linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "blockcheck.h"
  40#include "dir.h"
  41#include "dlmglue.h"
  42#include "extent_map.h"
  43#include "heartbeat.h"
  44#include "inode.h"
  45#include "journal.h"
  46#include "localalloc.h"
  47#include "slot_map.h"
  48#include "super.h"
  49#include "sysfile.h"
  50#include "uptodate.h"
  51#include "quota.h"
  52
  53#include "buffer_head_io.h"
  54#include "ocfs2_trace.h"
  55
  56DEFINE_SPINLOCK(trans_inc_lock);
  57
  58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  59
  60static int ocfs2_force_read_journal(struct inode *inode);
  61static int ocfs2_recover_node(struct ocfs2_super *osb,
  62                              int node_num, int slot_num);
  63static int __ocfs2_recovery_thread(void *arg);
  64static int ocfs2_commit_cache(struct ocfs2_super *osb);
  65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  67                                      int dirty, int replayed);
  68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  69                                 int slot_num);
  70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  71                                 int slot);
  72static int ocfs2_commit_thread(void *arg);
  73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  74                                            int slot_num,
  75                                            struct ocfs2_dinode *la_dinode,
  76                                            struct ocfs2_dinode *tl_dinode,
  77                                            struct ocfs2_quota_recovery *qrec);
  78
  79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  80{
  81        return __ocfs2_wait_on_mount(osb, 0);
  82}
  83
  84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  85{
  86        return __ocfs2_wait_on_mount(osb, 1);
  87}
  88
  89/*
  90 * This replay_map is to track online/offline slots, so we could recover
  91 * offline slots during recovery and mount
  92 */
  93
  94enum ocfs2_replay_state {
  95        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
  96        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
  97        REPLAY_DONE             /* Replay was already queued */
  98};
  99
 100struct ocfs2_replay_map {
 101        unsigned int rm_slots;
 102        enum ocfs2_replay_state rm_state;
 103        unsigned char rm_replay_slots[0];
 104};
 105
 106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 107{
 108        if (!osb->replay_map)
 109                return;
 110
 111        /* If we've already queued the replay, we don't have any more to do */
 112        if (osb->replay_map->rm_state == REPLAY_DONE)
 113                return;
 114
 115        osb->replay_map->rm_state = state;
 116}
 117
 118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 119{
 120        struct ocfs2_replay_map *replay_map;
 121        int i, node_num;
 122
 123        /* If replay map is already set, we don't do it again */
 124        if (osb->replay_map)
 125                return 0;
 126
 127        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 128                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 129
 130        if (!replay_map) {
 131                mlog_errno(-ENOMEM);
 132                return -ENOMEM;
 133        }
 134
 135        spin_lock(&osb->osb_lock);
 136
 137        replay_map->rm_slots = osb->max_slots;
 138        replay_map->rm_state = REPLAY_UNNEEDED;
 139
 140        /* set rm_replay_slots for offline slot(s) */
 141        for (i = 0; i < replay_map->rm_slots; i++) {
 142                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 143                        replay_map->rm_replay_slots[i] = 1;
 144        }
 145
 146        osb->replay_map = replay_map;
 147        spin_unlock(&osb->osb_lock);
 148        return 0;
 149}
 150
 151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
 152{
 153        struct ocfs2_replay_map *replay_map = osb->replay_map;
 154        int i;
 155
 156        if (!replay_map)
 157                return;
 158
 159        if (replay_map->rm_state != REPLAY_NEEDED)
 160                return;
 161
 162        for (i = 0; i < replay_map->rm_slots; i++)
 163                if (replay_map->rm_replay_slots[i])
 164                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 165                                                        NULL, NULL);
 166        replay_map->rm_state = REPLAY_DONE;
 167}
 168
 169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 170{
 171        struct ocfs2_replay_map *replay_map = osb->replay_map;
 172
 173        if (!osb->replay_map)
 174                return;
 175
 176        kfree(replay_map);
 177        osb->replay_map = NULL;
 178}
 179
 180int ocfs2_recovery_init(struct ocfs2_super *osb)
 181{
 182        struct ocfs2_recovery_map *rm;
 183
 184        mutex_init(&osb->recovery_lock);
 185        osb->disable_recovery = 0;
 186        osb->recovery_thread_task = NULL;
 187        init_waitqueue_head(&osb->recovery_event);
 188
 189        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 190                     osb->max_slots * sizeof(unsigned int),
 191                     GFP_KERNEL);
 192        if (!rm) {
 193                mlog_errno(-ENOMEM);
 194                return -ENOMEM;
 195        }
 196
 197        rm->rm_entries = (unsigned int *)((char *)rm +
 198                                          sizeof(struct ocfs2_recovery_map));
 199        osb->recovery_map = rm;
 200
 201        return 0;
 202}
 203
 204/* we can't grab the goofy sem lock from inside wait_event, so we use
 205 * memory barriers to make sure that we'll see the null task before
 206 * being woken up */
 207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 208{
 209        mb();
 210        return osb->recovery_thread_task != NULL;
 211}
 212
 213void ocfs2_recovery_exit(struct ocfs2_super *osb)
 214{
 215        struct ocfs2_recovery_map *rm;
 216
 217        /* disable any new recovery threads and wait for any currently
 218         * running ones to exit. Do this before setting the vol_state. */
 219        mutex_lock(&osb->recovery_lock);
 220        osb->disable_recovery = 1;
 221        mutex_unlock(&osb->recovery_lock);
 222        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 223
 224        /* At this point, we know that no more recovery threads can be
 225         * launched, so wait for any recovery completion work to
 226         * complete. */
 227        flush_workqueue(ocfs2_wq);
 228
 229        /*
 230         * Now that recovery is shut down, and the osb is about to be
 231         * freed,  the osb_lock is not taken here.
