linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81        .prereset               = ata_std_prereset,
  82        .postreset              = ata_std_postreset,
  83        .error_handler          = ata_std_error_handler,
  84        .sched_eh               = ata_std_sched_eh,
  85        .end_eh                 = ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89        .inherits               = &ata_base_port_ops,
  90
  91        .qc_defer               = ata_std_qc_defer,
  92        .hardreset              = sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96                                        u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104        const char      *name;
 105        unsigned int    cbl;
 106        int             spd_limit;
 107        unsigned long   xfer_mask;
 108        unsigned int    horkage_on;
 109        unsigned int    horkage_off;
 110        unsigned int    lflags;
 111};
 112
 113struct ata_force_ent {
 114        int                     port;
 115        int                     device;
 116        struct ata_force_param  param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175        return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *      ata_link_next - link iteration helper
 180 *      @link: the previous link, NULL to start
 181 *      @ap: ATA port containing links to iterate
 182 *      @mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *      LOCKING:
 185 *      Host lock or EH context.
 186 *
 187 *      RETURNS:
 188 *      Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191                               enum ata_link_iter_mode mode)
 192{
 193        BUG_ON(mode != ATA_LITER_EDGE &&
 194               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196        /* NULL link indicates start of iteration */
 197        if (!link)
 198                switch (mode) {
 199                case ATA_LITER_EDGE:
 200                case ATA_LITER_PMP_FIRST:
 201                        if (sata_pmp_attached(ap))
 202                                return ap->pmp_link;
 203                        /* fall through */
 204                case ATA_LITER_HOST_FIRST:
 205                        return &ap->link;
 206                }
 207
 208        /* we just iterated over the host link, what's next? */
 209        if (link == &ap->link)
 210                switch (mode) {
 211                case ATA_LITER_HOST_FIRST:
 212                        if (sata_pmp_attached(ap))
 213                                return ap->pmp_link;
 214                        /* fall through */
 215                case ATA_LITER_PMP_FIRST:
 216                        if (unlikely(ap->slave_link))
 217                                return ap->slave_link;
 218                        /* fall through */
 219                case ATA_LITER_EDGE:
 220                        return NULL;
 221                }
 222
 223        /* slave_link excludes PMP */
 224        if (unlikely(link == ap->slave_link))
 225                return NULL;
 226
 227        /* we were over a PMP link */
 228        if (++link < ap->pmp_link + ap->nr_pmp_links)
 229                return link;
 230
 231        if (mode == ATA_LITER_PMP_FIRST)
 232                return &ap->link;
 233
 234        return NULL;
 235}
 236
 237/**
 238 *      ata_dev_next - device iteration helper
 239 *      @dev: the previous device, NULL to start
 240 *      @link: ATA link containing devices to iterate
 241 *      @mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *      LOCKING:
 244 *      Host lock or EH context.
 245 *
 246 *      RETURNS:
 247 *      Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250                                enum ata_dev_iter_mode mode)
 251{
 252        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255        /* NULL dev indicates start of iteration */
 256        if (!dev)
 257                switch (mode) {
 258                case ATA_DITER_ENABLED:
 259                case ATA_DITER_ALL:
 260                        dev = link->device;
 261                        goto check;
 262                case ATA_DITER_ENABLED_REVERSE:
 263                case ATA_DITER_ALL_REVERSE:
 264                        dev = link->device + ata_link_max_devices(link) - 1;
 265                        goto check;
 266                }
 267
 268 next:
 269        /* move to the next one */
 270        switch (mode) {
 271        case ATA_DITER_ENABLED:
 272        case ATA_DITER_ALL:
 273                if (++dev < link->device + ata_link_max_devices(link))
 274                        goto check;
 275                return NULL;
 276        case ATA_DITER_ENABLED_REVERSE:
 277        case ATA_DITER_ALL_REVERSE:
 278                if (--dev >= link->device)
 279                        goto check;
 280                return NULL;
 281        }
 282
 283 check:
 284        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285            !ata_dev_enabled(dev))
 286                goto next;
 287        return dev;
 288}
 289
 290/**
 291 *      ata_dev_phys_link - find physical link for a device
 292 *      @dev: ATA device to look up physical link for
 293 *
 294 *      Look up physical link which @dev is attached to.  Note that
 295 *      this is different from @dev->link only when @dev is on slave
 296 *      link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *      LOCKING:
 299 *      Don't care.
 300 *
 301 *      RETURNS:
 302 *      Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306        struct ata_port *ap = dev->link->ap;
 307
 308        if (!ap->slave_link)
 309                return dev->link;
 310        if (!dev->devno)
 311                return &ap->link;
 312        return ap->slave_link;
 313}
 314
 315/**
 316 *      ata_force_cbl - force cable type according to libata.force
 317 *      @ap: ATA port of interest
 318 *
 319 *      Force cable type according to libata.force and whine about it.
 320 *      The last entry which has matching port number is used, so it
 321 *      can be specified as part of device force parameters.  For
 322 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *      same effect.
 324 *
 325 *      LOCKING:
 326 *      EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330        int i;
 331
 332        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333                const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335                if (fe->port != -1 && fe->port != ap->print_id)
 336                        continue;
 337
 338                if (fe->param.cbl == ATA_CBL_NONE)
 339                        continue;
 340
 341                ap->cbl = fe->param.cbl;
 342                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343                return;
 344        }
 345}
 346
 347/**
 348 *      ata_force_link_limits - force link limits according to libata.force
 349 *      @link: ATA link of interest
 350 *
 351 *      Force link flags and SATA spd limit according to libata.force
 352 *      and whine about it.  When only the port part is specified
 353 *      (e.g. 1:), the limit applies to all links connected to both
 354 *      the host link and all fan-out ports connected via PMP.  If the
 355 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *      first fan-out link not the host link.  Device number 15 always
 357 *      points to the host link whether PMP is attached or not.  If the
 358 *      controller has slave link, device number 16 points to it.
 359 *
 360 *      LOCKING:
 361 *      EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365        bool did_spd = false;
 366        int linkno = link->pmp;
 367        int i;
 368
 369        if (ata_is_host_link(link))
 370                linkno += 15;
 371
 372        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373                const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375                if (fe->port != -1 && fe->port != link->ap->print_id)
 376                        continue;
 377
 378                if (fe->device != -1 && fe->device != linkno)
 379                        continue;
 380
 381                /* only honor the first spd limit */
 382                if (!did_spd && fe->param.spd_limit) {
 383                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385                                        fe->param.name);
 386                        did_spd = true;
 387                }
 388
 389                /* let lflags stack */
 390                if (fe->param.lflags) {
 391                        link->flags |= fe->param.lflags;
 392                        ata_link_notice(link,
 393                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 394                                        fe->param.lflags, link->flags);
 395                }
 396        }
 397}
 398
 399/**
 400 *      ata_force_xfermask - force xfermask according to libata.force
 401 *      @dev: ATA device of interest
 402 *
 403 *      Force xfer_mask according to libata.force and whine about it.
 404 *      For consistency with link selection, device number 15 selects
 405 *      the first device connected to the host link.
 406 *
 407 *      LOCKING:
 408 *      EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412        int devno = dev->link->pmp + dev->devno;
 413        int alt_devno = devno;
 414        int i;
 415
 416        /* allow n.15/16 for devices attached to host port */
 417        if (ata_is_host_link(dev->link))
 418                alt_devno += 15;
 419
 420        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421                const struct ata_force_ent *fe = &ata_force_tbl[i];
 422                unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425                        continue;
 426
 427                if (fe->device != -1 && fe->device != devno &&
 428                    fe->device != alt_devno)
 429                        continue;
 430
 431                if (!fe->param.xfer_mask)
 432                        continue;
 433
 434                ata_unpack_xfermask(fe->param.xfer_mask,
 435                                    &pio_mask, &mwdma_mask, &udma_mask);
 436                if (udma_mask)
 437                        dev->udma_mask = udma_mask;
 438                else if (mwdma_mask) {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = mwdma_mask;
 441                } else {
 442                        dev->udma_mask = 0;
 443                        dev->mwdma_mask = 0;
 444                        dev->pio_mask = pio_mask;
 445                }
 446
 447                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448                               fe->param.name);
 449                return;
 450        }
 451}
 452
 453/**
 454 *      ata_force_horkage - force horkage according to libata.force
 455 *      @dev: ATA device of interest
 456 *
 457 *      Force horkage according to libata.force and whine about it.
 458 *      For consistency with link selection, device number 15 selects
 459 *      the first device connected to the host link.
