linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6
   7struct sched_param {
   8        int sched_priority;
   9};
  10
  11#include <asm/param.h>  /* for HZ */
  12
  13#include <linux/capability.h>
  14#include <linux/threads.h>
  15#include <linux/kernel.h>
  16#include <linux/types.h>
  17#include <linux/timex.h>
  18#include <linux/jiffies.h>
  19#include <linux/rbtree.h>
  20#include <linux/thread_info.h>
  21#include <linux/cpumask.h>
  22#include <linux/errno.h>
  23#include <linux/nodemask.h>
  24#include <linux/mm_types.h>
  25
  26#include <asm/page.h>
  27#include <asm/ptrace.h>
  28#include <asm/cputime.h>
  29
  30#include <linux/smp.h>
  31#include <linux/sem.h>
  32#include <linux/signal.h>
  33#include <linux/compiler.h>
  34#include <linux/completion.h>
  35#include <linux/pid.h>
  36#include <linux/percpu.h>
  37#include <linux/topology.h>
  38#include <linux/proportions.h>
  39#include <linux/seccomp.h>
  40#include <linux/rcupdate.h>
  41#include <linux/rculist.h>
  42#include <linux/rtmutex.h>
  43
  44#include <linux/time.h>
  45#include <linux/param.h>
  46#include <linux/resource.h>
  47#include <linux/timer.h>
  48#include <linux/hrtimer.h>
  49#include <linux/task_io_accounting.h>
  50#include <linux/latencytop.h>
  51#include <linux/cred.h>
  52#include <linux/llist.h>
  53#include <linux/uidgid.h>
  54#include <linux/gfp.h>
  55
  56#include <asm/processor.h>
  57
  58struct exec_domain;
  59struct futex_pi_state;
  60struct robust_list_head;
  61struct bio_list;
  62struct fs_struct;
  63struct perf_event_context;
  64struct blk_plug;
  65
  66/*
  67 * List of flags we want to share for kernel threads,
  68 * if only because they are not used by them anyway.
  69 */
  70#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
  71
  72/*
  73 * These are the constant used to fake the fixed-point load-average
  74 * counting. Some notes:
  75 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
  76 *    a load-average precision of 10 bits integer + 11 bits fractional
  77 *  - if you want to count load-averages more often, you need more
  78 *    precision, or rounding will get you. With 2-second counting freq,
  79 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
  80 *    11 bit fractions.
  81 */
  82extern unsigned long avenrun[];         /* Load averages */
  83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
  84
  85#define FSHIFT          11              /* nr of bits of precision */
  86#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
  87#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
  88#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
  89#define EXP_5           2014            /* 1/exp(5sec/5min) */
  90#define EXP_15          2037            /* 1/exp(5sec/15min) */
  91
  92#define CALC_LOAD(load,exp,n) \
  93        load *= exp; \
  94        load += n*(FIXED_1-exp); \
  95        load >>= FSHIFT;
  96
  97extern unsigned long total_forks;
  98extern int nr_threads;
  99DECLARE_PER_CPU(unsigned long, process_counts);
 100extern int nr_processes(void);
 101extern unsigned long nr_running(void);
 102extern unsigned long nr_iowait(void);
 103extern unsigned long nr_iowait_cpu(int cpu);
 104extern unsigned long this_cpu_load(void);
 105
 106
 107extern void calc_global_load(unsigned long ticks);
 108extern void update_cpu_load_nohz(void);
 109
 110/* Notifier for when a task gets migrated to a new CPU */
 111struct task_migration_notifier {
 112        struct task_struct *task;
 113        int from_cpu;
 114        int to_cpu;
 115};
 116extern void register_task_migration_notifier(struct notifier_block *n);
 117
 118extern unsigned long get_parent_ip(unsigned long addr);
 119
 120extern void dump_cpu_task(int cpu);
 121
 122struct seq_file;
 123struct cfs_rq;
 124struct task_group;
 125#ifdef CONFIG_SCHED_DEBUG
 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 127extern void proc_sched_set_task(struct task_struct *p);
 128extern void
 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 130#endif
 131
 132/*
 133 * Task state bitmask. NOTE! These bits are also
 134 * encoded in fs/proc/array.c: get_task_state().
 135 *
 136 * We have two separate sets of flags: task->state
 137 * is about runnability, while task->exit_state are
 138 * about the task exiting. Confusing, but this way
 139 * modifying one set can't modify the other one by
 140 * mistake.
 141 */
 142#define TASK_RUNNING            0
 143#define TASK_INTERRUPTIBLE      1
 144#define TASK_UNINTERRUPTIBLE    2
 145#define __TASK_STOPPED          4
 146#define __TASK_TRACED           8
 147/* in tsk->exit_state */
 148#define EXIT_ZOMBIE             16
 149#define EXIT_DEAD               32
 150/* in tsk->state again */
 151#define TASK_DEAD               64
 152#define TASK_WAKEKILL           128
 153#define TASK_WAKING             256
 154#define TASK_PARKED             512
 155#define TASK_STATE_MAX          1024
 156
 157#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 158
 159extern char ___assert_task_state[1 - 2*!!(
 160                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 161
 162/* Convenience macros for the sake of set_task_state */
 163#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 164#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 165#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 166
 167/* Convenience macros for the sake of wake_up */
 168#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 169#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 170
 171/* get_task_state() */
 172#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 173                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 174                                 __TASK_TRACED)
 175
 176#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 177#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 178#define task_is_dead(task)      ((task)->exit_state != 0)
 179#define task_is_stopped_or_traced(task) \
 180                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 181#define task_contributes_to_load(task)  \
 182                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 183                                 (task->flags & PF_FROZEN) == 0)
 184
 185#define __set_task_state(tsk, state_value)              \
 186        do { (tsk)->state = (state_value); } while (0)
 187#define set_task_state(tsk, state_value)                \
 188        set_mb((tsk)->state, (state_value))
 189
 190/*
 191 * set_current_state() includes a barrier so that the write of current->state
 192 * is correctly serialised wrt the caller's subsequent test of whether to
 193 * actually sleep:
 194 *
 195 *      set_current_state(TASK_UNINTERRUPTIBLE);
 196 *      if (do_i_need_to_sleep())
 197 *              schedule();
 198 *
 199 * If the caller does not need such serialisation then use __set_current_state()
 200 */
 201#define __set_current_state(state_value)                        \
 202        do { current->state = (state_value); } while (0)
 203#define set_current_state(state_value)          \
 204        set_mb(current->state, (state_value))
 205
 206/* Task command name length */
 207#define TASK_COMM_LEN 16
 208
 209#include <linux/spinlock.h>
 210
 211/*
 212 * This serializes "schedule()" and also protects
 213 * the run-queue from deletions/modifications (but
 214 * _adding_ to the beginning of the run-queue has
 215 * a separate lock).
 216 */
 217extern rwlock_t tasklist_lock;
 218extern spinlock_t mmlist_lock;
 219
 220struct task_struct;
 221
 222#ifdef CONFIG_PROVE_RCU
 223extern int lockdep_tasklist_lock_is_held(void);
 224#endif /* #ifdef CONFIG_PROVE_RCU */
 225
 226extern void sched_init(void);
 227extern void sched_init_smp(void);
 228extern asmlinkage void schedule_tail(struct task_struct *prev);
 229extern void init_idle(struct task_struct *idle, int cpu);
 230extern void init_idle_bootup_task(struct task_struct *idle);
 231
 232extern int runqueue_is_locked(int cpu);
 233
 234#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 235extern void nohz_balance_enter_idle(int cpu);
 236extern void set_cpu_sd_state_idle(void);
 237extern int get_nohz_timer_target(void);
 238#else
 239static inline void nohz_balance_enter_idle(int cpu) { }
 240static inline void set_cpu_sd_state_idle(void) { }
 241#endif
 242
 243/*
 244 * Only dump TASK_* tasks. (0 for all tasks)
 245 */
 246extern void show_state_filter(unsigned long state_filter);
 247
 248static inline void show_state(void)
 249{
 250        show_state_filter(0);
 251}
 252
 253extern void show_regs(struct pt_regs *);
 254
 255/*
 256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 257 * task), SP is the stack pointer of the first frame that should be shown in the back
 258 * trace (or NULL if the entire call-chain of the task should be shown).
