linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1/*
   2 * Core driver for the pin control subsystem
   3 *
   4 * Copyright (C) 2011-2012 ST-Ericsson SA
   5 * Written on behalf of Linaro for ST-Ericsson
   6 * Based on bits of regulator core, gpio core and clk core
   7 *
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
   9 *
  10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11 *
  12 * License terms: GNU General Public License (GPL) version 2
  13 */
  14#define pr_fmt(fmt) "pinctrl core: " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/kref.h>
  18#include <linux/export.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/slab.h>
  22#include <linux/err.h>
  23#include <linux/list.h>
  24#include <linux/sysfs.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pinctrl/pinctrl.h>
  29#include <linux/pinctrl/machine.h>
  30
  31#ifdef CONFIG_GPIOLIB
  32#include <asm-generic/gpio.h>
  33#endif
  34
  35#include "core.h"
  36#include "devicetree.h"
  37#include "pinmux.h"
  38#include "pinconf.h"
  39
  40
  41static bool pinctrl_dummy_state;
  42
  43/* Mutex taken to protect pinctrl_list */
  44DEFINE_MUTEX(pinctrl_list_mutex);
  45
  46/* Mutex taken to protect pinctrl_maps */
  47DEFINE_MUTEX(pinctrl_maps_mutex);
  48
  49/* Mutex taken to protect pinctrldev_list */
  50DEFINE_MUTEX(pinctrldev_list_mutex);
  51
  52/* Global list of pin control devices (struct pinctrl_dev) */
  53static LIST_HEAD(pinctrldev_list);
  54
  55/* List of pin controller handles (struct pinctrl) */
  56static LIST_HEAD(pinctrl_list);
  57
  58/* List of pinctrl maps (struct pinctrl_maps) */
  59LIST_HEAD(pinctrl_maps);
  60
  61
  62/**
  63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  64 *
  65 * Usually this function is called by platforms without pinctrl driver support
  66 * but run with some shared drivers using pinctrl APIs.
  67 * After calling this function, the pinctrl core will return successfully
  68 * with creating a dummy state for the driver to keep going smoothly.
  69 */
  70void pinctrl_provide_dummies(void)
  71{
  72        pinctrl_dummy_state = true;
  73}
  74
  75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  76{
  77        /* We're not allowed to register devices without name */
  78        return pctldev->desc->name;
  79}
  80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  81
  82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  83{
  84        return dev_name(pctldev->dev);
  85}
  86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  87
  88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  89{
  90        return pctldev->driver_data;
  91}
  92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  93
  94/**
  95 * get_pinctrl_dev_from_devname() - look up pin controller device
  96 * @devname: the name of a device instance, as returned by dev_name()
  97 *
  98 * Looks up a pin control device matching a certain device name or pure device
  99 * pointer, the pure device pointer will take precedence.
 100 */
 101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 102{
 103        struct pinctrl_dev *pctldev = NULL;
 104        bool found = false;
 105
 106        if (!devname)
 107                return NULL;
 108
 109        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 110                if (!strcmp(dev_name(pctldev->dev), devname)) {
 111                        /* Matched on device name */
 112                        found = true;
 113                        break;
 114                }
 115        }
 116
 117        return found ? pctldev : NULL;
 118}
 119
 120struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 121{
 122        struct pinctrl_dev *pctldev;
 123
 124        mutex_lock(&pinctrldev_list_mutex);
 125
 126        list_for_each_entry(pctldev, &pinctrldev_list, node)
 127                if (pctldev->dev->of_node == np) {
 128                        mutex_unlock(&pinctrldev_list_mutex);
 129                        return pctldev;
 130                }
 131
 132        mutex_unlock(&pinctrldev_list_mutex);
 133
 134        return NULL;
 135}
 136
 137/**
 138 * pin_get_from_name() - look up a pin number from a name
 139 * @pctldev: the pin control device to lookup the pin on
 140 * @name: the name of the pin to look up
 141 */
 142int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 143{
 144        unsigned i, pin;
 145
 146        /* The pin number can be retrived from the pin controller descriptor */
 147        for (i = 0; i < pctldev->desc->npins; i++) {
 148                struct pin_desc *desc;
 149
 150                pin = pctldev->desc->pins[i].number;
 151                desc = pin_desc_get(pctldev, pin);
 152                /* Pin space may be sparse */
 153                if (desc == NULL)
 154                        continue;
 155                if (desc->name && !strcmp(name, desc->name))
 156                        return pin;
 157        }
 158
 159        return -EINVAL;
 160}
 161
 162/**
 163 * pin_get_name_from_id() - look up a pin name from a pin id
 164 * @pctldev: the pin control device to lookup the pin on
 165 * @name: the name of the pin to look up
 166 */
 167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 168{
 169        const struct pin_desc *desc;
 170
 171        desc = pin_desc_get(pctldev, pin);
 172        if (desc == NULL) {
 173                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 174                        pin);
 175                return NULL;
 176        }
 177
 178        return desc->name;
 179}
 180
 181/**
 182 * pin_is_valid() - check if pin exists on controller
 183 * @pctldev: the pin control device to check the pin on
 184 * @pin: pin to check, use the local pin controller index number
 185 *
 186 * This tells us whether a certain pin exist on a certain pin controller or
 187 * not. Pin lists may be sparse, so some pins may not exist.
