linux/drivers/remoteproc/remoteproc_core.c
<<
>>
Prefs
   1/*
   2 * Remote Processor Framework
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 * Mark Grosen <mgrosen@ti.com>
  10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11 * Suman Anna <s-anna@ti.com>
  12 * Robert Tivy <rtivy@ti.com>
  13 * Armando Uribe De Leon <x0095078@ti.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * version 2 as published by the Free Software Foundation.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#define pr_fmt(fmt)    "%s: " fmt, __func__
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/device.h>
  30#include <linux/slab.h>
  31#include <linux/mutex.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/firmware.h>
  34#include <linux/string.h>
  35#include <linux/debugfs.h>
  36#include <linux/remoteproc.h>
  37#include <linux/iommu.h>
  38#include <linux/idr.h>
  39#include <linux/elf.h>
  40#include <linux/crc32.h>
  41#include <linux/virtio_ids.h>
  42#include <linux/virtio_ring.h>
  43#include <asm/byteorder.h>
  44
  45#include "remoteproc_internal.h"
  46
  47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  48                                struct resource_table *table, int len);
  49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  50                                 void *, int offset, int avail);
  51
  52/* Unique indices for remoteproc devices */
  53static DEFINE_IDA(rproc_dev_index);
  54
  55static const char * const rproc_crash_names[] = {
  56        [RPROC_MMUFAULT]        = "mmufault",
  57};
  58
  59/* translate rproc_crash_type to string */
  60static const char *rproc_crash_to_string(enum rproc_crash_type type)
  61{
  62        if (type < ARRAY_SIZE(rproc_crash_names))
  63                return rproc_crash_names[type];
  64        return "unknown";
  65}
  66
  67/*
  68 * This is the IOMMU fault handler we register with the IOMMU API
  69 * (when relevant; not all remote processors access memory through
  70 * an IOMMU).
  71 *
  72 * IOMMU core will invoke this handler whenever the remote processor
  73 * will try to access an unmapped device address.
  74 */
  75static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  76                unsigned long iova, int flags, void *token)
  77{
  78        struct rproc *rproc = token;
  79
  80        dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  81
  82        rproc_report_crash(rproc, RPROC_MMUFAULT);
  83
  84        /*
  85         * Let the iommu core know we're not really handling this fault;
  86         * we just used it as a recovery trigger.
  87         */
  88        return -ENOSYS;
  89}
  90
  91static int rproc_enable_iommu(struct rproc *rproc)
  92{
  93        struct iommu_domain *domain;
  94        struct device *dev = rproc->dev.parent;
  95        int ret;
  96
  97        /*
  98         * We currently use iommu_present() to decide if an IOMMU
  99         * setup is needed.
 100         *
 101         * This works for simple cases, but will easily fail with
 102         * platforms that do have an IOMMU, but not for this specific
 103         * rproc.
 104         *
 105         * This will be easily solved by introducing hw capabilities
 106         * that will be set by the remoteproc driver.
 107         */
 108        if (!iommu_present(dev->bus)) {
 109                dev_dbg(dev, "iommu not found\n");
 110                return 0;
 111        }
 112
 113        domain = iommu_domain_alloc(dev->bus);
 114        if (!domain) {
 115                dev_err(dev, "can't alloc iommu domain\n");
 116                return -ENOMEM;
 117        }
 118
 119        iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 120
 121        ret = iommu_attach_device(domain, dev);
 122        if (ret) {
 123                dev_err(dev, "can't attach iommu device: %d\n", ret);
 124                goto free_domain;
 125        }
 126
 127        rproc->domain = domain;
 128
 129        return 0;
 130
 131free_domain:
 132        iommu_domain_free(domain);
 133        return ret;
 134}
 135
 136static void rproc_disable_iommu(struct rproc *rproc)
 137{
 138        struct iommu_domain *domain = rproc->domain;
 139        struct device *dev = rproc->dev.parent;
 140
 141        if (!domain)
 142                return;
 143
 144        iommu_detach_device(domain, dev);
 145        iommu_domain_free(domain);
 146
 147        return;
 148}
 149
 150/*
 151 * Some remote processors will ask us to allocate them physically contiguous
 152 * memory regions (which we call "carveouts"), and map them to specific
 153 * device addresses (which are hardcoded in the firmware).
 154 *
 155 * They may then ask us to copy objects into specific device addresses (e.g.
 156 * code/data sections) or expose us certain symbols in other device address
 157 * (e.g. their trace buffer).
 158 *
 159 * This function is an internal helper with which we can go over the allocated
 160 * carveouts and translate specific device address to kernel virtual addresses
 161 * so we can access the referenced memory.
 162 *
 163 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 164 * but only on kernel direct mapped RAM memory. Instead, we're just using
 165 * here the output of the DMA API, which should be more correct.
