linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1/*
   2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   3 *
   4 * Copyright (C) 2008-2012 ST-Ericsson AB
   5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   6 *
   7 * Author: Linus Walleij <linus.walleij@stericsson.com>
   8 *
   9 * Initial version inspired by:
  10 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11 * Initial adoption to PL022 by:
  12 *      Sachin Verma <sachin.verma@st.com>
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/device.h>
  28#include <linux/ioport.h>
  29#include <linux/errno.h>
  30#include <linux/interrupt.h>
  31#include <linux/spi/spi.h>
  32#include <linux/delay.h>
  33#include <linux/clk.h>
  34#include <linux/err.h>
  35#include <linux/amba/bus.h>
  36#include <linux/amba/pl022.h>
  37#include <linux/io.h>
  38#include <linux/slab.h>
  39#include <linux/dmaengine.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/scatterlist.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/gpio.h>
  44#include <linux/of_gpio.h>
  45#include <linux/pinctrl/consumer.h>
  46
  47/*
  48 * This macro is used to define some register default values.
  49 * reg is masked with mask, the OR:ed with an (again masked)
  50 * val shifted sb steps to the left.
  51 */
  52#define SSP_WRITE_BITS(reg, val, mask, sb) \
  53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  54
  55/*
  56 * This macro is also used to define some default values.
  57 * It will just shift val by sb steps to the left and mask
  58 * the result with mask.
  59 */
  60#define GEN_MASK_BITS(val, mask, sb) \
  61 (((val)<<(sb)) & (mask))
  62
  63#define DRIVE_TX                0
  64#define DO_NOT_DRIVE_TX         1
  65
  66#define DO_NOT_QUEUE_DMA        0
  67#define QUEUE_DMA               1
  68
  69#define RX_TRANSFER             1
  70#define TX_TRANSFER             2
  71
  72/*
  73 * Macros to access SSP Registers with their offsets
  74 */
  75#define SSP_CR0(r)      (r + 0x000)
  76#define SSP_CR1(r)      (r + 0x004)
  77#define SSP_DR(r)       (r + 0x008)
  78#define SSP_SR(r)       (r + 0x00C)
  79#define SSP_CPSR(r)     (r + 0x010)
  80#define SSP_IMSC(r)     (r + 0x014)
  81#define SSP_RIS(r)      (r + 0x018)
  82#define SSP_MIS(r)      (r + 0x01C)
  83#define SSP_ICR(r)      (r + 0x020)
  84#define SSP_DMACR(r)    (r + 0x024)
  85#define SSP_ITCR(r)     (r + 0x080)
  86#define SSP_ITIP(r)     (r + 0x084)
  87#define SSP_ITOP(r)     (r + 0x088)
  88#define SSP_TDR(r)      (r + 0x08C)
  89
  90#define SSP_PID0(r)     (r + 0xFE0)
  91#define SSP_PID1(r)     (r + 0xFE4)
  92#define SSP_PID2(r)     (r + 0xFE8)
  93#define SSP_PID3(r)     (r + 0xFEC)
  94
  95#define SSP_CID0(r)     (r + 0xFF0)
  96#define SSP_CID1(r)     (r + 0xFF4)
  97#define SSP_CID2(r)     (r + 0xFF8)
  98#define SSP_CID3(r)     (r + 0xFFC)
  99
 100/*
 101 * SSP Control Register 0  - SSP_CR0
 102 */
 103#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
 104#define SSP_CR0_MASK_FRF        (0x3UL << 4)
 105#define SSP_CR0_MASK_SPO        (0x1UL << 6)
 106#define SSP_CR0_MASK_SPH        (0x1UL << 7)
 107#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 108
 109/*
 110 * The ST version of this block moves som bits
 111 * in SSP_CR0 and extends it to 32 bits
 112 */
 113#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 114#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 115#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 116#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 117
 118/*
 119 * SSP Control Register 0  - SSP_CR1
 120 */
 121#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 122#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 123#define SSP_CR1_MASK_MS         (0x1UL << 2)
 124#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 125
 126/*
 127 * The ST version of this block adds some bits
 128 * in SSP_CR1
 129 */
 130#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 131#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 132#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 133#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 134#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 135/* This one is only in the PL023 variant */
 136#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 137
 138/*
 139 * SSP Status Register - SSP_SR
 140 */
 141#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 142#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 143#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 144#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 145#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 146
 147/*
 148 * SSP Clock Prescale Register  - SSP_CPSR
 149 */
 150#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 151
 152/*
 153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 154 */
 155#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 156#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 157#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 158#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 159
 160/*
 161 * SSP Raw Interrupt Status Register - SSP_RIS
 162 */
 163/* Receive Overrun Raw Interrupt status */
 164#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 165/* Receive Timeout Raw Interrupt status */
 166#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 167/* Receive FIFO Raw Interrupt status */
 168#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 169/* Transmit FIFO Raw Interrupt status */
 170#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 171
 172/*
 173 * SSP Masked Interrupt Status Register - SSP_MIS
 174 */
 175/* Receive Overrun Masked Interrupt status */
 176#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 177/* Receive Timeout Masked Interrupt status */
 178#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 179/* Receive FIFO Masked Interrupt status */
 180#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 181/* Transmit FIFO Masked Interrupt status */
 182#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 183
 184/*
 185 * SSP Interrupt Clear Register - SSP_ICR
 186 */
 187/* Receive Overrun Raw Clear Interrupt bit */
 188#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 189/* Receive Timeout Clear Interrupt bit */
 190#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 191
 192/*
 193 * SSP DMA Control Register - SSP_DMACR
 194 */
 195/* Receive DMA Enable bit */
 196#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 197/* Transmit DMA Enable bit */
 198#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 199
 200/*
 201 * SSP Integration Test control Register - SSP_ITCR
 202 */
 203#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 204#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 205
 206/*
 207 * SSP Integration Test Input Register - SSP_ITIP
 208 */
 209#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 210#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 211#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 212#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 213#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 214#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 215
 216/*
 217 * SSP Integration Test output Register - SSP_ITOP
 218 */
 219#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 220#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 221#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 222#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 223#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 224#define ITOP_MASK_RORINTR                (0x1UL << 5)
 225#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 226#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 227#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 228#define ITOP_MASK_INTR                   (0x1UL << 9)
 229#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 230#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 231#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 232#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 233
 234/*
 235 * SSP Test Data Register - SSP_TDR
 236 */
 237#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 238
 239/*
 240 * Message State
 241 * we use the spi_message.state (void *) pointer to
 242 * hold a single state value, that's why all this
 243 * (void *) casting is done here.
 244 */
 245#define STATE_START                     ((void *) 0)
 246#define STATE_RUNNING                   ((void *) 1)
 247#define STATE_DONE                      ((void *) 2)
 248#define STATE_ERROR                     ((void *) -1)
 249
 250/*
 251 * SSP State - Whether Enabled or Disabled
 252 */
 253#define SSP_DISABLED                    (0)
 254#define SSP_ENABLED                     (1)
 255
 256/*
 257 * SSP DMA State - Whether DMA Enabled or Disabled
 258 */
 259#define SSP_DMA_DISABLED                (0)
 260#define SSP_DMA_ENABLED                 (1)
 261
 262/*
 263 * SSP Clock Defaults
 264 */
 265#define SSP_DEFAULT_CLKRATE 0x2
 266#define SSP_DEFAULT_PRESCALE 0x40
 267
 268/*
 269 * SSP Clock Parameter ranges
 270 */
 271#define CPSDVR_MIN 0x02
 272#define CPSDVR_MAX 0xFE
 273#define SCR_MIN 0x00
 274#define SCR_MAX 0xFF
 275
 276/*
 277 * SSP Interrupt related Macros
 278 */
 279#define DEFAULT_SSP_REG_IMSC  0x0UL
 280#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 281#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 282
 283#define CLEAR_ALL_INTERRUPTS  0x3
 284
 285#define SPI_POLLING_TIMEOUT 1000
 286
 287/*
 288 * The type of reading going on on this chip
 289 */
 290enum ssp_reading {
 291        READING_NULL,
 292        READING_U8,
 293        READING_U16,
 294        READING_U32
 295};
 296
 297/**
 298 * The type of writing going on on this chip
 299 */
 300enum ssp_writing {
 301        WRITING_NULL,
 302        WRITING_U8,
 303        WRITING_U16,
 304        WRITING_U32
 305};
 306
 307/**
 308 * struct vendor_data - vendor-specific config parameters
 309 * for PL022 derivates
 310 * @fifodepth: depth of FIFOs (both)
 311 * @max_bpw: maximum number of bits per word
 312 * @unidir: supports unidirection transfers
 313 * @extended_cr: 32 bit wide control register 0 with extra
 314 * features and extra features in CR1 as found in the ST variants
 315 * @pl023: supports a subset of the ST extensions called "PL023"
 316 */
 317struct vendor_data {
 318        int fifodepth;
 319        int max_bpw;
 320        bool unidir;
 321        bool extended_cr;
 322        bool pl023;
 323        bool loopback;
 324};
 325
 326/**
 327 * struct pl022 - This is the private SSP driver data structure
 328 * @adev: AMBA device model hookup
 329 * @vendor: vendor data for the IP block
 330 * @phybase: the physical memory where the SSP device resides
 331 * @virtbase: the virtual memory where the SSP is mapped
 332 * @clk: outgoing clock "SPICLK" for the SPI bus
 333 * @master: SPI framework hookup
 334 * @master_info: controller-specific data from machine setup
 335 * @kworker: thread struct for message pump
 336 * @kworker_task: pointer to task for message pump kworker thread
 337 * @pump_messages: work struct for scheduling work to the message pump
 338 * @queue_lock: spinlock to syncronise access to message queue
 339 * @queue: message queue
 340 * @busy: message pump is busy
 341 * @running: message pump is running
 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 343 * @cur_msg: Pointer to current spi_message being processed
 344 * @cur_transfer: Pointer to current spi_transfer
 345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 346 * @next_msg_cs_active: the next message in the queue has been examined
 347 *  and it was found that it uses the same chip select as the previous
 348 *  message, so we left it active after the previous transfer, and it's
 349 *  active already.
