->socket_getsockname(sock);
1166}
1167
1168int security_socket_getpeername(struct socket *sock)
1169{
1170        return security_ops->socket_getpeername(sock);
1171}
1172
1173int security_socket_getsockopt(struct socket *sock, int level, int optname)
1174{
1175        return security_ops->socket_getsockopt(sock, level, optname);
1176}
1177
1178int security_socket_setsockopt(struct socket *sock, int level, int optname)
1179{
1180        return security_ops->socket_setsockopt(sock, level, optname);
1181}
1182
1183int security_socket_shutdown(struct socket *sock, int how)
1184{
1185        return security_ops->socket_shutdown(sock, how);
1186}
1187
1188int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1189{
1190        return security_ops->socket_sock_rcv_skb(sk, skb);
1191}
1192EXPORT_SYMBOL(security_sock_rcv_skb);
1193
1194int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1195                                      int __user *optlen, unsigned len)
1196{
1197        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1198}
1199
1200int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1201{
1202        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1203}
1204EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1205
1206int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1207{
1208        return security_ops->sk_alloc_security(sk, family, priority);
1209}
1210
1211void security_sk_free(struct sock *sk)
1212{
1213        security_ops->sk_free_security(sk);
1214}
1215
1216void security_sk_clone(const struct sock *sk, struct sock *newsk)
1217{
1218        security_ops->sk_clone_security(sk, newsk);
1219}
1220EXPORT_SYMBOL(security_sk_clone);
1221
1222void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1223{
1224        security_ops->sk_getsecid(sk, &fl->flowi_secid);
1225}
1226EXPORT_SYMBOL(security_sk_classify_flow);
1227
1228void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1229{
1230        security_ops->req_classify_flow(req, fl);
1231}
1232EXPORT_SYMBOL(security_req_classify_flow);
1233
1234void security_sock_graft(struct sock *sk, struct socket *parent)
1235{
1236        security_ops->sock_graft(sk, parent);
1237}
1238EXPORT_SYMBOL(security_sock_graft);
1239
1240int security_inet_conn_request(struct sock *sk,
1241                        struct sk_buff *skb, struct request_sock *req)
1242{
1243        return security_ops->inet_conn_request(sk, skb, req);
1244}
1245EXPORT_SYMBOL(security_inet_conn_request);
1246
1247void security_inet_csk_clone(struct sock *newsk,
1248                        const struct request_sock *req)
1249{
1250        security_ops->inet_csk_clone(newsk, req);
1251}
1252
1253void security_inet_conn_established(struct sock *sk,
1254                        struct sk_buff *skb)
1255{
1256        security_ops->inet_conn_established(sk, skb);
1257}
1258
1259int security_secmark_relabel_packet(u32 secid)
1260{
1261        return security_ops->secmark_relabel_packet(secid);
1262}
1263EXPORT_SYMBOL(security_secmark_relabel_packet);
1264
1265void security_secmark_refcount_inc(void)
1266{
1267        security_ops->secmark_refcount_inc();
1268}
1269EXPORT_SYMBOL(security_secmark_refcount_inc);
1270
1271void security_secmark_refcount_dec(void)
1272{
1273        security_ops->secmark_refcount_dec();
1274}
1275EXPORT_SYMBOL(security_secmark_refcount_dec);
1276
1277int security_tun_dev_alloc_security(void **security)
1278{
1279        return security_ops->tun_dev_alloc_security(security);
1280}
1281EXPORT_SYMBOL(security_tun_dev_alloc_security);
1282
1283void security_tun_dev_free_security(void *security)
1284{
1285        security_ops->tun_dev_free_security(security);
1286}
1287EXPORT_SYMBOL(security_tun_dev_free_security);
1288
1289int security_tun_dev_create(void)
1290{
1291        return security_ops->tun_dev_create();
1292}
1293EXPORT_SYMBOL(security_tun_dev_create);
1294
1295int security_tun_dev_attach_queue(void *security)
1296{
1297        return security_ops->tun_dev_attach_queue(security);
1298}
1299EXPORT_SYMBOL(security_tun_dev_attach_queue);
1300
1301int security_tun_dev_attach(struct sock *sk, void *security)
1302{
1303        return security_ops->tun_dev_attach(sk, security);
1304}
1305EXPORT_SYMBOL(security_tun_dev_attach);
1306
1307int security_tun_dev_open(void *security)