 460 *
 461 *      LOCKING:
 462 *      EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466        int devno = dev->link->pmp + dev->devno;
 467        int alt_devno = devno;
 468        int i;
 469
 470        /* allow n.15/16 for devices attached to host port */
 471        if (ata_is_host_link(dev->link))
 472                alt_devno += 15;
 473
 474        for (i = 0; i < ata_force_tbl_size; i++) {
 475                const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478                        continue;
 479
 480                if (fe->device != -1 && fe->device != devno &&
 481                    fe->device != alt_devno)
 482                        continue;
 483
 484                if (!(~dev->horkage & fe->param.horkage_on) &&
 485                    !(dev->horkage & fe->param.horkage_off))
 486                        continue;
 487
 488                dev->horkage |= fe->param.horkage_on;
 489                dev->horkage &= ~fe->param.horkage_off;
 490
 491                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492                               fe->param.name);
 493        }
 494}
 495
 496/**
 497 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *      @opcode: SCSI opcode
 499 *
 500 *      Determine ATAPI command type from @opcode.
 501 *
 502 *      LOCKING:
 503 *      None.
 504 *
 505 *      RETURNS:
 506 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510        switch (opcode) {
 511        case GPCMD_READ_10:
 512        case GPCMD_READ_12:
 513                return ATAPI_READ;
 514
 515        case GPCMD_WRITE_10:
 516        case GPCMD_WRITE_12:
 517        case GPCMD_WRITE_AND_VERIFY_10:
 518                return ATAPI_WRITE;
 519
 520        case GPCMD_READ_CD:
 521        case GPCMD_READ_CD_MSF:
 522                return ATAPI_READ_CD;
 523
 524        case ATA_16:
 525        case ATA_12:
 526                if (atapi_passthru16)
 527                        return ATAPI_PASS_THRU;
 528                /* fall thru */
 529        default:
 530                return ATAPI_MISC;
 531        }
 532}
 533
 534/**
 535 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *      @tf: Taskfile to convert
 537 *      @pmp: Port multiplier port
 538 *      @is_cmd: This FIS is for command
 539 *      @fis: Buffer into which data will output
 540 *
 541 *      Converts a standard ATA taskfile to a Serial ATA
 542 *      FIS structure (Register - Host to Device).
 543 *
 544 *      LOCKING:
 545 *      Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 550        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 551        if (is_cmd)
 552                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 553
 554        fis[2] = tf->command;
 555        fis[3] = tf->feature;
 556
 557        fis[4] = tf->lbal;
 558        fis[5] = tf->lbam;
 559        fis[6] = tf->lbah;
 560        fis[7] = tf->device;
 561
 562        fis[8] = tf->hob_lbal;
 563        fis[9] = tf->hob_lbam;
 564        fis[10] = tf->hob_lbah;
 565        fis[11] = tf->hob_feature;
 566
 567        fis[12] = tf->nsect;
 568        fis[13] = tf->hob_nsect;
 569        fis[14] = 0;
 570        fis[15] = tf->ctl;
 571
 572        fis[16] = 0;
 573        fis[17] = 0;
 574        fis[18] = 0;
 575        fis[19] = 0;
 576}
 577
 578/**
 579 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *      @fis: Buffer from which data will be input
 581 *      @tf: Taskfile to output
 582 *
 583 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *      LOCKING:
 586 *      Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591        tf->command     = fis[2];       /* status */
 592        tf->feature     = fis[3];       /* error */
 593
 594        tf->lbal        = fis[4];
 595        tf->lbam        = fis[5];
 596        tf->lbah        = fis[6];
 597        tf->device      = fis[7];
 598
 599        tf->hob_lbal    = fis[8];
 600        tf->hob_lbam    = fis[9];
 601        tf->hob_lbah    = fis[10];
 602
 603        tf->nsect       = fis[12];
 604        tf->hob_nsect   = fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608        /* pio multi */
 609        ATA_CMD_READ_MULTI,
 610        ATA_CMD_WRITE_MULTI,
 611        ATA_CMD_READ_MULTI_EXT,
 612        ATA_CMD_WRITE_MULTI_EXT,
 613        0,
 614        0,
 615        0,
 616        ATA_CMD_WRITE_MULTI_FUA_EXT,
 617        /* pio */
 618        ATA_CMD_PIO_READ,
 619        ATA_CMD_PIO_WRITE,
 620        ATA_CMD_PIO_READ_EXT,
 621        ATA_CMD_PIO_WRITE_EXT,
 622        0,
 623        0,
 624        0,
 625        0,
 626        /* dma */
 627        ATA_CMD_READ,
 628        ATA_CMD_WRITE,
 629        ATA_CMD_READ_EXT,
 630        ATA_CMD_WRITE_EXT,
 631        0,
 632        0,
 633        0,
 634        ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *      @tf: command to examine and configure
 640 *      @dev: device tf belongs to
 641 *
 642 *      Examine the device configuration and tf->flags to calculate
 643 *      the proper read/write commands and protocol to use.
 644 *
 645 *      LOCKING:
 646 *      caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650        u8 cmd;
 651
 652        int index, fua, lba48, write;
 653
 654        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658        if (dev->flags & ATA_DFLAG_PIO) {
 659                tf->protocol = ATA_PROT_PIO;
 660                index = dev->multi_count ? 0 : 8;
 661        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662                /* Unable to use DMA due to host limitation */
 663                tf->protocol = ATA_PROT_PIO;
 664                index = dev->multi_count ? 0 : 8;
 665        } else {
 666                tf->protocol = ATA_PROT_DMA;
 667                index = 16;
 668        }
 669
 670        cmd = ata_rw_cmds[index + fua + lba48 + write];
 671        if (cmd) {
 672                tf->command = cmd;
 673                return 0;
 674        }
 675        return -1;
 676}
 677
 678/**
 679 *      ata_tf_read_block - Read block address from ATA taskfile
 680 *      @tf: ATA taskfile of interest
 681 *      @dev: ATA device @tf belongs to
 682 *
 683 *      LOCKING:
 684 *      None.
 685 *
 686 *      Read block address from @tf.  This function can handle all
 687 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *      flags select the address format to use.
 689 *
 690 *      RETURNS:
 691 *      Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695        u64 block = 0;
 696
 697        if (tf->flags & ATA_TFLAG_LBA) {
 698                if (tf->flags & ATA_TFLAG_LBA48) {
 699                        block |= (u64)tf->hob_lbah << 40;
 700                        block |= (u64)tf->hob_lbam << 32;
 701                        block |= (u64)tf->hob_lbal << 24;
 702                } else
 703                        block |= (tf->device & 0xf) << 24;
 704
 705                block |= tf->lbah << 16;
 706                block |= tf->lbam << 8;
 707                block |= tf->lbal;
 708        } else {
 709                u32 cyl, head, sect;
 710
 711                cyl = tf->lbam | (tf->lbah << 8);
 712                head = tf->device & 0xf;
 713                sect = tf->lbal;
 714
 715                if (!sect) {
 716                        ata_dev_warn(dev,
 717                                     "device reported invalid CHS sector 0\n");
 718                        sect = 1; /* oh well */
 719                }
 720
 721                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722        }
 723
 724        return block;
 725}
 726
 727/**
 728 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *      @tf: Target ATA taskfile
 730 *      @dev: ATA device @tf belongs to
 731 *      @block: Block address
 732 *      @n_block: Number of blocks
 733 *      @tf_flags: RW/FUA etc...
 734 *      @tag: tag
 735 *
 736 *      LOCKING:
 737 *      None.