 232         */
 233        rm = osb->recovery_map;
 234        /* XXX: Should we bug if there are dirty entries? */
 235
 236        kfree(rm);
 237}
 238
 239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 240                                     unsigned int node_num)
 241{
 242        int i;
 243        struct ocfs2_recovery_map *rm = osb->recovery_map;
 244
 245        assert_spin_locked(&osb->osb_lock);
 246
 247        for (i = 0; i < rm->rm_used; i++) {
 248                if (rm->rm_entries[i] == node_num)
 249                        return 1;
 250        }
 251
 252        return 0;
 253}
 254
 255/* Behaves like test-and-set.  Returns the previous value */
 256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 257                                  unsigned int node_num)
 258{
 259        struct ocfs2_recovery_map *rm = osb->recovery_map;
 260
 261        spin_lock(&osb->osb_lock);
 262        if (__ocfs2_recovery_map_test(osb, node_num)) {
 263                spin_unlock(&osb->osb_lock);
 264                return 1;
 265        }
 266
 267        /* XXX: Can this be exploited? Not from o2dlm... */
 268        BUG_ON(rm->rm_used >= osb->max_slots);
 269
 270        rm->rm_entries[rm->rm_used] = node_num;
 271        rm->rm_used++;
 272        spin_unlock(&osb->osb_lock);
 273
 274        return 0;
 275}
 276
 277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 278                                     unsigned int node_num)
 279{
 280        int i;
 281        struct ocfs2_recovery_map *rm = osb->recovery_map;
 282
 283        spin_lock(&osb->osb_lock);
 284
 285        for (i = 0; i < rm->rm_used; i++) {
 286                if (rm->rm_entries[i] == node_num)
 287                        break;
 288        }
 289
 290        if (i < rm->rm_used) {
 291                /* XXX: be careful with the pointer math */
 292                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 293                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 294                rm->rm_used--;
 295        }
 296
 297        spin_unlock(&osb->osb_lock);
 298}
 299
 300static int ocfs2_commit_cache(struct ocfs2_super *osb)
 301{
 302        int status = 0;
 303        unsigned int flushed;
 304        struct ocfs2_journal *journal = NULL;
 305
 306        journal = osb->journal;
 307
 308        /* Flush all pending commits and checkpoint the journal. */
 309        down_write(&journal->j_trans_barrier);
 310
 311        flushed = atomic_read(&journal->j_num_trans);
 312        trace_ocfs2_commit_cache_begin(flushed);
 313        if (flushed == 0) {
 314                up_write(&journal->j_trans_barrier);
 315                goto finally;
 316        }
 317
 318        jbd2_journal_lock_updates(journal->j_journal);
 319        status = jbd2_journal_flush(journal->j_journal);
 320        jbd2_journal_unlock_updates(journal->j_journal);
 321        if (status < 0) {
 322                up_write(&journal->j_trans_barrier);
 323                mlog_errno(status);
 324                goto finally;
 325        }
 326
 327        ocfs2_inc_trans_id(journal);
 328
 329        flushed = atomic_read(&journal->j_num_trans);
 330        atomic_set(&journal->j_num_trans, 0);
 331        up_write(&journal->j_trans_barrier);
 332
 333        trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 334
 335        ocfs2_wake_downconvert_thread(osb);
 336        wake_up(&journal->j_checkpointed);
 337finally:
 338        return status;
 339}
 340
 341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 342{
 343        journal_t *journal = osb->journal->j_journal;
 344        handle_t *handle;
 345
 346        BUG_ON(!osb || !osb->journal->j_journal);
 347
 348        if (ocfs2_is_hard_readonly(osb))
 349                return ERR_PTR(-EROFS);
 350
 351        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 352        BUG_ON(max_buffs <= 0);
 353
 354        /* Nested transaction? Just return the handle... */
 355        if (journal_current_handle())
 356                return jbd2_journal_start(journal, max_buffs);
 357
 358        sb_start_intwrite(osb->sb);
 359
 360        down_read(&osb->journal->j_trans_barrier);
 361
 362        handle = jbd2_journal_start(journal, max_buffs);
 363        if (IS_ERR(handle)) {
 364                up_read(&osb->journal->j_trans_barrier);
 365                sb_end_intwrite(osb->sb);
 366
 367                mlog_errno(PTR_ERR(handle));
 368
 369                if (is_journal_aborted(journal)) {
 370                        ocfs2_abort(osb->sb, "Detected aborted journal");
 371                        handle = ERR_PTR(-EROFS);
 372                }
 373        } else {
 374                if (!ocfs2_mount_local(osb))
 375                        atomic_inc(&(osb->journal->j_num_trans));
 376        }
 377
 378        return handle;
 379}
 380
 381int ocfs2_commit_trans(struct ocfs2_super *osb,
 382                       handle_t *handle)
 383{
 384        int ret, nested;
 385        struct ocfs2_journal *journal = osb->journal;
 386
 387        BUG_ON(!handle);
 388
 389        nested = handle->h_ref > 1;
 390        ret = jbd2_journal_stop(handle);
 391        if (ret < 0)
 392                mlog_errno(ret);
 393
 394        if (!nested) {
 395                up_read(&journal->j_trans_barrier);
 396                sb_end_intwrite(osb->sb);
 397        }
 398
 399        return ret;
 400}
 401
 402/*
 403 * 'nblocks' is what you want to add to the current transaction.
 404 *
 405 * This might call jbd2_journal_restart() which will commit dirty buffers
 406 * and then restart the transaction. Before calling
 407 * ocfs2_extend_trans(), any changed blocks should have been
 408 * dirtied. After calling it, all blocks which need to be changed must
 409 * go through another set of journal_access/journal_dirty calls.
 410 *
 411 * WARNING: This will not release any semaphores or disk locks taken
 412 * during the transaction, so make sure they were taken *before*
 413 * start_trans or we'll have ordering deadlocks.
 414 *
 415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 416 * good because transaction ids haven't yet been recorded on the
 417 * cluster locks associated with this handle.
 418 */
 419int ocfs2_extend_trans(handle_t *handle, int nblocks)
 420{
 421        int status, old_nblocks;
 422
 423        BUG_ON(!handle);
 424        BUG_ON(nblocks < 0);
 425
 426        if (!nblocks)
 427                return 0;
 428
 429        old_nblocks = handle->h_buffer_credits;
 430
 431        trace_ocfs2_extend_trans(old_nblocks, nblocks);
 432
 433#ifdef CONFIG_OCFS2_DEBUG_FS
 434        status = 1;
 435#else
 436        status = jbd2_journal_extend(handle, nblocks);
 437        if (status < 0) {
 438                mlog_errno(status);
 439                goto bail;
 440        }
 441#endif
 442
 443        if (status > 0) {
 444                trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 445                status = jbd2_journal_restart(handle,
 446                                              old_nblocks + nblocks);
 447                if (status < 0) {
 448                        mlog_errno(status);
 449                        goto bail;
 450                }
 451        }
 452
 453        status = 0;
 454bail:
 455        return status;
 456}
 457
 458struct ocfs2_triggers {
 459        struct jbd2_buffer_trigger_type ot_triggers;
 460        int                             ot_offset;
 461};
 462
 463static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 464{
 465        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 466}
 467
 468static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 469                                 struct buffer_head *bh,
 470                                 void *data, size_t size)
 471{
 472        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 473
 474        /*
 475         * We aren't guaranteed to have the superblock here, so we
 476         * must unconditionally compute the ecc data.
 477         * __ocfs2_journal_access() will only set the triggers if
 478         * metaecc is enabled.
 479         */
 480        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 481}
 482
 483/*
 484 * Quota blocks have their own trigger because the struct ocfs2_block_check
 485 * offset depends on the blocksize.
 486 */
 487static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 488                                 struct buffer_head *bh,
 489                                 void *data, size_t size)
 490{
 491        struct ocfs2_disk_dqtrailer *dqt =
 492                ocfs2_block_dqtrailer(size, data);
 493
 494        /*
 495         * We aren't guaranteed to have the superblock here, so we
 496         * must unconditionally compute the ecc data.
 497         * __ocfs2_journal_access() will only set the triggers if
 498         * metaecc is enabled.
 499         */
 500        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 501}
 502
 503/*
 504 * Directory blocks also have their own trigger because the
 505 * struct ocfs2_block_check offset depends on the blocksize.
 506 */
 507static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 508                                 struct buffer_head *bh,
 509                                 void *data, size_t size)
 510{
 511        struct ocfs2_dir_block_trailer *trailer =
 512                ocfs2_dir_trailer_from_size(size, data);
 513
 514        /*
 515         * We aren't guaranteed to have the superblock here, so we
 516         * must unconditionally compute the ecc data.
 517         * __ocfs2_journal_access() will only set the triggers if
 518         * metaecc is enabled.