 259 */
 260extern void show_stack(struct task_struct *task, unsigned long *sp);
 261
 262void io_schedule(void);
 263long io_schedule_timeout(long timeout);
 264
 265extern void cpu_init (void);
 266extern void trap_init(void);
 267extern void update_process_times(int user);
 268extern void scheduler_tick(void);
 269
 270extern void sched_show_task(struct task_struct *p);
 271
 272#ifdef CONFIG_LOCKUP_DETECTOR
 273extern void touch_softlockup_watchdog(void);
 274extern void touch_softlockup_watchdog_sync(void);
 275extern void touch_all_softlockup_watchdogs(void);
 276extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 277                                  void __user *buffer,
 278                                  size_t *lenp, loff_t *ppos);
 279extern unsigned int  softlockup_panic;
 280void lockup_detector_init(void);
 281#else
 282static inline void touch_softlockup_watchdog(void)
 283{
 284}
 285static inline void touch_softlockup_watchdog_sync(void)
 286{
 287}
 288static inline void touch_all_softlockup_watchdogs(void)
 289{
 290}
 291static inline void lockup_detector_init(void)
 292{
 293}
 294#endif
 295
 296/* Attach to any functions which should be ignored in wchan output. */
 297#define __sched         __attribute__((__section__(".sched.text")))
 298
 299/* Linker adds these: start and end of __sched functions */
 300extern char __sched_text_start[], __sched_text_end[];
 301
 302/* Is this address in the __sched functions? */
 303extern int in_sched_functions(unsigned long addr);
 304
 305#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 306extern signed long schedule_timeout(signed long timeout);
 307extern signed long schedule_timeout_interruptible(signed long timeout);
 308extern signed long schedule_timeout_killable(signed long timeout);
 309extern signed long schedule_timeout_uninterruptible(signed long timeout);
 310asmlinkage void schedule(void);
 311extern void schedule_preempt_disabled(void);
 312
 313struct nsproxy;
 314struct user_namespace;
 315
 316#ifdef CONFIG_MMU
 317extern void arch_pick_mmap_layout(struct mm_struct *mm);
 318extern unsigned long
 319arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 320                       unsigned long, unsigned long);
 321extern unsigned long
 322arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 323                          unsigned long len, unsigned long pgoff,
 324                          unsigned long flags);
 325extern void arch_unmap_area(struct mm_struct *, unsigned long);
 326extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 327#else
 328static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 329#endif
 330
 331
 332extern void set_dumpable(struct mm_struct *mm, int value);
 333extern int get_dumpable(struct mm_struct *mm);
 334
 335/* mm flags */
 336/* dumpable bits */
 337#define MMF_DUMPABLE      0  /* core dump is permitted */
 338#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 339
 340#define MMF_DUMPABLE_BITS 2
 341#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 342
 343/* coredump filter bits */
 344#define MMF_DUMP_ANON_PRIVATE   2
 345#define MMF_DUMP_ANON_SHARED    3
 346#define MMF_DUMP_MAPPED_PRIVATE 4
 347#define MMF_DUMP_MAPPED_SHARED  5
 348#define MMF_DUMP_ELF_HEADERS    6
 349#define MMF_DUMP_HUGETLB_PRIVATE 7
 350#define MMF_DUMP_HUGETLB_SHARED  8
 351
 352#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 353#define MMF_DUMP_FILTER_BITS    7
 354#define MMF_DUMP_FILTER_MASK \
 355        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 356#define MMF_DUMP_FILTER_DEFAULT \
 357        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 358         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 359
 360#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 361# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 362#else
 363# define MMF_DUMP_MASK_DEFAULT_ELF      0
 364#endif
 365                                        /* leave room for more dump flags */
 366#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 367#define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
 368#define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
 369
 370#define MMF_HAS_UPROBES         19      /* has uprobes */
 371#define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
 372
 373#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 374
 375struct sighand_struct {
 376        atomic_t                count;
 377        struct k_sigaction      action[_NSIG];
 378        spinlock_t              siglock;
 379        wait_queue_head_t       signalfd_wqh;
 380};
 381
 382struct pacct_struct {
 383        int                     ac_flag;
 384        long                    ac_exitcode;
 385        unsigned long           ac_mem;
 386        cputime_t               ac_utime, ac_stime;
 387        unsigned long           ac_minflt, ac_majflt;
 388};
 389
 390struct cpu_itimer {
 391        cputime_t expires;
 392        cputime_t incr;
 393        u32 error;
 394        u32 incr_error;
 395};
 396
 397/**
 398 * struct cputime - snaphsot of system and user cputime
 399 * @utime: time spent in user mode
 400 * @stime: time spent in system mode
 401 *
 402 * Gathers a generic snapshot of user and system time.
 403 */
 404struct cputime {
 405        cputime_t utime;
 406        cputime_t stime;
 407};
 408
 409/**
 410 * struct task_cputime - collected CPU time counts
 411 * @utime:              time spent in user mode, in &cputime_t units
 412 * @stime:              time spent in kernel mode, in &cputime_t units
 413 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 414 *
 415 * This is an extension of struct cputime that includes the total runtime
 416 * spent by the task from the scheduler point of view.
 417 *
 418 * As a result, this structure groups together three kinds of CPU time
 419 * that are tracked for threads and thread groups.  Most things considering
 420 * CPU time want to group these counts together and treat all three
 421 * of them in parallel.
 422 */
 423struct task_cputime {
 424        cputime_t utime;
 425        cputime_t stime;
 426        unsigned long long sum_exec_runtime;
 427};
 428/* Alternate field names when used to cache expirations. */
 429#define prof_exp        stime
 430#define virt_exp        utime
 431#define sched_exp       sum_exec_runtime
 432
 433#define INIT_CPUTIME    \
 434        (struct task_cputime) {                                 \
 435                .utime = 0,                                     \
 436                .stime = 0,                                     \
 437                .sum_exec_runtime = 0,                          \
 438        }
 439
 440/*
 441 * Disable preemption until the scheduler is running.
 442 * Reset by start_kernel()->sched_init()->init_idle().
 443 *
 444 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 445 * before the scheduler is active -- see should_resched().
 446 */
 447#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 448
 449/**
 450 * struct thread_group_cputimer - thread group interval timer counts
 451 * @cputime:            thread group interval timers.
 452 * @running:            non-zero when there are timers running and
 453 *                      @cputime receives updates.
 454 * @lock:               lock for fields in this struct.
 455 *
 456 * This structure contains the version of task_cputime, above, that is
 457 * used for thread group CPU timer calculations.
 458 */
 459struct thread_group_cputimer {
 460        struct task_cputime cputime;
 461        int running;
 462        raw_spinlock_t lock;
 463};
 464
 465#include <linux/rwsem.h>
 466struct autogroup;
 467
 468/*
 469 * NOTE! "signal_struct" does not have its own
 470 * locking, because a shared signal_struct always
 471 * implies a shared sighand_struct, so locking
 472 * sighand_struct is always a proper superset of
 473 * the locking of signal_struct.
 474 */
 475struct signal_struct {
 476        atomic_t                sigcnt;
 477        atomic_t                live;
 478        int                     nr_threads;
 479
 480        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 481
 482        /* current thread group signal load-balancing target: */
 483        struct task_struct      *curr_target;
 484
 485        /* shared signal handling: */
 486        struct sigpending       shared_pending;
 487
 488        /* thread group exit support */
 489        int                     group_exit_code;
 490        /* overloaded:
 491         * - notify group_exit_task when ->count is equal to notify_count
 492         * - everyone except group_exit_task is stopped during signal delivery
 493         *   of fatal signals, group_exit_task processes the signal.
 494         */
 495        int                     notify_count;
 496        struct task_struct      *group_exit_task;
 497
 498        /* thread group stop support, overloads group_exit_code too */
 499        int                     group_stop_count;
 500        unsigned int            flags; /* see SIGNAL_* flags below */
 501
 502        /*
 503         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 504         * manager, to re-parent orphan (double-forking) child processes
 505         * to this process instead of 'init'. The service manager is
 506         * able to receive SIGCHLD signals and is able to investigate
 507         * the process until it calls wait(). All children of this
 508         * process will inherit a flag if they should look for a
 509         * child_subreaper process at exit.
 510         */
 511        unsigned int            is_child_subreaper:1;
 512        unsigned int            has_child_subreaper:1;
 513
 514        /* POSIX.1b Interval Timers */
 515        int                     posix_timer_id;
 516        struct list_head        posix_timers;
 517
 518        /* ITIMER_REAL timer for the process */
 519        struct hrtimer real_timer;
 520        struct pid *leader_pid;
 521        ktime_t it_real_incr;
 522
 523        /*
 524         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 525         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 526         * values are defined to 0 and 1 respectively
 527         */
 528        struct cpu_itimer it[2];
 529
 530        /*
 531         * Thread group totals for process CPU timers.
 532         * See thread_group_cputimer(), et al, for details.
 533         */
 534        struct thread_group_cputimer cputimer;
 535
 536        /* Earliest-expiration cache. */
 537        struct task_cputime cputime_expires;
 538
 539        struct list_head cpu_timers[3];
 540
 541        struct pid *tty_old_pgrp;
 542
 543        /* boolean value for session group leader */
 544        int leader;
 545
 546        struct tty_struct *tty; /* NULL if no tty */
 547
 548#ifdef CONFIG_SCHED_AUTOGROUP
 549        struct autogroup *autogroup;
 550#endif
 551        /*
 552         * Cumulative resource counters for dead threads in the group,
 553         * and for reaped dead child processes forked by this group.
 554         * Live threads maintain their own counters and add to these
 555         * in __exit_signal, except for the group leader.
 556         */
 557        cputime_t utime, stime, cutime, cstime;
 558        cputime_t gtime;
 559        cputime_t cgtime;
 560#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 561        struct cputime prev_cputime;
 562#endif
 563        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 564        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 565        unsigned long inblock, oublock, cinblock, coublock;
 566        unsigned long maxrss, cmaxrss;
 567        struct task_io_accounting ioac;
 568
 569        /*
 570         * Cumulative ns of schedule CPU time fo dead threads in the
 571         * group, not including a zombie group leader, (This only differs
 572         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 573         * other than jiffies.)
 574         */
 575        unsigned long long sum_sched_runtime;
 576
 577        /*
 578         * We don't bother to synchronize most readers of this at all,
 579         * because there is no reader checking a limit that actually needs
 580         * to get both rlim_cur and rlim_max atomically, and either one
 581         * alone is a single word that can safely be read normally.
 582         * getrlimit/setrlimit use task_lock(current->group_leader) to
 583         * protect this instead of the siglock, because they really
 584         * have no need to disable irqs.
 585         */
 586        struct rlimit rlim[RLIM_NLIMITS];
 587
 588#ifdef CONFIG_BSD_PROCESS_ACCT
 589        struct pacct_struct pacct;      /* per-process accounting information */
 590#endif
 591#ifdef CONFIG_TASKSTATS
 592        struct taskstats *stats;
 593#endif
 594#ifdef CONFIG_AUDIT
 595        unsigned audit_tty;
 596        unsigned audit_tty_log_passwd;
 597        struct tty_audit_buf *tty_audit_buf;
 598#endif
 599#ifdef CONFIG_CGROUPS
 600        /*
 601         * group_rwsem prevents new tasks from entering the threadgroup and
 602         * member tasks from exiting,a more specifically, setting of
 603         * PF_EXITING.  fork and exit paths are protected with this rwsem
 604         * using threadgroup_change_begin/end().  Users which require
 605         * threadgroup to remain stable should use threadgroup_[un]lock()
 606         * which also takes care of exec path.  Currently, cgroup is the
 607         * only user.