 738 *
 739 *      Build ATA taskfile @tf for read/write request described by
 740 *      @block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *      RETURNS:
 743 *
 744 *      0 on success, -ERANGE if the request is too large for @dev,
 745 *      -EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748                    u64 block, u32 n_block, unsigned int tf_flags,
 749                    unsigned int tag)
 750{
 751        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752        tf->flags |= tf_flags;
 753
 754        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755                /* yay, NCQ */
 756                if (!lba_48_ok(block, n_block))
 757                        return -ERANGE;
 758
 759                tf->protocol = ATA_PROT_NCQ;
 760                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762                if (tf->flags & ATA_TFLAG_WRITE)
 763                        tf->command = ATA_CMD_FPDMA_WRITE;
 764                else
 765                        tf->command = ATA_CMD_FPDMA_READ;
 766
 767                tf->nsect = tag << 3;
 768                tf->hob_feature = (n_block >> 8) & 0xff;
 769                tf->feature = n_block & 0xff;
 770
 771                tf->hob_lbah = (block >> 40) & 0xff;
 772                tf->hob_lbam = (block >> 32) & 0xff;
 773                tf->hob_lbal = (block >> 24) & 0xff;
 774                tf->lbah = (block >> 16) & 0xff;
 775                tf->lbam = (block >> 8) & 0xff;
 776                tf->lbal = block & 0xff;
 777
 778                tf->device = ATA_LBA;
 779                if (tf->flags & ATA_TFLAG_FUA)
 780                        tf->device |= 1 << 7;
 781        } else if (dev->flags & ATA_DFLAG_LBA) {
 782                tf->flags |= ATA_TFLAG_LBA;
 783
 784                if (lba_28_ok(block, n_block)) {
 785                        /* use LBA28 */
 786                        tf->device |= (block >> 24) & 0xf;
 787                } else if (lba_48_ok(block, n_block)) {
 788                        if (!(dev->flags & ATA_DFLAG_LBA48))
 789                                return -ERANGE;
 790
 791                        /* use LBA48 */
 792                        tf->flags |= ATA_TFLAG_LBA48;
 793
 794                        tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796                        tf->hob_lbah = (block >> 40) & 0xff;
 797                        tf->hob_lbam = (block >> 32) & 0xff;
 798                        tf->hob_lbal = (block >> 24) & 0xff;
 799                } else
 800                        /* request too large even for LBA48 */
 801                        return -ERANGE;
 802
 803                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804                        return -EINVAL;
 805
 806                tf->nsect = n_block & 0xff;
 807
 808                tf->lbah = (block >> 16) & 0xff;
 809                tf->lbam = (block >> 8) & 0xff;
 810                tf->lbal = block & 0xff;
 811
 812                tf->device |= ATA_LBA;
 813        } else {
 814                /* CHS */
 815                u32 sect, head, cyl, track;
 816
 817                /* The request -may- be too large for CHS addressing. */
 818                if (!lba_28_ok(block, n_block))
 819                        return -ERANGE;
 820
 821                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822                        return -EINVAL;
 823
 824                /* Convert LBA to CHS */
 825                track = (u32)block / dev->sectors;
 826                cyl   = track / dev->heads;
 827                head  = track % dev->heads;
 828                sect  = (u32)block % dev->sectors + 1;
 829
 830                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831                        (u32)block, track, cyl, head, sect);
 832
 833                /* Check whether the converted CHS can fit.
 834                   Cylinder: 0-65535
 835                   Head: 0-15
 836                   Sector: 1-255*/
 837                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838                        return -ERANGE;
 839
 840                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841                tf->lbal = sect;
 842                tf->lbam = cyl;
 843                tf->lbah = cyl >> 8;
 844                tf->device |= head;
 845        }
 846
 847        return 0;
 848}
 849
 850/**
 851 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *      @pio_mask: pio_mask
 853 *      @mwdma_mask: mwdma_mask
 854 *      @udma_mask: udma_mask
 855 *
 856 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *      unsigned int xfer_mask.
 858 *
 859 *      LOCKING:
 860 *      None.
 861 *
 862 *      RETURNS:
 863 *      Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866                                unsigned long mwdma_mask,
 867                                unsigned long udma_mask)
 868{
 869        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *      @xfer_mask: xfer_mask to unpack
 877 *      @pio_mask: resulting pio_mask
 878 *      @mwdma_mask: resulting mwdma_mask
 879 *      @udma_mask: resulting udma_mask
 880 *
 881 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *      Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887        if (pio_mask)
 888                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889        if (mwdma_mask)
 890                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891        if (udma_mask)
 892                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896        int shift, bits;
 897        u8 base;
 898} ata_xfer_tbl[] = {
 899        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902        { -1, },
 903};
 904
 905/**
 906 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *      @xfer_mask: xfer_mask of interest
 908 *
 909 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *      bit of @xfer_mask is considered.
 911 *
 912 *      LOCKING:
 913 *      None.
 914 *
 915 *      RETURNS:
 916 *      Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920        int highbit = fls(xfer_mask) - 1;
 921        const struct ata_xfer_ent *ent;
 922
 923        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925                        return ent->base + highbit - ent->shift;
 926        return 0xff;
 927}
 928
 929/**
 930 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *      @xfer_mode: XFER_* of interest
 932 *
 933 *      Return matching xfer_mask for @xfer_mode.
 934 *
 935 *      LOCKING:
 936 *      None.
 937 *
 938 *      RETURNS:
 939 *      Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943        const struct ata_xfer_ent *ent;
 944
 945        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948                                & ~((1 << ent->shift) - 1);
 949        return 0;
 950}
 951
 952/**
 953 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *      @xfer_mode: XFER_* of interest
 955 *
 956 *      Return matching xfer_shift for @xfer_mode.
 957 *
 958 *      LOCKING:
 959 *      None.
 960 *
 961 *      RETURNS:
 962 *      Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966        const struct ata_xfer_ent *ent;
 967
 968        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970                        return ent->shift;
 971        return -1;
 972}
 973
 974/**
 975 *      ata_mode_string - convert xfer_mask to string
 976 *      @xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *      Determine string which represents the highest speed
 979 *      (highest bit in @modemask).
 980 *
 981 *      LOCKING:
 982 *      None.
 983 *
 984 *      RETURNS:
 985 *      Constant C string representing highest speed listed in
 986 *      @mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990        static const char * const xfer_mode_str[] = {
 991                "PIO0",
 992                "PIO1",
 993                "PIO2",
 994                "PIO3",
 995                "PIO4",
 996                "PIO5",
 997                "PIO6",
 998                "MWDMA0",
 999                "MWDMA1",
1000                "MWDMA2",
1001                "MWDMA3",
1002                "MWDMA4",
1003                "UDMA/16",
1004                "UDMA/25",
1005                "UDMA/33",
1006                "UDMA/44",
1007                "UDMA/66",
1008                "UDMA/100",
1009                "UDMA/133",
1010                "UDMA7",
1011        };
1012        int highbit;
1013
1014        highbit = fls(xfer_mask) - 1;
1015        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016                return xfer_mode_str[highbit];
1017        return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022        static const char * const spd_str[] = {
1023                "1.5 Gbps",
1024                "3.0 Gbps",
1025                "6.0 Gbps",
1026        };
1027
1028        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029                return "<unknown>";
1030        return spd_str[spd - 1];
1031}
1032
1033/**
1034 *      ata_dev_classify - determine device type based on ATA-spec signature
1035 *      @tf: ATA taskfile register set for device to be identified
1036 *
1037 *      Determine from taskfile register contents whether a device is
1038 *      ATA or ATAPI, as per "Signature and persistence" section
1039 *      of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *      LOCKING:
1042 *      None.
1043 *
1044 *      RETURNS:
1045 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *      %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050        /* Apple's open source Darwin code hints that some devices only
1051         * put a proper signature into the LBA mid/high registers,
1052         * So, we only check those.  It's sufficient for uniqueness.
1053         *
1054         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055         * signatures for ATA and ATAPI devices attached on SerialATA,
1056         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057         * spec has never mentioned about using different signatures
1058         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059         * Multiplier specification began to use 0x69/0x96 to identify
1060         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062         * 0x69/0x96 shortly and described them as reserved for
1063         * SerialATA.
1064         *
1065         * We follow the current spec and consider that 0x69/0x96
1066         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068         * SEMB signature.  This is worked around in
1069         * ata_dev_read_id().
1070         */
1071        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072                DPRINTK("found ATA device by sig\n");
1073                return ATA_DEV_ATA;
1074        }
1075
1076        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077                DPRINTK("found ATAPI device by sig\n");
1078                return ATA_DEV_ATAPI;
1079        }
1080
1081        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082                DPRINTK("found PMP device by sig\n");
1083                return ATA_DEV_PMP;
1084        }
1085
1086        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088                return ATA_DEV_SEMB;
1089        }
1090
1091        DPRINTK("unknown device\n");
1092        return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *      @id: IDENTIFY DEVICE results we will examine
1098 *      @s: string into which data is output
1099 *      @ofs: offset into identify device page
1100 *      @len: length of string to return. must be an even number.
1101 *
1102 *      The strings in the IDENTIFY DEVICE page are broken up into
1103 *      16-bit chunks.  Run through the string, and output each
1104 *      8-bit chunk linearly, regardless of platform.
1105 *
1106 *      LOCKING:
1107 *      caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111                   unsigned int ofs, unsigned int len)
1112{
1113        unsigned int c;
1114
1115        BUG_ON(len & 1);
1116
1117        while (len > 0) {
1118                c = id[ofs] >> 8;
1119                *s = c;
1120                s++;
1121
1122                c = id[ofs] & 0xff;
1123                *s = c;
1124                s++;
1125
1126                ofs++;
1127                len -= 2;
1128        }
1129}
1130
1131/**
1132 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *      @id: IDENTIFY DEVICE results we will examine
1134 *      @s: string into which data is output
1135 *      @ofs: offset into identify device page
1136 *      @len: length of string to return. must be an odd number.