 519         */
 520        ocfs2_block_check_compute(data, size, &trailer->db_check);
 521}
 522
 523static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 524                                struct buffer_head *bh)
 525{
 526        mlog(ML_ERROR,
 527             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 528             "bh->b_blocknr = %llu\n",
 529             (unsigned long)bh,
 530             (unsigned long long)bh->b_blocknr);
 531
 532        /* We aren't guaranteed to have the superblock here - but if we
 533         * don't, it'll just crash. */
 534        ocfs2_error(bh->b_assoc_map->host->i_sb,
 535                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 536}
 537
 538static struct ocfs2_triggers di_triggers = {
 539        .ot_triggers = {
 540                .t_frozen = ocfs2_frozen_trigger,
 541                .t_abort = ocfs2_abort_trigger,
 542        },
 543        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 544};
 545
 546static struct ocfs2_triggers eb_triggers = {
 547        .ot_triggers = {
 548                .t_frozen = ocfs2_frozen_trigger,
 549                .t_abort = ocfs2_abort_trigger,
 550        },
 551        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 552};
 553
 554static struct ocfs2_triggers rb_triggers = {
 555        .ot_triggers = {
 556                .t_frozen = ocfs2_frozen_trigger,
 557                .t_abort = ocfs2_abort_trigger,
 558        },
 559        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 560};
 561
 562static struct ocfs2_triggers gd_triggers = {
 563        .ot_triggers = {
 564                .t_frozen = ocfs2_frozen_trigger,
 565                .t_abort = ocfs2_abort_trigger,
 566        },
 567        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 568};
 569
 570static struct ocfs2_triggers db_triggers = {
 571        .ot_triggers = {
 572                .t_frozen = ocfs2_db_frozen_trigger,
 573                .t_abort = ocfs2_abort_trigger,
 574        },
 575};
 576
 577static struct ocfs2_triggers xb_triggers = {
 578        .ot_triggers = {
 579                .t_frozen = ocfs2_frozen_trigger,
 580                .t_abort = ocfs2_abort_trigger,
 581        },
 582        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 583};
 584
 585static struct ocfs2_triggers dq_triggers = {
 586        .ot_triggers = {
 587                .t_frozen = ocfs2_dq_frozen_trigger,
 588                .t_abort = ocfs2_abort_trigger,
 589        },
 590};
 591
 592static struct ocfs2_triggers dr_triggers = {
 593        .ot_triggers = {
 594                .t_frozen = ocfs2_frozen_trigger,
 595                .t_abort = ocfs2_abort_trigger,
 596        },
 597        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 598};
 599
 600static struct ocfs2_triggers dl_triggers = {
 601        .ot_triggers = {
 602                .t_frozen = ocfs2_frozen_trigger,
 603                .t_abort = ocfs2_abort_trigger,
 604        },
 605        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 606};
 607
 608static int __ocfs2_journal_access(handle_t *handle,
 609                                  struct ocfs2_caching_info *ci,
 610                                  struct buffer_head *bh,
 611                                  struct ocfs2_triggers *triggers,
 612                                  int type)
 613{
 614        int status;
 615        struct ocfs2_super *osb =
 616                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 617
 618        BUG_ON(!ci || !ci->ci_ops);
 619        BUG_ON(!handle);
 620        BUG_ON(!bh);
 621
 622        trace_ocfs2_journal_access(
 623                (unsigned long long)ocfs2_metadata_cache_owner(ci),
 624                (unsigned long long)bh->b_blocknr, type, bh->b_size);
 625
 626        /* we can safely remove this assertion after testing. */
 627        if (!buffer_uptodate(bh)) {
 628                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 629                mlog(ML_ERROR, "b_blocknr=%llu\n",
 630                     (unsigned long long)bh->b_blocknr);
 631                BUG();
 632        }
 633
 634        /* Set the current transaction information on the ci so
 635         * that the locking code knows whether it can drop it's locks
 636         * on this ci or not. We're protected from the commit
 637         * thread updating the current transaction id until
 638         * ocfs2_commit_trans() because ocfs2_start_trans() took
 639         * j_trans_barrier for us. */
 640        ocfs2_set_ci_lock_trans(osb->journal, ci);
 641
 642        ocfs2_metadata_cache_io_lock(ci);
 643        switch (type) {
 644        case OCFS2_JOURNAL_ACCESS_CREATE:
 645        case OCFS2_JOURNAL_ACCESS_WRITE:
 646                status = jbd2_journal_get_write_access(handle, bh);
 647                break;
 648
 649        case OCFS2_JOURNAL_ACCESS_UNDO:
 650                status = jbd2_journal_get_undo_access(handle, bh);
 651                break;
 652
 653        default:
 654                status = -EINVAL;
 655                mlog(ML_ERROR, "Unknown access type!\n");
 656        }
 657        if (!status && ocfs2_meta_ecc(osb) && triggers)
 658                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 659        ocfs2_metadata_cache_io_unlock(ci);
 660
 661        if (status < 0)
 662                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 663                     status, type);
 664
 665        return status;
 666}
 667
 668int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 669                            struct buffer_head *bh, int type)
 670{
 671        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 672}
 673
 674int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 675                            struct buffer_head *bh, int type)
 676{
 677        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 678}
 679
 680int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 681                            struct buffer_head *bh, int type)
 682{
 683        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 684                                      type);
 685}
 686
 687int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 688                            struct buffer_head *bh, int type)
 689{
 690        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 691}
 692
 693int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 694                            struct buffer_head *bh, int type)
 695{
 696        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 697}
 698
 699int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 700                            struct buffer_head *bh, int type)
 701{
 702        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 703}
 704
 705int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 706                            struct buffer_head *bh, int type)
 707{
 708        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 709}
 710
 711int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 712                            struct buffer_head *bh, int type)
 713{
 714        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 715}
 716
 717int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 718                            struct buffer_head *bh, int type)
 719{
 720        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 721}
 722
 723int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 724                         struct buffer_head *bh, int type)
 725{
 726        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 727}
 728
 729void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 730{
 731        int status;
 732
 733        trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 734
 735        status = jbd2_journal_dirty_metadata(handle, bh);
 736        BUG_ON(status);
 737}
 738
 739#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 740
 741void ocfs2_set_journal_params(struct ocfs2_super *osb)
 742{
 743        journal_t *journal = osb->journal->j_journal;
 744        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 745
 746        if (osb->osb_commit_interval)
 747                commit_interval = osb->osb_commit_interval;
 748
 749        write_lock(&journal->j_state_lock);
 750        journal->j_commit_interval = commit_interval;
 751        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 752                journal->j_flags |= JBD2_BARRIER;
 753        else
 754                journal->j_flags &= ~JBD2_BARRIER;
 755        write_unlock(&journal->j_state_lock);
 756}
 757
 758int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 759{
 760        int status = -1;
 761        struct inode *inode = NULL; /* the journal inode */
 762        journal_t *j_journal = NULL;
 763        struct ocfs2_dinode *di = NULL;
 764        struct buffer_head *bh = NULL;
 765        struct ocfs2_super *osb;
 766        int inode_lock = 0;
 767
 768        BUG_ON(!journal);
 769
 770        osb = journal->j_osb;
 771
 772        /* already have the inode for our journal */
 773        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 774                                            osb->slot_num);
 775        if (inode == NULL) {
 776                status = -EACCES;
 777                mlog_errno(status);
 778                goto done;
 779        }
 780        if (is_bad_inode(inode)) {
 781                mlog(ML_ERROR, "access error (bad inode)\n");
 782                iput(inode);
 783                inode = NULL;
 784                status = -EACCES;
 785                goto done;
 786        }
 787
 788        SET_INODE_JOURNAL(inode);
 789        OCFS2_I(inode)->ip_open_count++;
 790
 791        /* Skip recovery waits here - journal inode metadata never
 792         * changes in a live cluster so it can be considered an
 793         * exception to the rule. */
 794        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 795        if (status < 0) {
 796                if (status != -ERESTARTSYS)
 797                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 798                goto done;
 799        }
 800
 801        inode_lock = 1;
 802        di = (struct ocfs2_dinode *)bh->b_data;
 803
 804        if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
 805                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 806                     inode->i_size);
 807                status = -EINVAL;
 808                goto done;
 809        }
 810
 811        trace_ocfs2_journal_init(inode->i_size,
 812                                 (unsigned long long)inode->i_blocks,
 813                                 OCFS2_I(inode)->ip_clusters);
 814
 815        /* call the kernels journal init function now */
 816        j_journal = jbd2_journal_init_inode(inode);
 817        if (j_journal == NULL) {
 818                mlog(ML_ERROR, "Linux journal layer error\n");
 819                status = -EINVAL;
 820                goto done;
 821        }
 822
 823        trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 824
 825        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 826                  OCFS2_JOURNAL_DIRTY_FL);
 827
 828        journal->j_journal = j_journal;
 829        journal->j_inode = inode;
 830        journal->j_bh = bh;
 831
 832        ocfs2_set_journal_params(osb);
 833
 834        journal->j_state = OCFS2_JOURNAL_LOADED;
 835
 836        status = 0;
 837done:
 838        if (status < 0) {
 839                if (inode_lock)
 840                        ocfs2_inode_unlock(inode, 1);
 841                brelse(bh);
 842                if (inode) {
 843                        OCFS2_I(inode)->ip_open_count--;
 844                        iput(inode);
 845                }
 846        }
 847
 848        return status;
 849}
 850
 851static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 852{
 853        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 854}
 855
 856static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 857{
 858        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 859}
 860
 861static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 862                                      int dirty, int replayed)
 863{
 864        int status;
 865        unsigned int flags;
 866        struct ocfs2_journal *journal = osb->journal;
 867        struct buffer_head *bh = journal->j_bh;
 868        struct ocfs2_dinode *fe;
 869
 870        fe = (struct ocfs2_dinode *)bh->b_data;
 871
 872        /* The journal bh on the osb always comes from ocfs2_journal_init()
 873         * and was validated there inside ocfs2_inode_lock_full().  It's a
 874         * code bug if we mess it up. */
 875        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 876
 877        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 878        if (dirty)
 879                flags |= OCFS2_JOURNAL_DIRTY_FL;
 880        else
 881                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 882        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 883
 884        if (replayed)
 885                ocfs2_bump_recovery_generation(fe);
 886
 887        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 888        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 889        if (status < 0)
 890                mlog_errno(status);
 891
 892        return status;
 893}
 894
 895/*
 896 * If the journal has been kmalloc'd it needs to be freed after this
 897 * call.