 188 */
 189bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
 190{
 191        struct pin_desc *pindesc;
 192
 193        if (pin < 0)
 194                return false;
 195
 196        mutex_lock(&pctldev->mutex);
 197        pindesc = pin_desc_get(pctldev, pin);
 198        mutex_unlock(&pctldev->mutex);
 199
 200        return pindesc != NULL;
 201}
 202EXPORT_SYMBOL_GPL(pin_is_valid);
 203
 204/* Deletes a range of pin descriptors */
 205static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 206                                  const struct pinctrl_pin_desc *pins,
 207                                  unsigned num_pins)
 208{
 209        int i;
 210
 211        for (i = 0; i < num_pins; i++) {
 212                struct pin_desc *pindesc;
 213
 214                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 215                                            pins[i].number);
 216                if (pindesc != NULL) {
 217                        radix_tree_delete(&pctldev->pin_desc_tree,
 218                                          pins[i].number);
 219                        if (pindesc->dynamic_name)
 220                                kfree(pindesc->name);
 221                }
 222                kfree(pindesc);
 223        }
 224}
 225
 226static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 227                                    unsigned number, const char *name)
 228{
 229        struct pin_desc *pindesc;
 230
 231        pindesc = pin_desc_get(pctldev, number);
 232        if (pindesc != NULL) {
 233                pr_err("pin %d already registered on %s\n", number,
 234                       pctldev->desc->name);
 235                return -EINVAL;
 236        }
 237
 238        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 239        if (pindesc == NULL) {
 240                dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
 241                return -ENOMEM;
 242        }
 243
 244        /* Set owner */
 245        pindesc->pctldev = pctldev;
 246
 247        /* Copy basic pin info */
 248        if (name) {
 249                pindesc->name = name;
 250        } else {
 251                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
 252                if (pindesc->name == NULL) {
 253                        kfree(pindesc);
 254                        return -ENOMEM;
 255                }
 256                pindesc->dynamic_name = true;
 257        }
 258
 259        radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
 260        pr_debug("registered pin %d (%s) on %s\n",
 261                 number, pindesc->name, pctldev->desc->name);
 262        return 0;
 263}
 264
 265static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 266                                 struct pinctrl_pin_desc const *pins,
 267                                 unsigned num_descs)
 268{
 269        unsigned i;
 270        int ret = 0;
 271
 272        for (i = 0; i < num_descs; i++) {
 273                ret = pinctrl_register_one_pin(pctldev,
 274                                               pins[i].number, pins[i].name);
 275                if (ret)
 276                        return ret;
 277        }
 278
 279        return 0;
 280}
 281
 282/**
 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 284 * @pctldev: pin controller device to check
 285 * @gpio: gpio pin to check taken from the global GPIO pin space
 286 *
 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 288 * controller, return the range or NULL
 289 */
 290static struct pinctrl_gpio_range *
 291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 292{
 293        struct pinctrl_gpio_range *range = NULL;
 294
 295        mutex_lock(&pctldev->mutex);
 296        /* Loop over the ranges */
 297        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 298                /* Check if we're in the valid range */
 299                if (gpio >= range->base &&
 300                    gpio < range->base + range->npins) {
 301                        mutex_unlock(&pctldev->mutex);
 302                        return range;
 303                }
 304        }
 305        mutex_unlock(&pctldev->mutex);
 306        return NULL;
 307}
 308
 309/**
 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 311 * the same GPIO chip are in range
 312 * @gpio: gpio pin to check taken from the global GPIO pin space
 313 *
 314 * This function is complement of pinctrl_match_gpio_range(). If the return
 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 317 * of the same GPIO chip don't have back-end pinctrl interface.
 318 * If the return value is true, it means that pinctrl device is ready & the
 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 320 * is false, it means that pinctrl device may not be ready.
 321 */
 322#ifdef CONFIG_GPIOLIB
 323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 324{
 325        struct pinctrl_dev *pctldev;
 326        struct pinctrl_gpio_range *range = NULL;
 327        struct gpio_chip *chip = gpio_to_chip(gpio);
 328
 329        /* Loop over the pin controllers */
 330        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 331                /* Loop over the ranges */
 332                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 333                        /* Check if any gpio range overlapped with gpio chip */
 334                        if (range->base + range->npins - 1 < chip->base ||
 335                            range->base > chip->base + chip->ngpio - 1)
 336                                continue;
 337                        return true;
 338                }
 339        }
 340        return false;
 341}
 342#else
 343static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 344#endif
 345
 346/**
 347 * pinctrl_get_device_gpio_range() - find device for GPIO range
 348 * @gpio: the pin to locate the pin controller for
 349 * @outdev: the pin control device if found
 350 * @outrange: the GPIO range if found
 351 *
 352 * Find the pin controller handling a certain GPIO pin from the pinspace of
 353 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 354 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 355 * may still have not been registered.
 356 */
 357static int pinctrl_get_device_gpio_range(unsigned gpio,
 358                                         struct pinctrl_dev **outdev,
 359                                         struct pinctrl_gpio_range **outrange)
 360{
 361        struct pinctrl_dev *pctldev = NULL;
 362
 363        /* Loop over the pin controllers */
 364        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 365                struct pinctrl_gpio_range *range;
 366
 367                range = pinctrl_match_gpio_range(pctldev, gpio);
 368                if (range != NULL) {
 369                        *outdev = pctldev;
 370                        *outrange = range;
 371                        return 0;
 372                }
 373        }
 374
 375        return -EPROBE_DEFER;
 376}
 377
 378/**
 379 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 380 * @pctldev: pin controller device to add the range to
 381 * @range: the GPIO range to add
 382 *
 383 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 384 * this to register handled ranges after registering your pin controller.
 385 */
 386void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 387                            struct pinctrl_gpio_range *range)
 388{
 389        mutex_lock(&pctldev->mutex);
 390        list_add_tail(&range->node, &pctldev->gpio_ranges);
 391        mutex_unlock(&pctldev->mutex);
 392}
 393EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 394
 395void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 396                             struct pinctrl_gpio_range *ranges,
 397                             unsigned nranges)
 398{
 399        int i;
 400
 401        for (i = 0; i < nranges; i++)
 402                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 403}
 404EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 405
 406struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 407                struct pinctrl_gpio_range *range)
 408{
 409        struct pinctrl_dev *pctldev;
 410
 411        mutex_lock(&pinctrldev_list_mutex);
 412
 413        pctldev = get_pinctrl_dev_from_devname(devname);
 414
 415        /*
 416         * If we can't find this device, let's assume that is because
 417         * it has not probed yet, so the driver trying to register this
 418         * range need to defer probing.