1137 *
1138 *      This function is identical to ata_id_string except that it
1139 *      trims trailing spaces and terminates the resulting string with
1140 *      null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *      LOCKING:
1143 *      caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146                     unsigned int ofs, unsigned int len)
1147{
1148        unsigned char *p;
1149
1150        ata_id_string(id, s, ofs, len - 1);
1151
1152        p = s + strnlen(s, len - 1);
1153        while (p > s && p[-1] == ' ')
1154                p--;
1155        *p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160        if (ata_id_has_lba(id)) {
1161                if (ata_id_has_lba48(id))
1162                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163                else
1164                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165        } else {
1166                if (ata_id_current_chs_valid(id))
1167                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168                               id[ATA_ID_CUR_SECTORS];
1169                else
1170                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171                               id[ATA_ID_SECTORS];
1172        }
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177        u64 sectors = 0;
1178
1179        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182        sectors |= (tf->lbah & 0xff) << 16;
1183        sectors |= (tf->lbam & 0xff) << 8;
1184        sectors |= (tf->lbal & 0xff);
1185
1186        return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191        u64 sectors = 0;
1192
1193        sectors |= (tf->device & 0x0f) << 24;
1194        sectors |= (tf->lbah & 0xff) << 16;
1195        sectors |= (tf->lbam & 0xff) << 8;
1196        sectors |= (tf->lbal & 0xff);
1197
1198        return sectors;
1199}
1200
1201/**
1202 *      ata_read_native_max_address - Read native max address
1203 *      @dev: target device
1204 *      @max_sectors: out parameter for the result native max address
1205 *
1206 *      Perform an LBA48 or LBA28 native size query upon the device in
1207 *      question.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted by the drive.
1211 *      -EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215        unsigned int err_mask;
1216        struct ata_taskfile tf;
1217        int lba48 = ata_id_has_lba48(dev->id);
1218
1219        ata_tf_init(dev, &tf);
1220
1221        /* always clear all address registers */
1222        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224        if (lba48) {
1225                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226                tf.flags |= ATA_TFLAG_LBA48;
1227        } else
1228                tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230        tf.protocol |= ATA_PROT_NODATA;
1231        tf.device |= ATA_LBA;
1232
1233        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234        if (err_mask) {
1235                ata_dev_warn(dev,
1236                             "failed to read native max address (err_mask=0x%x)\n",
1237                             err_mask);
1238                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239                        return -EACCES;
1240                return -EIO;
1241        }
1242
1243        if (lba48)
1244                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245        else
1246                *max_sectors = ata_tf_to_lba(&tf) + 1;
1247        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248                (*max_sectors)--;
1249        return 0;
1250}
1251
1252/**
1253 *      ata_set_max_sectors - Set max sectors
1254 *      @dev: target device
1255 *      @new_sectors: new max sectors value to set for the device
1256 *
1257 *      Set max sectors of @dev to @new_sectors.
1258 *
1259 *      RETURNS:
1260 *      0 on success, -EACCES if command is aborted or denied (due to
1261 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *      errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266        unsigned int err_mask;
1267        struct ata_taskfile tf;
1268        int lba48 = ata_id_has_lba48(dev->id);
1269
1270        new_sectors--;
1271
1272        ata_tf_init(dev, &tf);
1273
1274        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276        if (lba48) {
1277                tf.command = ATA_CMD_SET_MAX_EXT;
1278                tf.flags |= ATA_TFLAG_LBA48;
1279
1280                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283        } else {
1284                tf.command = ATA_CMD_SET_MAX;
1285
1286                tf.device |= (new_sectors >> 24) & 0xf;
1287        }
1288
1289        tf.protocol |= ATA_PROT_NODATA;
1290        tf.device |= ATA_LBA;
1291
1292        tf.lbal = (new_sectors >> 0) & 0xff;
1293        tf.lbam = (new_sectors >> 8) & 0xff;
1294        tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297        if (err_mask) {
1298                ata_dev_warn(dev,
1299                             "failed to set max address (err_mask=0x%x)\n",
1300                             err_mask);
1301                if (err_mask == AC_ERR_DEV &&
1302                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303                        return -EACCES;
1304                return -EIO;
1305        }
1306
1307        return 0;
1308}
1309
1310/**
1311 *      ata_hpa_resize          -       Resize a device with an HPA set
1312 *      @dev: Device to resize
1313 *
1314 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *      it if required to the full size of the media. The caller must check
1316 *      the drive has the HPA feature set enabled.
1317 *
1318 *      RETURNS:
1319 *      0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323        struct ata_eh_context *ehc = &dev->link->eh_context;
1324        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326        u64 sectors = ata_id_n_sectors(dev->id);
1327        u64 native_sectors;
1328        int rc;
1329
1330        /* do we need to do it? */
1331        if (dev->class != ATA_DEV_ATA ||
1332            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334                return 0;
1335
1336        /* read native max address */
1337        rc = ata_read_native_max_address(dev, &native_sectors);
1338        if (rc) {
1339                /* If device aborted the command or HPA isn't going to
1340                 * be unlocked, skip HPA resizing.
1341                 */
1342                if (rc == -EACCES || !unlock_hpa) {
1343                        ata_dev_warn(dev,
1344                                     "HPA support seems broken, skipping HPA handling\n");
1345                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347                        /* we can continue if device aborted the command */
1348                        if (rc == -EACCES)
1349                                rc = 0;
1350                }
1351
1352                return rc;
1353        }
1354        dev->n_native_sectors = native_sectors;
1355
1356        /* nothing to do? */
1357        if (native_sectors <= sectors || !unlock_hpa) {
1358                if (!print_info || native_sectors == sectors)
1359                        return 0;
1360
1361                if (native_sectors > sectors)
1362                        ata_dev_info(dev,
1363                                "HPA detected: current %llu, native %llu\n",
1364                                (unsigned long long)sectors,
1365                                (unsigned long long)native_sectors);
1366                else if (native_sectors < sectors)
1367                        ata_dev_warn(dev,
1368                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1369                                (unsigned long long)native_sectors,
1370                                (unsigned long long)sectors);
1371                return 0;
1372        }
1373
1374        /* let's unlock HPA */
1375        rc = ata_set_max_sectors(dev, native_sectors);
1376        if (rc == -EACCES) {
1377                /* if device aborted the command, skip HPA resizing */
1378                ata_dev_warn(dev,
1379                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380                             (unsigned long long)sectors,
1381                             (unsigned long long)native_sectors);
1382                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383                return 0;
1384        } else if (rc)
1385                return rc;
1386
1387        /* re-read IDENTIFY data */
1388        rc = ata_dev_reread_id(dev, 0);
1389        if (rc) {
1390                ata_dev_err(dev,
1391                            "failed to re-read IDENTIFY data after HPA resizing\n");
1392                return rc;
1393        }
1394
1395        if (print_info) {
1396                u64 new_sectors = ata_id_n_sectors(dev->id);
1397                ata_dev_info(dev,
1398                        "HPA unlocked: %llu -> %llu, native %llu\n",
1399                        (unsigned long long)sectors,
1400                        (unsigned long long)new_sectors,
1401                        (unsigned long long)native_sectors);
1402        }
1403
1404        return 0;
1405}
1406
1407/**
1408 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *      @id: IDENTIFY DEVICE page to dump
1410 *
1411 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *      page.
1413 *
1414 *      LOCKING:
1415 *      caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420        DPRINTK("49==0x%04x  "
1421                "53==0x%04x  "
1422                "63==0x%04x  "
1423                "64==0x%04x  "
1424                "75==0x%04x  \n",
1425                id[49],
1426                id[53],
1427                id[63],
1428                id[64],
1429                id[75]);
1430        DPRINTK("80==0x%04x  "
1431                "81==0x%04x  "
1432                "82==0x%04x  "
1433                "83==0x%04x  "
1434                "84==0x%04x  \n",
1435                id[80],
1436                id[81],
1437                id[82],
1438                id[83],
1439                id[84]);
1440        DPRINTK("88==0x%04x  "
1441                "93==0x%04x\n",
1442                id[88],
1443                id[93]);
1444}
1445
1446/**
1447 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *      @id: IDENTIFY data to compute xfer mask from
1449 *
1450 *      Compute the xfermask for this device. This is not as trivial
1451 *      as it seems if we must consider early devices correctly.
1452 *
1453 *      FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *      LOCKING:
1456 *      None.
1457 *
1458 *      RETURNS:
1459 *      Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463        unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465        /* Usual case. Word 53 indicates word 64 is valid */
1466        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468                pio_mask <<= 3;
1469                pio_mask |= 0x7;
1470        } else {
1471                /* If word 64 isn't valid then Word 51 high byte holds
1472                 * the PIO timing number for the maximum. Turn it into
1473                 * a mask.