1308{
1309        return security_ops->tun_dev_open(security);
1310}
1311EXPORT_SYMBOL(security_tun_dev_open);
1312
1313void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1314{
1315        security_ops->skb_owned_by(skb, sk);
1316}
1317
1318#endif  /* CONFIG_SECURITY_NETWORK */
1319
1320#ifdef CONFIG_SECURITY_NETWORK_XFRM
1321
1322int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1323{
1324        return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1325}
1326EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327
1328int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329                              struct xfrm_sec_ctx **new_ctxp)
1330{
1331        return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332}
1333
1334void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335{
1336        security_ops->xfrm_policy_free_security(ctx);
1337}
1338EXPORT_SYMBOL(security_xfrm_policy_free);
1339
1340int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341{
1342        return security_ops->xfrm_policy_delete_security(ctx);
1343}
1344
1345int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1346{
1347        return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1348}
1349EXPORT_SYMBOL(security_xfrm_state_alloc);
1350
1351int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1352                                      struct xfrm_sec_ctx *polsec, u32 secid)
1353{
1354        if (!polsec)
1355                return 0;
1356        /*
1357         * We want the context to be taken from secid which is usually
1358         * from the sock.
1359         */
1360        return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1361}
1362
1363int security_xfrm_state_delete(struct xfrm_state *x)
1364{
1365        return security_ops->xfrm_state_delete_security(x);
1366}
1367EXPORT_SYMBOL(security_xfrm_state_delete);
1368
1369void security_xfrm_state_free(struct xfrm_state *x)
1370{
1371        security_ops->xfrm_state_free_security(x);
1372}
1373
1374int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1375{
1376        return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1377}
1378
1379int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1380                                       struct xfrm_policy *xp,
1381                                       const struct flowi *fl)
1382{
1383        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1384}
1385
1386int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1387{
1388        return security_ops->xfrm_decode_session(skb, secid, 1);
1389}
1390
1391void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1392{
1393        int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1394
1395        BUG_ON(rc);
1396}
1397EXPORT_SYMBOL(security_skb_classify_flow);
1398
1399#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1400
1401#ifdef CONFIG_KEYS
1402
1403int security_key_alloc(struct key *key, const struct cred *cred,
1404                       unsigned long flags)
1405{
1406        return security_ops->key_alloc(key, cred, flags);
1407}
1408
1409void security_key_free(struct key *key)
1410{
1411        security_ops->key_free(key);
1412}
1413
1414int security_key_permission(key_ref_t key_ref,
1415                            const struct cred *cred, key_perm_t perm)
1416{
1417        return security_ops->key_permission(key_ref, cred, perm);
1418}
1419
1420int security_key_getsecurity(struct key *key, char **_buffer)
1421{
1422        return security_ops->key_getsecurity(key, _buffer);
1423}
1424
1425#endif  /* CONFIG_KEYS */
1426
1427#ifdef CONFIG_AUDIT
1428
1429int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1430{
1431        return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1432}
1433
1434int security_audit_rule_known(struct audit_krule *krule)
1435{
1436        return security_ops->audit_rule_known(krule);
1437}
1438
1439void security_audit_rule_free(void *lsmrule)
1440{
1441        security_ops->audit_rule_free(lsmrule);
1442}
1443
1444int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1445                              struct audit_context *actx)
1446{
1447        return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1448}
1449
1450#endif /* CONFIG_AUDIT */
1451
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.