 898 */
 899void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 900{
 901        struct ocfs2_journal *journal = NULL;
 902        int status = 0;
 903        struct inode *inode = NULL;
 904        int num_running_trans = 0;
 905
 906        BUG_ON(!osb);
 907
 908        journal = osb->journal;
 909        if (!journal)
 910                goto done;
 911
 912        inode = journal->j_inode;
 913
 914        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 915                goto done;
 916
 917        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 918        if (!igrab(inode))
 919                BUG();
 920
 921        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 922        trace_ocfs2_journal_shutdown(num_running_trans);
 923
 924        /* Do a commit_cache here. It will flush our journal, *and*
 925         * release any locks that are still held.
 926         * set the SHUTDOWN flag and release the trans lock.
 927         * the commit thread will take the trans lock for us below. */
 928        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 929
 930        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 931         * drop the trans_lock (which we want to hold until we
 932         * completely destroy the journal. */
 933        if (osb->commit_task) {
 934                /* Wait for the commit thread */
 935                trace_ocfs2_journal_shutdown_wait(osb->commit_task);
 936                kthread_stop(osb->commit_task);
 937                osb->commit_task = NULL;
 938        }
 939
 940        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
 941
 942        if (ocfs2_mount_local(osb)) {
 943                jbd2_journal_lock_updates(journal->j_journal);
 944                status = jbd2_journal_flush(journal->j_journal);
 945                jbd2_journal_unlock_updates(journal->j_journal);
 946                if (status < 0)
 947                        mlog_errno(status);
 948        }
 949
 950        if (status == 0) {
 951                /*
 952                 * Do not toggle if flush was unsuccessful otherwise
 953                 * will leave dirty metadata in a "clean" journal
 954                 */
 955                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
 956                if (status < 0)
 957                        mlog_errno(status);
 958        }
 959
 960        /* Shutdown the kernel journal system */
 961        jbd2_journal_destroy(journal->j_journal);
 962        journal->j_journal = NULL;
 963
 964        OCFS2_I(inode)->ip_open_count--;
 965
 966        /* unlock our journal */
 967        ocfs2_inode_unlock(inode, 1);
 968
 969        brelse(journal->j_bh);
 970        journal->j_bh = NULL;
 971
 972        journal->j_state = OCFS2_JOURNAL_FREE;
 973
 974//      up_write(&journal->j_trans_barrier);
 975done:
 976        if (inode)
 977                iput(inode);
 978}
 979
 980static void ocfs2_clear_journal_error(struct super_block *sb,
 981                                      journal_t *journal,
 982                                      int slot)
 983{
 984        int olderr;
 985
 986        olderr = jbd2_journal_errno(journal);
 987        if (olderr) {
 988                mlog(ML_ERROR, "File system error %d recorded in "
 989                     "journal %u.\n", olderr, slot);
 990                mlog(ML_ERROR, "File system on device %s needs checking.\n",
 991                     sb->s_id);
 992
 993                jbd2_journal_ack_err(journal);
 994                jbd2_journal_clear_err(journal);
 995        }
 996}
 997
 998int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
 999{
1000        int status = 0;
1001        struct ocfs2_super *osb;
1002
1003        BUG_ON(!journal);
1004
1005        osb = journal->j_osb;
1006
1007        status = jbd2_journal_load(journal->j_journal);
1008        if (status < 0) {
1009                mlog(ML_ERROR, "Failed to load journal!\n");
1010                goto done;
1011        }
1012
1013        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1014
1015        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1016        if (status < 0) {
1017                mlog_errno(status);
1018                goto done;
1019        }
1020
1021        /* Launch the commit thread */
1022        if (!local) {
1023                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1024                                               "ocfs2cmt");
1025                if (IS_ERR(osb->commit_task)) {
1026                        status = PTR_ERR(osb->commit_task);
1027                        osb->commit_task = NULL;
1028                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1029                             "error=%d", status);
1030                        goto done;
1031                }
1032        } else
1033                osb->commit_task = NULL;
1034
1035done:
1036        return status;
1037}
1038
1039
1040/* 'full' flag tells us whether we clear out all blocks or if we just
1041 * mark the journal clean */
1042int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1043{
1044        int status;
1045
1046        BUG_ON(!journal);
1047
1048        status = jbd2_journal_wipe(journal->j_journal, full);
1049        if (status < 0) {
1050                mlog_errno(status);
1051                goto bail;
1052        }
1053
1054        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1055        if (status < 0)
1056                mlog_errno(status);
1057
1058bail:
1059        return status;
1060}
1061
1062static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1063{
1064        int empty;
1065        struct ocfs2_recovery_map *rm = osb->recovery_map;
1066
1067        spin_lock(&osb->osb_lock);
1068        empty = (rm->rm_used == 0);
1069        spin_unlock(&osb->osb_lock);
1070
1071        return empty;
1072}
1073
1074void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1075{
1076        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1077}
1078
1079/*
1080 * JBD Might read a cached version of another nodes journal file. We
1081 * don't want this as this file changes often and we get no
1082 * notification on those changes. The only way to be sure that we've
1083 * got the most up to date version of those blocks then is to force
1084 * read them off disk. Just searching through the buffer cache won't
1085 * work as there may be pages backing this file which are still marked
1086 * up to date. We know things can't change on this file underneath us
1087 * as we have the lock by now :)
1088 */
1089static int ocfs2_force_read_journal(struct inode *inode)
1090{
1091        int status = 0;
1092        int i;
1093        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1094#define CONCURRENT_JOURNAL_FILL 32ULL
1095        struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1096
1097        memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1098
1099        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1100        v_blkno = 0;
1101        while (v_blkno < num_blocks) {
1102                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1103                                                     &p_blkno, &p_blocks, NULL);
1104                if (status < 0) {
1105                        mlog_errno(status);
1106                        goto bail;
1107                }
1108
1109                if (p_blocks > CONCURRENT_JOURNAL_FILL)
1110                        p_blocks = CONCURRENT_JOURNAL_FILL;
1111
1112                /* We are reading journal data which should not
1113                 * be put in the uptodate cache */
1114                status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1115                                                p_blkno, p_blocks, bhs);
1116                if (status < 0) {
1117                        mlog_errno(status);
1118                        goto bail;
1119                }
1120
1121                for(i = 0; i < p_blocks; i++) {
1122                        brelse(bhs[i]);
1123                        bhs[i] = NULL;
1124                }
1125
1126                v_blkno += p_blocks;
1127        }
1128
1129bail:
1130        for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1131                brelse(bhs[i]);
1132        return status;
1133}
1134
1135struct ocfs2_la_recovery_item {
1136        struct list_head        lri_list;
1137        int                     lri_slot;
1138        struct ocfs2_dinode     *lri_la_dinode;
1139        struct ocfs2_dinode     *lri_tl_dinode;
1140        struct ocfs2_quota_recovery *lri_qrec;
1141};
1142
1143/* Does the second half of the recovery process. By this point, the
1144 * node is marked clean and can actually be considered recovered,
1145 * hence it's no longer in the recovery map, but there's still some
1146 * cleanup we can do which shouldn't happen within the recovery thread
1147 * as locking in that context becomes very difficult if we are to take
1148 * recovering nodes into account.
1149 *
1150 * NOTE: This function can and will sleep on recovery of other nodes
1151 * during cluster locking, just like any other ocfs2 process.