1474                 */
1475                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476                if (mode < 5)   /* Valid PIO range */
1477                        pio_mask = (2 << mode) - 1;
1478                else
1479                        pio_mask = 1;
1480
1481                /* But wait.. there's more. Design your standards by
1482                 * committee and you too can get a free iordy field to
1483                 * process. However its the speeds not the modes that
1484                 * are supported... Note drivers using the timing API
1485                 * will get this right anyway
1486                 */
1487        }
1488
1489        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491        if (ata_id_is_cfa(id)) {
1492                /*
1493                 *      Process compact flash extended modes
1494                 */
1495                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498                if (pio)
1499                        pio_mask |= (1 << 5);
1500                if (pio > 1)
1501                        pio_mask |= (1 << 6);
1502                if (dma)
1503                        mwdma_mask |= (1 << 3);
1504                if (dma > 1)
1505                        mwdma_mask |= (1 << 4);
1506        }
1507
1508        udma_mask = 0;
1509        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517        struct completion *waiting = qc->private_data;
1518
1519        complete(waiting);
1520}
1521
1522/**
1523 *      ata_exec_internal_sg - execute libata internal command
1524 *      @dev: Device to which the command is sent
1525 *      @tf: Taskfile registers for the command and the result
1526 *      @cdb: CDB for packet command
1527 *      @dma_dir: Data tranfer direction of the command
1528 *      @sgl: sg list for the data buffer of the command
1529 *      @n_elem: Number of sg entries
1530 *      @timeout: Timeout in msecs (0 for default)
1531 *
1532 *      Executes libata internal command with timeout.  @tf contains
1533 *      command on entry and result on return.  Timeout and error
1534 *      conditions are reported via return value.  No recovery action
1535 *      is taken after a command times out.  It's caller's duty to
1536 *      clean up after timeout.
1537 *
1538 *      LOCKING:
1539 *      None.  Should be called with kernel context, might sleep.
1540 *
1541 *      RETURNS:
1542 *      Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545                              struct ata_taskfile *tf, const u8 *cdb,
1546                              int dma_dir, struct scatterlist *sgl,
1547                              unsigned int n_elem, unsigned long timeout)
1548{
1549        struct ata_link *link = dev->link;
1550        struct ata_port *ap = link->ap;
1551        u8 command = tf->command;
1552        int auto_timeout = 0;
1553        struct ata_queued_cmd *qc;
1554        unsigned int tag, preempted_tag;
1555        u32 preempted_sactive, preempted_qc_active;
1556        int preempted_nr_active_links;
1557        DECLARE_COMPLETION_ONSTACK(wait);
1558        unsigned long flags;
1559        unsigned int err_mask;
1560        int rc;
1561
1562        spin_lock_irqsave(ap->lock, flags);
1563
1564        /* no internal command while frozen */
1565        if (ap->pflags & ATA_PFLAG_FROZEN) {
1566                spin_unlock_irqrestore(ap->lock, flags);
1567                return AC_ERR_SYSTEM;
1568        }
1569
1570        /* initialize internal qc */
1571
1572        /* XXX: Tag 0 is used for drivers with legacy EH as some
1573         * drivers choke if any other tag is given.  This breaks
1574         * ata_tag_internal() test for those drivers.  Don't use new
1575         * EH stuff without converting to it.
1576         */
1577        if (ap->ops->error_handler)
1578                tag = ATA_TAG_INTERNAL;
1579        else
1580                tag = 0;
1581
1582        if (test_and_set_bit(tag, &ap->qc_allocated))
1583                BUG();
1584        qc = __ata_qc_from_tag(ap, tag);
1585
1586        qc->tag = tag;
1587        qc->scsicmd = NULL;
1588        qc->ap = ap;
1589        qc->dev = dev;
1590        ata_qc_reinit(qc);
1591
1592        preempted_tag = link->active_tag;
1593        preempted_sactive = link->sactive;
1594        preempted_qc_active = ap->qc_active;
1595        preempted_nr_active_links = ap->nr_active_links;
1596        link->active_tag = ATA_TAG_POISON;
1597        link->sactive = 0;
1598        ap->qc_active = 0;
1599        ap->nr_active_links = 0;
1600
1601        /* prepare & issue qc */
1602        qc->tf = *tf;
1603        if (cdb)
1604                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606        /* some SATA bridges need us to indicate data xfer direction */
1607        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608            dma_dir == DMA_FROM_DEVICE)
1609                qc->tf.feature |= ATAPI_DMADIR;
1610
1611        qc->flags |= ATA_QCFLAG_RESULT_TF;
1612        qc->dma_dir = dma_dir;
1613        if (dma_dir != DMA_NONE) {
1614                unsigned int i, buflen = 0;
1615                struct scatterlist *sg;
1616
1617                for_each_sg(sgl, sg, n_elem, i)
1618                        buflen += sg->length;
1619
1620                ata_sg_init(qc, sgl, n_elem);
1621                qc->nbytes = buflen;
1622        }
1623
1624        qc->private_data = &wait;
1625        qc->complete_fn = ata_qc_complete_internal;
1626
1627        ata_qc_issue(qc);
1628
1629        spin_unlock_irqrestore(ap->lock, flags);
1630
1631        if (!timeout) {
1632                if (ata_probe_timeout)
1633                        timeout = ata_probe_timeout * 1000;
1634                else {
1635                        timeout = ata_internal_cmd_timeout(dev, command);
1636                        auto_timeout = 1;
1637                }
1638        }
1639
1640        if (ap->ops->error_handler)
1641                ata_eh_release(ap);
1642
1643        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645        if (ap->ops->error_handler)
1646                ata_eh_acquire(ap);
1647
1648        ata_sff_flush_pio_task(ap);
1649
1650        if (!rc) {
1651                spin_lock_irqsave(ap->lock, flags);
1652
1653                /* We're racing with irq here.  If we lose, the
1654                 * following test prevents us from completing the qc
1655                 * twice.  If we win, the port is frozen and will be
1656                 * cleaned up by ->post_internal_cmd().
1657                 */
1658                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659                        qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661                        if (ap->ops->error_handler)
1662                                ata_port_freeze(ap);
1663                        else
1664                                ata_qc_complete(qc);
1665
1666                        if (ata_msg_warn(ap))
1667                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668                                             command);
1669                }
1670
1671                spin_unlock_irqrestore(ap->lock, flags);
1672        }
1673
1674        /* do post_internal_cmd */
1675        if (ap->ops->post_internal_cmd)
1676                ap->ops->post_internal_cmd(qc);
1677
1678        /* perform minimal error analysis */
1679        if (qc->flags & ATA_QCFLAG_FAILED) {
1680                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681                        qc->err_mask |= AC_ERR_DEV;
1682
1683                if (!qc->err_mask)
1684                        qc->err_mask |= AC_ERR_OTHER;
1685
1686                if (qc->err_mask & ~AC_ERR_OTHER)
1687                        qc->err_mask &= ~AC_ERR_OTHER;
1688        }
1689
1690        /* finish up */
1691        spin_lock_irqsave(ap->lock, flags);
1692
1693        *tf = qc->result_tf;
1694        err_mask = qc->err_mask;
1695
1696        ata_qc_free(qc);
1697        link->active_tag = preempted_tag;
1698        link->sactive = preempted_sactive;
1699        ap->qc_active = preempted_qc_active;
1700        ap->nr_active_links = preempted_nr_active_links;
1701
1702        spin_unlock_irqrestore(ap->lock, flags);
1703
1704        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705                ata_internal_cmd_timed_out(dev, command);
1706
1707        return err_mask;
1708}
1709
1710/**
1711 *      ata_exec_internal - execute libata internal command
1712 *      @dev: Device to which the command is sent
1713 *      @tf: Taskfile registers for the command and the result
1714 *      @cdb: CDB for packet command
1715 *      @dma_dir: Data tranfer direction of the command
1716 *      @buf: Data buffer of the command
1717 *      @buflen: Length of data buffer
1718 *      @timeout: Timeout in msecs (0 for default)
1719 *
1720 *      Wrapper around ata_exec_internal_sg() which takes simple
1721 *      buffer instead of sg list.
1722 *
1723 *      LOCKING:
1724 *      None.  Should be called with kernel context, might sleep.
1725 *
1726 *      RETURNS:
1727 *      Zero on success, AC_ERR_* mask on failure
1728 */
1729unsigned ata_exec_internal(struct ata_device *dev,
1730                           struct ata_taskfile *tf, const u8 *cdb,
1731                           int dma_dir, void *buf, unsigned int buflen,
1732                           unsigned long timeout)
1733{
1734        struct scatterlist *psg = NULL, sg;
1735        unsigned int n_elem = 0;
1736
1737        if (dma_dir != DMA_NONE) {
1738                WARN_ON(!buf);
1739                sg_init_one(&sg, buf, buflen);
1740                psg = &sg;
1741                n_elem++;
1742        }
1743
1744        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745                                    timeout);
1746}
1747
1748/**
1749 *      ata_do_simple_cmd - execute simple internal command
1750 *      @dev: Device to which the command is sent
1751 *      @cmd: Opcode to execute
1752 *
1753 *      Execute a 'simple' command, that only consists of the opcode
1754 *      'cmd' itself, without filling any other registers
1755 *
1756 *      LOCKING:
1757 *      Kernel thread context (may sleep).