 166 */
 167void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 168{
 169        struct rproc_mem_entry *carveout;
 170        void *ptr = NULL;
 171
 172        list_for_each_entry(carveout, &rproc->carveouts, node) {
 173                int offset = da - carveout->da;
 174
 175                /* try next carveout if da is too small */
 176                if (offset < 0)
 177                        continue;
 178
 179                /* try next carveout if da is too large */
 180                if (offset + len > carveout->len)
 181                        continue;
 182
 183                ptr = carveout->va + offset;
 184
 185                break;
 186        }
 187
 188        return ptr;
 189}
 190EXPORT_SYMBOL(rproc_da_to_va);
 191
 192int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 193{
 194        struct rproc *rproc = rvdev->rproc;
 195        struct device *dev = &rproc->dev;
 196        struct rproc_vring *rvring = &rvdev->vring[i];
 197        struct fw_rsc_vdev *rsc;
 198        dma_addr_t dma;
 199        void *va;
 200        int ret, size, notifyid;
 201
 202        /* actual size of vring (in bytes) */
 203        size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 204
 205        /*
 206         * Allocate non-cacheable memory for the vring. In the future
 207         * this call will also configure the IOMMU for us
 208         */
 209        va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
 210        if (!va) {
 211                dev_err(dev->parent, "dma_alloc_coherent failed\n");
 212                return -EINVAL;
 213        }
 214
 215        /*
 216         * Assign an rproc-wide unique index for this vring
 217         * TODO: assign a notifyid for rvdev updates as well
 218         * TODO: support predefined notifyids (via resource table)
 219         */
 220        ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 221        if (ret < 0) {
 222                dev_err(dev, "idr_alloc failed: %d\n", ret);
 223                dma_free_coherent(dev->parent, size, va, dma);
 224                return ret;
 225        }
 226        notifyid = ret;
 227
 228        dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
 229                                (unsigned long long)dma, size, notifyid);
 230
 231        rvring->va = va;
 232        rvring->dma = dma;
 233        rvring->notifyid = notifyid;
 234
 235        /*
 236         * Let the rproc know the notifyid and da of this vring.
 237         * Not all platforms use dma_alloc_coherent to automatically
 238         * set up the iommu. In this case the device address (da) will
 239         * hold the physical address and not the device address.
 240         */
 241        rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 242        rsc->vring[i].da = dma;
 243        rsc->vring[i].notifyid = notifyid;
 244        return 0;
 245}
 246
 247static int
 248rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 249{
 250        struct rproc *rproc = rvdev->rproc;
 251        struct device *dev = &rproc->dev;
 252        struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 253        struct rproc_vring *rvring = &rvdev->vring[i];
 254
 255        dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
 256                                i, vring->da, vring->num, vring->align);
 257
 258        /* make sure reserved bytes are zeroes */
 259        if (vring->reserved) {
 260                dev_err(dev, "vring rsc has non zero reserved bytes\n");
 261                return -EINVAL;
 262        }
 263
 264        /* verify queue size and vring alignment are sane */
 265        if (!vring->num || !vring->align) {
 266                dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 267                                                vring->num, vring->align);
 268                return -EINVAL;
 269        }
 270
 271        rvring->len = vring->num;
 272        rvring->align = vring->align;
 273        rvring->rvdev = rvdev;
 274
 275        return 0;
 276}
 277
 278void rproc_free_vring(struct rproc_vring *rvring)
 279{
 280        int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 281        struct rproc *rproc = rvring->rvdev->rproc;
 282        int idx = rvring->rvdev->vring - rvring;
 283        struct fw_rsc_vdev *rsc;
 284
 285        dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
 286        idr_remove(&rproc->notifyids, rvring->notifyid);
 287
 288        /* reset resource entry info */
 289        rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 290        rsc->vring[idx].da = 0;
 291        rsc->vring[idx].notifyid = -1;
 292}
 293
 294/**
 295 * rproc_handle_vdev() - handle a vdev fw resource
 296 * @rproc: the remote processor
 297 * @rsc: the vring resource descriptor
 298 * @avail: size of available data (for sanity checking the image)
 299 *
 300 * This resource entry requests the host to statically register a virtio
 301 * device (vdev), and setup everything needed to support it. It contains
 302 * everything needed to make it possible: the virtio device id, virtio
 303 * device features, vrings information, virtio config space, etc...
 304 *
 305 * Before registering the vdev, the vrings are allocated from non-cacheable
 306 * physically contiguous memory. Currently we only support two vrings per
 307 * remote processor (temporary limitation). We might also want to consider
 308 * doing the vring allocation only later when ->find_vqs() is invoked, and
 309 * then release them upon ->del_vqs().
 310 *
 311 * Note: @da is currently not really handled correctly: we dynamically
 312 * allocate it using the DMA API, ignoring requested hard coded addresses,
 313 * and we don't take care of any required IOMMU programming. This is all
 314 * going to be taken care of when the generic iommu-based DMA API will be
 315 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 316 * use RSC_DEVMEM resource entries to map their required @da to the physical
 317 * address of their base CMA region (ouch, hacky!).
 318 *
 319 * Returns 0 on success, or an appropriate error code otherwise
 320 */
 321static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 322                                                        int offset, int avail)
 323{
 324        struct device *dev = &rproc->dev;
 325        struct rproc_vdev *rvdev;
 326        int i, ret;
 327
 328        /* make sure resource isn't truncated */
 329        if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 330                        + rsc->config_len > avail) {
 331                dev_err(dev, "vdev rsc is truncated\n");
 332                return -EINVAL;
 333        }
 334
 335        /* make sure reserved bytes are zeroes */
 336        if (rsc->reserved[0] || rsc->reserved[1]) {
 337                dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 338                return -EINVAL;
 339        }
 340
 341        dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
 342                rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 343
 344        /* we currently support only two vrings per rvdev */
 345        if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 346                dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 347                return -EINVAL;
 348        }
 349
 350        rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
 351        if (!rvdev)
 352                return -ENOMEM;
 353
 354        rvdev->rproc = rproc;
 355
 356        /* parse the vrings */
 357        for (i = 0; i < rsc->num_of_vrings; i++) {
 358                ret = rproc_parse_vring(rvdev, rsc, i);
 359                if (ret)
 360                        goto free_rvdev;
 361        }
 362
 363        /* remember the resource offset*/
 364        rvdev->rsc_offset = offset;
 365
 366        list_add_tail(&rvdev->node, &rproc->rvdevs);
 367
 368        /* it is now safe to add the virtio device */
 369        ret = rproc_add_virtio_dev(rvdev, rsc->id);
 370        if (ret)
 371                goto remove_rvdev;
 372
 373        return 0;
 374
 375remove_rvdev:
 376        list_del(&rvdev->node);
 377free_rvdev:
 378        kfree(rvdev);
 379        return ret;
 380}
 381
 382/**
 383 * rproc_handle_trace() - handle a shared trace buffer resource
 384 * @rproc: the remote processor
 385 * @rsc: the trace resource descriptor
 386 * @avail: size of available data (for sanity checking the image)
 387 *
 388 * In case the remote processor dumps trace logs into memory,
 389 * export it via debugfs.