1152 */
1153void ocfs2_complete_recovery(struct work_struct *work)
1154{
1155        int ret = 0;
1156        struct ocfs2_journal *journal =
1157                container_of(work, struct ocfs2_journal, j_recovery_work);
1158        struct ocfs2_super *osb = journal->j_osb;
1159        struct ocfs2_dinode *la_dinode, *tl_dinode;
1160        struct ocfs2_la_recovery_item *item, *n;
1161        struct ocfs2_quota_recovery *qrec;
1162        LIST_HEAD(tmp_la_list);
1163
1164        trace_ocfs2_complete_recovery(
1165                (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1166
1167        spin_lock(&journal->j_lock);
1168        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1169        spin_unlock(&journal->j_lock);
1170
1171        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1172                list_del_init(&item->lri_list);
1173
1174                ocfs2_wait_on_quotas(osb);
1175
1176                la_dinode = item->lri_la_dinode;
1177                tl_dinode = item->lri_tl_dinode;
1178                qrec = item->lri_qrec;
1179
1180                trace_ocfs2_complete_recovery_slot(item->lri_slot,
1181                        la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1182                        tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1183                        qrec);
1184
1185                if (la_dinode) {
1186                        ret = ocfs2_complete_local_alloc_recovery(osb,
1187                                                                  la_dinode);
1188                        if (ret < 0)
1189                                mlog_errno(ret);
1190
1191                        kfree(la_dinode);
1192                }
1193
1194                if (tl_dinode) {
1195                        ret = ocfs2_complete_truncate_log_recovery(osb,
1196                                                                   tl_dinode);
1197                        if (ret < 0)
1198                                mlog_errno(ret);
1199
1200                        kfree(tl_dinode);
1201                }
1202
1203                ret = ocfs2_recover_orphans(osb, item->lri_slot);
1204                if (ret < 0)
1205                        mlog_errno(ret);
1206
1207                if (qrec) {
1208                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1209                                                          item->lri_slot);
1210                        if (ret < 0)
1211                                mlog_errno(ret);
1212                        /* Recovery info is already freed now */
1213                }
1214
1215                kfree(item);
1216        }
1217
1218        trace_ocfs2_complete_recovery_end(ret);
1219}
1220
1221/* NOTE: This function always eats your references to la_dinode and
1222 * tl_dinode, either manually on error, or by passing them to
1223 * ocfs2_complete_recovery */
1224static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1225                                            int slot_num,
1226                                            struct ocfs2_dinode *la_dinode,
1227                                            struct ocfs2_dinode *tl_dinode,
1228                                            struct ocfs2_quota_recovery *qrec)
1229{
1230        struct ocfs2_la_recovery_item *item;
1231
1232        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1233        if (!item) {
1234                /* Though we wish to avoid it, we are in fact safe in
1235                 * skipping local alloc cleanup as fsck.ocfs2 is more
1236                 * than capable of reclaiming unused space. */
1237                kfree(la_dinode);
1238                kfree(tl_dinode);
1239
1240                if (qrec)
1241                        ocfs2_free_quota_recovery(qrec);
1242
1243                mlog_errno(-ENOMEM);
1244                return;
1245        }
1246
1247        INIT_LIST_HEAD(&item->lri_list);
1248        item->lri_la_dinode = la_dinode;
1249        item->lri_slot = slot_num;
1250        item->lri_tl_dinode = tl_dinode;
1251        item->lri_qrec = qrec;
1252
1253        spin_lock(&journal->j_lock);
1254        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1255        queue_work(ocfs2_wq, &journal->j_recovery_work);
1256        spin_unlock(&journal->j_lock);
1257}
1258
1259/* Called by the mount code to queue recovery the last part of
1260 * recovery for it's own and offline slot(s). */
1261void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1262{
1263        struct ocfs2_journal *journal = osb->journal;
1264
1265        if (ocfs2_is_hard_readonly(osb))
1266                return;
1267
1268        /* No need to queue up our truncate_log as regular cleanup will catch
1269         * that */
1270        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1271                                        osb->local_alloc_copy, NULL, NULL);
1272        ocfs2_schedule_truncate_log_flush(osb, 0);
1273
1274        osb->local_alloc_copy = NULL;
1275        osb->dirty = 0;
1276
1277        /* queue to recover orphan slots for all offline slots */
1278        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1279        ocfs2_queue_replay_slots(osb);
1280        ocfs2_free_replay_slots(osb);
1281}
1282
1283void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1284{
1285        if (osb->quota_rec) {
1286                ocfs2_queue_recovery_completion(osb->journal,
1287                                                osb->slot_num,
1288                                                NULL,
1289                                                NULL,
1290                                                osb->quota_rec);
1291                osb->quota_rec = NULL;
1292        }
1293}
1294
1295static int __ocfs2_recovery_thread(void *arg)
1296{
1297        int status, node_num, slot_num;
1298        struct ocfs2_super *osb = arg;
1299        struct ocfs2_recovery_map *rm = osb->recovery_map;
1300        int *rm_quota = NULL;
1301        int rm_quota_used = 0, i;
1302        struct ocfs2_quota_recovery *qrec;
1303
1304        status = ocfs2_wait_on_mount(osb);
1305        if (status < 0) {
1306                goto bail;
1307        }
1308
1309        rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1310        if (!rm_quota) {
1311                status = -ENOMEM;
1312                goto bail;
1313        }
1314restart:
1315        status = ocfs2_super_lock(osb, 1);
1316        if (status < 0) {
1317                mlog_errno(status);
1318                goto bail;
1319        }
1320
1321        status = ocfs2_compute_replay_slots(osb);
1322        if (status < 0)
1323                mlog_errno(status);
1324
1325        /* queue recovery for our own slot */
1326        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1327                                        NULL, NULL);
1328
1329        spin_lock(&osb->osb_lock);
1330        while (rm->rm_used) {
1331                /* It's always safe to remove entry zero, as we won't
1332                 * clear it until ocfs2_recover_node() has succeeded. */
1333                node_num = rm->rm_entries[0];
1334                spin_unlock(&osb->osb_lock);
1335                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1336                trace_ocfs2_recovery_thread_node(node_num, slot_num);
1337                if (slot_num == -ENOENT) {
1338                        status = 0;
1339                        goto skip_recovery;
1340                }
1341
1342                /* It is a bit subtle with quota recovery. We cannot do it
1343                 * immediately because we have to obtain cluster locks from
1344                 * quota files and we also don't want to just skip it because
1345                 * then quota usage would be out of sync until some node takes
1346                 * the slot. So we remember which nodes need quota recovery
1347                 * and when everything else is done, we recover quotas. */
1348                for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1349                if (i == rm_quota_used)
1350                        rm_quota[rm_quota_used++] = slot_num;
1351
1352                status = ocfs2_recover_node(osb, node_num, slot_num);
1353skip_recovery:
1354                if (!status) {
1355                        ocfs2_recovery_map_clear(osb, node_num);
1356                } else {
1357                        mlog(ML_ERROR,
1358                             "Error %d recovering node %d on device (%u,%u)!\n",
1359                             status, node_num,
1360                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1361                        mlog(ML_ERROR, "Volume requires unmount.\n");
1362                }
1363
1364                spin_lock(&osb->osb_lock);
1365        }
1366        spin_unlock(&osb->osb_lock);
1367        trace_ocfs2_recovery_thread_end(status);
1368
1369        /* Refresh all journal recovery generations from disk */
1370        status = ocfs2_check_journals_nolocks(osb);
1371        status = (status == -EROFS) ? 0 : status;
1372        if (status < 0)
1373                mlog_errno(status);
1374
1375        /* Now it is right time to recover quotas... We have to do this under
1376         * superblock lock so that no one can start using the slot (and crash)
1377         * before we recover it */
1378        for (i = 0; i < rm_quota_used; i++) {
1379                qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1380                if (IS_ERR(qrec)) {
1381                        status = PTR_ERR(qrec);
1382                        mlog_errno(status);
1383                        continue;
1384                }
1385                ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1386                                                NULL, NULL, qrec);
1387        }
1388
1389        ocfs2_super_unlock(osb, 1);
1390
1391        /* queue recovery for offline slots */
1392        ocfs2_queue_replay_slots(osb);
1393
1394bail:
1395        mutex_lock(&osb->recovery_lock);
1396        if (!status && !ocfs2_recovery_completed(osb)) {
1397                mutex_unlock(&osb->recovery_lock);
1398                goto restart;
1399        }
1400
1401        ocfs2_free_replay_slots(osb);
1402        osb->recovery_thread_task = NULL;
1403        mb(); /* sync with ocfs2_recovery_thread_running */
1404        wake_up(&osb->recovery_event);
1405
1406        mutex_unlock(&osb->recovery_lock);
1407
1408        kfree(rm_quota);
1409
1410        /* no one is callint kthread_stop() for us so the kthread() api
1411         * requires that we call do_exit().  And it isn't exported, but
1412         * complete_and_exit() seems to be a minimal wrapper around it. */
1413        complete_and_exit(NULL, status);
1414        return status;
1415}
1416
1417void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1418{
1419        mutex_lock(&osb->recovery_lock);
1420
1421        trace_ocfs2_recovery_thread(node_num, osb->node_num,
1422                osb->disable_recovery, osb->recovery_thread_task,
1423                osb->disable_recovery ?