1758 *
1759 *      RETURNS:
1760 *      Zero on success, AC_ERR_* mask on failure
1761 */
1762unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763{
1764        struct ata_taskfile tf;
1765
1766        ata_tf_init(dev, &tf);
1767
1768        tf.command = cmd;
1769        tf.flags |= ATA_TFLAG_DEVICE;
1770        tf.protocol = ATA_PROT_NODATA;
1771
1772        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773}
1774
1775/**
1776 *      ata_pio_need_iordy      -       check if iordy needed
1777 *      @adev: ATA device
1778 *
1779 *      Check if the current speed of the device requires IORDY. Used
1780 *      by various controllers for chip configuration.
1781 */
1782unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783{
1784        /* Don't set IORDY if we're preparing for reset.  IORDY may
1785         * lead to controller lock up on certain controllers if the
1786         * port is not occupied.  See bko#11703 for details.
1787         */
1788        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789                return 0;
1790        /* Controller doesn't support IORDY.  Probably a pointless
1791         * check as the caller should know this.
1792         */
1793        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794                return 0;
1795        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796        if (ata_id_is_cfa(adev->id)
1797            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798                return 0;
1799        /* PIO3 and higher it is mandatory */
1800        if (adev->pio_mode > XFER_PIO_2)
1801                return 1;
1802        /* We turn it on when possible */
1803        if (ata_id_has_iordy(adev->id))
1804                return 1;
1805        return 0;
1806}
1807
1808/**
1809 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1810 *      @adev: ATA device
1811 *
1812 *      Compute the highest mode possible if we are not using iordy. Return
1813 *      -1 if no iordy mode is available.
1814 */
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1817        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820                /* Is the speed faster than the drive allows non IORDY ? */
1821                if (pio) {
1822                        /* This is cycle times not frequency - watch the logic! */
1823                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1824                                return 3 << ATA_SHIFT_PIO;
1825                        return 7 << ATA_SHIFT_PIO;
1826                }
1827        }
1828        return 3 << ATA_SHIFT_PIO;
1829}
1830
1831/**
1832 *      ata_do_dev_read_id              -       default ID read method
1833 *      @dev: device
1834 *      @tf: proposed taskfile
1835 *      @id: data buffer
1836 *
1837 *      Issue the identify taskfile and hand back the buffer containing
1838 *      identify data. For some RAID controllers and for pre ATA devices
1839 *      this function is wrapped or replaced by the driver
1840 */
1841unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842                                        struct ata_taskfile *tf, u16 *id)
1843{
1844        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846}
1847
1848/**
1849 *      ata_dev_read_id - Read ID data from the specified device
1850 *      @dev: target device
1851 *      @p_class: pointer to class of the target device (may be changed)
1852 *      @flags: ATA_READID_* flags
1853 *      @id: buffer to read IDENTIFY data into
1854 *
1855 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 *      for pre-ATA4 drives.
1859 *
1860 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 *      now we abort if we hit that case.
1862 *
1863 *      LOCKING:
1864 *      Kernel thread context (may sleep)
1865 *
1866 *      RETURNS:
1867 *      0 on success, -errno otherwise.
1868 */
1869int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870                    unsigned int flags, u16 *id)
1871{
1872        struct ata_port *ap = dev->link->ap;
1873        unsigned int class = *p_class;
1874        struct ata_taskfile tf;
1875        unsigned int err_mask = 0;
1876        const char *reason;
1877        bool is_semb = class == ATA_DEV_SEMB;
1878        int may_fallback = 1, tried_spinup = 0;
1879        int rc;
1880
1881        if (ata_msg_ctl(ap))
1882                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884retry:
1885        ata_tf_init(dev, &tf);
1886
1887        switch (class) {
1888        case ATA_DEV_SEMB:
1889                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1890        case ATA_DEV_ATA:
1891                tf.command = ATA_CMD_ID_ATA;
1892                break;
1893        case ATA_DEV_ATAPI:
1894                tf.command = ATA_CMD_ID_ATAPI;
1895                break;
1896        default:
1897                rc = -ENODEV;
1898                reason = "unsupported class";
1899                goto err_out;
1900        }
1901
1902        tf.protocol = ATA_PROT_PIO;
1903
1904        /* Some devices choke if TF registers contain garbage.  Make
1905         * sure those are properly initialized.
1906         */
1907        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909        /* Device presence detection is unreliable on some
1910         * controllers.  Always poll IDENTIFY if available.
1911         */
1912        tf.flags |= ATA_TFLAG_POLLING;
1913
1914        if (ap->ops->read_id)
1915                err_mask = ap->ops->read_id(dev, &tf, id);
1916        else
1917                err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919        if (err_mask) {
1920                if (err_mask & AC_ERR_NODEV_HINT) {
1921                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1922                        return -ENOENT;
1923                }
1924
1925                if (is_semb) {
1926                        ata_dev_info(dev,
1927                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928                        /* SEMB is not supported yet */
1929                        *p_class = ATA_DEV_SEMB_UNSUP;
1930                        return 0;
1931                }
1932
1933                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934                        /* Device or controller might have reported
1935                         * the wrong device class.  Give a shot at the
1936                         * other IDENTIFY if the current one is
1937                         * aborted by the device.
1938                         */
1939                        if (may_fallback) {
1940                                may_fallback = 0;
1941
1942                                if (class == ATA_DEV_ATA)
1943                                        class = ATA_DEV_ATAPI;
1944                                else
1945                                        class = ATA_DEV_ATA;
1946                                goto retry;
1947                        }
1948
1949                        /* Control reaches here iff the device aborted
1950                         * both flavors of IDENTIFYs which happens
1951                         * sometimes with phantom devices.
1952                         */
1953                        ata_dev_dbg(dev,
1954                                    "both IDENTIFYs aborted, assuming NODEV\n");
1955                        return -ENOENT;
1956                }
1957
1958                rc = -EIO;
1959                reason = "I/O error";
1960                goto err_out;
1961        }
1962
1963        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965                            "class=%d may_fallback=%d tried_spinup=%d\n",
1966                            class, may_fallback, tried_spinup);
1967                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969        }
1970
1971        /* Falling back doesn't make sense if ID data was read
1972         * successfully at least once.
1973         */
1974        may_fallback = 0;
1975
1976        swap_buf_le16(id, ATA_ID_WORDS);
1977
1978        /* sanity check */
1979        rc = -EINVAL;
1980        reason = "device reports invalid type";
1981
1982        if (class == ATA_DEV_ATA) {
1983                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984                        goto err_out;
1985                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986                                                        ata_id_is_ata(id)) {
1987                        ata_dev_dbg(dev,
1988                                "host indicates ignore ATA devices, ignored\n");
1989                        return -ENOENT;
1990                }
1991        } else {
1992                if (ata_id_is_ata(id))
1993                        goto err_out;
1994        }
1995
1996        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997                tried_spinup = 1;
1998                /*
1999                 * Drive powered-up in standby mode, and requires a specific
2000                 * SET_FEATURES spin-up subcommand before it will accept
2001                 * anything other than the original IDENTIFY command.
2002                 */
2003                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004                if (err_mask && id[2] != 0x738c) {
2005                        rc = -EIO;
2006                        reason = "SPINUP failed";
2007                        goto err_out;
2008                }
2009                /*
2010                 * If the drive initially returned incomplete IDENTIFY info,
2011                 * we now must reissue the IDENTIFY command.
2012                 */
2013                if (id[2] == 0x37c8)
2014                        goto retry;
2015        }
2016
2017        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018                /*
2019                 * The exact sequence expected by certain pre-ATA4 drives is:
2020                 * SRST RESET
2021                 * IDENTIFY (optional in early ATA)
2022                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023                 * anything else..
2024                 * Some drives were very specific about that exact sequence.
2025                 *
2026                 * Note that ATA4 says lba is mandatory so the second check
2027                 * should never trigger.
2028                 */
2029                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031                        if (err_mask) {
2032                                rc = -EIO;
2033                                reason = "INIT_DEV_PARAMS failed";
2034                                goto err_out;
2035                        }
2036
2037                        /* current CHS translation info (id[53-58]) might be
2038                         * changed. reread the identify device info.