 390 *
 391 * Currently, the 'da' member of @rsc should contain the device address
 392 * where the remote processor is dumping the traces. Later we could also
 393 * support dynamically allocating this address using the generic
 394 * DMA API (but currently there isn't a use case for that).
 395 *
 396 * Returns 0 on success, or an appropriate error code otherwise
 397 */
 398static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 399                                                        int offset, int avail)
 400{
 401        struct rproc_mem_entry *trace;
 402        struct device *dev = &rproc->dev;
 403        void *ptr;
 404        char name[15];
 405
 406        if (sizeof(*rsc) > avail) {
 407                dev_err(dev, "trace rsc is truncated\n");
 408                return -EINVAL;
 409        }
 410
 411        /* make sure reserved bytes are zeroes */
 412        if (rsc->reserved) {
 413                dev_err(dev, "trace rsc has non zero reserved bytes\n");
 414                return -EINVAL;
 415        }
 416
 417        /* what's the kernel address of this resource ? */
 418        ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 419        if (!ptr) {
 420                dev_err(dev, "erroneous trace resource entry\n");
 421                return -EINVAL;
 422        }
 423
 424        trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 425        if (!trace) {
 426                dev_err(dev, "kzalloc trace failed\n");
 427                return -ENOMEM;
 428        }
 429
 430        /* set the trace buffer dma properties */
 431        trace->len = rsc->len;
 432        trace->va = ptr;
 433
 434        /* make sure snprintf always null terminates, even if truncating */
 435        snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 436
 437        /* create the debugfs entry */
 438        trace->priv = rproc_create_trace_file(name, rproc, trace);
 439        if (!trace->priv) {
 440                trace->va = NULL;
 441                kfree(trace);
 442                return -EINVAL;
 443        }
 444
 445        list_add_tail(&trace->node, &rproc->traces);
 446
 447        rproc->num_traces++;
 448
 449        dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
 450                                                rsc->da, rsc->len);
 451
 452        return 0;
 453}
 454
 455/**
 456 * rproc_handle_devmem() - handle devmem resource entry
 457 * @rproc: remote processor handle
 458 * @rsc: the devmem resource entry
 459 * @avail: size of available data (for sanity checking the image)
 460 *
 461 * Remote processors commonly need to access certain on-chip peripherals.
 462 *
 463 * Some of these remote processors access memory via an iommu device,
 464 * and might require us to configure their iommu before they can access
 465 * the on-chip peripherals they need.
 466 *
 467 * This resource entry is a request to map such a peripheral device.
 468 *
 469 * These devmem entries will contain the physical address of the device in
 470 * the 'pa' member. If a specific device address is expected, then 'da' will
 471 * contain it (currently this is the only use case supported). 'len' will
 472 * contain the size of the physical region we need to map.
 473 *
 474 * Currently we just "trust" those devmem entries to contain valid physical
 475 * addresses, but this is going to change: we want the implementations to
 476 * tell us ranges of physical addresses the firmware is allowed to request,
 477 * and not allow firmwares to request access to physical addresses that
 478 * are outside those ranges.
 479 */
 480static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 481                                                        int offset, int avail)
 482{
 483        struct rproc_mem_entry *mapping;
 484        struct device *dev = &rproc->dev;
 485        int ret;
 486
 487        /* no point in handling this resource without a valid iommu domain */
 488        if (!rproc->domain)
 489                return -EINVAL;
 490
 491        if (sizeof(*rsc) > avail) {
 492                dev_err(dev, "devmem rsc is truncated\n");
 493                return -EINVAL;
 494        }
 495
 496        /* make sure reserved bytes are zeroes */
 497        if (rsc->reserved) {
 498                dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 499                return -EINVAL;
 500        }
 501
 502        mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 503        if (!mapping) {
 504                dev_err(dev, "kzalloc mapping failed\n");
 505                return -ENOMEM;
 506        }
 507
 508        ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 509        if (ret) {
 510                dev_err(dev, "failed to map devmem: %d\n", ret);
 511                goto out;
 512        }
 513
 514        /*
 515         * We'll need this info later when we'll want to unmap everything
 516         * (e.g. on shutdown).
 517         *
 518         * We can't trust the remote processor not to change the resource
 519         * table, so we must maintain this info independently.
 520         */
 521        mapping->da = rsc->da;
 522        mapping->len = rsc->len;
 523        list_add_tail(&mapping->node, &rproc->mappings);
 524
 525        dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 526                                        rsc->pa, rsc->da, rsc->len);
 527
 528        return 0;
 529
 530out:
 531        kfree(mapping);
 532        return ret;
 533}
 534
 535/**
 536 * rproc_handle_carveout() - handle phys contig memory allocation requests
 537 * @rproc: rproc handle
 538 * @rsc: the resource entry
 539 * @avail: size of available data (for image validation)
 540 *
 541 * This function will handle firmware requests for allocation of physically
 542 * contiguous memory regions.