1424                -1 : ocfs2_recovery_map_set(osb, node_num));
1425
1426        if (osb->disable_recovery)
1427                goto out;
1428
1429        if (osb->recovery_thread_task)
1430                goto out;
1431
1432        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1433                                                 "ocfs2rec");
1434        if (IS_ERR(osb->recovery_thread_task)) {
1435                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1436                osb->recovery_thread_task = NULL;
1437        }
1438
1439out:
1440        mutex_unlock(&osb->recovery_lock);
1441        wake_up(&osb->recovery_event);
1442}
1443
1444static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1445                                    int slot_num,
1446                                    struct buffer_head **bh,
1447                                    struct inode **ret_inode)
1448{
1449        int status = -EACCES;
1450        struct inode *inode = NULL;
1451
1452        BUG_ON(slot_num >= osb->max_slots);
1453
1454        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1455                                            slot_num);
1456        if (!inode || is_bad_inode(inode)) {
1457                mlog_errno(status);
1458                goto bail;
1459        }
1460        SET_INODE_JOURNAL(inode);
1461
1462        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1463        if (status < 0) {
1464                mlog_errno(status);
1465                goto bail;
1466        }
1467
1468        status = 0;
1469
1470bail:
1471        if (inode) {
1472                if (status || !ret_inode)
1473                        iput(inode);
1474                else
1475                        *ret_inode = inode;
1476        }
1477        return status;
1478}
1479
1480/* Does the actual journal replay and marks the journal inode as
1481 * clean. Will only replay if the journal inode is marked dirty. */
1482static int ocfs2_replay_journal(struct ocfs2_super *osb,
1483                                int node_num,
1484                                int slot_num)
1485{
1486        int status;
1487        int got_lock = 0;
1488        unsigned int flags;
1489        struct inode *inode = NULL;
1490        struct ocfs2_dinode *fe;
1491        journal_t *journal = NULL;
1492        struct buffer_head *bh = NULL;
1493        u32 slot_reco_gen;
1494
1495        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1496        if (status) {
1497                mlog_errno(status);
1498                goto done;
1499        }
1500
1501        fe = (struct ocfs2_dinode *)bh->b_data;
1502        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1503        brelse(bh);
1504        bh = NULL;
1505
1506        /*
1507         * As the fs recovery is asynchronous, there is a small chance that
1508         * another node mounted (and recovered) the slot before the recovery
1509         * thread could get the lock. To handle that, we dirty read the journal
1510         * inode for that slot to get the recovery generation. If it is
1511         * different than what we expected, the slot has been recovered.
1512         * If not, it needs recovery.
1513         */
1514        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1515                trace_ocfs2_replay_journal_recovered(slot_num,
1516                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1517                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1518                status = -EBUSY;
1519                goto done;
1520        }
1521
1522        /* Continue with recovery as the journal has not yet been recovered */
1523
1524        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1525        if (status < 0) {
1526                trace_ocfs2_replay_journal_lock_err(status);
1527                if (status != -ERESTARTSYS)
1528                        mlog(ML_ERROR, "Could not lock journal!\n");
1529                goto done;
1530        }
1531        got_lock = 1;
1532
1533        fe = (struct ocfs2_dinode *) bh->b_data;
1534
1535        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1536        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1537
1538        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1539                trace_ocfs2_replay_journal_skip(node_num);
1540                /* Refresh recovery generation for the slot */
1541                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1542                goto done;
1543        }
1544
1545        /* we need to run complete recovery for offline orphan slots */
1546        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1547
1548        printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1549               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1550               MINOR(osb->sb->s_dev));
1551
1552        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1553
1554        status = ocfs2_force_read_journal(inode);
1555        if (status < 0) {
1556                mlog_errno(status);
1557                goto done;
1558        }
1559
1560        journal = jbd2_journal_init_inode(inode);
1561        if (journal == NULL) {
1562                mlog(ML_ERROR, "Linux journal layer error\n");
1563                status = -EIO;
1564                goto done;
1565        }
1566
1567        status = jbd2_journal_load(journal);
1568        if (status < 0) {
1569                mlog_errno(status);
1570                if (!igrab(inode))
1571                        BUG();
1572                jbd2_journal_destroy(journal);
1573                goto done;
1574        }
1575
1576        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1577
1578        /* wipe the journal */
1579        jbd2_journal_lock_updates(journal);
1580        status = jbd2_journal_flush(journal);
1581        jbd2_journal_unlock_updates(journal);
1582        if (status < 0)
1583                mlog_errno(status);
1584
1585        /* This will mark the node clean */
1586        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1587        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1588        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1589
1590        /* Increment recovery generation to indicate successful recovery */
1591        ocfs2_bump_recovery_generation(fe);
1592        osb->slot_recovery_generations[slot_num] =
1593                                        ocfs2_get_recovery_generation(fe);
1594
1595        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1596        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1597        if (status < 0)
1598                mlog_errno(status);
1599
1600        if (!igrab(inode))
1601                BUG();
1602
1603        jbd2_journal_destroy(journal);
1604
1605        printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1606               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1607               MINOR(osb->sb->s_dev));
1608done:
1609        /* drop the lock on this nodes journal */
1610        if (got_lock)
1611                ocfs2_inode_unlock(inode, 1);
1612
1613        if (inode)
1614                iput(inode);
1615
1616        brelse(bh);
1617
1618        return status;
1619}
1620
1621/*
1622 * Do the most important parts of node recovery:
1623 *  - Replay it's journal
1624 *  - Stamp a clean local allocator file
1625 *  - Stamp a clean truncate log
1626 *  - Mark the node clean
1627 *
1628 * If this function completes without error, a node in OCFS2 can be
1629 * said to have been safely recovered. As a result, failure during the
1630 * second part of a nodes recovery process (local alloc recovery) is
1631 * far less concerning.