 608         */
 609        struct rw_semaphore group_rwsem;
 610#endif
 611
 612        oom_flags_t oom_flags;
 613        short oom_score_adj;            /* OOM kill score adjustment */
 614        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 615                                         * Only settable by CAP_SYS_RESOURCE. */
 616
 617        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 618                                         * credential calculations
 619                                         * (notably. ptrace) */
 620};
 621
 622/*
 623 * Bits in flags field of signal_struct.
 624 */
 625#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 626#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 627#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 628#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 629/*
 630 * Pending notifications to parent.
 631 */
 632#define SIGNAL_CLD_STOPPED      0x00000010
 633#define SIGNAL_CLD_CONTINUED    0x00000020
 634#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 635
 636#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 637
 638/* If true, all threads except ->group_exit_task have pending SIGKILL */
 639static inline int signal_group_exit(const struct signal_struct *sig)
 640{
 641        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 642                (sig->group_exit_task != NULL);
 643}
 644
 645/*
 646 * Some day this will be a full-fledged user tracking system..
 647 */
 648struct user_struct {
 649        atomic_t __count;       /* reference count */
 650        atomic_t processes;     /* How many processes does this user have? */
 651        atomic_t files;         /* How many open files does this user have? */
 652        atomic_t sigpending;    /* How many pending signals does this user have? */
 653#ifdef CONFIG_INOTIFY_USER
 654        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 655        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 656#endif
 657#ifdef CONFIG_FANOTIFY
 658        atomic_t fanotify_listeners;
 659#endif
 660#ifdef CONFIG_EPOLL
 661        atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 662#endif
 663#ifdef CONFIG_POSIX_MQUEUE
 664        /* protected by mq_lock */
 665        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 666#endif
 667        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 668
 669#ifdef CONFIG_KEYS
 670        struct key *uid_keyring;        /* UID specific keyring */
 671        struct key *session_keyring;    /* UID's default session keyring */
 672#endif
 673
 674        /* Hash table maintenance information */
 675        struct hlist_node uidhash_node;
 676        kuid_t uid;
 677
 678#ifdef CONFIG_PERF_EVENTS
 679        atomic_long_t locked_vm;
 680#endif
 681};
 682
 683extern int uids_sysfs_init(void);
 684
 685extern struct user_struct *find_user(kuid_t);
 686
 687extern struct user_struct root_user;
 688#define INIT_USER (&root_user)
 689
 690
 691struct backing_dev_info;
 692struct reclaim_state;
 693
 694#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 695struct sched_info {
 696        /* cumulative counters */
 697        unsigned long pcount;         /* # of times run on this cpu */
 698        unsigned long long run_delay; /* time spent waiting on a runqueue */
 699
 700        /* timestamps */
 701        unsigned long long last_arrival,/* when we last ran on a cpu */
 702                           last_queued; /* when we were last queued to run */
 703};
 704#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 705
 706#ifdef CONFIG_TASK_DELAY_ACCT
 707struct task_delay_info {
 708        spinlock_t      lock;
 709        unsigned int    flags;  /* Private per-task flags */
 710
 711        /* For each stat XXX, add following, aligned appropriately
 712         *
 713         * struct timespec XXX_start, XXX_end;
 714         * u64 XXX_delay;
 715         * u32 XXX_count;
 716         *
 717         * Atomicity of updates to XXX_delay, XXX_count protected by
 718         * single lock above (split into XXX_lock if contention is an issue).
 719         */
 720
 721        /*
 722         * XXX_count is incremented on every XXX operation, the delay
 723         * associated with the operation is added to XXX_delay.
 724         * XXX_delay contains the accumulated delay time in nanoseconds.
 725         */
 726        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 727        u64 blkio_delay;        /* wait for sync block io completion */
 728        u64 swapin_delay;       /* wait for swapin block io completion */
 729        u32 blkio_count;        /* total count of the number of sync block */
 730                                /* io operations performed */
 731        u32 swapin_count;       /* total count of the number of swapin block */
 732                                /* io operations performed */
 733
 734        struct timespec freepages_start, freepages_end;
 735        u64 freepages_delay;    /* wait for memory reclaim */
 736        u32 freepages_count;    /* total count of memory reclaim */
 737};
 738#endif  /* CONFIG_TASK_DELAY_ACCT */
 739
 740static inline int sched_info_on(void)
 741{
 742#ifdef CONFIG_SCHEDSTATS
 743        return 1;
 744#elif defined(CONFIG_TASK_DELAY_ACCT)
 745        extern int delayacct_on;
 746        return delayacct_on;
 747#else
 748        return 0;
 749#endif
 750}
 751
 752enum cpu_idle_type {
 753        CPU_IDLE,
 754        CPU_NOT_IDLE,
 755        CPU_NEWLY_IDLE,
 756        CPU_MAX_IDLE_TYPES
 757};
 758
 759/*
 760 * Increase resolution of cpu_power calculations
 761 */
 762#define SCHED_POWER_SHIFT       10
 763#define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
 764
 765/*
 766 * sched-domains (multiprocessor balancing) declarations:
 767 */
 768#ifdef CONFIG_SMP
 769#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 770#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 771#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 772#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 773#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 774#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 775#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 776#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 777#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 778#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
 779#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 780#define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
 781
 782extern int __weak arch_sd_sibiling_asym_packing(void);
 783
 784struct sched_domain_attr {
 785        int relax_domain_level;
 786};
 787
 788#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 789        .relax_domain_level = -1,                       \
 790}
 791
 792extern int sched_domain_level_max;
 793
 794struct sched_group;
 795
 796struct sched_domain {
 797        /* These fields must be setup */
 798        struct sched_domain *parent;    /* top domain must be null terminated */
 799        struct sched_domain *child;     /* bottom domain must be null terminated */
 800        struct sched_group *groups;     /* the balancing groups of the domain */
 801        unsigned long min_interval;     /* Minimum balance interval ms */
 802        unsigned long max_interval;     /* Maximum balance interval ms */
 803        unsigned int busy_factor;       /* less balancing by factor if busy */
 804        unsigned int imbalance_pct;     /* No balance until over watermark */
 805        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 806        unsigned int busy_idx;
 807        unsigned int idle_idx;
 808        unsigned int newidle_idx;
 809        unsigned int wake_idx;
 810        unsigned int forkexec_idx;
 811        unsigned int smt_gain;
 812
 813        int nohz_idle;                  /* NOHZ IDLE status */
 814        int flags;                      /* See SD_* */
 815        int level;
 816
 817        /* Runtime fields. */
 818        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 819        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 820        unsigned int nr_balance_failed; /* initialise to 0 */
 821
 822        u64 last_update;
 823
 824#ifdef CONFIG_SCHEDSTATS
 825        /* load_balance() stats */
 826        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 827        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 828        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 829        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 830        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 831        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 832        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 833        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 834
 835        /* Active load balancing */
 836        unsigned int alb_count;
 837        unsigned int alb_failed;
 838        unsigned int alb_pushed;
 839
 840        /* SD_BALANCE_EXEC stats */
 841        unsigned int sbe_count;
 842        unsigned int sbe_balanced;
 843        unsigned int sbe_pushed;
 844
 845        /* SD_BALANCE_FORK stats */
 846        unsigned int sbf_count;
 847        unsigned int sbf_balanced;
 848        unsigned int sbf_pushed;
 849
 850        /* try_to_wake_up() stats */
 851        unsigned int ttwu_wake_remote;
 852        unsigned int ttwu_move_affine;
 853        unsigned int ttwu_move_balance;
 854#endif
 855#ifdef CONFIG_SCHED_DEBUG
 856        char *name;
 857#endif
 858        union {
 859                void *private;          /* used during construction */
 860                struct rcu_head rcu;    /* used during destruction */
 861        };
 862
 863        unsigned int span_weight;
 864        /*
 865         * Span of all CPUs in this domain.
 866         *
 867         * NOTE: this field is variable length. (Allocated dynamically
 868         * by attaching extra space to the end of the structure,
 869         * depending on how many CPUs the kernel has booted up with)
 870         */
 871        unsigned long span[0];
 872};
 873
 874static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 875{
 876        return to_cpumask(sd->span);
 877}
 878
 879extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 880                                    struct sched_domain_attr *dattr_new);
 881
 882/* Allocate an array of sched domains, for partition_sched_domains(). */
 883cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 884void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 885
 886bool cpus_share_cache(int this_cpu, int that_cpu);
 887
 888#else /* CONFIG_SMP */
 889
 890struct sched_domain_attr;
 891
 892static inline void
 893partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 894                        struct sched_domain_attr *dattr_new)
 895{
 896}
 897
 898static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 899{
 900        return true;
 901}
 902
 903#endif  /* !CONFIG_SMP */
 904
 905
 906struct io_context;                      /* See blkdev.h */
 907
 908
 909#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 910extern void prefetch_stack(struct task_struct *t);
 911#else
 912static inline void prefetch_stack(struct task_struct *t) { }
 913#endif
 914
 915struct audit_context;           /* See audit.c */
 916struct mempolicy;
 917struct pipe_inode_info;
 918struct uts_namespace;
 919
 920struct load_weight {
 921        unsigned long weight, inv_weight;
 922};
 923
 924struct sched_avg {
 925        /*
 926         * These sums represent an infinite geometric series and so are bound
 927         * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
 928         * choices of y < 1-2^(-32)*1024.