 543 *
 544 * These request entries should come first in the firmware's resource table,
 545 * as other firmware entries might request placing other data objects inside
 546 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 547 *
 548 * Allocating memory this way helps utilizing the reserved physical memory
 549 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 550 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 551 * pressure is important; it may have a substantial impact on performance.
 552 */
 553static int rproc_handle_carveout(struct rproc *rproc,
 554                                                struct fw_rsc_carveout *rsc,
 555                                                int offset, int avail)
 556
 557{
 558        struct rproc_mem_entry *carveout, *mapping;
 559        struct device *dev = &rproc->dev;
 560        dma_addr_t dma;
 561        void *va;
 562        int ret;
 563
 564        if (sizeof(*rsc) > avail) {
 565                dev_err(dev, "carveout rsc is truncated\n");
 566                return -EINVAL;
 567        }
 568
 569        /* make sure reserved bytes are zeroes */
 570        if (rsc->reserved) {
 571                dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 572                return -EINVAL;
 573        }
 574
 575        dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
 576                        rsc->da, rsc->pa, rsc->len, rsc->flags);
 577
 578        carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 579        if (!carveout) {
 580                dev_err(dev, "kzalloc carveout failed\n");
 581                return -ENOMEM;
 582        }
 583
 584        va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
 585        if (!va) {
 586                dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
 587                ret = -ENOMEM;
 588                goto free_carv;
 589        }
 590
 591        dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
 592                                        (unsigned long long)dma, rsc->len);
 593
 594        /*
 595         * Ok, this is non-standard.
 596         *
 597         * Sometimes we can't rely on the generic iommu-based DMA API
 598         * to dynamically allocate the device address and then set the IOMMU
 599         * tables accordingly, because some remote processors might
 600         * _require_ us to use hard coded device addresses that their
 601         * firmware was compiled with.
 602         *
 603         * In this case, we must use the IOMMU API directly and map
 604         * the memory to the device address as expected by the remote
 605         * processor.
 606         *
 607         * Obviously such remote processor devices should not be configured
 608         * to use the iommu-based DMA API: we expect 'dma' to contain the
 609         * physical address in this case.
 610         */
 611        if (rproc->domain) {
 612                mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 613                if (!mapping) {
 614                        dev_err(dev, "kzalloc mapping failed\n");
 615                        ret = -ENOMEM;
 616                        goto dma_free;
 617                }
 618
 619                ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 620                                                                rsc->flags);
 621                if (ret) {
 622                        dev_err(dev, "iommu_map failed: %d\n", ret);
 623                        goto free_mapping;
 624                }
 625
 626                /*
 627                 * We'll need this info later when we'll want to unmap
 628                 * everything (e.g. on shutdown).
 629                 *
 630                 * We can't trust the remote processor not to change the
 631                 * resource table, so we must maintain this info independently.
 632                 */
 633                mapping->da = rsc->da;
 634                mapping->len = rsc->len;
 635                list_add_tail(&mapping->node, &rproc->mappings);
 636
 637                dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
 638                                        rsc->da, (unsigned long long)dma);
 639        }
 640
 641        /*
 642         * Some remote processors might need to know the pa
 643         * even though they are behind an IOMMU. E.g., OMAP4's
 644         * remote M3 processor needs this so it can control
 645         * on-chip hardware accelerators that are not behind
 646         * the IOMMU, and therefor must know the pa.
 647         *
 648         * Generally we don't want to expose physical addresses
 649         * if we don't have to (remote processors are generally
 650         * _not_ trusted), so we might want to do this only for
 651         * remote processor that _must_ have this (e.g. OMAP4's
 652         * dual M3 subsystem).
 653         *
 654         * Non-IOMMU processors might also want to have this info.
 655         * In this case, the device address and the physical address
 656         * are the same.
 657         */
 658        rsc->pa = dma;
 659
 660        carveout->va = va;
 661        carveout->len = rsc->len;
 662        carveout->dma = dma;
 663        carveout->da = rsc->da;
 664
 665        list_add_tail(&carveout->node, &rproc->carveouts);
 666
 667        return 0;
 668
 669free_mapping:
 670        kfree(mapping);
 671dma_free:
 672        dma_free_coherent(dev->parent, rsc->len, va, dma);
 673free_carv:
 674        kfree(carveout);
 675        return ret;
 676}
 677
 678static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 679                              int offset, int avail)
 680{
 681        /* Summarize the number of notification IDs */
 682        rproc->max_notifyid += rsc->num_of_vrings;
 683
 684        return 0;
 685}
 686
 687/*
 688 * A lookup table for resource handlers. The indices are defined in
 689 * enum fw_resource_type.