1632 */
1633static int ocfs2_recover_node(struct ocfs2_super *osb,
1634                              int node_num, int slot_num)
1635{
1636        int status = 0;
1637        struct ocfs2_dinode *la_copy = NULL;
1638        struct ocfs2_dinode *tl_copy = NULL;
1639
1640        trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1641
1642        /* Should not ever be called to recover ourselves -- in that
1643         * case we should've called ocfs2_journal_load instead. */
1644        BUG_ON(osb->node_num == node_num);
1645
1646        status = ocfs2_replay_journal(osb, node_num, slot_num);
1647        if (status < 0) {
1648                if (status == -EBUSY) {
1649                        trace_ocfs2_recover_node_skip(slot_num, node_num);
1650                        status = 0;
1651                        goto done;
1652                }
1653                mlog_errno(status);
1654                goto done;
1655        }
1656
1657        /* Stamp a clean local alloc file AFTER recovering the journal... */
1658        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1659        if (status < 0) {
1660                mlog_errno(status);
1661                goto done;
1662        }
1663
1664        /* An error from begin_truncate_log_recovery is not
1665         * serious enough to warrant halting the rest of
1666         * recovery. */
1667        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1668        if (status < 0)
1669                mlog_errno(status);
1670
1671        /* Likewise, this would be a strange but ultimately not so
1672         * harmful place to get an error... */
1673        status = ocfs2_clear_slot(osb, slot_num);
1674        if (status < 0)
1675                mlog_errno(status);
1676
1677        /* This will kfree the memory pointed to by la_copy and tl_copy */
1678        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1679                                        tl_copy, NULL);
1680
1681        status = 0;
1682done:
1683
1684        return status;
1685}
1686
1687/* Test node liveness by trylocking his journal. If we get the lock,
1688 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1689 * still alive (we couldn't get the lock) and < 0 on error. */
1690static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1691                                 int slot_num)
1692{
1693        int status, flags;
1694        struct inode *inode = NULL;
1695
1696        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1697                                            slot_num);
1698        if (inode == NULL) {
1699                mlog(ML_ERROR, "access error\n");
1700                status = -EACCES;
1701                goto bail;
1702        }
1703        if (is_bad_inode(inode)) {
1704                mlog(ML_ERROR, "access error (bad inode)\n");
1705                iput(inode);
1706                inode = NULL;
1707                status = -EACCES;
1708                goto bail;
1709        }
1710        SET_INODE_JOURNAL(inode);
1711
1712        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1713        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1714        if (status < 0) {
1715                if (status != -EAGAIN)
1716                        mlog_errno(status);
1717                goto bail;
1718        }
1719
1720        ocfs2_inode_unlock(inode, 1);
1721bail:
1722        if (inode)
1723                iput(inode);
1724
1725        return status;
1726}
1727
1728/* Call this underneath ocfs2_super_lock. It also assumes that the
1729 * slot info struct has been updated from disk. */
1730int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1731{
1732        unsigned int node_num;
1733        int status, i;
1734        u32 gen;
1735        struct buffer_head *bh = NULL;
1736        struct ocfs2_dinode *di;
1737
1738        /* This is called with the super block cluster lock, so we
1739         * know that the slot map can't change underneath us. */
1740
1741        for (i = 0; i < osb->max_slots; i++) {
1742                /* Read journal inode to get the recovery generation */
1743                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1744                if (status) {
1745                        mlog_errno(status);
1746                        goto bail;
1747                }
1748                di = (struct ocfs2_dinode *)bh->b_data;
1749                gen = ocfs2_get_recovery_generation(di);
1750                brelse(bh);
1751                bh = NULL;
1752
1753                spin_lock(&osb->osb_lock);
1754                osb->slot_recovery_generations[i] = gen;
1755
1756                trace_ocfs2_mark_dead_nodes(i,
1757                                            osb->slot_recovery_generations[i]);
1758
1759                if (i == osb->slot_num) {
1760                        spin_unlock(&osb->osb_lock);
1761                        continue;
1762                }
1763
1764                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1765                if (status == -ENOENT) {
1766                        spin_unlock(&osb->osb_lock);
1767                        continue;
1768                }
1769
1770                if (__ocfs2_recovery_map_test(osb, node_num)) {
1771                        spin_unlock(&osb->osb_lock);
1772                        continue;
1773                }
1774                spin_unlock(&osb->osb_lock);
1775
1776                /* Ok, we have a slot occupied by another node which
1777                 * is not in the recovery map. We trylock his journal
1778                 * file here to test if he's alive. */
1779                status = ocfs2_trylock_journal(osb, i);
1780                if (!status) {
1781                        /* Since we're called from mount, we know that
1782                         * the recovery thread can't race us on
1783                         * setting / checking the recovery bits. */
1784                        ocfs2_recovery_thread(osb, node_num);
1785                } else if ((status < 0) && (status != -EAGAIN)) {
1786                        mlog_errno(status);
1787                        goto bail;
1788                }
1789        }
1790
1791        status = 0;
1792bail:
1793        return status;
1794}
1795
1796/*
1797 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1798 * randomness to the timeout to minimize multple nodes firing the timer at the
1799 * same time.
1800 */
1801static inline unsigned long ocfs2_orphan_scan_timeout(void)
1802{
1803        unsigned long time;
1804
1805        get_random_bytes(&time, sizeof(time));
1806        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1807        return msecs_to_jiffies(time);
1808}
1809
1810/*
1811 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1812 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1813 * is done to catch any orphans that are left over in orphan directories.
1814 *
1815 * It scans all slots, even ones that are in use. It does so to handle the
1816 * case described below:
1817 *
1818 *   Node 1 has an inode it was using. The dentry went away due to memory
1819 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1820 *   has the open lock.
1821 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1822 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1823 *   open lock, sees that another node has a PR, and does nothing.
1824 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1825 *   open lock, sees the PR still, and does nothing.
1826 *   Basically, we have to trigger an orphan iput on node 1. The only way
1827 *   for this to happen is if node 1 runs node 2's orphan dir.
1828 *
1829 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1830 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1831 * stored in LVB. If the sequence number has changed, it means some other
1832 * node has done the scan.  This node skips the scan and tracks the
1833 * sequence number.  If the sequence number didn't change, it means a scan
1834 * hasn't happened.  The node queues a scan and increments the
1835 * sequence number in the LVB.
1836 */
1837void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1838{
1839        struct ocfs2_orphan_scan *os;
1840        int status, i;
1841        u32 seqno = 0;
1842
1843        os = &osb->osb_orphan_scan;
1844
1845        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1846                goto out;
1847
1848        trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1849                                            atomic_read(&os->os_state));
1850
1851        status = ocfs2_orphan_scan_lock(osb, &seqno);
1852        if (status < 0) {
1853                if (status != -EAGAIN)
1854                        mlog_errno(status);
1855                goto out;
1856        }
1857
1858        /* Do no queue the tasks if the volume is being umounted */
1859        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1860                goto unlock;
1861
1862        if (os->os_seqno != seqno) {
1863                os->os_seqno = seqno;
1864                goto unlock;
1865        }
1866
1867        for (i = 0; i < osb->max_slots; i++)
1868                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1869                                                NULL);
1870        /*
1871         * We queued a recovery on orphan slots, increment the sequence
1872         * number and update LVB so other node will skip the scan for a while
1873         */
1874        seqno++;
1875        os->os_count++;
1876        os->os_scantime = CURRENT_TIME;
1877unlock:
1878        ocfs2_orphan_scan_unlock(osb, seqno);
1879out:
1880        trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1881                                          atomic_read(&os->os_state));
1882        return;
1883}
1884
1885/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1886void ocfs2_orphan_scan_work(struct work_struct *work)
1887{
1888        struct ocfs2_orphan_scan *os;
1889        struct ocfs2_super *osb;
1890
1891        os = container_of(work, struct ocfs2_orphan_scan,
1892                          os_orphan_scan_work.work);
1893        osb = os->os_osb;
1894
1895        mutex_lock(&os->os_lock);
1896        ocfs2_queue_orphan_scan(osb);
1897        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1898                queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1899                                      ocfs2_orphan_scan_timeout());
1900        mutex_unlock(&os->os_lock);
1901}
1902
1903void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1904{
1905        struct ocfs2_orphan_scan *os;
1906
1907        os = &osb->osb_orphan_scan;
1908        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1909                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1910                mutex_lock(&os->os_lock);
1911                cancel_delayed_work(&os->os_orphan_scan_work);
1912                mutex_unlock(&os->os_lock);
1913        }
1914}
1915
1916void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1917{
1918        struct ocfs2_orphan_scan *os;
1919
1920        os = &osb->osb_orphan_scan;
1921        os->os_osb = osb;
1922        os->os_count = 0;