 419         */
 420        if (!pctldev) {
 421                mutex_unlock(&pinctrldev_list_mutex);
 422                return ERR_PTR(-EPROBE_DEFER);
 423        }
 424        pinctrl_add_gpio_range(pctldev, range);
 425
 426        mutex_unlock(&pinctrldev_list_mutex);
 427
 428        return pctldev;
 429}
 430EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 431
 432/**
 433 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 434 * @pctldev: the pin controller device to look in
 435 * @pin: a controller-local number to find the range for
 436 */
 437struct pinctrl_gpio_range *
 438pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 439                                 unsigned int pin)
 440{
 441        struct pinctrl_gpio_range *range = NULL;
 442
 443        mutex_lock(&pctldev->mutex);
 444        /* Loop over the ranges */
 445        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 446                /* Check if we're in the valid range */
 447                if (pin >= range->pin_base &&
 448                    pin < range->pin_base + range->npins) {
 449                        mutex_unlock(&pctldev->mutex);
 450                        return range;
 451                }
 452        }
 453        mutex_unlock(&pctldev->mutex);
 454
 455        return NULL;
 456}
 457EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 458
 459/**
 460 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 461 * @pctldev: pin controller device to remove the range from
 462 * @range: the GPIO range to remove
 463 */
 464void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 465                               struct pinctrl_gpio_range *range)
 466{
 467        mutex_lock(&pctldev->mutex);
 468        list_del(&range->node);
 469        mutex_unlock(&pctldev->mutex);
 470}
 471EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 472
 473/**
 474 * pinctrl_get_group_selector() - returns the group selector for a group
 475 * @pctldev: the pin controller handling the group
 476 * @pin_group: the pin group to look up
 477 */
 478int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 479                               const char *pin_group)
 480{
 481        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 482        unsigned ngroups = pctlops->get_groups_count(pctldev);
 483        unsigned group_selector = 0;
 484
 485        while (group_selector < ngroups) {
 486                const char *gname = pctlops->get_group_name(pctldev,
 487                                                            group_selector);
 488                if (!strcmp(gname, pin_group)) {
 489                        dev_dbg(pctldev->dev,
 490                                "found group selector %u for %s\n",
 491                                group_selector,
 492                                pin_group);
 493                        return group_selector;
 494                }
 495
 496                group_selector++;
 497        }
 498
 499        dev_err(pctldev->dev, "does not have pin group %s\n",
 500                pin_group);
 501
 502        return -EINVAL;
 503}
 504
 505/**
 506 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 507 * @gpio: the GPIO pin number from the GPIO subsystem number space
 508 *
 509 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 510 * as part of their gpio_request() semantics, platforms and individual drivers
 511 * shall *NOT* request GPIO pins to be muxed in.
 512 */
 513int pinctrl_request_gpio(unsigned gpio)
 514{
 515        struct pinctrl_dev *pctldev;
 516        struct pinctrl_gpio_range *range;
 517        int ret;
 518        int pin;
 519
 520        mutex_lock(&pinctrldev_list_mutex);
 521
 522        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 523        if (ret) {
 524                if (pinctrl_ready_for_gpio_range(gpio))
 525                        ret = 0;
 526                mutex_unlock(&pinctrldev_list_mutex);
 527                return ret;
 528        }
 529
 530        /* Convert to the pin controllers number space */
 531        pin = gpio - range->base + range->pin_base;
 532
 533        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 534
 535        mutex_unlock(&pinctrldev_list_mutex);
 536        return ret;
 537}
 538EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
 539
 540/**
 541 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 542 * @gpio: the GPIO pin number from the GPIO subsystem number space
 543 *
 544 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 545 * as part of their gpio_free() semantics, platforms and individual drivers
 546 * shall *NOT* request GPIO pins to be muxed out.
 547 */
 548void pinctrl_free_gpio(unsigned gpio)
 549{
 550        struct pinctrl_dev *pctldev;
 551        struct pinctrl_gpio_range *range;
 552        int ret;
 553        int pin;
 554
 555        mutex_lock(&pinctrldev_list_mutex);
 556
 557        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 558        if (ret) {
 559                mutex_unlock(&pinctrldev_list_mutex);
 560                return;
 561        }
 562        mutex_lock(&pctldev->mutex);
 563
 564        /* Convert to the pin controllers number space */
 565        pin = gpio - range->base + range->pin_base;
 566
 567        pinmux_free_gpio(pctldev, pin, range);
 568
 569        mutex_unlock(&pctldev->mutex);
 570        mutex_unlock(&pinctrldev_list_mutex);
 571}
 572EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
 573
 574static int pinctrl_gpio_direction(unsigned gpio, bool input)
 575{
 576        struct pinctrl_dev *pctldev;
 577        struct pinctrl_gpio_range *range;
 578        int ret;
 579        int pin;
 580
 581        mutex_lock(&pinctrldev_list_mutex);
 582
 583        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 584        if (ret) {
 585                mutex_unlock(&pinctrldev_list_mutex);
 586                return ret;
 587        }
 588
 589        mutex_lock(&pctldev->mutex);
 590
 591        /* Convert to the pin controllers number space */
 592        pin = gpio - range->base + range->pin_base;
 593        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 594
 595        mutex_unlock(&pctldev->mutex);
 596        mutex_unlock(&pinctrldev_list_mutex);
 597
 598        return ret;
 599}
 600
 601/**
 602 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 603 * @gpio: the GPIO pin number from the GPIO subsystem number space
 604 *
 605 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 606 * as part of their gpio_direction_input() semantics, platforms and individual
 607 * drivers shall *NOT* touch pin control GPIO calls.
 608 */
 609int pinctrl_gpio_direction_input(unsigned gpio)
 610{
 611        return pinctrl_gpio_direction(gpio, true);
 612}
 613EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 614
 615/**
 616 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 617 * @gpio: the GPIO pin number from the GPIO subsystem number space
 618 *
 619 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 620 * as part of their gpio_direction_output() semantics, platforms and individual
 621 * drivers shall *NOT* touch pin control GPIO calls.
 622 */
 623int pinctrl_gpio_direction_output(unsigned gpio)
 624{
 625        return pinctrl_gpio_direction(gpio, false);
 626}
 627EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 628
 629static struct pinctrl_state *find_state(struct pinctrl *p,
 630                                        const char *name)
 631{
 632        struct pinctrl_state *state;
 633
 634        list_for_each_entry(state, &p->states, node)
 635                if (!strcmp(state->name, name))
 636                        return state;
 637
 638        return NULL;
 639}
 640
 641static struct pinctrl_state *create_state(struct pinctrl *p,
 642                                          const char *name)
 643{
 644        struct pinctrl_state *state;
 645
 646        state = kzalloc(sizeof(*state), GFP_KERNEL);
 647        if (state == NULL) {
 648                dev_err(p->dev,
 649                        "failed to alloc struct pinctrl_state\n");
 650                return ERR_PTR(-ENOMEM);
 651        }
 652
 653        state->name = name;
 654        INIT_LIST_HEAD(&state->settings);
 655
 656        list_add_tail(&state->node, &p->states);
 657
 658        return state;
 659}
 660
 661static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
 662{
 663        struct pinctrl_state *state;
 664        struct pinctrl_setting *setting;
 665        int ret;
 666
 667        state = find_state(p, map->name);
 668        if (!state)
 669                state = create_state(p, map->name);
 670        if (IS_ERR(state))
 671                return PTR_ERR(state);
 672
 673        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 674                return 0;
 675
 676        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 677        if (setting == NULL) {
 678                dev_err(p->dev,
 679                        "failed to alloc struct pinctrl_setting\n");
 680                return -ENOMEM;
 681        }
 682
 683        setting->type = map->type;
 684
 685        setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 686        if (setting->pctldev == NULL) {
 687                kfree(setting);
 688                /* Do not defer probing of hogs (circular loop) */
 689                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 690                        return -ENODEV;
 691                /*
 692                 * OK let us guess that the driver is not there yet, and
 693                 * let's defer obtaining this pinctrl handle to later...