 929         */
 930        u32 runnable_avg_sum, runnable_avg_period;
 931        u64 last_runnable_update;
 932        s64 decay_count;
 933        unsigned long load_avg_contrib;
 934};
 935
 936#ifdef CONFIG_SCHEDSTATS
 937struct sched_statistics {
 938        u64                     wait_start;
 939        u64                     wait_max;
 940        u64                     wait_count;
 941        u64                     wait_sum;
 942        u64                     iowait_count;
 943        u64                     iowait_sum;
 944
 945        u64                     sleep_start;
 946        u64                     sleep_max;
 947        s64                     sum_sleep_runtime;
 948
 949        u64                     block_start;
 950        u64                     block_max;
 951        u64                     exec_max;
 952        u64                     slice_max;
 953
 954        u64                     nr_migrations_cold;
 955        u64                     nr_failed_migrations_affine;
 956        u64                     nr_failed_migrations_running;
 957        u64                     nr_failed_migrations_hot;
 958        u64                     nr_forced_migrations;
 959
 960        u64                     nr_wakeups;
 961        u64                     nr_wakeups_sync;
 962        u64                     nr_wakeups_migrate;
 963        u64                     nr_wakeups_local;
 964        u64                     nr_wakeups_remote;
 965        u64                     nr_wakeups_affine;
 966        u64                     nr_wakeups_affine_attempts;
 967        u64                     nr_wakeups_passive;
 968        u64                     nr_wakeups_idle;
 969};
 970#endif
 971
 972struct sched_entity {
 973        struct load_weight      load;           /* for load-balancing */
 974        struct rb_node          run_node;
 975        struct list_head        group_node;
 976        unsigned int            on_rq;
 977
 978        u64                     exec_start;
 979        u64                     sum_exec_runtime;
 980        u64                     vruntime;
 981        u64                     prev_sum_exec_runtime;
 982
 983        u64                     nr_migrations;
 984
 985#ifdef CONFIG_SCHEDSTATS
 986        struct sched_statistics statistics;
 987#endif
 988
 989#ifdef CONFIG_FAIR_GROUP_SCHED
 990        struct sched_entity     *parent;
 991        /* rq on which this entity is (to be) queued: */
 992        struct cfs_rq           *cfs_rq;
 993        /* rq "owned" by this entity/group: */
 994        struct cfs_rq           *my_q;
 995#endif
 996
 997/*
 998 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 999 * removed when useful for applications beyond shares distribution (e.g.
1000 * load-balance).
1001 */
1002#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1003        /* Per-entity load-tracking */
1004        struct sched_avg        avg;
1005#endif
1006};
1007
1008struct sched_rt_entity {
1009        struct list_head run_list;
1010        unsigned long timeout;
1011        unsigned long watchdog_stamp;
1012        unsigned int time_slice;
1013
1014        struct sched_rt_entity *back;
1015#ifdef CONFIG_RT_GROUP_SCHED
1016        struct sched_rt_entity  *parent;
1017        /* rq on which this entity is (to be) queued: */
1018        struct rt_rq            *rt_rq;
1019        /* rq "owned" by this entity/group: */
1020        struct rt_rq            *my_q;
1021#endif
1022};
1023
1024
1025struct rcu_node;
1026
1027enum perf_event_task_context {
1028        perf_invalid_context = -1,
1029        perf_hw_context = 0,
1030        perf_sw_context,
1031        perf_nr_task_contexts,
1032};
1033
1034struct task_struct {
1035        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1036        void *stack;
1037        atomic_t usage;
1038        unsigned int flags;     /* per process flags, defined below */
1039        unsigned int ptrace;
1040
1041#ifdef CONFIG_SMP
1042        struct llist_node wake_entry;
1043        int on_cpu;
1044#endif
1045        int on_rq;
1046
1047        int prio, static_prio, normal_prio;
1048        unsigned int rt_priority;
1049        const struct sched_class *sched_class;
1050        struct sched_entity se;
1051        struct sched_rt_entity rt;
1052#ifdef CONFIG_CGROUP_SCHED
1053        struct task_group *sched_task_group;
1054#endif
1055
1056#ifdef CONFIG_PREEMPT_NOTIFIERS
1057        /* list of struct preempt_notifier: */
1058        struct hlist_head preempt_notifiers;
1059#endif
1060
1061        /*
1062         * fpu_counter contains the number of consecutive context switches
1063         * that the FPU is used. If this is over a threshold, the lazy fpu
1064         * saving becomes unlazy to save the trap. This is an unsigned char
1065         * so that after 256 times the counter wraps and the behavior turns
1066         * lazy again; this to deal with bursty apps that only use FPU for
1067         * a short time
1068         */
1069        unsigned char fpu_counter;
1070#ifdef CONFIG_BLK_DEV_IO_TRACE
1071        unsigned int btrace_seq;
1072#endif
1073
1074        unsigned int policy;
1075        int nr_cpus_allowed;
1076        cpumask_t cpus_allowed;
1077
1078#ifdef CONFIG_PREEMPT_RCU
1079        int rcu_read_lock_nesting;
1080        char rcu_read_unlock_special;
1081        struct list_head rcu_node_entry;
1082#endif /* #ifdef CONFIG_PREEMPT_RCU */
1083#ifdef CONFIG_TREE_PREEMPT_RCU
1084        struct rcu_node *rcu_blocked_node;
1085#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1086#ifdef CONFIG_RCU_BOOST
1087        struct rt_mutex *rcu_boost_mutex;
1088#endif /* #ifdef CONFIG_RCU_BOOST */
1089
1090#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1091        struct sched_info sched_info;
1092#endif
1093
1094        struct list_head tasks;
1095#ifdef CONFIG_SMP
1096        struct plist_node pushable_tasks;
1097#endif
1098
1099        struct mm_struct *mm, *active_mm;
1100#ifdef CONFIG_COMPAT_BRK
1101        unsigned brk_randomized:1;
1102#endif
1103#if defined(SPLIT_RSS_COUNTING)
1104        struct task_rss_stat    rss_stat;
1105#endif
1106/* task state */
1107        int exit_state;
1108        int exit_code, exit_signal;
1109        int pdeath_signal;  /*  The signal sent when the parent dies  */
1110        unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1111
1112        /* Used for emulating ABI behavior of previous Linux versions */
1113        unsigned int personality;
1114
1115        unsigned did_exec:1;
1116        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1117                                 * execve */
1118        unsigned in_iowait:1;
1119
1120        /* task may not gain privileges */
1121        unsigned no_new_privs:1;
1122
1123        /* Revert to default priority/policy when forking */
1124        unsigned sched_reset_on_fork:1;
1125        unsigned sched_contributes_to_load:1;
1126
1127        pid_t pid;
1128        pid_t tgid;
1129
1130#ifdef CONFIG_CC_STACKPROTECTOR
1131        /* Canary value for the -fstack-protector gcc feature */
1132        unsigned long stack_canary;
1133#endif
1134        /*
1135         * pointers to (original) parent process, youngest child, younger sibling,
1136         * older sibling, respectively.  (p->father can be replaced with
1137         * p->real_parent->pid)
1138         */
1139        struct task_struct __rcu *real_parent; /* real parent process */
1140        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1141        /*
1142         * children/sibling forms the list of my natural children
1143         */
1144        struct list_head children;      /* list of my children */
1145        struct list_head sibling;       /* linkage in my parent's children list */
1146        struct task_struct *group_leader;       /* threadgroup leader */
1147
1148        /*
1149         * ptraced is the list of tasks this task is using ptrace on.
1150         * This includes both natural children and PTRACE_ATTACH targets.
1151         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1152         */
1153        struct list_head ptraced;
1154        struct list_head ptrace_entry;
1155
1156        /* PID/PID hash table linkage. */
1157        struct pid_link pids[PIDTYPE_MAX];
1158        struct list_head thread_group;
1159
1160        struct completion *vfork_done;          /* for vfork() */
1161        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1162        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1163
1164        cputime_t utime, stime, utimescaled, stimescaled;
1165        cputime_t gtime;
1166#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1167        struct cputime prev_cputime;
1168#endif
1169#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1170        seqlock_t vtime_seqlock;
1171        unsigned long long vtime_snap;
1172        enum {
1173                VTIME_SLEEPING = 0,
1174                VTIME_USER,
1175                VTIME_SYS,
1176        } vtime_snap_whence;
1177#endif
1178        unsigned long nvcsw, nivcsw; /* context switch counts */
1179        struct timespec start_time;             /* monotonic time */
1180        struct timespec real_start_time;        /* boot based time */
1181/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1182        unsigned long min_flt, maj_flt;
1183
1184        struct task_cputime cputime_expires;
1185        struct list_head cpu_timers[3];
1186
1187/* process credentials */
1188        const struct cred __rcu *real_cred; /* objective and real subjective task
1189                                         * credentials (COW) */
1190        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1191                                         * credentials (COW) */
1192        char comm[TASK_COMM_LEN]; /* executable name excluding path
1193                                     - access with [gs]et_task_comm (which lock
1194                                       it with task_lock())
1195                                     - initialized normally by setup_new_exec */
1196/* file system info */
1197        int link_count, total_link_count;
1198#ifdef CONFIG_SYSVIPC
1199/* ipc stuff */
1200        struct sysv_sem sysvsem;
1201#endif
1202#ifdef CONFIG_DETECT_HUNG_TASK
1203/* hung task detection */
1204        unsigned long last_switch_count;
1205#endif
1206/* CPU-specific state of this task */
1207        struct thread_struct thread;
1208/* filesystem information */
1209        struct fs_struct *fs;
1210/* open file information */
1211        struct files_struct *files;
1212/* namespaces */
1213        struct nsproxy *nsproxy;
1214/* signal handlers */
1215        struct signal_struct *signal;
1216        struct sighand_struct *sighand;
1217
1218        sigset_t blocked, real_blocked;
1219        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1220        struct sigpending pending;
1221
1222        unsigned long sas_ss_sp;
1223        size_t sas_ss_size;
1224        int (*notifier)(void *priv);
1225        void *notifier_data;