1923        os->os_seqno = 0;
1924        mutex_init(&os->os_lock);
1925        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1926}
1927
1928void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1929{
1930        struct ocfs2_orphan_scan *os;
1931
1932        os = &osb->osb_orphan_scan;
1933        os->os_scantime = CURRENT_TIME;
1934        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1935                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1936        else {
1937                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1938                queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1939                                   ocfs2_orphan_scan_timeout());
1940        }
1941}
1942
1943struct ocfs2_orphan_filldir_priv {
1944        struct dir_context      ctx;
1945        struct inode            *head;
1946        struct ocfs2_super      *osb;
1947};
1948
1949static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1950                                loff_t pos, u64 ino, unsigned type)
1951{
1952        struct ocfs2_orphan_filldir_priv *p = priv;
1953        struct inode *iter;
1954
1955        if (name_len == 1 && !strncmp(".", name, 1))
1956                return 0;
1957        if (name_len == 2 && !strncmp("..", name, 2))
1958                return 0;
1959
1960        /* Skip bad inodes so that recovery can continue */
1961        iter = ocfs2_iget(p->osb, ino,
1962                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1963        if (IS_ERR(iter))
1964                return 0;
1965
1966        trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1967        /* No locking is required for the next_orphan queue as there
1968         * is only ever a single process doing orphan recovery. */
1969        OCFS2_I(iter)->ip_next_orphan = p->head;
1970        p->head = iter;
1971
1972        return 0;
1973}
1974
1975static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1976                               int slot,
1977                               struct inode **head)
1978{
1979        int status;
1980        struct inode *orphan_dir_inode = NULL;
1981        struct ocfs2_orphan_filldir_priv priv = {
1982                .ctx.actor = ocfs2_orphan_filldir,
1983                .osb = osb,
1984                .head = *head
1985        };
1986
1987        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1988                                                       ORPHAN_DIR_SYSTEM_INODE,
1989                                                       slot);
1990        if  (!orphan_dir_inode) {
1991                status = -ENOENT;
1992                mlog_errno(status);
1993                return status;
1994        }
1995
1996        mutex_lock(&orphan_dir_inode->i_mutex);
1997        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1998        if (status < 0) {
1999                mlog_errno(status);
2000                goto out;
2001        }
2002
2003        status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2004        if (status) {
2005                mlog_errno(status);
2006                goto out_cluster;
2007        }
2008
2009        *head = priv.head;
2010
2011out_cluster:
2012        ocfs2_inode_unlock(orphan_dir_inode, 0);
2013out:
2014        mutex_unlock(&orphan_dir_inode->i_mutex);
2015        iput(orphan_dir_inode);
2016        return status;
2017}
2018
2019static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2020                                              int slot)
2021{
2022        int ret;
2023
2024        spin_lock(&osb->osb_lock);
2025        ret = !osb->osb_orphan_wipes[slot];
2026        spin_unlock(&osb->osb_lock);
2027        return ret;
2028}
2029
2030static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2031                                             int slot)
2032{
2033        spin_lock(&osb->osb_lock);
2034        /* Mark ourselves such that new processes in delete_inode()
2035         * know to quit early. */
2036        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2037        while (osb->osb_orphan_wipes[slot]) {
2038                /* If any processes are already in the middle of an
2039                 * orphan wipe on this dir, then we need to wait for
2040                 * them. */
2041                spin_unlock(&osb->osb_lock);
2042                wait_event_interruptible(osb->osb_wipe_event,
2043                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2044                spin_lock(&osb->osb_lock);
2045        }
2046        spin_unlock(&osb->osb_lock);
2047}
2048
2049static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2050                                              int slot)
2051{
2052        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2053}
2054
2055/*
2056 * Orphan recovery. Each mounted node has it's own orphan dir which we
2057 * must run during recovery. Our strategy here is to build a list of
2058 * the inodes in the orphan dir and iget/iput them. The VFS does
2059 * (most) of the rest of the work.
2060 *
2061 * Orphan recovery can happen at any time, not just mount so we have a
2062 * couple of extra considerations.
2063 *
2064 * - We grab as many inodes as we can under the orphan dir lock -
2065 *   doing iget() outside the orphan dir risks getting a reference on
2066 *   an invalid inode.
2067 * - We must be sure not to deadlock with other processes on the
2068 *   system wanting to run delete_inode(). This can happen when they go
2069 *   to lock the orphan dir and the orphan recovery process attempts to
2070 *   iget() inside the orphan dir lock. This can be avoided by
2071 *   advertising our state to ocfs2_delete_inode().
2072 */
2073static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2074                                 int slot)
2075{
2076        int ret = 0;
2077        struct inode *inode = NULL;
2078        struct inode *iter;
2079        struct ocfs2_inode_info *oi;
2080
2081        trace_ocfs2_recover_orphans(slot);
2082
2083        ocfs2_mark_recovering_orphan_dir(osb, slot);
2084        ret = ocfs2_queue_orphans(osb, slot, &inode);
2085        ocfs2_clear_recovering_orphan_dir(osb, slot);
2086
2087        /* Error here should be noted, but we want to continue with as
2088         * many queued inodes as we've got. */
2089        if (ret)
2090                mlog_errno(ret);
2091
2092        while (inode) {
2093                oi = OCFS2_I(inode);
2094                trace_ocfs2_recover_orphans_iput(
2095                                        (unsigned long long)oi->ip_blkno);
2096
2097                iter = oi->ip_next_orphan;
2098
2099                spin_lock(&oi->ip_lock);
2100                /* The remote delete code may have set these on the
2101                 * assumption that the other node would wipe them
2102                 * successfully.  If they are still in the node's
2103                 * orphan dir, we need to reset that state. */
2104                oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2105
2106                /* Set the proper information to get us going into
2107                 * ocfs2_delete_inode. */
2108                oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2109                spin_unlock(&oi->ip_lock);
2110
2111                iput(inode);
2112
2113                inode = iter;
2114        }
2115
2116        return ret;
2117}
2118
2119static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2120{
2121        /* This check is good because ocfs2 will wait on our recovery
2122         * thread before changing it to something other than MOUNTED
2123         * or DISABLED. */
2124        wait_event(osb->osb_mount_event,
2125                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2126                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2127                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2128
2129        /* If there's an error on mount, then we may never get to the
2130         * MOUNTED flag, but this is set right before
2131         * dismount_volume() so we can trust it. */
2132        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2133                trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2134                mlog(0, "mount error, exiting!\n");
2135                return -EBUSY;
2136        }
2137
2138        return 0;
2139}
2140
2141static int ocfs2_commit_thread(void *arg)
2142{
2143        int status;
2144        struct ocfs2_super *osb = arg;
2145        struct ocfs2_journal *journal = osb->journal;
2146
2147        /* we can trust j_num_trans here because _should_stop() is only set in
2148         * shutdown and nobody other than ourselves should be able to start
2149         * transactions.  committing on shutdown might take a few iterations
2150         * as final transactions put deleted inodes on the list */
2151        while (!(kthread_should_stop() &&
2152                 atomic_read(&journal->j_num_trans) == 0)) {
2153
2154                wait_event_interruptible(osb->checkpoint_event,
2155                                         atomic_read(&journal->j_num_trans)
2156                                         || kthread_should_stop());
2157
2158                status = ocfs2_commit_cache(osb);
2159                if (status < 0)
2160                        mlog_errno(status);
2161
2162                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2163                        mlog(ML_KTHREAD,
2164                             "commit_thread: %u transactions pending on "
2165                             "shutdown\n",
2166                             atomic_read(&journal->j_num_trans));
2167                }
2168        }
2169
2170        return 0;
2171}
2172
2173/* Reads all the journal inodes without taking any cluster locks. Used
2174 * for hard readonly access to determine whether any journal requires
2175 * recovery. Also used to refresh the recovery generation numbers after
2176 * a journal has been recovered by another node.
2177 */
2178int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2179{
2180        int ret = 0;
2181        unsigned int slot;
2182        struct buffer_head *di_bh = NULL;
2183        struct ocfs2_dinode *di;
2184        int journal_dirty = 0;
2185
2186        for(slot = 0; slot < osb->max_slots; slot++) {
2187                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2188                if (ret) {
2189                        mlog_errno(ret);
2190                        goto out;
2191                }
2192
2193                di = (struct ocfs2_dinode *) di_bh->b_data;
2194
2195                osb->slot_recovery_generations[slot] =
2196                                        ocfs2_get_recovery_generation(di);
2197
2198                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2199                    OCFS2_JOURNAL_DIRTY_FL)
2200                        journal_dirty = 1;
2201
2202                brelse(di_bh);
2203                di_bh = NULL;
2204        }
2205
2206out:
2207        if (journal_dirty)
2208                ret = -EROFS;
2209        return ret;
2210}
2211
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.