 694                 */
 695                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 696                        map->ctrl_dev_name);
 697                return -EPROBE_DEFER;
 698        }
 699
 700        setting->dev_name = map->dev_name;
 701
 702        switch (map->type) {
 703        case PIN_MAP_TYPE_MUX_GROUP:
 704                ret = pinmux_map_to_setting(map, setting);
 705                break;
 706        case PIN_MAP_TYPE_CONFIGS_PIN:
 707        case PIN_MAP_TYPE_CONFIGS_GROUP:
 708                ret = pinconf_map_to_setting(map, setting);
 709                break;
 710        default:
 711                ret = -EINVAL;
 712                break;
 713        }
 714        if (ret < 0) {
 715                kfree(setting);
 716                return ret;
 717        }
 718
 719        list_add_tail(&setting->node, &state->settings);
 720
 721        return 0;
 722}
 723
 724static struct pinctrl *find_pinctrl(struct device *dev)
 725{
 726        struct pinctrl *p;
 727
 728        mutex_lock(&pinctrl_list_mutex);
 729        list_for_each_entry(p, &pinctrl_list, node)
 730                if (p->dev == dev) {
 731                        mutex_unlock(&pinctrl_list_mutex);
 732                        return p;
 733                }
 734
 735        mutex_unlock(&pinctrl_list_mutex);
 736        return NULL;
 737}
 738
 739static void pinctrl_free(struct pinctrl *p, bool inlist);
 740
 741static struct pinctrl *create_pinctrl(struct device *dev)
 742{
 743        struct pinctrl *p;
 744        const char *devname;
 745        struct pinctrl_maps *maps_node;
 746        int i;
 747        struct pinctrl_map const *map;
 748        int ret;
 749
 750        /*
 751         * create the state cookie holder struct pinctrl for each
 752         * mapping, this is what consumers will get when requesting
 753         * a pin control handle with pinctrl_get()
 754         */
 755        p = kzalloc(sizeof(*p), GFP_KERNEL);
 756        if (p == NULL) {
 757                dev_err(dev, "failed to alloc struct pinctrl\n");
 758                return ERR_PTR(-ENOMEM);
 759        }
 760        p->dev = dev;
 761        INIT_LIST_HEAD(&p->states);
 762        INIT_LIST_HEAD(&p->dt_maps);
 763
 764        ret = pinctrl_dt_to_map(p);
 765        if (ret < 0) {
 766                kfree(p);
 767                return ERR_PTR(ret);
 768        }
 769
 770        devname = dev_name(dev);
 771
 772        mutex_lock(&pinctrl_maps_mutex);
 773        /* Iterate over the pin control maps to locate the right ones */
 774        for_each_maps(maps_node, i, map) {
 775                /* Map must be for this device */
 776                if (strcmp(map->dev_name, devname))
 777                        continue;
 778
 779                ret = add_setting(p, map);
 780                /*
 781                 * At this point the adding of a setting may:
 782                 *
 783                 * - Defer, if the pinctrl device is not yet available
 784                 * - Fail, if the pinctrl device is not yet available,
 785                 *   AND the setting is a hog. We cannot defer that, since
 786                 *   the hog will kick in immediately after the device
 787                 *   is registered.
 788                 *
 789                 * If the error returned was not -EPROBE_DEFER then we
 790                 * accumulate the errors to see if we end up with
 791                 * an -EPROBE_DEFER later, as that is the worst case.
 792                 */
 793                if (ret == -EPROBE_DEFER) {
 794                        pinctrl_free(p, false);
 795                        mutex_unlock(&pinctrl_maps_mutex);
 796                        return ERR_PTR(ret);
 797                }
 798        }
 799        mutex_unlock(&pinctrl_maps_mutex);
 800
 801        if (ret < 0) {
 802                /* If some other error than deferral occured, return here */
 803                pinctrl_free(p, false);
 804                return ERR_PTR(ret);
 805        }
 806
 807        kref_init(&p->users);
 808
 809        /* Add the pinctrl handle to the global list */
 810        list_add_tail(&p->node, &pinctrl_list);
 811
 812        return p;
 813}
 814
 815/**
 816 * pinctrl_get() - retrieves the pinctrl handle for a device
 817 * @dev: the device to obtain the handle for
 818 */
 819struct pinctrl *pinctrl_get(struct device *dev)
 820{
 821        struct pinctrl *p;
 822
 823        if (WARN_ON(!dev))
 824                return ERR_PTR(-EINVAL);
 825
 826        /*
 827         * See if somebody else (such as the device core) has already
 828         * obtained a handle to the pinctrl for this device. In that case,
 829         * return another pointer to it.