1226        sigset_t *notifier_mask;
1227        struct callback_head *task_works;
1228
1229        struct audit_context *audit_context;
1230#ifdef CONFIG_AUDITSYSCALL
1231        kuid_t loginuid;
1232        unsigned int sessionid;
1233#endif
1234        struct seccomp seccomp;
1235
1236/* Thread group tracking */
1237        u32 parent_exec_id;
1238        u32 self_exec_id;
1239/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1240 * mempolicy */
1241        spinlock_t alloc_lock;
1242
1243        /* Protection of the PI data structures: */
1244        raw_spinlock_t pi_lock;
1245
1246#ifdef CONFIG_RT_MUTEXES
1247        /* PI waiters blocked on a rt_mutex held by this task */
1248        struct plist_head pi_waiters;
1249        /* Deadlock detection and priority inheritance handling */
1250        struct rt_mutex_waiter *pi_blocked_on;
1251#endif
1252
1253#ifdef CONFIG_DEBUG_MUTEXES
1254        /* mutex deadlock detection */
1255        struct mutex_waiter *blocked_on;
1256#endif
1257#ifdef CONFIG_TRACE_IRQFLAGS
1258        unsigned int irq_events;
1259        unsigned long hardirq_enable_ip;
1260        unsigned long hardirq_disable_ip;
1261        unsigned int hardirq_enable_event;
1262        unsigned int hardirq_disable_event;
1263        int hardirqs_enabled;
1264        int hardirq_context;
1265        unsigned long softirq_disable_ip;
1266        unsigned long softirq_enable_ip;
1267        unsigned int softirq_disable_event;
1268        unsigned int softirq_enable_event;
1269        int softirqs_enabled;
1270        int softirq_context;
1271#endif
1272#ifdef CONFIG_LOCKDEP
1273# define MAX_LOCK_DEPTH 48UL
1274        u64 curr_chain_key;
1275        int lockdep_depth;
1276        unsigned int lockdep_recursion;
1277        struct held_lock held_locks[MAX_LOCK_DEPTH];
1278        gfp_t lockdep_reclaim_gfp;
1279#endif
1280
1281/* journalling filesystem info */
1282        void *journal_info;
1283
1284/* stacked block device info */
1285        struct bio_list *bio_list;
1286
1287#ifdef CONFIG_BLOCK
1288/* stack plugging */
1289        struct blk_plug *plug;
1290#endif
1291
1292/* VM state */
1293        struct reclaim_state *reclaim_state;
1294
1295        struct backing_dev_info *backing_dev_info;
1296
1297        struct io_context *io_context;
1298
1299        unsigned long ptrace_message;
1300        siginfo_t *last_siginfo; /* For ptrace use.  */
1301        struct task_io_accounting ioac;
1302#if defined(CONFIG_TASK_XACCT)
1303        u64 acct_rss_mem1;      /* accumulated rss usage */
1304        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1305        cputime_t acct_timexpd; /* stime + utime since last update */
1306#endif
1307#ifdef CONFIG_CPUSETS
1308        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1309        seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1310        int cpuset_mem_spread_rotor;
1311        int cpuset_slab_spread_rotor;
1312#endif
1313#ifdef CONFIG_CGROUPS
1314        /* Control Group info protected by css_set_lock */
1315        struct css_set __rcu *cgroups;
1316        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1317        struct list_head cg_list;
1318#endif
1319#ifdef CONFIG_FUTEX
1320        struct robust_list_head __user *robust_list;
1321#ifdef CONFIG_COMPAT
1322        struct compat_robust_list_head __user *compat_robust_list;
1323#endif
1324        struct list_head pi_state_list;
1325        struct futex_pi_state *pi_state_cache;
1326#endif
1327#ifdef CONFIG_PERF_EVENTS
1328        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1329        struct mutex perf_event_mutex;
1330        struct list_head perf_event_list;
1331#endif
1332#ifdef CONFIG_NUMA
1333        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1334        short il_next;
1335        short pref_node_fork;
1336#endif
1337#ifdef CONFIG_NUMA_BALANCING
1338        int numa_scan_seq;
1339        int numa_migrate_seq;
1340        unsigned int numa_scan_period;
1341        u64 node_stamp;                 /* migration stamp  */
1342        struct callback_head numa_work;
1343#endif /* CONFIG_NUMA_BALANCING */
1344
1345        struct rcu_head rcu;
1346
1347        /*
1348         * cache last used pipe for splice
1349         */
1350        struct pipe_inode_info *splice_pipe;
1351
1352        struct page_frag task_frag;
1353
1354#ifdef  CONFIG_TASK_DELAY_ACCT
1355        struct task_delay_info *delays;
1356#endif
1357#ifdef CONFIG_FAULT_INJECTION
1358        int make_it_fail;
1359#endif
1360        /*
1361         * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1362         * balance_dirty_pages() for some dirty throttling pause
1363         */
1364        int nr_dirtied;
1365        int nr_dirtied_pause;
1366        unsigned long dirty_paused_when; /* start of a write-and-pause period */
1367
1368#ifdef CONFIG_LATENCYTOP
1369        int latency_record_count;
1370        struct latency_record latency_record[LT_SAVECOUNT];
1371#endif
1372        /*
1373         * time slack values; these are used to round up poll() and
1374         * select() etc timeout values. These are in nanoseconds.
1375         */
1376        unsigned long timer_slack_ns;
1377        unsigned long default_timer_slack_ns;
1378
1379#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380        /* Index of current stored address in ret_stack */
1381        int curr_ret_stack;
1382        /* Stack of return addresses for return function tracing */
1383        struct ftrace_ret_stack *ret_stack;
1384        /* time stamp for last schedule */
1385        unsigned long long ftrace_timestamp;
1386        /*
1387         * Number of functions that haven't been traced
1388         * because of depth overrun.
1389         */
1390        atomic_t trace_overrun;
1391        /* Pause for the tracing */
1392        atomic_t tracing_graph_pause;
1393#endif
1394#ifdef CONFIG_TRACING
1395        /* state flags for use by tracers */
1396        unsigned long trace;
1397        /* bitmask and counter of trace recursion */
1398        unsigned long trace_recursion;
1399#endif /* CONFIG_TRACING */
1400#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1401        struct memcg_batch_info {
1402                int do_batch;   /* incremented when batch uncharge started */
1403                struct mem_cgroup *memcg; /* target memcg of uncharge */
1404                unsigned long nr_pages; /* uncharged usage */
1405                unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1406        } memcg_batch;
1407        unsigned int memcg_kmem_skip_account;
1408#endif
1409#ifdef CONFIG_HAVE_HW_BREAKPOINT
1410        atomic_t ptrace_bp_refcnt;
1411#endif
1412#ifdef CONFIG_UPROBES
1413        struct uprobe_task *utask;
1414#endif
1415#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1416        unsigned int    sequential_io;
1417        unsigned int    sequential_io_avg;
1418#endif
1419};
1420
1421/* Future-safe accessor for struct task_struct's cpus_allowed. */
1422#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1423
1424#ifdef CONFIG_NUMA_BALANCING
1425extern void task_numa_fault(int node, int pages, bool migrated);
1426extern void set_numabalancing_state(bool enabled);
1427#else
1428static inline void task_numa_fault(int node, int pages, bool migrated)
1429{
1430}
1431static inline void set_numabalancing_state(bool enabled)
1432{
1433}
1434#endif
1435
1436static inline struct pid *task_pid(struct task_struct *task)
1437{
1438        return task->pids[PIDTYPE_PID].pid;
1439}
1440
1441static inline struct pid *task_tgid(struct task_struct *task)
1442{
1443        return task->group_leader->pids[PIDTYPE_PID].pid;
1444}
1445
1446/*
1447 * Without tasklist or rcu lock it is not safe to dereference
1448 * the result of task_pgrp/task_session even if task == current,
1449 * we can race with another thread doing sys_setsid/sys_setpgid.
1450 */
1451static inline struct pid *task_pgrp(struct task_struct *task)
1452{
1453        return task->group_leader->pids[PIDTYPE_PGID].pid;
1454}
1455
1456static inline struct pid *task_session(struct task_struct *task)
1457{
1458        return task->group_leader->pids[PIDTYPE_SID].pid;
1459}
1460
1461struct pid_namespace;
1462
1463/*
1464 * the helpers to get the task's different pids as they are seen
1465 * from various namespaces
1466 *
1467 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1468 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1469 *                     current.
1470 * task_xid_nr_ns()  : id seen from the ns specified;
1471 *
1472 * set_task_vxid()   : assigns a virtual id to a task;
1473 *
1474 * see also pid_nr() etc in include/linux/pid.h
1475 */
1476pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1477                        struct pid_namespace *ns);
1478
1479static inline pid_t task_pid_nr(struct task_struct *tsk)
1480{
1481        return tsk->pid;
1482}
1483
1484static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1485                                        struct pid_namespace *ns)
1486{
1487        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1488}
1489
1490static inline pid_t task_pid_vnr(struct task_struct *tsk)
1491{
1492        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1493}
1494
1495
1496static inline pid_t task_tgid_nr(struct task_struct *tsk)
1497{
1498        return tsk->tgid;
1499}
1500
1501pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1502
1503static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1504{
1505        return pid_vnr(task_tgid(tsk));
1506}
1507
1508
1509static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1510                                        struct pid_namespace *ns)
1511{
1512        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1513}
1514
1515static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1516{
1517        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1518}
1519
1520
1521static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1522                                        struct pid_namespace *ns)
1523{
1524        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1525}
1526
1527static inline pid_t task_session_vnr(struct task_struct *tsk)
1528{
1529        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1530}
1531
1532/* obsolete, do not use */
1533static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1534{
1535        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1536}
1537
1538/**
1539 * pid_alive - check that a task structure is not stale
1540 * @p: Task structure to be checked.
1541 *
1542 * Test if a process is not yet dead (at most zombie state)
1543 * If pid_alive fails, then pointers within the task structure
1544 * can be stale and must not be dereferenced.
1545 */
1546static inline int pid_alive(struct task_struct *p)
1547{
1548        return p->pids[PIDTYPE_PID].pid != NULL;
1549}
1550
1551/**
1552 * is_global_init - check if a task structure is init
1553 * @tsk: Task structure to be checked.
1554 *
1555 * Check if a task structure is the first user space task the kernel created.