 350 * @tx: current position in TX buffer to be read
 351 * @tx_end: end position in TX buffer to be read
 352 * @rx: current position in RX buffer to be written
 353 * @rx_end: end position in RX buffer to be written
 354 * @read: the type of read currently going on
 355 * @write: the type of write currently going on
 356 * @exp_fifo_level: expected FIFO level
 357 * @dma_rx_channel: optional channel for RX DMA
 358 * @dma_tx_channel: optional channel for TX DMA
 359 * @sgt_rx: scattertable for the RX transfer
 360 * @sgt_tx: scattertable for the TX transfer
 361 * @dummypage: a dummy page used for driving data on the bus with DMA
 362 * @cur_cs: current chip select (gpio)
 363 * @chipselects: list of chipselects (gpios)
 364 */
 365struct pl022 {
 366        struct amba_device              *adev;
 367        struct vendor_data              *vendor;
 368        resource_size_t                 phybase;
 369        void __iomem                    *virtbase;
 370        struct clk                      *clk;
 371        struct spi_master               *master;
 372        struct pl022_ssp_controller     *master_info;
 373        /* Message per-transfer pump */
 374        struct tasklet_struct           pump_transfers;
 375        struct spi_message              *cur_msg;
 376        struct spi_transfer             *cur_transfer;
 377        struct chip_data                *cur_chip;
 378        bool                            next_msg_cs_active;
 379        void                            *tx;
 380        void                            *tx_end;
 381        void                            *rx;
 382        void                            *rx_end;
 383        enum ssp_reading                read;
 384        enum ssp_writing                write;
 385        u32                             exp_fifo_level;
 386        enum ssp_rx_level_trig          rx_lev_trig;
 387        enum ssp_tx_level_trig          tx_lev_trig;
 388        /* DMA settings */
 389#ifdef CONFIG_DMA_ENGINE
 390        struct dma_chan                 *dma_rx_channel;
 391        struct dma_chan                 *dma_tx_channel;
 392        struct sg_table                 sgt_rx;
 393        struct sg_table                 sgt_tx;
 394        char                            *dummypage;
 395        bool                            dma_running;
 396#endif
 397        int cur_cs;
 398        int *chipselects;
 399};
 400
 401/**
 402 * struct chip_data - To maintain runtime state of SSP for each client chip
 403 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 404 *       register is 32 bits wide rather than just 16
 405 * @cr1: Value of control register CR1 of SSP
 406 * @dmacr: Value of DMA control Register of SSP
 407 * @cpsr: Value of Clock prescale register
 408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 409 * @enable_dma: Whether to enable DMA or not
 410 * @read: function ptr to be used to read when doing xfer for this chip
 411 * @write: function ptr to be used to write when doing xfer for this chip
 412 * @cs_control: chip select callback provided by chip
 413 * @xfer_type: polling/interrupt/DMA
 414 *
 415 * Runtime state of the SSP controller, maintained per chip,
 416 * This would be set according to the current message that would be served
 417 */
 418struct chip_data {
 419        u32 cr0;
 420        u16 cr1;
 421        u16 dmacr;
 422        u16 cpsr;
 423        u8 n_bytes;
 424        bool enable_dma;
 425        enum ssp_reading read;
 426        enum ssp_writing write;
 427        void (*cs_control) (u32 command);
 428        int xfer_type;
 429};
 430
 431/**
 432 * null_cs_control - Dummy chip select function
 433 * @command: select/delect the chip
 434 *
 435 * If no chip select function is provided by client this is used as dummy
 436 * chip select
 437 */
 438static void null_cs_control(u32 command)
 439{
 440        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 441}
 442
 443static void pl022_cs_control(struct pl022 *pl022, u32 command)
 444{
 445        if (gpio_is_valid(pl022->cur_cs))
 446                gpio_set_value(pl022->cur_cs, command);
 447        else
 448                pl022->cur_chip->cs_control(command);
 449}
 450
 451/**
 452 * giveback - current spi_message is over, schedule next message and call
 453 * callback of this message. Assumes that caller already
 454 * set message->status; dma and pio irqs are blocked
 455 * @pl022: SSP driver private data structure
 456 */
 457static void giveback(struct pl022 *pl022)
 458{
 459        struct spi_transfer *last_transfer;
 460        pl022->next_msg_cs_active = false;
 461
 462        last_transfer = list_entry(pl022->cur_msg->transfers.prev,
 463                                        struct spi_transfer,
 464                                        transfer_list);
 465
 466        /* Delay if requested before any change in chip select */
 467        if (last_transfer->delay_usecs)
 468                /*
 469                 * FIXME: This runs in interrupt context.
 470                 * Is this really smart?
 471                 */
 472                udelay(last_transfer->delay_usecs);
 473
 474        if (!last_transfer->cs_change) {
 475                struct spi_message *next_msg;
 476
 477                /*
 478                 * cs_change was not set. We can keep the chip select
 479                 * enabled if there is message in the queue and it is
 480                 * for the same spi device.
 481                 *
 482                 * We cannot postpone this until pump_messages, because
 483                 * after calling msg->complete (below) the driver that
 484                 * sent the current message could be unloaded, which
 485                 * could invalidate the cs_control() callback...
 486                 */
 487                /* get a pointer to the next message, if any */
 488                next_msg = spi_get_next_queued_message(pl022->master);
 489
 490                /*
 491                 * see if the next and current messages point
 492                 * to the same spi device.
 493                 */
 494                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 495                        next_msg = NULL;
 496                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 497                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 498                else
 499                        pl022->next_msg_cs_active = true;
 500
 501        }
 502
 503        pl022->cur_msg = NULL;
 504        pl022->cur_transfer = NULL;
 505        pl022->cur_chip = NULL;
 506        spi_finalize_current_message(pl022->master);
 507
 508        /* disable the SPI/SSP operation */
 509        writew((readw(SSP_CR1(pl022->virtbase)) &
 510                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 511
 512}
 513
 514/**
 515 * flush - flush the FIFO to reach a clean state
 516 * @pl022: SSP driver private data structure
 517 */
 518static int flush(struct pl022 *pl022)
 519{
 520        unsigned long limit = loops_per_jiffy << 1;
 521
 522        dev_dbg(&pl022->adev->dev, "flush\n");
 523        do {
 524                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 525                        readw(SSP_DR(pl022->virtbase));
 526        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 527
 528        pl022->exp_fifo_level = 0;
 529
 530        return limit;
 531}
 532
 533/**
 534 * restore_state - Load configuration of current chip
 535 * @pl022: SSP driver private data structure
 536 */
 537static void restore_state(struct pl022 *pl022)
 538{
 539        struct chip_data *chip = pl022->cur_chip;
 540
 541        if (pl022->vendor->extended_cr)
 542                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 543        else
 544                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 545        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 546        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 547        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 548        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 549        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 550}
 551
 552/*
 553 * Default SSP Register Values
 554 */
 555#define DEFAULT_SSP_REG_CR0 ( \
 556        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 557        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 558        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 559        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 560        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 561)
 562
 563/* ST versions have slightly different bit layout */
 564#define DEFAULT_SSP_REG_CR0_ST ( \
 565        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 566        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 567        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 568        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 569        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 570        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 571        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 572)
 573
 574/* The PL023 version is slightly different again */
 575#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 576        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 577        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 578        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 579        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 580)
 581
 582#define DEFAULT_SSP_REG_CR1 ( \
 583        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 584        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 585        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 586        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 587)
 588
 589/* ST versions extend this register to use all 16 bits */
 590#define DEFAULT_SSP_REG_CR1_ST ( \
 591        DEFAULT_SSP_REG_CR1 | \
 592        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 593        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 594        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 595        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 596        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 597)
 598
 599/*
 600 * The PL023 variant has further differences: no loopback mode, no microwire
 601 * support, and a new clock feedback delay setting.
 602 */
 603#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 604        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 605        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 606        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 607        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 608        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 609        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 610        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 611        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 612)
 613
 614#define DEFAULT_SSP_REG_CPSR ( \
 615        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 616)
 617
 618#define DEFAULT_SSP_REG_DMACR (\
 619        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 620        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 621)
 622
 623/**
 624 * load_ssp_default_config - Load default configuration for SSP
 625 * @pl022: SSP driver private data structure
 626 */
 627static void load_ssp_default_config(struct pl022 *pl022)
 628{
 629        if (pl022->vendor->pl023) {
 630                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 631                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 632        } else if (pl022->vendor->extended_cr) {
 633                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 634                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 635        } else {
 636                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 637                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 638        }
 639        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 640        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 641        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 642        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 643}
 644
 645/**
 646 * This will write to TX and read from RX according to the parameters
 647 * set in pl022.
 648 */
 649static void readwriter(struct pl022 *pl022)
 650{
 651
 652        /*
 653         * The FIFO depth is different between primecell variants.
 654         * I believe filling in too much in the FIFO might cause
 655         * errons in 8bit wide transfers on ARM variants (just 8 words
 656         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 657         *
 658         * To prevent this issue, the TX FIFO is only filled to the
 659         * unused RX FIFO fill length, regardless of what the TX
 660         * FIFO status flag indicates.