 690 */
 691static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
 692        [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 693        [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 694        [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 695        [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
 696};
 697
 698static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
 699        [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
 700};
 701
 702static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
 703        [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
 704};
 705
 706/* handle firmware resource entries before booting the remote processor */
 707static int rproc_handle_resources(struct rproc *rproc, int len,
 708                                  rproc_handle_resource_t handlers[RSC_LAST])
 709{
 710        struct device *dev = &rproc->dev;
 711        rproc_handle_resource_t handler;
 712        int ret = 0, i;
 713
 714        for (i = 0; i < rproc->table_ptr->num; i++) {
 715                int offset = rproc->table_ptr->offset[i];
 716                struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
 717                int avail = len - offset - sizeof(*hdr);
 718                void *rsc = (void *)hdr + sizeof(*hdr);
 719
 720                /* make sure table isn't truncated */
 721                if (avail < 0) {
 722                        dev_err(dev, "rsc table is truncated\n");
 723                        return -EINVAL;
 724                }
 725
 726                dev_dbg(dev, "rsc: type %d\n", hdr->type);
 727
 728                if (hdr->type >= RSC_LAST) {
 729                        dev_warn(dev, "unsupported resource %d\n", hdr->type);
 730                        continue;
 731                }
 732
 733                handler = handlers[hdr->type];
 734                if (!handler)
 735                        continue;
 736
 737                ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
 738                if (ret)
 739                        break;
 740        }
 741
 742        return ret;
 743}
 744
 745/**
 746 * rproc_resource_cleanup() - clean up and free all acquired resources
 747 * @rproc: rproc handle
 748 *
 749 * This function will free all resources acquired for @rproc, and it
 750 * is called whenever @rproc either shuts down or fails to boot.
 751 */
 752static void rproc_resource_cleanup(struct rproc *rproc)
 753{
 754        struct rproc_mem_entry *entry, *tmp;
 755        struct device *dev = &rproc->dev;
 756
 757        /* clean up debugfs trace entries */
 758        list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 759                rproc_remove_trace_file(entry->priv);
 760                rproc->num_traces--;
 761                list_del(&entry->node);
 762                kfree(entry);
 763        }
 764
 765        /* clean up carveout allocations */
 766        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 767                dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
 768                list_del(&entry->node);
 769                kfree(entry);
 770        }
 771
 772        /* clean up iommu mapping entries */
 773        list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 774                size_t unmapped;
 775
 776                unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 777                if (unmapped != entry->len) {
 778                        /* nothing much to do besides complaining */
 779                        dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
 780                                                                unmapped);
 781                }
 782
 783                list_del(&entry->node);
 784                kfree(entry);
 785        }
 786}
 787
 788/*
 789 * take a firmware and boot a remote processor with it.
 790 */
 791static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
 792{
 793        struct device *dev = &rproc->dev;
 794        const char *name = rproc->firmware;
 795        struct resource_table *table, *loaded_table;
 796        int ret, tablesz;
 797
 798        if (!rproc->table_ptr)
 799                return -ENOMEM;
 800
 801        ret = rproc_fw_sanity_check(rproc, fw);
 802        if (ret)
 803                return ret;
 804
 805        dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
 806
 807        /*
 808         * if enabling an IOMMU isn't relevant for this rproc, this is
 809         * just a nop
 810         */
 811        ret = rproc_enable_iommu(rproc);
 812        if (ret) {
 813                dev_err(dev, "can't enable iommu: %d\n", ret);
 814                return ret;
 815        }
 816
 817        rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
 818
 819        /* look for the resource table */
 820        table = rproc_find_rsc_table(rproc, fw, &tablesz);
 821        if (!table) {
 822                ret = -EINVAL;
 823                goto clean_up;
 824        }
 825
 826        /* Verify that resource table in loaded fw is unchanged */
 827        if (rproc->table_csum != crc32(0, table, tablesz)) {
 828                dev_err(dev, "resource checksum failed, fw changed?\n");
 829                ret = -EINVAL;
 830                goto clean_up;
 831        }
 832
 833        /* handle fw resources which are required to boot rproc */
 834        ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
 835        if (ret) {
 836                dev_err(dev, "Failed to process resources: %d\n", ret);
 837                goto clean_up;
 838        }
 839
 840        /* load the ELF segments to memory */
 841        ret = rproc_load_segments(rproc, fw);
 842        if (ret) {
 843                dev_err(dev, "Failed to load program segments: %d\n", ret);
 844                goto clean_up;
 845        }
 846
 847        /*
 848         * The starting device has been given the rproc->cached_table as the
 849         * resource table. The address of the vring along with the other
 850         * allocated resources (carveouts etc) is stored in cached_table.
 851         * In order to pass this information to the remote device we must
 852         * copy this information to device memory.
 853         */
 854        loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
 855        if (!loaded_table)
 856                goto clean_up;
 857
 858        memcpy(loaded_table, rproc->cached_table, tablesz);
 859
 860        /* power up the remote processor */
 861        ret = rproc->ops->start(rproc);
 862        if (ret) {
 863                dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
 864                goto clean_up;
 865        }
 866
 867        /*
 868         * Update table_ptr so that all subsequent vring allocations and
 869         * virtio fields manipulation update the actual loaded resource table
 870         * in device memory.
 871         */
 872        rproc->table_ptr = loaded_table;
 873
 874        rproc->state = RPROC_RUNNING;
 875
 876        dev_info(dev, "remote processor %s is now up\n", rproc->name);
 877
 878        return 0;
 879
 880clean_up:
 881        rproc_resource_cleanup(rproc);
 882        rproc_disable_iommu(rproc);
 883        return ret;
 884}
 885
 886/*
 887 * take a firmware and look for virtio devices to register.
 888 *
 889 * Note: this function is called asynchronously upon registration of the
 890 * remote processor (so we must wait until it completes before we try
 891 * to unregister the device. one other option is just to use kref here,
 892 * that might be cleaner).
 893 */
 894static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
 895{
 896        struct rproc *rproc = context;
 897        struct resource_table *table;
 898        int ret, tablesz;
 899
 900        if (rproc_fw_sanity_check(rproc, fw) < 0)
 901                goto out;
 902
 903        /* look for the resource table */
 904        table = rproc_find_rsc_table(rproc, fw,  &tablesz);
 905        if (!table)
 906                goto out;
 907
 908        rproc->table_csum = crc32(0, table, tablesz);
 909
 910        /*
 911         * Create a copy of the resource table. When a virtio device starts
 912         * and calls vring_new_virtqueue() the address of the allocated vring
 913         * will be stored in the cached_table. Before the device is started,
 914         * cached_table will be copied into devic memory.