2039                         */
2040                        flags &= ~ATA_READID_POSTRESET;
2041                        goto retry;
2042                }
2043        }
2044
2045        *p_class = class;
2046
2047        return 0;
2048
2049 err_out:
2050        if (ata_msg_warn(ap))
2051                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052                             reason, err_mask);
2053        return rc;
2054}
2055
2056static int ata_do_link_spd_horkage(struct ata_device *dev)
2057{
2058        struct ata_link *plink = ata_dev_phys_link(dev);
2059        u32 target, target_limit;
2060
2061        if (!sata_scr_valid(plink))
2062                return 0;
2063
2064        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065                target = 1;
2066        else
2067                return 0;
2068
2069        target_limit = (1 << target) - 1;
2070
2071        /* if already on stricter limit, no need to push further */
2072        if (plink->sata_spd_limit <= target_limit)
2073                return 0;
2074
2075        plink->sata_spd_limit = target_limit;
2076
2077        /* Request another EH round by returning -EAGAIN if link is
2078         * going faster than the target speed.  Forward progress is
2079         * guaranteed by setting sata_spd_limit to target_limit above.
2080         */
2081        if (plink->sata_spd > target) {
2082                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083                             sata_spd_string(target));
2084                return -EAGAIN;
2085        }
2086        return 0;
2087}
2088
2089static inline u8 ata_dev_knobble(struct ata_device *dev)
2090{
2091        struct ata_port *ap = dev->link->ap;
2092
2093        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094                return 0;
2095
2096        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097}
2098
2099static int ata_dev_config_ncq(struct ata_device *dev,
2100                               char *desc, size_t desc_sz)
2101{
2102        struct ata_port *ap = dev->link->ap;
2103        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104        unsigned int err_mask;
2105        char *aa_desc = "";
2106
2107        if (!ata_id_has_ncq(dev->id)) {
2108                desc[0] = '\0';
2109                return 0;
2110        }
2111        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112                snprintf(desc, desc_sz, "NCQ (not used)");
2113                return 0;
2114        }
2115        if (ap->flags & ATA_FLAG_NCQ) {
2116                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117                dev->flags |= ATA_DFLAG_NCQ;
2118        }
2119
2120        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122                ata_id_has_fpdma_aa(dev->id)) {
2123                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124                        SATA_FPDMA_AA);
2125                if (err_mask) {
2126                        ata_dev_err(dev,
2127                                    "failed to enable AA (error_mask=0x%x)\n",
2128                                    err_mask);
2129                        if (err_mask != AC_ERR_DEV) {
2130                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131                                return -EIO;
2132                        }
2133                } else
2134                        aa_desc = ", AA";
2135        }
2136
2137        if (hdepth >= ddepth)
2138                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139        else
2140                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141                        ddepth, aa_desc);
2142        return 0;
2143}
2144
2145/**
2146 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2147 *      @dev: Target device to configure
2148 *
2149 *      Configure @dev according to @dev->id.  Generic and low-level
2150 *      driver specific fixups are also applied.
2151 *
2152 *      LOCKING:
2153 *      Kernel thread context (may sleep)
2154 *
2155 *      RETURNS:
2156 *      0 on success, -errno otherwise
2157 */
2158int ata_dev_configure(struct ata_device *dev)
2159{
2160        struct ata_port *ap = dev->link->ap;
2161        struct ata_eh_context *ehc = &dev->link->eh_context;
2162        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2163        const u16 *id = dev->id;
2164        unsigned long xfer_mask;
2165        unsigned int err_mask;
2166        char revbuf[7];         /* XYZ-99\0 */
2167        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2168        char modelbuf[ATA_ID_PROD_LEN+1];
2169        int rc;
2170
2171        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2172                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2173                return 0;
2174        }
2175
2176        if (ata_msg_probe(ap))
2177                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2178
2179        /* set horkage */
2180        dev->horkage |= ata_dev_blacklisted(dev);
2181        ata_force_horkage(dev);
2182
2183        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2184                ata_dev_info(dev, "unsupported device, disabling\n");
2185                ata_dev_disable(dev);
2186                return 0;
2187        }
2188
2189        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2190            dev->class == ATA_DEV_ATAPI) {
2191                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2192                             atapi_enabled ? "not supported with this driver"
2193                             : "disabled");
2194                ata_dev_disable(dev);
2195                return 0;
2196        }
2197
2198        rc = ata_do_link_spd_horkage(dev);
2199        if (rc)
2200                return rc;
2201
2202        /* let ACPI work its magic */
2203        rc = ata_acpi_on_devcfg(dev);
2204        if (rc)
2205                return rc;
2206
2207        /* massage HPA, do it early as it might change IDENTIFY data */
2208        rc = ata_hpa_resize(dev);
2209        if (rc)
2210                return rc;
2211
2212        /* print device capabilities */
2213        if (ata_msg_probe(ap))
2214                ata_dev_dbg(dev,
2215                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2216                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2217                            __func__,
2218                            id[49], id[82], id[83], id[84],
2219                            id[85], id[86], id[87], id[88]);
2220
2221        /* initialize to-be-configured parameters */
2222        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2223        dev->max_sectors = 0;
2224        dev->cdb_len = 0;
2225        dev->n_sectors = 0;
2226        dev->cylinders = 0;
2227        dev->heads = 0;
2228        dev->sectors = 0;
2229        dev->multi_count = 0;
2230
2231        /*
2232         * common ATA, ATAPI feature tests
2233         */
2234
2235        /* find max transfer mode; for printk only */
2236        xfer_mask = ata_id_xfermask(id);
2237
2238        if (ata_msg_probe(ap))
2239                ata_dump_id(id);
2240
2241        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2242        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2243                        sizeof(fwrevbuf));
2244
2245        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2246                        sizeof(modelbuf));
2247
2248        /* ATA-specific feature tests */
2249        if (dev->class == ATA_DEV_ATA) {
2250                if (ata_id_is_cfa(id)) {
2251                        /* CPRM may make this media unusable */
2252                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2253                                ata_dev_warn(dev,
2254        "supports DRM functions and may not be fully accessible\n");
2255                        snprintf(revbuf, 7, "CFA");
2256                } else {
2257                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2258                        /* Warn the user if the device has TPM extensions */
2259                        if (ata_id_has_tpm(id))
2260                                ata_dev_warn(dev,
2261        "supports DRM functions and may not be fully accessible\n");
2262                }
2263
2264                dev->n_sectors = ata_id_n_sectors(id);
2265
2266                /* get current R/W Multiple count setting */
2267                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2268                        unsigned int max = dev->id[47] & 0xff;
2269                        unsigned int cnt = dev->id[59] & 0xff;
2270                        /* only recognize/allow powers of two here */
2271                        if (is_power_of_2(max) && is_power_of_2(cnt))
2272                                if (cnt <= max)
2273                                        dev->multi_count = cnt;
2274                }
2275
2276                if (ata_id_has_lba(id)) {
2277                        const char *lba_desc;
2278                        char ncq_desc[24];
2279
2280                        lba_desc = "LBA";
2281                        dev->flags |= ATA_DFLAG_LBA;
2282                        if (ata_id_has_lba48(id)) {
2283                                dev->flags |= ATA_DFLAG_LBA48;
2284                                lba_desc = "LBA48";
2285
2286                                if (dev->n_sectors >= (1UL << 28) &&
2287                                    ata_id_has_flush_ext(id))
2288                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2289                        }
2290
2291                        /* config NCQ */
2292                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2293                        if (rc)
2294                                return rc;
2295
2296                        /* print device info to dmesg */
2297                        if (ata_msg_drv(ap) && print_info) {
2298                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2299                                             revbuf, modelbuf, fwrevbuf,
2300                                             ata_mode_string(xfer_mask));
2301                                ata_dev_info(dev,
2302                                             "%llu sectors, multi %u: %s %s\n",
2303                                        (unsigned long long)dev->n_sectors,
2304                                        dev->multi_count, lba_desc, ncq_desc);
2305                        }
2306                } else {
2307                        /* CHS */
2308
2309                        /* Default translation */
2310                        dev->cylinders  = id[1];
2311                        dev->heads      = id[3];
2312                        dev->sectors    = id[6];
2313
2314                        if (ata_id_current_chs_valid(id)) {
2315                                /* Current CHS translation is valid. */
2316                                dev->cylinders = id[54];
2317                                dev->heads     = id[55];
2318                                dev->sectors   = id[56];
2319                        }
2320
2321                        /* print device info to dmesg */
2322                        if (ata_msg_drv(ap) && print_info) {
2323                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2324                                             revbuf,    modelbuf, fwrevbuf,
2325                                             ata_mode_string(xfer_mask));
2326                                ata_dev_info(dev,
2327                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2328                                             (unsigned long long)dev->n_sectors,
2329                                             dev->multi_count, dev->cylinders,
2330                                             dev->heads, dev->sectors);
2331                        }
2332                }
2333
2334                /* Check and mark DevSlp capability. Get DevSlp timing variables
2335                 * from SATA Settings page of Identify Device Data Log.