 661         */
 662        dev_dbg(&pl022->adev->dev,
 663                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 664                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 665
 666        /* Read as much as you can */
 667        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 668               && (pl022->rx < pl022->rx_end)) {
 669                switch (pl022->read) {
 670                case READING_NULL:
 671                        readw(SSP_DR(pl022->virtbase));
 672                        break;
 673                case READING_U8:
 674                        *(u8 *) (pl022->rx) =
 675                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 676                        break;
 677                case READING_U16:
 678                        *(u16 *) (pl022->rx) =
 679                                (u16) readw(SSP_DR(pl022->virtbase));
 680                        break;
 681                case READING_U32:
 682                        *(u32 *) (pl022->rx) =
 683                                readl(SSP_DR(pl022->virtbase));
 684                        break;
 685                }
 686                pl022->rx += (pl022->cur_chip->n_bytes);
 687                pl022->exp_fifo_level--;
 688        }
 689        /*
 690         * Write as much as possible up to the RX FIFO size
 691         */
 692        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 693               && (pl022->tx < pl022->tx_end)) {
 694                switch (pl022->write) {
 695                case WRITING_NULL:
 696                        writew(0x0, SSP_DR(pl022->virtbase));
 697                        break;
 698                case WRITING_U8:
 699                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 700                        break;
 701                case WRITING_U16:
 702                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 703                        break;
 704                case WRITING_U32:
 705                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 706                        break;
 707                }
 708                pl022->tx += (pl022->cur_chip->n_bytes);
 709                pl022->exp_fifo_level++;
 710                /*
 711                 * This inner reader takes care of things appearing in the RX
 712                 * FIFO as we're transmitting. This will happen a lot since the
 713                 * clock starts running when you put things into the TX FIFO,
 714                 * and then things are continuously clocked into the RX FIFO.
 715                 */
 716                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 717                       && (pl022->rx < pl022->rx_end)) {
 718                        switch (pl022->read) {
 719                        case READING_NULL:
 720                                readw(SSP_DR(pl022->virtbase));
 721                                break;
 722                        case READING_U8:
 723                                *(u8 *) (pl022->rx) =
 724                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 725                                break;
 726                        case READING_U16:
 727                                *(u16 *) (pl022->rx) =
 728                                        (u16) readw(SSP_DR(pl022->virtbase));
 729                                break;
 730                        case READING_U32:
 731                                *(u32 *) (pl022->rx) =
 732                                        readl(SSP_DR(pl022->virtbase));
 733                                break;
 734                        }
 735                        pl022->rx += (pl022->cur_chip->n_bytes);
 736                        pl022->exp_fifo_level--;
 737                }
 738        }
 739        /*
 740         * When we exit here the TX FIFO should be full and the RX FIFO
 741         * should be empty
 742         */
 743}
 744
 745/**
 746 * next_transfer - Move to the Next transfer in the current spi message
 747 * @pl022: SSP driver private data structure
 748 *
 749 * This function moves though the linked list of spi transfers in the
 750 * current spi message and returns with the state of current spi
 751 * message i.e whether its last transfer is done(STATE_DONE) or
 752 * Next transfer is ready(STATE_RUNNING)
 753 */
 754static void *next_transfer(struct pl022 *pl022)
 755{
 756        struct spi_message *msg = pl022->cur_msg;
 757        struct spi_transfer *trans = pl022->cur_transfer;
 758
 759        /* Move to next transfer */
 760        if (trans->transfer_list.next != &msg->transfers) {
 761                pl022->cur_transfer =
 762                    list_entry(trans->transfer_list.next,
 763                               struct spi_transfer, transfer_list);
 764                return STATE_RUNNING;
 765        }
 766        return STATE_DONE;
 767}
 768
 769/*
 770 * This DMA functionality is only compiled in if we have
 771 * access to the generic DMA devices/DMA engine.
 772 */
 773#ifdef CONFIG_DMA_ENGINE
 774static void unmap_free_dma_scatter(struct pl022 *pl022)
 775{
 776        /* Unmap and free the SG tables */
 777        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 778                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 779        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 780                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 781        sg_free_table(&pl022->sgt_rx);
 782        sg_free_table(&pl022->sgt_tx);
 783}
 784
 785static void dma_callback(void *data)
 786{
 787        struct pl022 *pl022 = data;
 788        struct spi_message *msg = pl022->cur_msg;
 789
 790        BUG_ON(!pl022->sgt_rx.sgl);
 791
 792#ifdef VERBOSE_DEBUG
 793        /*
 794         * Optionally dump out buffers to inspect contents, this is
 795         * good if you want to convince yourself that the loopback
 796         * read/write contents are the same, when adopting to a new
 797         * DMA engine.
 798         */
 799        {
 800                struct scatterlist *sg;
 801                unsigned int i;
 802
 803                dma_sync_sg_for_cpu(&pl022->adev->dev,
 804                                    pl022->sgt_rx.sgl,
 805                                    pl022->sgt_rx.nents,
 806                                    DMA_FROM_DEVICE);
 807
 808                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 809                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 810                        print_hex_dump(KERN_ERR, "SPI RX: ",
 811                                       DUMP_PREFIX_OFFSET,
 812                                       16,
 813                                       1,
 814                                       sg_virt(sg),
 815                                       sg_dma_len(sg),
 816                                       1);
 817                }
 818                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 819                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 820                        print_hex_dump(KERN_ERR, "SPI TX: ",
 821                                       DUMP_PREFIX_OFFSET,
 822                                       16,
 823                                       1,
 824                                       sg_virt(sg),
 825                                       sg_dma_len(sg),
 826                                       1);
 827                }
 828        }
 829#endif
 830
 831        unmap_free_dma_scatter(pl022);
 832
 833        /* Update total bytes transferred */
 834        msg->actual_length += pl022->cur_transfer->len;
 835        if (pl022->cur_transfer->cs_change)
 836                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 837
 838        /* Move to next transfer */
 839        msg->state = next_transfer(pl022);
 840        tasklet_schedule(&pl022->pump_transfers);
 841}
 842
 843static void setup_dma_scatter(struct pl022 *pl022,
 844                              void *buffer,
 845                              unsigned int length,
 846                              struct sg_table *sgtab)
 847{
 848        struct scatterlist *sg;
 849        int bytesleft = length;
 850        void *bufp = buffer;
 851        int mapbytes;
 852        int i;
 853
 854        if (buffer) {
 855                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 856                        /*
 857                         * If there are less bytes left than what fits
 858                         * in the current page (plus page alignment offset)
 859                         * we just feed in this, else we stuff in as much
 860                         * as we can.
 861                         */
 862                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 863                                mapbytes = bytesleft;
 864                        else
 865                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 866                        sg_set_page(sg, virt_to_page(bufp),
 867                                    mapbytes, offset_in_page(bufp));
 868                        bufp += mapbytes;
 869                        bytesleft -= mapbytes;
 870                        dev_dbg(&pl022->adev->dev,
 871                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 872                                bufp, mapbytes, bytesleft);
 873                }
 874        } else {
 875                /* Map the dummy buffer on every page */
 876                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 877                        if (bytesleft < PAGE_SIZE)
 878                                mapbytes = bytesleft;
 879                        else
 880                                mapbytes = PAGE_SIZE;
 881                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 882                                    mapbytes, 0);
 883                        bytesleft -= mapbytes;
 884                        dev_dbg(&pl022->adev->dev,
 885                                "set RX/TX to dummy page %d bytes, %d left\n",
 886                                mapbytes, bytesleft);
 887
 888                }
 889        }
 890        BUG_ON(bytesleft);
 891}
 892
 893/**
 894 * configure_dma - configures the channels for the next transfer
 895 * @pl022: SSP driver's private data structure
 896 */
 897static int configure_dma(struct pl022 *pl022)
 898{
 899        struct dma_slave_config rx_conf = {
 900                .src_addr = SSP_DR(pl022->phybase),
 901                .direction = DMA_DEV_TO_MEM,
 902                .device_fc = false,
 903        };
 904        struct dma_slave_config tx_conf = {
 905                .dst_addr = SSP_DR(pl022->phybase),
 906                .direction = DMA_MEM_TO_DEV,
 907                .device_fc = false,
 908        };
 909        unsigned int pages;
 910        int ret;
 911        int rx_sglen, tx_sglen;
 912        struct dma_chan *rxchan = pl022->dma_rx_channel;
 913        struct dma_chan *txchan = pl022->dma_tx_channel;
 914        struct dma_async_tx_descriptor *rxdesc;
 915        struct dma_async_tx_descriptor *txdesc;
 916
 917        /* Check that the channels are available */
 918        if (!rxchan || !txchan)
 919                return -ENODEV;
 920
 921        /*
 922         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 923         * Notice that the DMA engine uses one-to-one mapping. Since we can
 924         * not trigger on 2 elements this needs explicit mapping rather than
 925         * calculation.