 915         */
 916        rproc->cached_table = kmalloc(tablesz, GFP_KERNEL);
 917        if (!rproc->cached_table)
 918                goto out;
 919
 920        memcpy(rproc->cached_table, table, tablesz);
 921        rproc->table_ptr = rproc->cached_table;
 922
 923        /* count the number of notify-ids */
 924        rproc->max_notifyid = -1;
 925        ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
 926        if (ret)
 927                goto out;
 928
 929        /* look for virtio devices and register them */
 930        ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
 931
 932out:
 933        release_firmware(fw);
 934        /* allow rproc_del() contexts, if any, to proceed */
 935        complete_all(&rproc->firmware_loading_complete);
 936}
 937
 938static int rproc_add_virtio_devices(struct rproc *rproc)
 939{
 940        int ret;
 941
 942        /* rproc_del() calls must wait until async loader completes */
 943        init_completion(&rproc->firmware_loading_complete);
 944
 945        /*
 946         * We must retrieve early virtio configuration info from
 947         * the firmware (e.g. whether to register a virtio device,
 948         * what virtio features does it support, ...).
 949         *
 950         * We're initiating an asynchronous firmware loading, so we can
 951         * be built-in kernel code, without hanging the boot process.
 952         */
 953        ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
 954                                      rproc->firmware, &rproc->dev, GFP_KERNEL,
 955                                      rproc, rproc_fw_config_virtio);
 956        if (ret < 0) {
 957                dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
 958                complete_all(&rproc->firmware_loading_complete);
 959        }
 960
 961        return ret;
 962}
 963
 964/**
 965 * rproc_trigger_recovery() - recover a remoteproc
 966 * @rproc: the remote processor
 967 *
 968 * The recovery is done by reseting all the virtio devices, that way all the
 969 * rpmsg drivers will be reseted along with the remote processor making the
 970 * remoteproc functional again.
 971 *
 972 * This function can sleep, so it cannot be called from atomic context.
 973 */
 974int rproc_trigger_recovery(struct rproc *rproc)
 975{
 976        struct rproc_vdev *rvdev, *rvtmp;
 977
 978        dev_err(&rproc->dev, "recovering %s\n", rproc->name);
 979
 980        init_completion(&rproc->crash_comp);
 981
 982        /* clean up remote vdev entries */
 983        list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
 984                rproc_remove_virtio_dev(rvdev);
 985
 986        /* wait until there is no more rproc users */
 987        wait_for_completion(&rproc->crash_comp);
 988
 989        /* Free the copy of the resource table */
 990        kfree(rproc->cached_table);
 991
 992        return rproc_add_virtio_devices(rproc);
 993}
 994
 995/**
 996 * rproc_crash_handler_work() - handle a crash
 997 *
 998 * This function needs to handle everything related to a crash, like cpu
 999 * registers and stack dump, information to help to debug the fatal error, etc.
1000 */
1001static void rproc_crash_handler_work(struct work_struct *work)
1002{
1003        struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1004        struct device *dev = &rproc->dev;
1005
1006        dev_dbg(dev, "enter %s\n", __func__);
1007
1008        mutex_lock(&rproc->lock);
1009
1010        if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1011                /* handle only the first crash detected */
1012                mutex_unlock(&rproc->lock);
1013                return;
1014        }
1015
1016        rproc->state = RPROC_CRASHED;
1017        dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1018                rproc->name);
1019
1020        mutex_unlock(&rproc->lock);
1021
1022        if (!rproc->recovery_disabled)
1023                rproc_trigger_recovery(rproc);
1024}
1025
1026/**
1027 * rproc_boot() - boot a remote processor
1028 * @rproc: handle of a remote processor
1029 *
1030 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1031 *
1032 * If the remote processor is already powered on, this function immediately
1033 * returns (successfully).
1034 *
1035 * Returns 0 on success, and an appropriate error value otherwise.
1036 */
1037int rproc_boot(struct rproc *rproc)
1038{
1039        const struct firmware *firmware_p;
1040        struct device *dev;
1041        int ret;
1042
1043        if (!rproc) {
1044                pr_err("invalid rproc handle\n");
1045                return -EINVAL;
1046        }
1047
1048        dev = &rproc->dev;
1049
1050        ret = mutex_lock_interruptible(&rproc->lock);
1051        if (ret) {
1052                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1053                return ret;
1054        }
1055
1056        /* loading a firmware is required */
1057        if (!rproc->firmware) {
1058                dev_err(dev, "%s: no firmware to load\n", __func__);
1059                ret = -EINVAL;
1060                goto unlock_mutex;
1061        }
1062
1063        /* prevent underlying implementation from being removed */
1064        if (!try_module_get(dev->parent->driver->owner)) {
1065                dev_err(dev, "%s: can't get owner\n", __func__);
1066                ret = -EINVAL;
1067                goto unlock_mutex;
1068        }
1069
1070        /* skip the boot process if rproc is already powered up */
1071        if (atomic_inc_return(&rproc->power) > 1) {
1072                ret = 0;
1073                goto unlock_mutex;
1074        }
1075
1076        dev_info(dev, "powering up %s\n", rproc->name);
1077
1078        /* load firmware */
1079        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1080        if (ret < 0) {
1081                dev_err(dev, "request_firmware failed: %d\n", ret);
1082                goto downref_rproc;
1083        }
1084
1085        ret = rproc_fw_boot(rproc, firmware_p);
1086
1087        release_firmware(firmware_p);
1088
1089downref_rproc:
1090        if (ret) {
1091                module_put(dev->parent->driver->owner);
1092                atomic_dec(&rproc->power);
1093        }
1094unlock_mutex:
1095        mutex_unlock(&rproc->lock);
1096        return ret;
1097}
1098EXPORT_SYMBOL(rproc_boot);
1099
1100/**
1101 * rproc_shutdown() - power off the remote processor
1102 * @rproc: the remote processor
1103 *
1104 * Power off a remote processor (previously booted with rproc_boot()).