 830         */
 831        p = find_pinctrl(dev);
 832        if (p != NULL) {
 833                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
 834                kref_get(&p->users);
 835                return p;
 836        }
 837
 838        return create_pinctrl(dev);
 839}
 840EXPORT_SYMBOL_GPL(pinctrl_get);
 841
 842static void pinctrl_free_setting(bool disable_setting,
 843                                 struct pinctrl_setting *setting)
 844{
 845        switch (setting->type) {
 846        case PIN_MAP_TYPE_MUX_GROUP:
 847                if (disable_setting)
 848                        pinmux_disable_setting(setting);
 849                pinmux_free_setting(setting);
 850                break;
 851        case PIN_MAP_TYPE_CONFIGS_PIN:
 852        case PIN_MAP_TYPE_CONFIGS_GROUP:
 853                pinconf_free_setting(setting);
 854                break;
 855        default:
 856                break;
 857        }
 858}
 859
 860static void pinctrl_free(struct pinctrl *p, bool inlist)
 861{
 862        struct pinctrl_state *state, *n1;
 863        struct pinctrl_setting *setting, *n2;
 864
 865        mutex_lock(&pinctrl_list_mutex);
 866        list_for_each_entry_safe(state, n1, &p->states, node) {
 867                list_for_each_entry_safe(setting, n2, &state->settings, node) {
 868                        pinctrl_free_setting(state == p->state, setting);
 869                        list_del(&setting->node);
 870                        kfree(setting);
 871                }
 872                list_del(&state->node);
 873                kfree(state);
 874        }
 875
 876        pinctrl_dt_free_maps(p);
 877
 878        if (inlist)
 879                list_del(&p->node);
 880        kfree(p);
 881        mutex_unlock(&pinctrl_list_mutex);
 882}
 883
 884/**
 885 * pinctrl_release() - release the pinctrl handle
 886 * @kref: the kref in the pinctrl being released
 887 */
 888static void pinctrl_release(struct kref *kref)
 889{
 890        struct pinctrl *p = container_of(kref, struct pinctrl, users);
 891
 892        pinctrl_free(p, true);
 893}
 894
 895/**
 896 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
 897 * @p: the pinctrl handle to release
 898 */
 899void pinctrl_put(struct pinctrl *p)
 900{
 901        kref_put(&p->users, pinctrl_release);
 902}
 903EXPORT_SYMBOL_GPL(pinctrl_put);
 904
 905/**
 906 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 907 * @p: the pinctrl handle to retrieve the state from
 908 * @name: the state name to retrieve
 909 */
 910struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
 911                                                 const char *name)
 912{
 913        struct pinctrl_state *state;
 914
 915        state = find_state(p, name);
 916        if (!state) {
 917                if (pinctrl_dummy_state) {
 918                        /* create dummy state */
 919                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
 920                                name);
 921                        state = create_state(p, name);
 922                } else
 923                        state = ERR_PTR(-ENODEV);
 924        }
 925
 926        return state;
 927}
 928EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
 929
 930/**
 931 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 932 * @p: the pinctrl handle for the device that requests configuration
 933 * @state: the state handle to select/activate/program
 934 */
 935int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
 936{
 937        struct pinctrl_setting *setting, *setting2;
 938        struct pinctrl_state *old_state = p->state;
 939        int ret;
 940
 941        if (p->state == state)
 942                return 0;
 943
 944        if (p->state) {
 945                /*
 946                 * The set of groups with a mux configuration in the old state
 947                 * may not be identical to the set of groups with a mux setting
 948                 * in the new state. While this might be unusual, it's entirely
 949                 * possible for the "user"-supplied mapping table to be written
 950                 * that way. For each group that was configured in the old state
 951                 * but not in the new state, this code puts that group into a
 952                 * safe/disabled state.
 953                 */
 954                list_for_each_entry(setting, &p->state->settings, node) {
 955                        bool found = false;
 956                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
 957                                continue;
 958                        list_for_each_entry(setting2, &state->settings, node) {
 959                                if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
 960                                        continue;
 961                                if (setting2->data.mux.group ==
 962                                                setting->data.mux.group) {
 963                                        found = true;
 964                                        break;
 965                                }
 966                        }
 967                        if (!found)
 968                                pinmux_disable_setting(setting);
 969                }
 970        }
 971
 972        p->state = NULL;
 973
 974        /* Apply all the settings for the new state */
 975        list_for_each_entry(setting, &state->settings, node) {
 976                switch (setting->type) {
 977                case PIN_MAP_TYPE_MUX_GROUP:
 978                        ret = pinmux_enable_setting(setting);
 979                        break;
 980                case PIN_MAP_TYPE_CONFIGS_PIN:
 981                case PIN_MAP_TYPE_CONFIGS_GROUP:
 982                        ret = pinconf_apply_setting(setting);
 983                        break;
 984                default:
 985                        ret = -EINVAL;
 986                        break;
 987                }
 988
 989                if (ret < 0) {
 990                        goto unapply_new_state;
 991                }
 992        }
 993
 994        p->state = state;
 995
 996        return 0;
 997
 998unapply_new_state:
 999        dev_err(p->dev, "Error applying setting, reverse things back\n");
1000
1001        list_for_each_entry(setting2, &state->settings, node) {
1002                if (&setting2->node == &setting->node)
1003                        break;
1004                /*
1005                 * All we can do here is pinmux_disable_setting.
1006                 * That means that some pins are muxed differently now
1007                 * than they were before applying the setting (We can't
1008                 * "unmux a pin"!), but it's not a big deal since the pins
1009                 * are free to be muxed by another apply_setting.
1010                 */
1011                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1012                        pinmux_disable_setting(setting2);
1013        }
1014
1015        /* There's no infinite recursive loop here because p->state is NULL */
1016        if (old_state)
1017                pinctrl_select_state(p, old_state);
1018
1019        return ret;
1020}
1021EXPORT_SYMBOL_GPL(pinctrl_select_state);
1022
1023static void devm_pinctrl_release(struct device *dev, void *res)
1024{
1025        pinctrl_put(*(struct pinctrl **)res);
1026}
1027
1028/**
1029 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1030 * @dev: the device to obtain the handle for
1031 *
1032 * If there is a need to explicitly destroy the returned struct pinctrl,
1033 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1034 */
1035struct pinctrl *devm_pinctrl_get(struct device *dev)
1036{
1037        struct pinctrl **ptr, *p;
1038
1039        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1040        if (!ptr)
1041                return ERR_PTR(-ENOMEM);
1042
1043        p = pinctrl_get(dev);
1044        if (!IS_ERR(p)) {
1045                *ptr = p;
1046                devres_add(dev, ptr);
1047        } else {
1048                devres_free(ptr);
1049        }
1050
1051        return p;
1052}
1053EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1054
1055static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1056{
1057        struct pinctrl **p = res;
1058
1059        return *p == data;
1060}
1061
1062/**
1063 * devm_pinctrl_put() - Resource managed pinctrl_put()
1064 * @p: the pinctrl handle to release
1065 *
1066 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1067 * this function will not need to be called and the resource management
1068 * code will ensure that the resource is freed.