 926         */
 927        switch (pl022->rx_lev_trig) {
 928        case SSP_RX_1_OR_MORE_ELEM:
 929                rx_conf.src_maxburst = 1;
 930                break;
 931        case SSP_RX_4_OR_MORE_ELEM:
 932                rx_conf.src_maxburst = 4;
 933                break;
 934        case SSP_RX_8_OR_MORE_ELEM:
 935                rx_conf.src_maxburst = 8;
 936                break;
 937        case SSP_RX_16_OR_MORE_ELEM:
 938                rx_conf.src_maxburst = 16;
 939                break;
 940        case SSP_RX_32_OR_MORE_ELEM:
 941                rx_conf.src_maxburst = 32;
 942                break;
 943        default:
 944                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 945                break;
 946        }
 947
 948        switch (pl022->tx_lev_trig) {
 949        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 950                tx_conf.dst_maxburst = 1;
 951                break;
 952        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 953                tx_conf.dst_maxburst = 4;
 954                break;
 955        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 956                tx_conf.dst_maxburst = 8;
 957                break;
 958        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 959                tx_conf.dst_maxburst = 16;
 960                break;
 961        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 962                tx_conf.dst_maxburst = 32;
 963                break;
 964        default:
 965                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 966                break;
 967        }
 968
 969        switch (pl022->read) {
 970        case READING_NULL:
 971                /* Use the same as for writing */
 972                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 973                break;
 974        case READING_U8:
 975                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 976                break;
 977        case READING_U16:
 978                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 979                break;
 980        case READING_U32:
 981                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 982                break;
 983        }
 984
 985        switch (pl022->write) {
 986        case WRITING_NULL:
 987                /* Use the same as for reading */
 988                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 989                break;
 990        case WRITING_U8:
 991                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 992                break;
 993        case WRITING_U16:
 994                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 995                break;
 996        case WRITING_U32:
 997                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 998                break;
 999        }
1000
1001        /* SPI pecularity: we need to read and write the same width */
1002        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1003                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1004        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1006        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1007
1008        dmaengine_slave_config(rxchan, &rx_conf);
1009        dmaengine_slave_config(txchan, &tx_conf);
1010
1011        /* Create sglists for the transfers */
1012        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1013        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1014
1015        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1016        if (ret)
1017                goto err_alloc_rx_sg;
1018
1019        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1020        if (ret)
1021                goto err_alloc_tx_sg;
1022
1023        /* Fill in the scatterlists for the RX+TX buffers */
1024        setup_dma_scatter(pl022, pl022->rx,
1025                          pl022->cur_transfer->len, &pl022->sgt_rx);
1026        setup_dma_scatter(pl022, pl022->tx,
1027                          pl022->cur_transfer->len, &pl022->sgt_tx);
1028
1029        /* Map DMA buffers */
1030        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1031                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1032        if (!rx_sglen)
1033                goto err_rx_sgmap;
1034
1035        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1036                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1037        if (!tx_sglen)
1038                goto err_tx_sgmap;
1039
1040        /* Send both scatterlists */
1041        rxdesc = dmaengine_prep_slave_sg(rxchan,
1042                                      pl022->sgt_rx.sgl,
1043                                      rx_sglen,
1044                                      DMA_DEV_TO_MEM,
1045                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1046        if (!rxdesc)
1047                goto err_rxdesc;
1048
1049        txdesc = dmaengine_prep_slave_sg(txchan,
1050                                      pl022->sgt_tx.sgl,
1051                                      tx_sglen,
1052                                      DMA_MEM_TO_DEV,
1053                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1054        if (!txdesc)
1055                goto err_txdesc;
1056
1057        /* Put the callback on the RX transfer only, that should finish last */
1058        rxdesc->callback = dma_callback;
1059        rxdesc->callback_param = pl022;
1060
1061        /* Submit and fire RX and TX with TX last so we're ready to read! */
1062        dmaengine_submit(rxdesc);
1063        dmaengine_submit(txdesc);
1064        dma_async_issue_pending(rxchan);
1065        dma_async_issue_pending(txchan);
1066        pl022->dma_running = true;
1067
1068        return 0;
1069
1070err_txdesc:
1071        dmaengine_terminate_all(txchan);
1072err_rxdesc:
1073        dmaengine_terminate_all(rxchan);
1074        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1075                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1076err_tx_sgmap:
1077        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1078                     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1079err_rx_sgmap:
1080        sg_free_table(&pl022->sgt_tx);
1081err_alloc_tx_sg:
1082        sg_free_table(&pl022->sgt_rx);
1083err_alloc_rx_sg:
1084        return -ENOMEM;
1085}
1086
1087static int pl022_dma_probe(struct pl022 *pl022)
1088{
1089        dma_cap_mask_t mask;
1090
1091        /* Try to acquire a generic DMA engine slave channel */
1092        dma_cap_zero(mask);
1093        dma_cap_set(DMA_SLAVE, mask);
1094        /*
1095         * We need both RX and TX channels to do DMA, else do none
1096         * of them.
1097         */
1098        pl022->dma_rx_channel = dma_request_channel(mask,
1099                                            pl022->master_info->dma_filter,
1100                                            pl022->master_info->dma_rx_param);
1101        if (!pl022->dma_rx_channel) {
1102                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1103                goto err_no_rxchan;
1104        }
1105
1106        pl022->dma_tx_channel = dma_request_channel(mask,
1107                                            pl022->master_info->dma_filter,
1108                                            pl022->master_info->dma_tx_param);
1109        if (!pl022->dma_tx_channel) {
1110                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1111                goto err_no_txchan;
1112        }
1113
1114        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115        if (!pl022->dummypage) {
1116                dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1117                goto err_no_dummypage;
1118        }
1119
1120        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1121                 dma_chan_name(pl022->dma_rx_channel),
1122                 dma_chan_name(pl022->dma_tx_channel));
1123
1124        return 0;
1125
1126err_no_dummypage:
1127        dma_release_channel(pl022->dma_tx_channel);
1128err_no_txchan:
1129        dma_release_channel(pl022->dma_rx_channel);
1130        pl022->dma_rx_channel = NULL;
1131err_no_rxchan:
1132        dev_err(&pl022->adev->dev,
1133                        "Failed to work in dma mode, work without dma!\n");
1134        return -ENODEV;
1135}
1136
1137static int pl022_dma_autoprobe(struct pl022 *pl022)
1138{
1139        struct device *dev = &pl022->adev->dev;
1140
1141        /* automatically configure DMA channels from platform, normally using DT */
1142        pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1143        if (!pl022->dma_rx_channel)
1144                goto err_no_rxchan;
1145
1146        pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1147        if (!pl022->dma_tx_channel)
1148                goto err_no_txchan;
1149
1150        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1151        if (!pl022->dummypage)
1152                goto err_no_dummypage;
1153
1154        return 0;
1155
1156err_no_dummypage:
1157        dma_release_channel(pl022->dma_tx_channel);
1158        pl022->dma_tx_channel = NULL;
1159err_no_txchan:
1160        dma_release_channel(pl022->dma_rx_channel);
1161        pl022->dma_rx_channel = NULL;
1162err_no_rxchan:
1163        return -ENODEV;
1164}
1165                
1166static void terminate_dma(struct pl022 *pl022)
1167{
1168        struct dma_chan *rxchan = pl022->dma_rx_channel;
1169        struct dma_chan *txchan = pl022->dma_tx_channel;
1170
1171        dmaengine_terminate_all(rxchan);
1172        dmaengine_terminate_all(txchan);
1173        unmap_free_dma_scatter(pl022);
1174        pl022->dma_running = false;
1175}
1176
1177static void pl022_dma_remove(struct pl022 *pl022)
1178{
1179        if (pl022->dma_running)
1180                terminate_dma(pl022);
1181        if (pl022->dma_tx_channel)
1182                dma_release_channel(pl022->dma_tx_channel);
1183        if (pl022->dma_rx_channel)
1184                dma_release_channel(pl022->dma_rx_channel);
1185        kfree(pl022->dummypage);
1186}
1187
1188#else
1189static inline int configure_dma(struct pl022 *pl022)
1190{
1191        return -ENODEV;
1192}
1193
1194static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1195{
1196        return 0;
1197}
1198
1199static inline int pl022_dma_probe(struct pl022 *pl022)
1200{
1201        return 0;
1202}
1203
1204static inline void pl022_dma_remove(struct pl022 *pl022)
1205{
1206}
1207#endif
1208
1209/**
1210 * pl022_interrupt_handler - Interrupt handler for SSP controller
1211 *
1212 * This function handles interrupts generated for an interrupt based transfer.
1213 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1214 * current message's state as STATE_ERROR and schedule the tasklet
1215 * pump_transfers which will do the postprocessing of the current message by
1216 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1217 * more data, and writes data in TX FIFO till it is not full. If we complete
1218 * the transfer we move to the next transfer and schedule the tasklet.
1219 */
1220static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1221{
1222        struct pl022 *pl022 = dev_id;
1223        struct spi_message *msg = pl022->cur_msg;
1224        u16 irq_status = 0;
1225        u16 flag = 0;
1226
1227        if (unlikely(!msg)) {
1228                dev_err(&pl022->adev->dev,
1229                        "bad message state in interrupt handler");
1230                /* Never fail */
1231                return IRQ_HANDLED;
1232        }
1233
1234        /* Read the Interrupt Status Register */
1235        irq_status = readw(SSP_MIS(pl022->virtbase));
1236
1237        if (unlikely(!irq_status))
1238                return IRQ_NONE;
1239
1240        /*
1241         * This handles the FIFO interrupts, the timeout
1242         * interrupts are flatly ignored, they cannot be
1243         * trusted.
1244         */
1245        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1246                /*
1247                 * Overrun interrupt - bail out since our Data has been
1248                 * corrupted
1249                 */
1250                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1251                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1252                        dev_err(&pl022->adev->dev,
1253                                "RXFIFO is full\n");
1254                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1255                        dev_err(&pl022->adev->dev,
1256                                "TXFIFO is full\n");
1257
1258                /*
1259                 * Disable and clear interrupts, disable SSP,
1260                 * mark message with bad status so it can be
1261                 * retried.
1262                 */
1263                writew(DISABLE_ALL_INTERRUPTS,
1264                       SSP_IMSC(pl022->virtbase));
1265                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1266                writew((readw(SSP_CR1(pl022->virtbase)) &
1267                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1268                msg->state = STATE_ERROR;
1269
1270                /* Schedule message queue handler */
1271                tasklet_schedule(&pl022->pump_transfers);
1272                return IRQ_HANDLED;
1273        }
1274
1275        readwriter(pl022);
1276
1277        if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1278                flag = 1;
1279                /* Disable Transmit interrupt, enable receive interrupt */
1280                writew((readw(SSP_IMSC(pl022->virtbase)) &
1281                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1282                       SSP_IMSC(pl022->virtbase));
1283        }
1284
1285        /*
1286         * Since all transactions must write as much as shall be read,
1287         * we can conclude the entire transaction once RX is complete.