1556 */
1557static inline int is_global_init(struct task_struct *tsk)
1558{
1559        return tsk->pid == 1;
1560}
1561
1562extern struct pid *cad_pid;
1563
1564extern void free_task(struct task_struct *tsk);
1565#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1566
1567extern void __put_task_struct(struct task_struct *t);
1568
1569static inline void put_task_struct(struct task_struct *t)
1570{
1571        if (atomic_dec_and_test(&t->usage))
1572                __put_task_struct(t);
1573}
1574
1575#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1576extern void task_cputime(struct task_struct *t,
1577                         cputime_t *utime, cputime_t *stime);
1578extern void task_cputime_scaled(struct task_struct *t,
1579                                cputime_t *utimescaled, cputime_t *stimescaled);
1580extern cputime_t task_gtime(struct task_struct *t);
1581#else
1582static inline void task_cputime(struct task_struct *t,
1583                                cputime_t *utime, cputime_t *stime)
1584{
1585        if (utime)
1586                *utime = t->utime;
1587        if (stime)
1588                *stime = t->stime;
1589}
1590
1591static inline void task_cputime_scaled(struct task_struct *t,
1592                                       cputime_t *utimescaled,
1593                                       cputime_t *stimescaled)
1594{
1595        if (utimescaled)
1596                *utimescaled = t->utimescaled;
1597        if (stimescaled)
1598                *stimescaled = t->stimescaled;
1599}
1600
1601static inline cputime_t task_gtime(struct task_struct *t)
1602{
1603        return t->gtime;
1604}
1605#endif
1606extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1607extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1608
1609/*
1610 * Per process flags
1611 */
1612#define PF_EXITING      0x00000004      /* getting shut down */
1613#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1614#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1615#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1616#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1617#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1618#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1619#define PF_DUMPCORE     0x00000200      /* dumped core */
1620#define PF_SIGNALED     0x00000400      /* killed by a signal */
1621#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1622#define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1623#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1624#define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1625#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1626#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1627#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1628#define PF_KSWAPD       0x00040000      /* I am kswapd */
1629#define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1630#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1631#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1632#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1633#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1634#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1635#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1636#define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1637#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1638#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1639#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1640#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1641
1642/*
1643 * Only the _current_ task can read/write to tsk->flags, but other
1644 * tasks can access tsk->flags in readonly mode for example
1645 * with tsk_used_math (like during threaded core dumping).
1646 * There is however an exception to this rule during ptrace
1647 * or during fork: the ptracer task is allowed to write to the
1648 * child->flags of its traced child (same goes for fork, the parent
1649 * can write to the child->flags), because we're guaranteed the
1650 * child is not running and in turn not changing child->flags
1651 * at the same time the parent does it.
1652 */
1653#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1654#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1655#define clear_used_math() clear_stopped_child_used_math(current)
1656#define set_used_math() set_stopped_child_used_math(current)
1657#define conditional_stopped_child_used_math(condition, child) \
1658        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1659#define conditional_used_math(condition) \
1660        conditional_stopped_child_used_math(condition, current)
1661#define copy_to_stopped_child_used_math(child) \
1662        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1663/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1664#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1665#define used_math() tsk_used_math(current)
1666
1667/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1668static inline gfp_t memalloc_noio_flags(gfp_t flags)
1669{
1670        if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1671                flags &= ~__GFP_IO;
1672        return flags;
1673}
1674
1675static inline unsigned int memalloc_noio_save(void)
1676{
1677        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1678        current->flags |= PF_MEMALLOC_NOIO;
1679        return flags;
1680}
1681
1682static inline void memalloc_noio_restore(unsigned int flags)
1683{
1684        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1685}
1686
1687/*
1688 * task->jobctl flags
1689 */
1690#define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1691
1692#define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1693#define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1694#define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1695#define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1696#define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1697#define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1698#define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1699
1700#define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1701#define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1702#define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1703#define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1704#define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1705#define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1706#define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1707
1708#define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1709#define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1710
1711extern bool task_set_jobctl_pending(struct task_struct *task,
1712                                    unsigned int mask);
1713extern void task_clear_jobctl_trapping(struct task_struct *task);
1714extern void task_clear_jobctl_pending(struct task_struct *task,
1715                                      unsigned int mask);
1716
1717#ifdef CONFIG_PREEMPT_RCU
1718
1719#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1720#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1721
1722static inline void rcu_copy_process(struct task_struct *p)
1723{
1724        p->rcu_read_lock_nesting = 0;
1725        p->rcu_read_unlock_special = 0;
1726#ifdef CONFIG_TREE_PREEMPT_RCU
1727        p->rcu_blocked_node = NULL;
1728#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1729#ifdef CONFIG_RCU_BOOST
1730        p->rcu_boost_mutex = NULL;
1731#endif /* #ifdef CONFIG_RCU_BOOST */
1732        INIT_LIST_HEAD(&p->rcu_node_entry);
1733}
1734
1735#else
1736
1737static inline void rcu_copy_process(struct task_struct *p)
1738{
1739}
1740
1741#endif
1742
1743static inline void tsk_restore_flags(struct task_struct *task,
1744                                unsigned long orig_flags, unsigned long flags)
1745{
1746        task->flags &= ~flags;
1747        task->flags |= orig_flags & flags;
1748}
1749
1750#ifdef CONFIG_SMP
1751extern void do_set_cpus_allowed(struct task_struct *p,
1752                               const struct cpumask *new_mask);
1753
1754extern int set_cpus_allowed_ptr(struct task_struct *p,
1755                                const struct cpumask *new_mask);
1756#else
1757static inline void do_set_cpus_allowed(struct task_struct *p,
1758                                      const struct cpumask *new_mask)
1759{
1760}
1761static inline int set_cpus_allowed_ptr(struct task_struct *p,
1762                                       const struct cpumask *new_mask)
1763{
1764        if (!cpumask_test_cpu(0, new_mask))
1765                return -EINVAL;
1766        return 0;
1767}
1768#endif
1769
1770#ifdef CONFIG_NO_HZ_COMMON
1771void calc_load_enter_idle(void);
1772void calc_load_exit_idle(void);
1773#else
1774static inline void calc_load_enter_idle(void) { }
1775static inline void calc_load_exit_idle(void) { }
1776#endif /* CONFIG_NO_HZ_COMMON */
1777
1778#ifndef CONFIG_CPUMASK_OFFSTACK
1779static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1780{
1781        return set_cpus_allowed_ptr(p, &new_mask);
1782}
1783#endif
1784
1785/*
1786 * Do not use outside of architecture code which knows its limitations.
1787 *
1788 * sched_clock() has no promise of monotonicity or bounded drift between
1789 * CPUs, use (which you should not) requires disabling IRQs.
1790 *
1791 * Please use one of the three interfaces below.
1792 */
1793extern unsigned long long notrace sched_clock(void);
1794/*
1795 * See the comment in kernel/sched/clock.c
1796 */
1797extern u64 cpu_clock(int cpu);
1798extern u64 local_clock(void);
1799extern u64 sched_clock_cpu(int cpu);
1800
1801
1802extern void sched_clock_init(void);
1803
1804#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1805static inline void sched_clock_tick(void)
1806{
1807}
1808
1809static inline void sched_clock_idle_sleep_event(void)
1810{
1811}
1812
1813static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1814{
1815}
1816#else
1817/*
1818 * Architectures can set this to 1 if they have specified
1819 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1820 * but then during bootup it turns out that sched_clock()
1821 * is reliable after all:
1822 */
1823extern int sched_clock_stable;
1824
1825extern void sched_clock_tick(void);
1826extern void sched_clock_idle_sleep_event(void);
1827extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1828#endif
1829
1830#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1831/*
1832 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1833 * The reason for this explicit opt-in is not to have perf penalty with
1834 * slow sched_clocks.
1835 */
1836extern void enable_sched_clock_irqtime(void);
1837extern void disable_sched_clock_irqtime(void);
1838#else
1839static inline void enable_sched_clock_irqtime(void) {}
1840static inline void disable_sched_clock_irqtime(void) {}
1841#endif
1842
1843extern unsigned long long
1844task_sched_runtime(struct task_struct *task);
1845
1846/* sched_exec is called by processes performing an exec */
1847#ifdef CONFIG_SMP
1848extern void sched_exec(void);
1849#else
1850#define sched_exec()   {}
1851#endif
1852
1853extern void sched_clock_idle_sleep_event(void);
1854extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1855
1856#ifdef CONFIG_HOTPLUG_CPU
1857extern void idle_task_exit(void);
1858#else
1859static inline void idle_task_exit(void) {}
1860#endif
1861
1862#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1863extern void wake_up_nohz_cpu(int cpu);
1864#else
1865static inline void wake_up_nohz_cpu(int cpu) { }
1866#endif
1867
1868#ifdef CONFIG_NO_HZ_FULL
1869extern bool sched_can_stop_tick(void);
1870extern u64 scheduler_tick_max_deferment(void);
1871#else
1872static inline bool sched_can_stop_tick(void) { return false; }
1873#endif
1874
1875#ifdef CONFIG_SCHED_AUTOGROUP
1876extern void sched_autogroup_create_attach(struct task_struct *p);
1877extern void sched_autogroup_detach(struct task_struct *p);
1878extern void sched_autogroup_fork(struct signal_struct *sig);
1879extern void sched_autogroup_exit(struct signal_struct *sig);
1880#ifdef CONFIG_PROC_FS
1881extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1882extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1883#endif
1884#else
1885static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1886static inline void sched_autogroup_detach(struct task_struct *p) { }
1887static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1888static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1889#endif
1890
1891extern bool yield_to(struct task_struct *p, bool preempt);
1892extern void set_user_nice(struct task_struct *p, long nice);
1893extern int task_prio(const struct task_struct *p);
1894extern int task_nice(const struct task_struct *p);
1895extern int can_nice(const struct task_struct *p, const int nice);
1896extern int task_curr(const struct task_struct *p);
1897extern int idle_cpu(int cpu);
1898extern int sched_setscheduler(struct task_struct *, int,
1899                              const struct sched_param *);
1900extern int sched_setscheduler_nocheck(struct task_struct *, int,
1901                                      const struct sched_param *);
1902extern struct task_struct *idle_task(int cpu);
1903/**
1904 * is_idle_task - is the specified task an idle task?
1905 * @p: the task in question.
1906 */
1907static inline bool is_idle_task(const struct task_struct *p)
1908{
1909        return p->pid == 0;
1910}
1911extern struct task_struct *curr_task(int cpu);
1912extern void set_curr_task(int cpu, struct task_struct *p);
1913
1914void yield(void);
1915
1916/*
1917 * The default (Linux) execution domain.