1105 *
1106 * In case @rproc is still being used by an additional user(s), then
1107 * this function will just decrement the power refcount and exit,
1108 * without really powering off the device.
1109 *
1110 * Every call to rproc_boot() must (eventually) be accompanied by a call
1111 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1112 *
1113 * Notes:
1114 * - we're not decrementing the rproc's refcount, only the power refcount.
1115 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1116 *   returns, and users can still use it with a subsequent rproc_boot(), if
1117 *   needed.
1118 */
1119void rproc_shutdown(struct rproc *rproc)
1120{
1121        struct device *dev = &rproc->dev;
1122        int ret;
1123
1124        ret = mutex_lock_interruptible(&rproc->lock);
1125        if (ret) {
1126                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1127                return;
1128        }
1129
1130        /* if the remote proc is still needed, bail out */
1131        if (!atomic_dec_and_test(&rproc->power))
1132                goto out;
1133
1134        /* power off the remote processor */
1135        ret = rproc->ops->stop(rproc);
1136        if (ret) {
1137                atomic_inc(&rproc->power);
1138                dev_err(dev, "can't stop rproc: %d\n", ret);
1139                goto out;
1140        }
1141
1142        /* clean up all acquired resources */
1143        rproc_resource_cleanup(rproc);
1144
1145        rproc_disable_iommu(rproc);
1146
1147        /* Give the next start a clean resource table */
1148        rproc->table_ptr = rproc->cached_table;
1149
1150        /* if in crash state, unlock crash handler */
1151        if (rproc->state == RPROC_CRASHED)
1152                complete_all(&rproc->crash_comp);
1153
1154        rproc->state = RPROC_OFFLINE;
1155
1156        dev_info(dev, "stopped remote processor %s\n", rproc->name);
1157
1158out:
1159        mutex_unlock(&rproc->lock);
1160        if (!ret)
1161                module_put(dev->parent->driver->owner);
1162}
1163EXPORT_SYMBOL(rproc_shutdown);
1164
1165/**
1166 * rproc_add() - register a remote processor
1167 * @rproc: the remote processor handle to register
1168 *
1169 * Registers @rproc with the remoteproc framework, after it has been
1170 * allocated with rproc_alloc().
1171 *
1172 * This is called by the platform-specific rproc implementation, whenever
1173 * a new remote processor device is probed.
1174 *
1175 * Returns 0 on success and an appropriate error code otherwise.
1176 *
1177 * Note: this function initiates an asynchronous firmware loading
1178 * context, which will look for virtio devices supported by the rproc's
1179 * firmware.
1180 *
1181 * If found, those virtio devices will be created and added, so as a result
1182 * of registering this remote processor, additional virtio drivers might be
1183 * probed.
1184 */
1185int rproc_add(struct rproc *rproc)
1186{
1187        struct device *dev = &rproc->dev;
1188        int ret;
1189
1190        ret = device_add(dev);
1191        if (ret < 0)
1192                return ret;
1193
1194        dev_info(dev, "%s is available\n", rproc->name);
1195
1196        dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1197        dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1198
1199        /* create debugfs entries */
1200        rproc_create_debug_dir(rproc);
1201
1202        return rproc_add_virtio_devices(rproc);
1203}
1204EXPORT_SYMBOL(rproc_add);
1205
1206/**
1207 * rproc_type_release() - release a remote processor instance
1208 * @dev: the rproc's device
1209 *
1210 * This function should _never_ be called directly.
1211 *
1212 * It will be called by the driver core when no one holds a valid pointer
1213 * to @dev anymore.
1214 */
1215static void rproc_type_release(struct device *dev)
1216{
1217        struct rproc *rproc = container_of(dev, struct rproc, dev);
1218
1219        dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1220
1221        rproc_delete_debug_dir(rproc);
1222
1223        idr_destroy(&rproc->notifyids);
1224
1225        if (rproc->index >= 0)
1226                ida_simple_remove(&rproc_dev_index, rproc->index);
1227
1228        kfree(rproc);
1229}
1230
1231static struct device_type rproc_type = {
1232        .name           = "remoteproc",
1233        .release        = rproc_type_release,
1234};
1235
1236/**
1237 * rproc_alloc() - allocate a remote processor handle
1238 * @dev: the underlying device
1239 * @name: name of this remote processor
1240 * @ops: platform-specific handlers (mainly start/stop)
1241 * @firmware: name of firmware file to load, can be NULL
1242 * @len: length of private data needed by the rproc driver (in bytes)
1243 *
1244 * Allocates a new remote processor handle, but does not register
1245 * it yet. if @firmware is NULL, a default name is used.
1246 *
1247 * This function should be used by rproc implementations during initialization
1248 * of the remote processor.
1249 *
1250 * After creating an rproc handle using this function, and when ready,
1251 * implementations should then call rproc_add() to complete
1252 * the registration of the remote processor.
1253 *
1254 * On success the new rproc is returned, and on failure, NULL.