1288         * At this point, all TX will always be finished.
1289         */
1290        if (pl022->rx >= pl022->rx_end) {
1291                writew(DISABLE_ALL_INTERRUPTS,
1292                       SSP_IMSC(pl022->virtbase));
1293                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1294                if (unlikely(pl022->rx > pl022->rx_end)) {
1295                        dev_warn(&pl022->adev->dev, "read %u surplus "
1296                                 "bytes (did you request an odd "
1297                                 "number of bytes on a 16bit bus?)\n",
1298                                 (u32) (pl022->rx - pl022->rx_end));
1299                }
1300                /* Update total bytes transferred */
1301                msg->actual_length += pl022->cur_transfer->len;
1302                if (pl022->cur_transfer->cs_change)
1303                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1304                /* Move to next transfer */
1305                msg->state = next_transfer(pl022);
1306                tasklet_schedule(&pl022->pump_transfers);
1307                return IRQ_HANDLED;
1308        }
1309
1310        return IRQ_HANDLED;
1311}
1312
1313/**
1314 * This sets up the pointers to memory for the next message to
1315 * send out on the SPI bus.
1316 */
1317static int set_up_next_transfer(struct pl022 *pl022,
1318                                struct spi_transfer *transfer)
1319{
1320        int residue;
1321
1322        /* Sanity check the message for this bus width */
1323        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1324        if (unlikely(residue != 0)) {
1325                dev_err(&pl022->adev->dev,
1326                        "message of %u bytes to transmit but the current "
1327                        "chip bus has a data width of %u bytes!\n",
1328                        pl022->cur_transfer->len,
1329                        pl022->cur_chip->n_bytes);
1330                dev_err(&pl022->adev->dev, "skipping this message\n");
1331                return -EIO;
1332        }
1333        pl022->tx = (void *)transfer->tx_buf;
1334        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1335        pl022->rx = (void *)transfer->rx_buf;
1336        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1337        pl022->write =
1338            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1339        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1340        return 0;
1341}
1342
1343/**
1344 * pump_transfers - Tasklet function which schedules next transfer
1345 * when running in interrupt or DMA transfer mode.
1346 * @data: SSP driver private data structure
1347 *
1348 */
1349static void pump_transfers(unsigned long data)
1350{
1351        struct pl022 *pl022 = (struct pl022 *) data;
1352        struct spi_message *message = NULL;
1353        struct spi_transfer *transfer = NULL;
1354        struct spi_transfer *previous = NULL;
1355
1356        /* Get current state information */
1357        message = pl022->cur_msg;
1358        transfer = pl022->cur_transfer;
1359
1360        /* Handle for abort */
1361        if (message->state == STATE_ERROR) {
1362                message->status = -EIO;
1363                giveback(pl022);
1364                return;
1365        }
1366
1367        /* Handle end of message */
1368        if (message->state == STATE_DONE) {
1369                message->status = 0;
1370                giveback(pl022);
1371                return;
1372        }
1373
1374        /* Delay if requested at end of transfer before CS change */
1375        if (message->state == STATE_RUNNING) {
1376                previous = list_entry(transfer->transfer_list.prev,
1377                                        struct spi_transfer,
1378                                        transfer_list);
1379                if (previous->delay_usecs)
1380                        /*
1381                         * FIXME: This runs in interrupt context.
1382                         * Is this really smart?
1383                         */
1384                        udelay(previous->delay_usecs);
1385
1386                /* Reselect chip select only if cs_change was requested */
1387                if (previous->cs_change)
1388                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1389        } else {
1390                /* STATE_START */
1391                message->state = STATE_RUNNING;
1392        }
1393
1394        if (set_up_next_transfer(pl022, transfer)) {
1395                message->state = STATE_ERROR;
1396                message->status = -EIO;
1397                giveback(pl022);
1398                return;
1399        }
1400        /* Flush the FIFOs and let's go! */
1401        flush(pl022);
1402
1403        if (pl022->cur_chip->enable_dma) {
1404                if (configure_dma(pl022)) {
1405                        dev_dbg(&pl022->adev->dev,
1406                                "configuration of DMA failed, fall back to interrupt mode\n");
1407                        goto err_config_dma;
1408                }
1409                return;
1410        }
1411
1412err_config_dma:
1413        /* enable all interrupts except RX */
1414        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1415}
1416
1417static void do_interrupt_dma_transfer(struct pl022 *pl022)
1418{
1419        /*
1420         * Default is to enable all interrupts except RX -
1421         * this will be enabled once TX is complete
1422         */
1423        u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1424
1425        /* Enable target chip, if not already active */
1426        if (!pl022->next_msg_cs_active)
1427                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1428
1429        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1430                /* Error path */
1431                pl022->cur_msg->state = STATE_ERROR;
1432                pl022->cur_msg->status = -EIO;
1433                giveback(pl022);
1434                return;
1435        }
1436        /* If we're using DMA, set up DMA here */
1437        if (pl022->cur_chip->enable_dma) {
1438                /* Configure DMA transfer */
1439                if (configure_dma(pl022)) {
1440                        dev_dbg(&pl022->adev->dev,
1441                                "configuration of DMA failed, fall back to interrupt mode\n");
1442                        goto err_config_dma;
1443                }
1444                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1445                irqflags = DISABLE_ALL_INTERRUPTS;
1446        }
1447err_config_dma:
1448        /* Enable SSP, turn on interrupts */
1449        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1450               SSP_CR1(pl022->virtbase));
1451        writew(irqflags, SSP_IMSC(pl022->virtbase));
1452}
1453
1454static void do_polling_transfer(struct pl022 *pl022)
1455{
1456        struct spi_message *message = NULL;
1457        struct spi_transfer *transfer = NULL;
1458        struct spi_transfer *previous = NULL;
1459        struct chip_data *chip;
1460        unsigned long time, timeout;
1461
1462        chip = pl022->cur_chip;
1463        message = pl022->cur_msg;
1464
1465        while (message->state != STATE_DONE) {
1466                /* Handle for abort */
1467                if (message->state == STATE_ERROR)
1468                        break;
1469                transfer = pl022->cur_transfer;
1470
1471                /* Delay if requested at end of transfer */
1472                if (message->state == STATE_RUNNING) {
1473                        previous =
1474                            list_entry(transfer->transfer_list.prev,
1475                                       struct spi_transfer, transfer_list);
1476                        if (previous->delay_usecs)
1477                                udelay(previous->delay_usecs);
1478                        if (previous->cs_change)
1479                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1480                } else {
1481                        /* STATE_START */
1482                        message->state = STATE_RUNNING;
1483                        if (!pl022->next_msg_cs_active)
1484                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1485                }
1486
1487                /* Configuration Changing Per Transfer */
1488                if (set_up_next_transfer(pl022, transfer)) {
1489                        /* Error path */
1490                        message->state = STATE_ERROR;
1491                        break;
1492                }
1493                /* Flush FIFOs and enable SSP */
1494                flush(pl022);
1495                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1496                       SSP_CR1(pl022->virtbase));
1497
1498                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1499
1500                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1501                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1502                        time = jiffies;
1503                        readwriter(pl022);
1504                        if (time_after(time, timeout)) {
1505                                dev_warn(&pl022->adev->dev,
1506                                "%s: timeout!\n", __func__);
1507                                message->state = STATE_ERROR;
1508                                goto out;
1509                        }
1510                        cpu_relax();
1511                }
1512
1513                /* Update total byte transferred */
1514                message->actual_length += pl022->cur_transfer->len;
1515                if (pl022->cur_transfer->cs_change)
1516                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1517                /* Move to next transfer */
1518                message->state = next_transfer(pl022);
1519        }
1520out:
1521        /* Handle end of message */
1522        if (message->state == STATE_DONE)
1523                message->status = 0;
1524        else
1525                message->status = -EIO;
1526
1527        giveback(pl022);
1528        return;
1529}
1530
1531static int pl022_transfer_one_message(struct spi_master *master,
1532                                      struct spi_message *msg)
1533{
1534        struct pl022 *pl022 = spi_master_get_devdata(master);
1535
1536        /* Initial message state */
1537        pl022->cur_msg = msg;
1538        msg->state = STATE_START;
1539
1540        pl022->cur_transfer = list_entry(msg->transfers.next,
1541                                         struct spi_transfer, transfer_list);
1542
1543        /* Setup the SPI using the per chip configuration */
1544        pl022->cur_chip = spi_get_ctldata(msg->spi);
1545        pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1546
1547        restore_state(pl022);
1548        flush(pl022);
1549
1550        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1551                do_polling_transfer(pl022);
1552        else
1553                do_interrupt_dma_transfer(pl022);
1554
1555        return 0;
1556}
1557
1558static int pl022_prepare_transfer_hardware(struct spi_master *master)
1559{
1560        struct pl022 *pl022 = spi_master_get_devdata(master);
1561
1562        /*
1563         * Just make sure we have all we need to run the transfer by syncing
1564         * with the runtime PM framework.