1918 */
1919extern struct exec_domain       default_exec_domain;
1920
1921union thread_union {
1922        struct thread_info thread_info;
1923        unsigned long stack[THREAD_SIZE/sizeof(long)];
1924};
1925
1926#ifndef __HAVE_ARCH_KSTACK_END
1927static inline int kstack_end(void *addr)
1928{
1929        /* Reliable end of stack detection:
1930         * Some APM bios versions misalign the stack
1931         */
1932        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1933}
1934#endif
1935
1936extern union thread_union init_thread_union;
1937extern struct task_struct init_task;
1938
1939extern struct   mm_struct init_mm;
1940
1941extern struct pid_namespace init_pid_ns;
1942
1943/*
1944 * find a task by one of its numerical ids
1945 *
1946 * find_task_by_pid_ns():
1947 *      finds a task by its pid in the specified namespace
1948 * find_task_by_vpid():
1949 *      finds a task by its virtual pid
1950 *
1951 * see also find_vpid() etc in include/linux/pid.h
1952 */
1953
1954extern struct task_struct *find_task_by_vpid(pid_t nr);
1955extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1956                struct pid_namespace *ns);
1957
1958extern void __set_special_pids(struct pid *pid);
1959
1960/* per-UID process charging. */
1961extern struct user_struct * alloc_uid(kuid_t);
1962static inline struct user_struct *get_uid(struct user_struct *u)
1963{
1964        atomic_inc(&u->__count);
1965        return u;
1966}
1967extern void free_uid(struct user_struct *);
1968
1969#include <asm/current.h>
1970
1971extern void xtime_update(unsigned long ticks);
1972
1973extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1974extern int wake_up_process(struct task_struct *tsk);
1975extern void wake_up_new_task(struct task_struct *tsk);
1976#ifdef CONFIG_SMP
1977 extern void kick_process(struct task_struct *tsk);
1978#else
1979 static inline void kick_process(struct task_struct *tsk) { }
1980#endif
1981extern void sched_fork(struct task_struct *p);
1982extern void sched_dead(struct task_struct *p);
1983
1984extern void proc_caches_init(void);
1985extern void flush_signals(struct task_struct *);
1986extern void __flush_signals(struct task_struct *);
1987extern void ignore_signals(struct task_struct *);
1988extern void flush_signal_handlers(struct task_struct *, int force_default);
1989extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1990
1991static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1992{
1993        unsigned long flags;
1994        int ret;
1995
1996        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1997        ret = dequeue_signal(tsk, mask, info);
1998        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1999
2000        return ret;
2001}
2002
2003extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2004                              sigset_t *mask);
2005extern void unblock_all_signals(void);
2006extern void release_task(struct task_struct * p);
2007extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2008extern int force_sigsegv(int, struct task_struct *);
2009extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2010extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2011extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2012extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2013                                const struct cred *, u32);
2014extern int kill_pgrp(struct pid *pid, int sig, int priv);
2015extern int kill_pid(struct pid *pid, int sig, int priv);
2016extern int kill_proc_info(int, struct siginfo *, pid_t);
2017extern __must_check bool do_notify_parent(struct task_struct *, int);
2018extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2019extern void force_sig(int, struct task_struct *);
2020extern int send_sig(int, struct task_struct *, int);
2021extern int zap_other_threads(struct task_struct *p);
2022extern struct sigqueue *sigqueue_alloc(void);
2023extern void sigqueue_free(struct sigqueue *);
2024extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2025extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2026
2027static inline void restore_saved_sigmask(void)
2028{
2029        if (test_and_clear_restore_sigmask())
2030                __set_current_blocked(&current->saved_sigmask);
2031}
2032
2033static inline sigset_t *sigmask_to_save(void)
2034{
2035        sigset_t *res = &current->blocked;
2036        if (unlikely(test_restore_sigmask()))
2037                res = &current->saved_sigmask;
2038        return res;
2039}
2040
2041static inline int kill_cad_pid(int sig, int priv)
2042{
2043        return kill_pid(cad_pid, sig, priv);
2044}
2045
2046/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2047#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2048#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2049#define SEND_SIG_FORCED ((struct siginfo *) 2)
2050
2051/*
2052 * True if we are on the alternate signal stack.
2053 */
2054static inline int on_sig_stack(unsigned long sp)
2055{
2056#ifdef CONFIG_STACK_GROWSUP
2057        return sp >= current->sas_ss_sp &&
2058                sp - current->sas_ss_sp < current->sas_ss_size;
2059#else
2060        return sp > current->sas_ss_sp &&
2061                sp - current->sas_ss_sp <= current->sas_ss_size;
2062#endif
2063}
2064
2065static inline int sas_ss_flags(unsigned long sp)
2066{
2067        return (current->sas_ss_size == 0 ? SS_DISABLE
2068                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2069}
2070
2071static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2072{
2073        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2074#ifdef CONFIG_STACK_GROWSUP
2075                return current->sas_ss_sp;
2076#else
2077                return current->sas_ss_sp + current->sas_ss_size;
2078#endif
2079        return sp;
2080}
2081
2082/*
2083 * Routines for handling mm_structs
2084 */
2085extern struct mm_struct * mm_alloc(void);
2086
2087/* mmdrop drops the mm and the page tables */
2088extern void __mmdrop(struct mm_struct *);
2089static inline void mmdrop(struct mm_struct * mm)
2090{
2091        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2092                __mmdrop(mm);
2093}
2094
2095/* mmput gets rid of the mappings and all user-space */
2096extern void mmput(struct mm_struct *);
2097/* Grab a reference to a task's mm, if it is not already going away */
2098extern struct mm_struct *get_task_mm(struct task_struct *task);
2099/*
2100 * Grab a reference to a task's mm, if it is not already going away
2101 * and ptrace_may_access with the mode parameter passed to it
2102 * succeeds.
2103 */
2104extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2105/* Remove the current tasks stale references to the old mm_struct */
2106extern void mm_release(struct task_struct *, struct mm_struct *);
2107/* Allocate a new mm structure and copy contents from tsk->mm */
2108extern struct mm_struct *dup_mm(struct task_struct *tsk);
2109
2110extern int copy_thread(unsigned long, unsigned long, unsigned long,
2111                        struct task_struct *);
2112extern void flush_thread(void);
2113extern void exit_thread(void);
2114
2115extern void exit_files(struct task_struct *);
2116extern void __cleanup_sighand(struct sighand_struct *);
2117
2118extern void exit_itimers(struct signal_struct *);
2119extern void flush_itimer_signals(void);
2120
2121extern void do_group_exit(int);
2122
2123extern int allow_signal(int);
2124extern int disallow_signal(int);
2125
2126extern int do_execve(const char *,
2127                     const char __user * const __user *,
2128                     const char __user * const __user *);
2129extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2130struct task_struct *fork_idle(int);
2131extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2132
2133extern void set_task_comm(struct task_struct *tsk, char *from);
2134extern char *get_task_comm(char *to, struct task_struct *tsk);
2135
2136#ifdef CONFIG_SMP
2137void scheduler_ipi(void);
2138extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2139#else
2140static inline void scheduler_ipi(void) { }
2141static inline unsigned long wait_task_inactive(struct task_struct *p,
2142                                               long match_state)
2143{
2144        return 1;
2145}
2146#endif
2147
2148#define next_task(p) \
2149        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2150
2151#define for_each_process(p) \
2152        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2153
2154extern bool current_is_single_threaded(void);
2155
2156/*
2157 * Careful: do_each_thread/while_each_thread is a double loop so
2158 *          'break' will not work as expected - use goto instead.
2159 */
2160#define do_each_thread(g, t) \
2161        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2162
2163#define while_each_thread(g, t) \
2164        while ((t = next_thread(t)) != g)
2165
2166static inline int get_nr_threads(struct task_struct *tsk)
2167{
2168        return tsk->signal->nr_threads;
2169}
2170
2171static inline bool thread_group_leader(struct task_struct *p)
2172{
2173        return p->exit_signal >= 0;
2174}
2175
2176/* Do to the insanities of de_thread it is possible for a process
2177 * to have the pid of the thread group leader without actually being
2178 * the thread group leader.  For iteration through the pids in proc
2179 * all we care about is that we have a task with the appropriate
2180 * pid, we don't actually care if we have the right task.
2181 */
2182static inline int has_group_leader_pid(struct task_struct *p)
2183{
2184        return p->pid == p->tgid;
2185}
2186
2187static inline
2188int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2189{
2190        return p1->tgid == p2->tgid;
2191}
2192
2193static inline struct task_struct *next_thread(const struct task_struct *p)
2194{
2195        return list_entry_rcu(p->thread_group.next,
2196                              struct task_struct, thread_group);
2197}
2198
2199static inline int thread_group_empty(struct task_struct *p)
2200{
2201        return list_empty(&p->thread_group);
2202}
2203
2204#define delay_group_leader(p) \
2205                (thread_group_leader(p) && !thread_group_empty(p))
2206
2207/*
2208 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2209 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2210 * pins the final release of task.io_context.  Also protects ->cpuset and
2211 * ->cgroup.subsys[]. And ->vfork_done.
2212 *
2213 * Nests both inside and outside of read_lock(&tasklist_lock).
2214 * It must not be nested with write_lock_irq(&tasklist_lock),
2215 * neither inside nor outside.
2216 */
2217static inline void task_lock(struct task_struct *p)
2218{
2219        spin_lock(&p->alloc_lock);
2220}
2221
2222static inline void task_unlock(struct task_struct *p)
2223{
2224        spin_unlock(&p->alloc_lock);
2225}
2226
2227extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2228                                                        unsigned long *flags);
2229
2230static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2231                                                       unsigned long *flags)
2232{
2233        struct sighand_struct *ret;
2234
2235        ret = __lock_task_sighand(tsk, flags);
2236        (void)__cond_lock(&tsk->sighand->siglock, ret);
2237        return ret;
2238}
2239
2240static inline void unlock_task_sighand(struct task_struct *tsk,
2241                                                unsigned long *flags)
2242{
2243        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2244}
2245
2246#ifdef CONFIG_CGROUPS
2247static inline void threadgroup_change_begin(struct task_struct *tsk)
2248{
2249        down_read(&tsk->signal->group_rwsem);
2250}
2251static inline void threadgroup_change_end(struct task_struct *tsk)
2252{
2253        up_read(&tsk->signal->group_rwsem);
2254}
2255
2256/**
2257 * threadgroup_lock - lock threadgroup
2258 * @tsk: member task of the threadgroup to lock
2259 *
2260 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2261 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2262 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2263 * needs to stay stable across blockable operations.