1069 */
1070void devm_pinctrl_put(struct pinctrl *p)
1071{
1072        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1073                               devm_pinctrl_match, p));
1074}
1075EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1076
1077int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1078                         bool dup, bool locked)
1079{
1080        int i, ret;
1081        struct pinctrl_maps *maps_node;
1082
1083        pr_debug("add %d pinmux maps\n", num_maps);
1084
1085        /* First sanity check the new mapping */
1086        for (i = 0; i < num_maps; i++) {
1087                if (!maps[i].dev_name) {
1088                        pr_err("failed to register map %s (%d): no device given\n",
1089                               maps[i].name, i);
1090                        return -EINVAL;
1091                }
1092
1093                if (!maps[i].name) {
1094                        pr_err("failed to register map %d: no map name given\n",
1095                               i);
1096                        return -EINVAL;
1097                }
1098
1099                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1100                                !maps[i].ctrl_dev_name) {
1101                        pr_err("failed to register map %s (%d): no pin control device given\n",
1102                               maps[i].name, i);
1103                        return -EINVAL;
1104                }
1105
1106                switch (maps[i].type) {
1107                case PIN_MAP_TYPE_DUMMY_STATE:
1108                        break;
1109                case PIN_MAP_TYPE_MUX_GROUP:
1110                        ret = pinmux_validate_map(&maps[i], i);
1111                        if (ret < 0)
1112                                return ret;
1113                        break;
1114                case PIN_MAP_TYPE_CONFIGS_PIN:
1115                case PIN_MAP_TYPE_CONFIGS_GROUP:
1116                        ret = pinconf_validate_map(&maps[i], i);
1117                        if (ret < 0)
1118                                return ret;
1119                        break;
1120                default:
1121                        pr_err("failed to register map %s (%d): invalid type given\n",
1122                               maps[i].name, i);
1123                        return -EINVAL;
1124                }
1125        }
1126
1127        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1128        if (!maps_node) {
1129                pr_err("failed to alloc struct pinctrl_maps\n");
1130                return -ENOMEM;
1131        }
1132
1133        maps_node->num_maps = num_maps;
1134        if (dup) {
1135                maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1136                                          GFP_KERNEL);
1137                if (!maps_node->maps) {
1138                        pr_err("failed to duplicate mapping table\n");
1139                        kfree(maps_node);
1140                        return -ENOMEM;
1141                }
1142        } else {
1143                maps_node->maps = maps;
1144        }
1145
1146        if (!locked)
1147                mutex_lock(&pinctrl_maps_mutex);
1148        list_add_tail(&maps_node->node, &pinctrl_maps);
1149        if (!locked)
1150                mutex_unlock(&pinctrl_maps_mutex);
1151
1152        return 0;
1153}
1154
1155/**
1156 * pinctrl_register_mappings() - register a set of pin controller mappings
1157 * @maps: the pincontrol mappings table to register. This should probably be
1158 *      marked with __initdata so it can be discarded after boot. This
1159 *      function will perform a shallow copy for the mapping entries.
1160 * @num_maps: the number of maps in the mapping table
1161 */
1162int pinctrl_register_mappings(struct pinctrl_map const *maps,
1163                              unsigned num_maps)
1164{
1165        return pinctrl_register_map(maps, num_maps, true, false);
1166}
1167
1168void pinctrl_unregister_map(struct pinctrl_map const *map)
1169{
1170        struct pinctrl_maps *maps_node;
1171
1172        mutex_lock(&pinctrl_maps_mutex);
1173        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1174                if (maps_node->maps == map) {
1175                        list_del(&maps_node->node);
1176                        mutex_unlock(&pinctrl_maps_mutex);
1177                        return;
1178                }
1179        }
1180        mutex_unlock(&pinctrl_maps_mutex);
1181}
1182
1183/**
1184 * pinctrl_force_sleep() - turn a given controller device into sleep state
1185 * @pctldev: pin controller device
1186 */
1187int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1188{
1189        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1190                return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1191        return 0;
1192}
1193EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1194
1195/**
1196 * pinctrl_force_default() - turn a given controller device into default state
1197 * @pctldev: pin controller device
1198 */
1199int pinctrl_force_default(struct pinctrl_dev *pctldev)
1200{
1201        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1202                return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1203        return 0;
1204}
1205EXPORT_SYMBOL_GPL(pinctrl_force_default);
1206
1207#ifdef CONFIG_DEBUG_FS
1208
1209static int pinctrl_pins_show(struct seq_file *s, void *what)
1210{
1211        struct pinctrl_dev *pctldev = s->private;
1212        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1213        unsigned i, pin;
1214
1215        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1216
1217        mutex_lock(&pctldev->mutex);
1218
1219        /* The pin number can be retrived from the pin controller descriptor */
1220        for (i = 0; i < pctldev->desc->npins; i++) {
1221                struct pin_desc *desc;
1222
1223                pin = pctldev->desc->pins[i].number;
1224                desc = pin_desc_get(pctldev, pin);
1225                /* Pin space may be sparse */
1226                if (desc == NULL)
1227                        continue;
1228
1229                seq_printf(s, "pin %d (%s) ", pin,
1230                           desc->name ? desc->name : "unnamed");
1231
1232                /* Driver-specific info per pin */
1233                if (ops->pin_dbg_show)
1234                        ops->pin_dbg_show(pctldev, s, pin);
1235
1236                seq_puts(s, "\n");
1237        }
1238
1239        mutex_unlock(&pctldev->mutex);
1240
1241        return 0;
1242}
1243
1244static int pinctrl_groups_show(struct seq_file *s, void *what)
1245{
1246        struct pinctrl_dev *pctldev = s->private;
1247        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1248        unsigned ngroups, selector = 0;
1249
1250        mutex_lock(&pctldev->mutex);
1251
1252        ngroups = ops->get_groups_count(pctldev);
1253
1254        seq_puts(s, "registered pin groups:\n");
1255        while (selector < ngroups) {
1256                const unsigned *pins;
1257                unsigned num_pins;
1258                const char *gname = ops->get_group_name(pctldev, selector);
1259                const char *pname;
1260                int ret;
1261                int i;
1262
1263                ret = ops->get_group_pins(pctldev, selector,
1264                                          &pins, &num_pins);
1265                if (ret)
1266                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1267                                   gname);
1268                else {
1269                        seq_printf(s, "group: %s\n", gname);
1270                        for (i = 0; i < num_pins; i++) {
1271                                pname = pin_get_name(pctldev, pins[i]);
1272                                if (WARN_ON(!pname)) {
1273                                        mutex_unlock(&pctldev->mutex);
1274                                        return -EINVAL;
1275                                }