1565         */
1566        pm_runtime_get_sync(&pl022->adev->dev);
1567        return 0;
1568}
1569
1570static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1571{
1572        struct pl022 *pl022 = spi_master_get_devdata(master);
1573
1574        /* nothing more to do - disable spi/ssp and power off */
1575        writew((readw(SSP_CR1(pl022->virtbase)) &
1576                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1577
1578        if (pl022->master_info->autosuspend_delay > 0) {
1579                pm_runtime_mark_last_busy(&pl022->adev->dev);
1580                pm_runtime_put_autosuspend(&pl022->adev->dev);
1581        } else {
1582                pm_runtime_put(&pl022->adev->dev);
1583        }
1584
1585        return 0;
1586}
1587
1588static int verify_controller_parameters(struct pl022 *pl022,
1589                                struct pl022_config_chip const *chip_info)
1590{
1591        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1592            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1593                dev_err(&pl022->adev->dev,
1594                        "interface is configured incorrectly\n");
1595                return -EINVAL;
1596        }
1597        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1598            (!pl022->vendor->unidir)) {
1599                dev_err(&pl022->adev->dev,
1600                        "unidirectional mode not supported in this "
1601                        "hardware version\n");
1602                return -EINVAL;
1603        }
1604        if ((chip_info->hierarchy != SSP_MASTER)
1605            && (chip_info->hierarchy != SSP_SLAVE)) {
1606                dev_err(&pl022->adev->dev,
1607                        "hierarchy is configured incorrectly\n");
1608                return -EINVAL;
1609        }
1610        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1611            && (chip_info->com_mode != DMA_TRANSFER)
1612            && (chip_info->com_mode != POLLING_TRANSFER)) {
1613                dev_err(&pl022->adev->dev,
1614                        "Communication mode is configured incorrectly\n");
1615                return -EINVAL;
1616        }
1617        switch (chip_info->rx_lev_trig) {
1618        case SSP_RX_1_OR_MORE_ELEM:
1619        case SSP_RX_4_OR_MORE_ELEM:
1620        case SSP_RX_8_OR_MORE_ELEM:
1621                /* These are always OK, all variants can handle this */
1622                break;
1623        case SSP_RX_16_OR_MORE_ELEM:
1624                if (pl022->vendor->fifodepth < 16) {
1625                        dev_err(&pl022->adev->dev,
1626                        "RX FIFO Trigger Level is configured incorrectly\n");
1627                        return -EINVAL;
1628                }
1629                break;
1630        case SSP_RX_32_OR_MORE_ELEM:
1631                if (pl022->vendor->fifodepth < 32) {
1632                        dev_err(&pl022->adev->dev,
1633                        "RX FIFO Trigger Level is configured incorrectly\n");
1634                        return -EINVAL;
1635                }
1636                break;
1637        default:
1638                dev_err(&pl022->adev->dev,
1639                        "RX FIFO Trigger Level is configured incorrectly\n");
1640                return -EINVAL;
1641                break;
1642        }
1643        switch (chip_info->tx_lev_trig) {
1644        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1645        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1646        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1647                /* These are always OK, all variants can handle this */
1648                break;
1649        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1650                if (pl022->vendor->fifodepth < 16) {
1651                        dev_err(&pl022->adev->dev,
1652                        "TX FIFO Trigger Level is configured incorrectly\n");
1653                        return -EINVAL;
1654                }
1655                break;
1656        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1657                if (pl022->vendor->fifodepth < 32) {
1658                        dev_err(&pl022->adev->dev,
1659                        "TX FIFO Trigger Level is configured incorrectly\n");
1660                        return -EINVAL;
1661                }
1662                break;
1663        default:
1664                dev_err(&pl022->adev->dev,
1665                        "TX FIFO Trigger Level is configured incorrectly\n");
1666                return -EINVAL;
1667                break;
1668        }
1669        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1670                if ((chip_info->ctrl_len < SSP_BITS_4)
1671                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1672                        dev_err(&pl022->adev->dev,
1673                                "CTRL LEN is configured incorrectly\n");
1674                        return -EINVAL;
1675                }
1676                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1677                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1678                        dev_err(&pl022->adev->dev,
1679                                "Wait State is configured incorrectly\n");
1680                        return -EINVAL;
1681                }
1682                /* Half duplex is only available in the ST Micro version */
1683                if (pl022->vendor->extended_cr) {
1684                        if ((chip_info->duplex !=
1685                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1686                            && (chip_info->duplex !=
1687                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1688                                dev_err(&pl022->adev->dev,
1689                                        "Microwire duplex mode is configured incorrectly\n");
1690                                return -EINVAL;
1691                        }
1692                } else {
1693                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1694                                dev_err(&pl022->adev->dev,
1695                                        "Microwire half duplex mode requested,"
1696                                        " but this is only available in the"
1697                                        " ST version of PL022\n");
1698                        return -EINVAL;
1699                }
1700        }
1701        return 0;
1702}
1703
1704static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1705{
1706        return rate / (cpsdvsr * (1 + scr));
1707}
1708
1709static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1710                                    ssp_clock_params * clk_freq)
1711{
1712        /* Lets calculate the frequency parameters */
1713        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1714        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1715                best_scr = 0, tmp, found = 0;
1716
1717        rate = clk_get_rate(pl022->clk);
1718        /* cpsdvscr = 2 & scr 0 */
1719        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1720        /* cpsdvsr = 254 & scr = 255 */
1721        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1722
1723        if (freq > max_tclk)
1724                dev_warn(&pl022->adev->dev,
1725                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1726                        max_tclk, freq);
1727
1728        if (freq < min_tclk) {
1729                dev_err(&pl022->adev->dev,
1730                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1731                        freq, min_tclk);
1732                return -EINVAL;
1733        }
1734
1735        /*
1736         * best_freq will give closest possible available rate (<= requested
1737         * freq) for all values of scr & cpsdvsr.
1738         */
1739        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1740                while (scr <= SCR_MAX) {
1741                        tmp = spi_rate(rate, cpsdvsr, scr);
1742
1743                        if (tmp > freq) {
1744                                /* we need lower freq */
1745                                scr++;
1746                                continue;
1747                        }
1748
1749                        /*
1750                         * If found exact value, mark found and break.
1751                         * If found more closer value, update and break.
1752                         */
1753                        if (tmp > best_freq) {
1754                                best_freq = tmp;
1755                                best_cpsdvsr = cpsdvsr;
1756                                best_scr = scr;
1757
1758                                if (tmp == freq)
1759                                        found = 1;
1760                        }
1761                        /*
1762                         * increased scr will give lower rates, which are not
1763                         * required
1764                         */
1765                        break;
1766                }
1767                cpsdvsr += 2;
1768                scr = SCR_MIN;
1769        }
1770
1771        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1772                        freq);
1773
1774        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1775        clk_freq->scr = (u8) (best_scr & 0xFF);
1776        dev_dbg(&pl022->adev->dev,
1777                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1778                freq, best_freq);
1779        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1780                clk_freq->cpsdvsr, clk_freq->scr);
1781
1782        return 0;
1783}
1784
1785/*
1786 * A piece of default chip info unless the platform
1787 * supplies it.
1788 */
1789static const struct pl022_config_chip pl022_default_chip_info = {
1790        .com_mode = POLLING_TRANSFER,
1791        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1792        .hierarchy = SSP_SLAVE,
1793        .slave_tx_disable = DO_NOT_DRIVE_TX,
1794        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1795        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1796        .ctrl_len = SSP_BITS_8,
1797        .wait_state = SSP_MWIRE_WAIT_ZERO,
1798        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1799        .cs_control = null_cs_control,
1800};
1801
1802/**
1803 * pl022_setup - setup function registered to SPI master framework
1804 * @spi: spi device which is requesting setup
1805 *
1806 * This function is registered to the SPI framework for this SPI master
1807 * controller. If it is the first time when setup is called by this device,
1808 * this function will initialize the runtime state for this chip and save
1809 * the same in the device structure. Else it will update the runtime info
1810 * with the updated chip info. Nothing is really being written to the
1811 * controller hardware here, that is not done until the actual transfer
1812 * commence.