2264 *
2265 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2266 * synchronization.  While held, no new task will be added to threadgroup
2267 * and no existing live task will have its PF_EXITING set.
2268 *
2269 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2270 * sub-thread becomes a new leader.
2271 */
2272static inline void threadgroup_lock(struct task_struct *tsk)
2273{
2274        down_write(&tsk->signal->group_rwsem);
2275}
2276
2277/**
2278 * threadgroup_unlock - unlock threadgroup
2279 * @tsk: member task of the threadgroup to unlock
2280 *
2281 * Reverse threadgroup_lock().
2282 */
2283static inline void threadgroup_unlock(struct task_struct *tsk)
2284{
2285        up_write(&tsk->signal->group_rwsem);
2286}
2287#else
2288static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2289static inline void threadgroup_change_end(struct task_struct *tsk) {}
2290static inline void threadgroup_lock(struct task_struct *tsk) {}
2291static inline void threadgroup_unlock(struct task_struct *tsk) {}
2292#endif
2293
2294#ifndef __HAVE_THREAD_FUNCTIONS
2295
2296#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2297#define task_stack_page(task)   ((task)->stack)
2298
2299static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2300{
2301        *task_thread_info(p) = *task_thread_info(org);
2302        task_thread_info(p)->task = p;
2303}
2304
2305static inline unsigned long *end_of_stack(struct task_struct *p)
2306{
2307        return (unsigned long *)(task_thread_info(p) + 1);
2308}
2309
2310#endif
2311
2312static inline int object_is_on_stack(void *obj)
2313{
2314        void *stack = task_stack_page(current);
2315
2316        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2317}
2318
2319extern void thread_info_cache_init(void);
2320
2321#ifdef CONFIG_DEBUG_STACK_USAGE
2322static inline unsigned long stack_not_used(struct task_struct *p)
2323{
2324        unsigned long *n = end_of_stack(p);
2325
2326        do {    /* Skip over canary */
2327                n++;
2328        } while (!*n);
2329
2330        return (unsigned long)n - (unsigned long)end_of_stack(p);
2331}
2332#endif
2333
2334/* set thread flags in other task's structures
2335 * - see asm/thread_info.h for TIF_xxxx flags available
2336 */
2337static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339        set_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343{
2344        clear_ti_thread_flag(task_thread_info(tsk), flag);
2345}
2346
2347static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2348{
2349        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2350}
2351
2352static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2353{
2354        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2355}
2356
2357static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2358{
2359        return test_ti_thread_flag(task_thread_info(tsk), flag);
2360}
2361
2362static inline void set_tsk_need_resched(struct task_struct *tsk)
2363{
2364        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365}
2366
2367static inline void clear_tsk_need_resched(struct task_struct *tsk)
2368{
2369        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2370}
2371
2372static inline int test_tsk_need_resched(struct task_struct *tsk)
2373{
2374        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2375}
2376
2377static inline int restart_syscall(void)
2378{
2379        set_tsk_thread_flag(current, TIF_SIGPENDING);
2380        return -ERESTARTNOINTR;
2381}
2382
2383static inline int signal_pending(struct task_struct *p)
2384{
2385        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2386}
2387
2388static inline int __fatal_signal_pending(struct task_struct *p)
2389{
2390        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2391}
2392
2393static inline int fatal_signal_pending(struct task_struct *p)
2394{
2395        return signal_pending(p) && __fatal_signal_pending(p);
2396}
2397
2398static inline int signal_pending_state(long state, struct task_struct *p)
2399{
2400        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2401                return 0;
2402        if (!signal_pending(p))
2403                return 0;
2404
2405        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2406}
2407
2408static inline int need_resched(void)
2409{
2410        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2411}
2412
2413/*
2414 * cond_resched() and cond_resched_lock(): latency reduction via
2415 * explicit rescheduling in places that are safe. The return
2416 * value indicates whether a reschedule was done in fact.
2417 * cond_resched_lock() will drop the spinlock before scheduling,
2418 * cond_resched_softirq() will enable bhs before scheduling.
2419 */
2420extern int _cond_resched(void);
2421
2422#define cond_resched() ({                       \
2423        __might_sleep(__FILE__, __LINE__, 0);   \
2424        _cond_resched();                        \
2425})
2426
2427extern int __cond_resched_lock(spinlock_t *lock);
2428
2429#ifdef CONFIG_PREEMPT_COUNT
2430#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2431#else
2432#define PREEMPT_LOCK_OFFSET     0
2433#endif
2434
2435#define cond_resched_lock(lock) ({                              \
2436        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2437        __cond_resched_lock(lock);                              \
2438})
2439
2440extern int __cond_resched_softirq(void);
2441
2442#define cond_resched_softirq() ({                                       \
2443        __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2444        __cond_resched_softirq();                                       \
2445})
2446
2447/*
2448 * Does a critical section need to be broken due to another
2449 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2450 * but a general need for low latency)
2451 */
2452static inline int spin_needbreak(spinlock_t *lock)
2453{
2454#ifdef CONFIG_PREEMPT
2455        return spin_is_contended(lock);
2456#else
2457        return 0;
2458#endif
2459}
2460
2461/*
2462 * Idle thread specific functions to determine the need_resched
2463 * polling state. We have two versions, one based on TS_POLLING in
2464 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2465 * thread_info.flags
2466 */
2467#ifdef TS_POLLING
2468static inline int tsk_is_polling(struct task_struct *p)
2469{
2470        return task_thread_info(p)->status & TS_POLLING;
2471}
2472static inline void current_set_polling(void)
2473{
2474        current_thread_info()->status |= TS_POLLING;
2475}
2476
2477static inline void current_clr_polling(void)
2478{
2479        current_thread_info()->status &= ~TS_POLLING;
2480        smp_mb__after_clear_bit();
2481}
2482#elif defined(TIF_POLLING_NRFLAG)
2483static inline int tsk_is_polling(struct task_struct *p)
2484{
2485        return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2486}
2487static inline void current_set_polling(void)
2488{
2489        set_thread_flag(TIF_POLLING_NRFLAG);
2490}
2491
2492static inline void current_clr_polling(void)
2493{
2494        clear_thread_flag(TIF_POLLING_NRFLAG);
2495}
2496#else
2497static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2498static inline void current_set_polling(void) { }
2499static inline void current_clr_polling(void) { }
2500#endif
2501
2502/*
2503 * Thread group CPU time accounting.
2504 */
2505void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2506void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2507
2508static inline void thread_group_cputime_init(struct signal_struct *sig)
2509{
2510        raw_spin_lock_init(&sig->cputimer.lock);
2511}
2512
2513/*
2514 * Reevaluate whether the task has signals pending delivery.
2515 * Wake the task if so.
2516 * This is required every time the blocked sigset_t changes.
2517 * callers must hold sighand->siglock.
2518 */
2519extern void recalc_sigpending_and_wake(struct task_struct *t);
2520extern void recalc_sigpending(void);
2521
2522extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2523
2524static inline void signal_wake_up(struct task_struct *t, bool resume)
2525{
2526        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2527}
2528static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2529{
2530        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2531}
2532
2533/*
2534 * Wrappers for p->thread_info->cpu access. No-op on UP.
2535 */
2536#ifdef CONFIG_SMP
2537
2538static inline unsigned int task_cpu(const struct task_struct *p)
2539{
2540        return task_thread_info(p)->cpu;
2541}
2542
2543extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2544
2545#else
2546
2547static inline unsigned int task_cpu(const struct task_struct *p)
2548{
2549        return 0;
2550}
2551
2552static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2553{
2554}
2555
2556#endif /* CONFIG_SMP */
2557
2558extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2559extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2560
2561#ifdef CONFIG_CGROUP_SCHED
2562extern struct task_group root_task_group;
2563#endif /* CONFIG_CGROUP_SCHED */
2564
2565extern int task_can_switch_user(struct user_struct *up,
2566                                        struct task_struct *tsk);
2567
2568#ifdef CONFIG_TASK_XACCT
2569static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2570{
2571        tsk->ioac.rchar += amt;
2572}
2573
2574static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2575{
2576        tsk->ioac.wchar += amt;
2577}
2578
2579static inline void inc_syscr(struct task_struct *tsk)
2580{
2581        tsk->ioac.syscr++;
2582}
2583
2584static inline void inc_syscw(struct task_struct *tsk)
2585{
2586        tsk->ioac.syscw++;
2587}
2588#else
2589static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2590{
2591}
2592
2593static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2594{
2595}
2596
2597static inline void inc_syscr(struct task_struct *tsk)
2598{
2599}
2600
2601static inline void inc_syscw(struct task_struct *tsk)
2602{
2603}
2604#endif
2605
2606#ifndef TASK_SIZE_OF
2607#define TASK_SIZE_OF(tsk)       TASK_SIZE
2608#endif
2609
2610#ifdef CONFIG_MM_OWNER
2611extern void mm_update_next_owner(struct mm_struct *mm);
2612extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2613#else
2614static inline void mm_update_next_owner(struct mm_struct *mm)
2615{
2616}
2617
2618static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2619{
2620}
2621#endif /* CONFIG_MM_OWNER */
2622
2623static inline unsigned long task_rlimit(const struct task_struct *tsk,
2624                unsigned int limit)
2625{
2626        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2627}
2628
2629static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2630                unsigned int limit)
2631{
2632        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2633}
2634
2635static inline unsigned long rlimit(unsigned int limit)
2636{
2637        return task_rlimit(current, limit);
2638}
2639
2640static inline unsigned long rlimit_max(unsigned int limit)
2641{
2642        return task_rlimit_max(current, limit);
2643}
2644
2645#endif
2646
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.