1276                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1277                        }
1278                        seq_puts(s, "\n");
1279                }
1280                selector++;
1281        }
1282
1283        mutex_unlock(&pctldev->mutex);
1284
1285        return 0;
1286}
1287
1288static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1289{
1290        struct pinctrl_dev *pctldev = s->private;
1291        struct pinctrl_gpio_range *range = NULL;
1292
1293        seq_puts(s, "GPIO ranges handled:\n");
1294
1295        mutex_lock(&pctldev->mutex);
1296
1297        /* Loop over the ranges */
1298        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1299                seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1300                           range->id, range->name,
1301                           range->base, (range->base + range->npins - 1),
1302                           range->pin_base,
1303                           (range->pin_base + range->npins - 1));
1304        }
1305
1306        mutex_unlock(&pctldev->mutex);
1307
1308        return 0;
1309}
1310
1311static int pinctrl_devices_show(struct seq_file *s, void *what)
1312{
1313        struct pinctrl_dev *pctldev;
1314
1315        seq_puts(s, "name [pinmux] [pinconf]\n");
1316
1317        mutex_lock(&pinctrldev_list_mutex);
1318
1319        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1320                seq_printf(s, "%s ", pctldev->desc->name);
1321                if (pctldev->desc->pmxops)
1322                        seq_puts(s, "yes ");
1323                else
1324                        seq_puts(s, "no ");
1325                if (pctldev->desc->confops)
1326                        seq_puts(s, "yes");
1327                else
1328                        seq_puts(s, "no");
1329                seq_puts(s, "\n");
1330        }
1331
1332        mutex_unlock(&pinctrldev_list_mutex);
1333
1334        return 0;
1335}
1336
1337static inline const char *map_type(enum pinctrl_map_type type)
1338{
1339        static const char * const names[] = {
1340                "INVALID",
1341                "DUMMY_STATE",
1342                "MUX_GROUP",
1343                "CONFIGS_PIN",
1344                "CONFIGS_GROUP",
1345        };
1346
1347        if (type >= ARRAY_SIZE(names))
1348                return "UNKNOWN";
1349
1350        return names[type];
1351}
1352
1353static int pinctrl_maps_show(struct seq_file *s, void *what)
1354{
1355        struct pinctrl_maps *maps_node;
1356        int i;
1357        struct pinctrl_map const *map;
1358
1359        seq_puts(s, "Pinctrl maps:\n");
1360
1361        mutex_lock(&pinctrl_maps_mutex);
1362        for_each_maps(maps_node, i, map) {
1363                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1364                           map->dev_name, map->name, map_type(map->type),
1365                           map->type);
1366
1367                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1368                        seq_printf(s, "controlling device %s\n",
1369                                   map->ctrl_dev_name);
1370
1371                switch (map->type) {
1372                case PIN_MAP_TYPE_MUX_GROUP:
1373                        pinmux_show_map(s, map);
1374                        break;
1375                case PIN_MAP_TYPE_CONFIGS_PIN:
1376                case PIN_MAP_TYPE_CONFIGS_GROUP:
1377                        pinconf_show_map(s, map);
1378                        break;
1379                default:
1380                        break;
1381                }
1382
1383                seq_printf(s, "\n");
1384        }
1385        mutex_unlock(&pinctrl_maps_mutex);
1386
1387        return 0;
1388}
1389
1390static int pinctrl_show(struct seq_file *s, void *what)
1391{
1392        struct pinctrl *p;
1393        struct pinctrl_state *state;
1394        struct pinctrl_setting *setting;
1395
1396        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1397
1398        mutex_lock(&pinctrl_list_mutex);
1399
1400        list_for_each_entry(p, &pinctrl_list, node) {
1401                seq_printf(s, "device: %s current state: %s\n",
1402                           dev_name(p->dev),
1403                           p->state ? p->state->name : "none");
1404
1405                list_for_each_entry(state, &p->states, node) {
1406                        seq_printf(s, "  state: %s\n", state->name);
1407
1408                        list_for_each_entry(setting, &state->settings, node) {
1409                                struct pinctrl_dev *pctldev = setting->pctldev;
1410
1411                                seq_printf(s, "    type: %s controller %s ",
1412                                           map_type(setting->type),
1413                                           pinctrl_dev_get_name(pctldev));
1414
1415                                switch (setting->type) {
1416                                case PIN_MAP_TYPE_MUX_GROUP:
1417                                        pinmux_show_setting(s, setting);
1418                                        break;
1419                                case PIN_MAP_TYPE_CONFIGS_PIN:
1420                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1421                                        pinconf_show_setting(s, setting);
1422                                        break;
1423                                default:
1424                                        break;
1425                                }
1426                        }
1427                }
1428        }
1429
1430        mutex_unlock(&pinctrl_list_mutex);
1431
1432        return 0;
1433}
1434
1435static int pinctrl_pins_open(struct inode *inode, struct file *file)
1436{
1437        return single_open(file, pinctrl_pins_show, inode->i_private);
1438}
1439
1440static int pinctrl_groups_open(struct inode *inode, struct file *file)
1441{
1442        return single_open(file, pinctrl_groups_show, inode->i_private);
1443}
1444
1445static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1446{
1447        return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1448}
1449
1450static int pinctrl_devices_open(struct inode *inode, struct file *file)
1451{
1452        return single_open(file, pinctrl_devices_show, NULL);
1453}
1454
1455static int pinctrl_maps_open(struct inode *inode, struct file *file)
1456{
1457        return single_open(file, pinctrl_maps_show, NULL);
1458}
1459
1460static int pinctrl_open(struct inode *inode, struct file *file)
1461{
1462        return single_open(file, pinctrl_show, NULL);
1463}
1464
1465static const struct file_operations pinctrl_pins_ops = {
1466        .open           = pinctrl_pins_open,
1467        .read           = seq_read,
1468        .llseek         = seq_lseek,
1469        .release        = single_release,
1470};
1471
1472static const struct file_operations pinctrl_groups_ops = {
1473        .open           = pinctrl_groups_open,
1474        .read           = seq_read,
1475        .llseek         = seq_lseek,
1476        .release        = single_release,
1477};
1478
1479static const struct file_operations pinctrl_gpioranges_ops = {
1480        .open           = pinctrl_gpioranges_open,
1481        .read           = seq_read,
1482        .llseek         = seq_lseek,
1483        .release        = single_release,
1484};
1485
1486static const struct file_operations pinctrl_devices_ops = {
1487        .open           = pinctrl_devices_open,
1488        .read           = seq_read,
1489        .llseek         = seq_lseek,
1490        .release        = single_release,
1491};
1492
1493static const struct file_operations pinctrl_maps_ops = {
1494        .open           = pinctrl_maps_open,
1495        .read           = seq_read,
1496        .llseek         = seq_lseek,
1497        .release        = single_release,
1498};
1499
1500static const struct file_operations pinctrl_ops = {
1501        .open           = pinctrl_open,
1502        .read           = seq_read,
1503        .llseek         = seq_lseek,
1504        .release        = single_release,
1505};
1506