1813 */
1814static int pl022_setup(struct spi_device *spi)
1815{
1816        struct pl022_config_chip const *chip_info;
1817        struct pl022_config_chip chip_info_dt;
1818        struct chip_data *chip;
1819        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1820        int status = 0;
1821        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1822        unsigned int bits = spi->bits_per_word;
1823        u32 tmp;
1824        struct device_node *np = spi->dev.of_node;
1825
1826        if (!spi->max_speed_hz)
1827                return -EINVAL;
1828
1829        /* Get controller_state if one is supplied */
1830        chip = spi_get_ctldata(spi);
1831
1832        if (chip == NULL) {
1833                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1834                if (!chip) {
1835                        dev_err(&spi->dev,
1836                                "cannot allocate controller state\n");
1837                        return -ENOMEM;
1838                }
1839                dev_dbg(&spi->dev,
1840                        "allocated memory for controller's runtime state\n");
1841        }
1842
1843        /* Get controller data if one is supplied */
1844        chip_info = spi->controller_data;
1845
1846        if (chip_info == NULL) {
1847                if (np) {
1848                        chip_info_dt = pl022_default_chip_info;
1849
1850                        chip_info_dt.hierarchy = SSP_MASTER;
1851                        of_property_read_u32(np, "pl022,interface",
1852                                &chip_info_dt.iface);
1853                        of_property_read_u32(np, "pl022,com-mode",
1854                                &chip_info_dt.com_mode);
1855                        of_property_read_u32(np, "pl022,rx-level-trig",
1856                                &chip_info_dt.rx_lev_trig);
1857                        of_property_read_u32(np, "pl022,tx-level-trig",
1858                                &chip_info_dt.tx_lev_trig);
1859                        of_property_read_u32(np, "pl022,ctrl-len",
1860                                &chip_info_dt.ctrl_len);
1861                        of_property_read_u32(np, "pl022,wait-state",
1862                                &chip_info_dt.wait_state);
1863                        of_property_read_u32(np, "pl022,duplex",
1864                                &chip_info_dt.duplex);
1865
1866                        chip_info = &chip_info_dt;
1867                } else {
1868                        chip_info = &pl022_default_chip_info;
1869                        /* spi_board_info.controller_data not is supplied */
1870                        dev_dbg(&spi->dev,
1871                                "using default controller_data settings\n");
1872                }
1873        } else
1874                dev_dbg(&spi->dev,
1875                        "using user supplied controller_data settings\n");
1876
1877        /*
1878         * We can override with custom divisors, else we use the board
1879         * frequency setting
1880         */
1881        if ((0 == chip_info->clk_freq.cpsdvsr)
1882            && (0 == chip_info->clk_freq.scr)) {
1883                status = calculate_effective_freq(pl022,
1884                                                  spi->max_speed_hz,
1885                                                  &clk_freq);
1886                if (status < 0)
1887                        goto err_config_params;
1888        } else {
1889                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1890                if ((clk_freq.cpsdvsr % 2) != 0)
1891                        clk_freq.cpsdvsr =
1892                                clk_freq.cpsdvsr - 1;
1893        }
1894        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1895            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1896                status = -EINVAL;
1897                dev_err(&spi->dev,
1898                        "cpsdvsr is configured incorrectly\n");
1899                goto err_config_params;
1900        }
1901
1902        status = verify_controller_parameters(pl022, chip_info);
1903        if (status) {
1904                dev_err(&spi->dev, "controller data is incorrect");
1905                goto err_config_params;
1906        }
1907
1908        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1909        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1910
1911        /* Now set controller state based on controller data */
1912        chip->xfer_type = chip_info->com_mode;
1913        if (!chip_info->cs_control) {
1914                chip->cs_control = null_cs_control;
1915                if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1916                        dev_warn(&spi->dev,
1917                                 "invalid chip select\n");
1918        } else
1919                chip->cs_control = chip_info->cs_control;
1920
1921        /* Check bits per word with vendor specific range */
1922        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1923                status = -ENOTSUPP;
1924                dev_err(&spi->dev, "illegal data size for this controller!\n");
1925                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1926                                pl022->vendor->max_bpw);
1927                goto err_config_params;
1928        } else if (bits <= 8) {
1929                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1930                chip->n_bytes = 1;
1931                chip->read = READING_U8;
1932                chip->write = WRITING_U8;
1933        } else if (bits <= 16) {
1934                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1935                chip->n_bytes = 2;
1936                chip->read = READING_U16;
1937                chip->write = WRITING_U16;
1938        } else {
1939                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1940                chip->n_bytes = 4;
1941                chip->read = READING_U32;
1942                chip->write = WRITING_U32;
1943        }
1944
1945        /* Now Initialize all register settings required for this chip */
1946        chip->cr0 = 0;
1947        chip->cr1 = 0;
1948        chip->dmacr = 0;
1949        chip->cpsr = 0;
1950        if ((chip_info->com_mode == DMA_TRANSFER)
1951            && ((pl022->master_info)->enable_dma)) {
1952                chip->enable_dma = true;
1953                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1954                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1955                               SSP_DMACR_MASK_RXDMAE, 0);
1956                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1957                               SSP_DMACR_MASK_TXDMAE, 1);
1958        } else {
1959                chip->enable_dma = false;
1960                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1961                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1962                               SSP_DMACR_MASK_RXDMAE, 0);
1963                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1964                               SSP_DMACR_MASK_TXDMAE, 1);
1965        }
1966
1967        chip->cpsr = clk_freq.cpsdvsr;
1968
1969        /* Special setup for the ST micro extended control registers */
1970        if (pl022->vendor->extended_cr) {
1971                u32 etx;
1972
1973                if (pl022->vendor->pl023) {
1974                        /* These bits are only in the PL023 */
1975                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1976                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1977                } else {
1978                        /* These bits are in the PL022 but not PL023 */
1979                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1980                                       SSP_CR0_MASK_HALFDUP_ST, 5);
1981                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1982                                       SSP_CR0_MASK_CSS_ST, 16);
1983                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1984                                       SSP_CR0_MASK_FRF_ST, 21);
1985                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1986                                       SSP_CR1_MASK_MWAIT_ST, 6);
1987                }
1988                SSP_WRITE_BITS(chip->cr0, bits - 1,
1989                               SSP_CR0_MASK_DSS_ST, 0);
1990
1991                if (spi->mode & SPI_LSB_FIRST) {
1992                        tmp = SSP_RX_LSB;
1993                        etx = SSP_TX_LSB;
1994                } else {
1995                        tmp = SSP_RX_MSB;
1996                        etx = SSP_TX_MSB;
1997                }
1998                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1999                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2000                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2001                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2002                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2003                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2004        } else {
2005                SSP_WRITE_BITS(chip->cr0, bits - 1,
2006                               SSP_CR0_MASK_DSS, 0);
2007                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2008                               SSP_CR0_MASK_FRF, 4);
2009        }
2010
2011        /* Stuff that is common for all versions */
2012        if (spi->mode & SPI_CPOL)
2013                tmp = SSP_CLK_POL_IDLE_HIGH;
2014        else
2015                tmp = SSP_CLK_POL_IDLE_LOW;
2016        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2017
2018        if (spi->mode & SPI_CPHA)
2019                tmp = SSP_CLK_SECOND_EDGE;
2020        else
2021                tmp = SSP_CLK_FIRST_EDGE;
2022        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2023
2024        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2025        /* Loopback is available on all versions except PL023 */
2026        if (pl022->vendor->loopback) {
2027                if (spi->mode & SPI_LOOP)
2028                        tmp = LOOPBACK_ENABLED;
2029                else
2030                        tmp = LOOPBACK_DISABLED;
2031                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2032        }
2033        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2034        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2035        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2036                3);
2037
2038        /* Save controller_state */
2039        spi_set_ctldata(spi, chip);
2040        return status;
2041 err_config_params:
2042        spi_set_ctldata(spi, NULL);
2043        kfree(chip);
2044        return status;
2045}
2046
2047/**
2048 * pl022_cleanup - cleanup function registered to SPI master framework
2049 * @spi: spi device which is requesting cleanup
2050 *
2051 * This function is registered to the SPI framework for this SPI master
2052 * controller. It will free the runtime state of chip.
2053 */
2054static void pl022_cleanup(struct spi_device *spi)
2055{
2056        struct chip_data *chip = spi_get_ctldata(spi);
2057
2058        spi_set_ctldata(spi, NULL);
2059        kfree(chip);
2060}
2061
2062static struct pl022_ssp_controller *
2063pl022_platform_data_dt_get(struct device *dev)
2064{
2065        struct device_node *np = dev->of_node;
2066        struct pl022_ssp_controller *pd;
2067        u32 tmp;
2068
2069        if (!np) {
2070                dev_err(dev, "no dt node defined\n");
2071                return NULL;
2072        }
2073
2074        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2075        if (!pd) {
2076                dev_err(dev, "cannot allocate platform data memory\n");
2077                return NULL;
2078        }
2079
2080        pd->bus_id = -1;
2081        pd->enable_dma = 1;
2082        of_property_read_u32(np, "num-cs", &tmp);
2083        pd->num_chipselect = tmp;
2084        of_property_read_u32(np, "pl022,autosuspend-delay",
2085                             &pd->autosuspend_delay);
2086        pd->rt = of_property_read_bool(np, "pl022,rt");
2087
2088        return pd;
2089}
2090
2091static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2092{
2093        struct device *dev = &adev->dev;
2094        struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2095        struct spi_master *master;
2096        struct pl022 *pl022 = NULL;     /*Data for this driver */
2097        struct device_node *np = adev->dev.of_node;
2098        int status = 0, i, num_cs;
2099
2100        dev_info(&adev->dev,
2101                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2102        if (!platform_info && IS_ENABLED(CONFIG_OF))
2103                platform_info = pl022_platform_data_dt_get(dev);
2104
2105        if (!platform_info) {
2106                dev_err(dev, "probe: no platform data defined\n");
2107                return -ENODEV;
2108        }
2109
2110        if (platform_info->num_chipselect) {
2111                num_cs = platform_info->num_chipselect;
2112        } else {
2113                dev_err(dev, "probe: no chip select defined\n");
2114                return -ENODEV;
2115        }
2116
2117        /* Allocate master with space for data */
2118        master = spi_alloc_master(dev, sizeof(struct pl022));
2119        if (master == NULL) {
2120                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2121                return -ENOMEM;
2122        }
2123
2124        pl022 = spi_master_get_devdata(master);
2125        pl022->master = master;
2126        pl022->master_info = platform_info;
2127        pl022->adev = adev;
2128        pl022->vendor = id->data;
2129        pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2130                                          GFP_KERNEL);
2131
2132        pinctrl_pm_select_default_state(dev);
2133
2134        /*
2135         * Bus Number Which has been Assigned to this SSP controller
2136         * on this board
2137         */
2138        master->bus_num = platform_info->bus_id;
2139        master->num_chipselect = num_cs;
2140        master->cleanup = pl022_cleanup;
2141        master->setup = pl022_setup;
2142        master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2143        master->transfer_one_message = pl022_transfer_one_message;
2144        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2145        master->rt = platform_info->rt;
2146        master->dev.of_node = dev->of_node;
2147
2148        if (platform_info->num_chipselect && platform_info->chipselects) {
2149                for (i = 0; i < num_cs; i++)
2150                        pl022->chipselects[i] = platform_info->chipselects[i];
2151        } else if (IS_ENABLED(CONFIG_OF)) {
2152                for (i = 0; i < num_cs; i++) {
2153                        int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2154
2155                        if (cs_gpio == -EPROBE_DEFER) {
2156                                status = -EPROBE_DEFER;
2157                                goto err_no_gpio;
2158                        }
2159
2160                        pl022->chipselects[i] = cs_gpio;
2161
2162                        if (gpio_is_valid(cs_gpio)) {
2163                                if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2164                                        dev_err(&adev->dev,
2165                                                "could not request %d gpio\n",
2166                                                cs_gpio);
2167                                else if (gpio_direction_output(cs_gpio, 1))
2168                                        dev_err(&adev->dev,
2169                                                "could set gpio %d as output\n",
2170                                                cs_gpio);
2171                        }
2172                }
2173        }
2174
2175        /*
2176         * Supports mode 0-3, loopback, and active low CS. Transfers are
2177         * always MS bit first on the original pl022.