1255 *
1256 * Note: _never_ directly deallocate @rproc, even if it was not registered
1257 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1258 */
1259struct rproc *rproc_alloc(struct device *dev, const char *name,
1260                                const struct rproc_ops *ops,
1261                                const char *firmware, int len)
1262{
1263        struct rproc *rproc;
1264        char *p, *template = "rproc-%s-fw";
1265        int name_len = 0;
1266
1267        if (!dev || !name || !ops)
1268                return NULL;
1269
1270        if (!firmware)
1271                /*
1272                 * Make room for default firmware name (minus %s plus '\0').
1273                 * If the caller didn't pass in a firmware name then
1274                 * construct a default name.  We're already glomming 'len'
1275                 * bytes onto the end of the struct rproc allocation, so do
1276                 * a few more for the default firmware name (but only if
1277                 * the caller doesn't pass one).
1278                 */
1279                name_len = strlen(name) + strlen(template) - 2 + 1;
1280
1281        rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1282        if (!rproc) {
1283                dev_err(dev, "%s: kzalloc failed\n", __func__);
1284                return NULL;
1285        }
1286
1287        if (!firmware) {
1288                p = (char *)rproc + sizeof(struct rproc) + len;
1289                snprintf(p, name_len, template, name);
1290        } else {
1291                p = (char *)firmware;
1292        }
1293
1294        rproc->firmware = p;
1295        rproc->name = name;
1296        rproc->ops = ops;
1297        rproc->priv = &rproc[1];
1298
1299        device_initialize(&rproc->dev);
1300        rproc->dev.parent = dev;
1301        rproc->dev.type = &rproc_type;
1302
1303        /* Assign a unique device index and name */
1304        rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1305        if (rproc->index < 0) {
1306                dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1307                put_device(&rproc->dev);
1308                return NULL;
1309        }
1310
1311        dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1312
1313        atomic_set(&rproc->power, 0);
1314
1315        /* Set ELF as the default fw_ops handler */
1316        rproc->fw_ops = &rproc_elf_fw_ops;
1317
1318        mutex_init(&rproc->lock);
1319
1320        idr_init(&rproc->notifyids);
1321
1322        INIT_LIST_HEAD(&rproc->carveouts);
1323        INIT_LIST_HEAD(&rproc->mappings);
1324        INIT_LIST_HEAD(&rproc->traces);
1325        INIT_LIST_HEAD(&rproc->rvdevs);
1326
1327        INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1328        init_completion(&rproc->crash_comp);
1329
1330        rproc->state = RPROC_OFFLINE;
1331
1332        return rproc;
1333}
1334EXPORT_SYMBOL(rproc_alloc);
1335
1336/**
1337 * rproc_put() - unroll rproc_alloc()
1338 * @rproc: the remote processor handle
1339 *
1340 * This function decrements the rproc dev refcount.
1341 *
1342 * If no one holds any reference to rproc anymore, then its refcount would
1343 * now drop to zero, and it would be freed.
1344 */
1345void rproc_put(struct rproc *rproc)
1346{
1347        put_device(&rproc->dev);
1348}
1349EXPORT_SYMBOL(rproc_put);
1350
1351/**
1352 * rproc_del() - unregister a remote processor
1353 * @rproc: rproc handle to unregister
1354 *
1355 * This function should be called when the platform specific rproc
1356 * implementation decides to remove the rproc device. it should
1357 * _only_ be called if a previous invocation of rproc_add()
1358 * has completed successfully.
1359 *
1360 * After rproc_del() returns, @rproc isn't freed yet, because
1361 * of the outstanding reference created by rproc_alloc. To decrement that
1362 * one last refcount, one still needs to call rproc_put().
1363 *
1364 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1365 */
1366int rproc_del(struct rproc *rproc)
1367{
1368        struct rproc_vdev *rvdev, *tmp;
1369
1370        if (!rproc)
1371                return -EINVAL;
1372
1373        /* if rproc is just being registered, wait */
1374        wait_for_completion(&rproc->firmware_loading_complete);
1375
1376        /* clean up remote vdev entries */
1377        list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1378                rproc_remove_virtio_dev(rvdev);
1379
1380        /* Free the copy of the resource table */
1381        kfree(rproc->cached_table);
1382
1383        device_del(&rproc->dev);
1384
1385        return 0;
1386}
1387EXPORT_SYMBOL(rproc_del);
1388
1389/**
1390 * rproc_report_crash() - rproc crash reporter function
1391 * @rproc: remote processor
1392 * @type: crash type
1393 *
1394 * This function must be called every time a crash is detected by the low-level
1395 * drivers implementing a specific remoteproc. This should not be called from a
1396 * non-remoteproc driver.
1397 *
1398 * This function can be called from atomic/interrupt context.
1399 */
1400void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1401{
1402        if (!rproc) {
1403                pr_err("NULL rproc pointer\n");
1404                return;
1405        }
1406
1407        dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1408                rproc->name, rproc_crash_to_string(type));
1409
1410        /* create a new task to handle the error */
1411        schedule_work(&rproc->crash_handler);
1412}
1413EXPORT_SYMBOL(rproc_report_crash);
1414
1415static int __init remoteproc_init(void)
1416{
1417        rproc_init_debugfs();
1418
1419        return 0;
1420}
1421module_init(remoteproc_init);
1422
1423static void __exit remoteproc_exit(void)
1424{
1425        rproc_exit_debugfs();
1426}
1427module_exit(remoteproc_exit);
1428
1429MODULE_LICENSE("GPL v2");
1430MODULE_DESCRIPTION("Generic Remote Processor Framework");
1431
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.