1507static struct dentry *debugfs_root;
1508
1509static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1510{
1511        struct dentry *device_root;
1512
1513        device_root = debugfs_create_dir(dev_name(pctldev->dev),
1514                                         debugfs_root);
1515        pctldev->device_root = device_root;
1516
1517        if (IS_ERR(device_root) || !device_root) {
1518                pr_warn("failed to create debugfs directory for %s\n",
1519                        dev_name(pctldev->dev));
1520                return;
1521        }
1522        debugfs_create_file("pins", S_IFREG | S_IRUGO,
1523                            device_root, pctldev, &pinctrl_pins_ops);
1524        debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1525                            device_root, pctldev, &pinctrl_groups_ops);
1526        debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1527                            device_root, pctldev, &pinctrl_gpioranges_ops);
1528        pinmux_init_device_debugfs(device_root, pctldev);
1529        pinconf_init_device_debugfs(device_root, pctldev);
1530}
1531
1532static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1533{
1534        debugfs_remove_recursive(pctldev->device_root);
1535}
1536
1537static void pinctrl_init_debugfs(void)
1538{
1539        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1540        if (IS_ERR(debugfs_root) || !debugfs_root) {
1541                pr_warn("failed to create debugfs directory\n");
1542                debugfs_root = NULL;
1543                return;
1544        }
1545
1546        debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1547                            debugfs_root, NULL, &pinctrl_devices_ops);
1548        debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1549                            debugfs_root, NULL, &pinctrl_maps_ops);
1550        debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1551                            debugfs_root, NULL, &pinctrl_ops);
1552}
1553
1554#else /* CONFIG_DEBUG_FS */
1555
1556static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1557{
1558}
1559
1560static void pinctrl_init_debugfs(void)
1561{
1562}
1563
1564static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1565{
1566}
1567
1568#endif
1569
1570static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1571{
1572        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1573
1574        if (!ops ||
1575            !ops->get_groups_count ||
1576            !ops->get_group_name ||
1577            !ops->get_group_pins)
1578                return -EINVAL;
1579
1580        if (ops->dt_node_to_map && !ops->dt_free_map)
1581                return -EINVAL;
1582
1583        return 0;
1584}
1585
1586/**
1587 * pinctrl_register() - register a pin controller device
1588 * @pctldesc: descriptor for this pin controller
1589 * @dev: parent device for this pin controller
1590 * @driver_data: private pin controller data for this pin controller
1591 */
1592struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1593                                    struct device *dev, void *driver_data)
1594{
1595        struct pinctrl_dev *pctldev;
1596        int ret;
1597
1598        if (!pctldesc)
1599                return NULL;
1600        if (!pctldesc->name)
1601                return NULL;
1602
1603        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1604        if (pctldev == NULL) {
1605                dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1606                return NULL;
1607        }
1608
1609        /* Initialize pin control device struct */
1610        pctldev->owner = pctldesc->owner;
1611        pctldev->desc = pctldesc;
1612        pctldev->driver_data = driver_data;
1613        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1614        INIT_LIST_HEAD(&pctldev->gpio_ranges);
1615        pctldev->dev = dev;
1616        mutex_init(&pctldev->mutex);
1617
1618        /* check core ops for sanity */
1619        if (pinctrl_check_ops(pctldev)) {
1620                dev_err(dev, "pinctrl ops lacks necessary functions\n");
1621                goto out_err;
1622        }
1623
1624        /* If we're implementing pinmuxing, check the ops for sanity */
1625        if (pctldesc->pmxops) {
1626                if (pinmux_check_ops(pctldev))
1627                        goto out_err;
1628        }
1629
1630        /* If we're implementing pinconfig, check the ops for sanity */
1631        if (pctldesc->confops) {
1632                if (pinconf_check_ops(pctldev))
1633                        goto out_err;
1634        }
1635
1636        /* Register all the pins */
1637        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1638        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1639        if (ret) {
1640                dev_err(dev, "error during pin registration\n");
1641                pinctrl_free_pindescs(pctldev, pctldesc->pins,
1642                                      pctldesc->npins);
1643                goto out_err;
1644        }
1645
1646        mutex_lock(&pinctrldev_list_mutex);
1647        list_add_tail(&pctldev->node, &pinctrldev_list);
1648        mutex_unlock(&pinctrldev_list_mutex);
1649
1650        pctldev->p = pinctrl_get(pctldev->dev);
1651
1652        if (!IS_ERR(pctldev->p)) {
1653                pctldev->hog_default =
1654                        pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1655                if (IS_ERR(pctldev->hog_default)) {
1656                        dev_dbg(dev, "failed to lookup the default state\n");
1657                } else {
1658                        if (pinctrl_select_state(pctldev->p,
1659                                                pctldev->hog_default))
1660                                dev_err(dev,
1661                                        "failed to select default state\n");
1662                }
1663
1664                pctldev->hog_sleep =
1665                        pinctrl_lookup_state(pctldev->p,
1666                                                    PINCTRL_STATE_SLEEP);
1667                if (IS_ERR(pctldev->hog_sleep))
1668                        dev_dbg(dev, "failed to lookup the sleep state\n");
1669        }
1670
1671        pinctrl_init_device_debugfs(pctldev);
1672
1673        return pctldev;
1674
1675out_err:
1676        mutex_destroy(&pctldev->mutex);
1677        kfree(pctldev);
1678        return NULL;
1679}
1680EXPORT_SYMBOL_GPL(pinctrl_register);
1681
1682/**
1683 * pinctrl_unregister() - unregister pinmux
1684 * @pctldev: pin controller to unregister
1685 *
1686 * Called by pinmux drivers to unregister a pinmux.
1687 */
1688void pinctrl_unregister(struct pinctrl_dev *pctldev)
1689{
1690        struct pinctrl_gpio_range *range, *n;
1691        if (pctldev == NULL)
1692                return;
1693
1694        mutex_lock(&pinctrldev_list_mutex);
1695        mutex_lock(&pctldev->mutex);
1696
1697        pinctrl_remove_device_debugfs(pctldev);
1698
1699        if (!IS_ERR(pctldev->p))
1700                pinctrl_put(pctldev->p);
1701
1702        /* TODO: check that no pinmuxes are still active? */
1703        list_del(&pctldev->node);
1704        /* Destroy descriptor tree */
1705        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1706                              pctldev->desc->npins);
1707        /* remove gpio ranges map */
1708        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1709                list_del(&range->node);
1710
1711        mutex_unlock(&pctldev->mutex);
1712        mutex_destroy(&pctldev->mutex);
1713        kfree(pctldev);
1714        mutex_unlock(&pinctrldev_list_mutex);
1715}
1716EXPORT_SYMBOL_GPL(pinctrl_unregister);
1717
1718static int __init pinctrl_init(void)
1719{
1720        pr_info("initialized pinctrl subsystem\n");
1721        pinctrl_init_debugfs();
1722        return 0;
1723}
1724
1725/* init early since many drivers really need to initialized pinmux early */
1726core_initcall(pinctrl_init);
1727
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.