2178         */
2179        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2180        if (pl022->vendor->extended_cr)
2181                master->mode_bits |= SPI_LSB_FIRST;
2182
2183        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2184
2185        status = amba_request_regions(adev, NULL);
2186        if (status)
2187                goto err_no_ioregion;
2188
2189        pl022->phybase = adev->res.start;
2190        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2191                                       resource_size(&adev->res));
2192        if (pl022->virtbase == NULL) {
2193                status = -ENOMEM;
2194                goto err_no_ioremap;
2195        }
2196        printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2197               adev->res.start, pl022->virtbase);
2198
2199        pl022->clk = devm_clk_get(&adev->dev, NULL);
2200        if (IS_ERR(pl022->clk)) {
2201                status = PTR_ERR(pl022->clk);
2202                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2203                goto err_no_clk;
2204        }
2205
2206        status = clk_prepare(pl022->clk);
2207        if (status) {
2208                dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2209                goto  err_clk_prep;
2210        }
2211
2212        status = clk_enable(pl022->clk);
2213        if (status) {
2214                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2215                goto err_no_clk_en;
2216        }
2217
2218        /* Initialize transfer pump */
2219        tasklet_init(&pl022->pump_transfers, pump_transfers,
2220                     (unsigned long)pl022);
2221
2222        /* Disable SSP */
2223        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2224               SSP_CR1(pl022->virtbase));
2225        load_ssp_default_config(pl022);
2226
2227        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2228                                  0, "pl022", pl022);
2229        if (status < 0) {
2230                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2231                goto err_no_irq;
2232        }
2233
2234        /* Get DMA channels, try autoconfiguration first */
2235        status = pl022_dma_autoprobe(pl022);
2236
2237        /* If that failed, use channels from platform_info */
2238        if (status == 0)
2239                platform_info->enable_dma = 1;
2240        else if (platform_info->enable_dma) {
2241                status = pl022_dma_probe(pl022);
2242                if (status != 0)
2243                        platform_info->enable_dma = 0;
2244        }
2245
2246        /* Register with the SPI framework */
2247        amba_set_drvdata(adev, pl022);
2248        status = spi_register_master(master);
2249        if (status != 0) {
2250                dev_err(&adev->dev,
2251                        "probe - problem registering spi master\n");
2252                goto err_spi_register;
2253        }
2254        dev_dbg(dev, "probe succeeded\n");
2255
2256        /* let runtime pm put suspend */
2257        if (platform_info->autosuspend_delay > 0) {
2258                dev_info(&adev->dev,
2259                        "will use autosuspend for runtime pm, delay %dms\n",
2260                        platform_info->autosuspend_delay);
2261                pm_runtime_set_autosuspend_delay(dev,
2262                        platform_info->autosuspend_delay);
2263                pm_runtime_use_autosuspend(dev);
2264        }
2265        pm_runtime_put(dev);
2266
2267        return 0;
2268
2269 err_spi_register:
2270        if (platform_info->enable_dma)
2271                pl022_dma_remove(pl022);
2272 err_no_irq:
2273        clk_disable(pl022->clk);
2274 err_no_clk_en:
2275        clk_unprepare(pl022->clk);
2276 err_clk_prep:
2277 err_no_clk:
2278 err_no_ioremap:
2279        amba_release_regions(adev);
2280 err_no_ioregion:
2281 err_no_gpio:
2282        spi_master_put(master);
2283        return status;
2284}
2285
2286static int
2287pl022_remove(struct amba_device *adev)
2288{
2289        struct pl022 *pl022 = amba_get_drvdata(adev);
2290
2291        if (!pl022)
2292                return 0;
2293
2294        /*
2295         * undo pm_runtime_put() in probe.  I assume that we're not
2296         * accessing the primecell here.
2297         */
2298        pm_runtime_get_noresume(&adev->dev);
2299
2300        load_ssp_default_config(pl022);
2301        if (pl022->master_info->enable_dma)
2302                pl022_dma_remove(pl022);
2303
2304        clk_disable(pl022->clk);
2305        clk_unprepare(pl022->clk);
2306        amba_release_regions(adev);
2307        tasklet_disable(&pl022->pump_transfers);
2308        spi_unregister_master(pl022->master);
2309        amba_set_drvdata(adev, NULL);
2310        return 0;
2311}
2312
2313#if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2314/*
2315 * These two functions are used from both suspend/resume and
2316 * the runtime counterparts to handle external resources like
2317 * clocks, pins and regulators when going to sleep.
2318 */
2319static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
2320{
2321        clk_disable(pl022->clk);
2322
2323        if (runtime)
2324                pinctrl_pm_select_idle_state(&pl022->adev->dev);
2325        else
2326                pinctrl_pm_select_sleep_state(&pl022->adev->dev);
2327}
2328
2329static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
2330{
2331        /* First go to the default state */
2332        pinctrl_pm_select_default_state(&pl022->adev->dev);
2333        if (!runtime)
2334                /* Then let's idle the pins until the next transfer happens */
2335                pinctrl_pm_select_idle_state(&pl022->adev->dev);
2336
2337        clk_enable(pl022->clk);
2338}
2339#endif
2340
2341#ifdef CONFIG_SUSPEND
2342static int pl022_suspend(struct device *dev)
2343{
2344        struct pl022 *pl022 = dev_get_drvdata(dev);
2345        int ret;
2346
2347        ret = spi_master_suspend(pl022->master);
2348        if (ret) {
2349                dev_warn(dev, "cannot suspend master\n");
2350                return ret;
2351        }
2352
2353        pm_runtime_get_sync(dev);
2354        pl022_suspend_resources(pl022, false);
2355
2356        dev_dbg(dev, "suspended\n");
2357        return 0;
2358}
2359
2360static int pl022_resume(struct device *dev)
2361{
2362        struct pl022 *pl022 = dev_get_drvdata(dev);
2363        int ret;
2364
2365        pl022_resume_resources(pl022, false);
2366        pm_runtime_put(dev);
2367
2368        /* Start the queue running */
2369        ret = spi_master_resume(pl022->master);
2370        if (ret)
2371                dev_err(dev, "problem starting queue (%d)\n", ret);
2372        else
2373                dev_dbg(dev, "resumed\n");
2374
2375        return ret;
2376}
2377#endif  /* CONFIG_PM */
2378
2379#ifdef CONFIG_PM_RUNTIME
2380static int pl022_runtime_suspend(struct device *dev)
2381{
2382        struct pl022 *pl022 = dev_get_drvdata(dev);
2383
2384        pl022_suspend_resources(pl022, true);
2385        return 0;
2386}
2387
2388static int pl022_runtime_resume(struct device *dev)
2389{
2390        struct pl022 *pl022 = dev_get_drvdata(dev);
2391
2392        pl022_resume_resources(pl022, true);
2393        return 0;
2394}
2395#endif
2396
2397static const struct dev_pm_ops pl022_dev_pm_ops = {
2398        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2399        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2400};
2401
2402static struct vendor_data vendor_arm = {
2403        .fifodepth = 8,
2404        .max_bpw = 16,
2405        .unidir = false,
2406        .extended_cr = false,
2407        .pl023 = false,
2408        .loopback = true,
2409};
2410
2411static struct vendor_data vendor_st = {
2412        .fifodepth = 32,
2413        .max_bpw = 32,
2414        .unidir = false,
2415        .extended_cr = true,
2416        .pl023 = false,
2417        .loopback = true,
2418};
2419
2420static struct vendor_data vendor_st_pl023 = {
2421        .fifodepth = 32,
2422        .max_bpw = 32,
2423        .unidir = false,
2424        .extended_cr = true,
2425        .pl023 = true,
2426        .loopback = false,
2427};
2428
2429static struct amba_id pl022_ids[] = {
2430        {
2431                /*
2432                 * ARM PL022 variant, this has a 16bit wide
2433                 * and 8 locations deep TX/RX FIFO
2434                 */
2435                .id     = 0x00041022,
2436                .mask   = 0x000fffff,
2437                .data   = &vendor_arm,
2438        },
2439        {
2440                /*
2441                 * ST Micro derivative, this has 32bit wide
2442                 * and 32 locations deep TX/RX FIFO
2443                 */
2444                .id     = 0x01080022,
2445                .mask   = 0xffffffff,
2446                .data   = &vendor_st,
2447        },
2448        {
2449                /*
2450                 * ST-Ericsson derivative "PL023" (this is not
2451                 * an official ARM number), this is a PL022 SSP block
2452                 * stripped to SPI mode only, it has 32bit wide
2453                 * and 32 locations deep TX/RX FIFO but no extended
2454                 * CR0/CR1 register
2455                 */
2456                .id     = 0x00080023,
2457                .mask   = 0xffffffff,
2458                .data   = &vendor_st_pl023,
2459        },
2460        { 0, 0 },
2461};
2462
2463MODULE_DEVICE_TABLE(amba, pl022_ids);
2464
2465static struct amba_driver pl022_driver = {
2466        .drv = {
2467                .name   = "ssp-pl022",
2468                .pm     = &pl022_dev_pm_ops,
2469        },
2470        .id_table       = pl022_ids,
2471        .probe          = pl022_probe,
2472        .remove         = pl022_remove,
2473};
2474
2475static int __init pl022_init(void)
2476{
2477        return amba_driver_register(&pl022_driver);
2478}
2479subsys_initcall(pl022_init);
2480
2481static void __exit pl022_exit(void)
2482{
2483        amba_driver_unregister(&pl022_driver);
2484}
2485module_exit(pl022_exit);
2486
2487MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2488MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2489MODULE_LICENSE("GPL");
2490
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.