2336                 */
2337                if (ata_id_has_devslp(dev->id)) {
2338                        u8 *sata_setting = ap->sector_buf;
2339                        int i, j;
2340
2341                        dev->flags |= ATA_DFLAG_DEVSLP;
2342                        err_mask = ata_read_log_page(dev,
2343                                                     ATA_LOG_SATA_ID_DEV_DATA,
2344                                                     ATA_LOG_SATA_SETTINGS,
2345                                                     sata_setting,
2346                                                     1);
2347                        if (err_mask)
2348                                ata_dev_dbg(dev,
2349                                            "failed to get Identify Device Data, Emask 0x%x\n",
2350                                            err_mask);
2351                        else
2352                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2353                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2354                                        dev->devslp_timing[i] = sata_setting[j];
2355                                }
2356                }
2357
2358                dev->cdb_len = 16;
2359        }
2360
2361        /* ATAPI-specific feature tests */
2362        else if (dev->class == ATA_DEV_ATAPI) {
2363                const char *cdb_intr_string = "";
2364                const char *atapi_an_string = "";
2365                const char *dma_dir_string = "";
2366                u32 sntf;
2367
2368                rc = atapi_cdb_len(id);
2369                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2370                        if (ata_msg_warn(ap))
2371                                ata_dev_warn(dev, "unsupported CDB len\n");
2372                        rc = -EINVAL;
2373                        goto err_out_nosup;
2374                }
2375                dev->cdb_len = (unsigned int) rc;
2376
2377                /* Enable ATAPI AN if both the host and device have
2378                 * the support.  If PMP is attached, SNTF is required
2379                 * to enable ATAPI AN to discern between PHY status
2380                 * changed notifications and ATAPI ANs.
2381                 */
2382                if (atapi_an &&
2383                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2384                    (!sata_pmp_attached(ap) ||
2385                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2386                        /* issue SET feature command to turn this on */
2387                        err_mask = ata_dev_set_feature(dev,
2388                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2389                        if (err_mask)
2390                                ata_dev_err(dev,
2391                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2392                                            err_mask);
2393                        else {
2394                                dev->flags |= ATA_DFLAG_AN;
2395                                atapi_an_string = ", ATAPI AN";
2396                        }
2397                }
2398
2399                if (ata_id_cdb_intr(dev->id)) {
2400                        dev->flags |= ATA_DFLAG_CDB_INTR;
2401                        cdb_intr_string = ", CDB intr";
2402                }
2403
2404                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2405                        dev->flags |= ATA_DFLAG_DMADIR;
2406                        dma_dir_string = ", DMADIR";
2407                }
2408
2409                if (ata_id_has_da(dev->id)) {
2410                        dev->flags |= ATA_DFLAG_DA;
2411                        zpodd_init(dev);
2412                }
2413
2414                /* print device info to dmesg */
2415                if (ata_msg_drv(ap) && print_info)
2416                        ata_dev_info(dev,
2417                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2418                                     modelbuf, fwrevbuf,
2419                                     ata_mode_string(xfer_mask),
2420                                     cdb_intr_string, atapi_an_string,
2421                                     dma_dir_string);
2422        }
2423
2424        /* determine max_sectors */
2425        dev->max_sectors = ATA_MAX_SECTORS;
2426        if (dev->flags & ATA_DFLAG_LBA48)
2427                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2428
2429        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2430           200 sectors */
2431        if (ata_dev_knobble(dev)) {
2432                if (ata_msg_drv(ap) && print_info)
2433                        ata_dev_info(dev, "applying bridge limits\n");
2434                dev->udma_mask &= ATA_UDMA5;
2435                dev->max_sectors = ATA_MAX_SECTORS;
2436        }
2437
2438        if ((dev->class == ATA_DEV_ATAPI) &&
2439            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2440                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2441                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2442        }
2443
2444        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2445                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2446                                         dev->max_sectors);
2447
2448        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2449                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2450
2451        if (ap->ops->dev_config)
2452                ap->ops->dev_config(dev);
2453
2454        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2455                /* Let the user know. We don't want to disallow opens for
2456                   rescue purposes, or in case the vendor is just a blithering
2457                   idiot. Do this after the dev_config call as some controllers
2458                   with buggy firmware may want to avoid reporting false device
2459                   bugs */
2460
2461                if (print_info) {
2462                        ata_dev_warn(dev,
2463"Drive reports diagnostics failure. This may indicate a drive\n");
2464                        ata_dev_warn(dev,
2465"fault or invalid emulation. Contact drive vendor for information.\n");
2466                }
2467        }
2468
2469        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2470                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2471                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2472        }
2473
2474        return 0;
2475
2476err_out_nosup:
2477        if (ata_msg_probe(ap))
2478                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2479        return rc;
2480}
2481
2482/**
2483 *      ata_cable_40wire        -       return 40 wire cable type
2484 *      @ap: port
2485 *
2486 *      Helper method for drivers which want to hardwire 40 wire cable
2487 *      detection.
2488 */
2489
2490int ata_cable_40wire(struct ata_port *ap)
2491{
2492        return ATA_CBL_PATA40;
2493}
2494
2495/**
2496 *      ata_cable_80wire        -       return 80 wire cable type
2497 *      @ap: port
2498 *
2499 *      Helper method for drivers which want to hardwire 80 wire cable
2500 *      detection.
2501 */
2502
2503int ata_cable_80wire(struct ata_port *ap)
2504{
2505        return ATA_CBL_PATA80;
2506}
2507
2508/**
2509 *      ata_cable_unknown       -       return unknown PATA cable.
2510 *      @ap: port
2511 *
2512 *      Helper method for drivers which have no PATA cable detection.
2513 */
2514
2515int ata_cable_unknown(struct ata_port *ap)
2516{
2517        return ATA_CBL_PATA_UNK;
2518}
2519
2520/**
2521 *      ata_cable_ignore        -       return ignored PATA cable.
2522 *      @ap: port
2523 *
2524 *      Helper method for drivers which don't use cable type to limit
2525 *      transfer mode.
2526 */
2527int ata_cable_ignore(struct ata_port *ap)
2528{
2529        return ATA_CBL_PATA_IGN;
2530}
2531
2532/**
2533 *      ata_cable_sata  -       return SATA cable type
2534 *      @ap: port
2535 *
2536 *      Helper method for drivers which have SATA cables
2537 */
2538
2539int ata_cable_sata(struct ata_port *ap)
2540{
2541        return ATA_CBL_SATA;
2542}
2543
2544/**
2545 *      ata_bus_probe - Reset and probe ATA bus
2546 *      @ap: Bus to probe
2547 *
2548 *      Master ATA bus probing function.  Initiates a hardware-dependent
2549 *      bus reset, then attempts to identify any devices found on
2550 *      the bus.
2551 *
2552 *      LOCKING:
2553 *      PCI/etc. bus probe sem.
2554 *
2555 *      RETURNS:
2556 *      Zero on success, negative errno otherwise.
2557 */
2558
2559int ata_bus_probe(struct ata_port *ap)
2560{
2561        unsigned int classes[ATA_MAX_DEVICES];
2562        int tries[ATA_MAX_DEVICES];
2563        int rc;
2564        struct ata_device *dev;
2565
2566        ata_for_each_dev(dev, &ap->link, ALL)
2567                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2568
2569 retry:
2570        ata_for_each_dev(dev, &ap->link, ALL) {
2571                /* If we issue an SRST then an ATA drive (not ATAPI)
2572                 * may change configuration and be in PIO0 timing. If
2573                 * we do a hard reset (or are coming from power on)
2574                 * this is true for ATA or ATAPI. Until we've set a
2575                 * suitable controller mode we should not touch the
2576                 * bus as we may be talking too fast.
2577                 */
2578                dev->pio_mode = XFER_PIO_0;
2579                dev->dma_mode = 0xff;
2580
2581                /* If the controller has a pio mode setup function
2582                 * then use it to set the chipset to rights. Don't
2583                 * touch the DMA setup as that will be dealt with when
2584                 * configuring devices.
2585                 */
2586                if (ap->ops->set_piomode)
2587                        ap->ops->set_piomode(ap, dev);
2588        }
2589
2590        /* reset and determine device classes */
2591        ap->ops->phy_reset(ap);
2592
2593        ata_for_each_dev(dev, &ap->link, ALL) {
2594                if (dev->class != ATA_DEV_UNKNOWN)
2595                        classes[dev->devno] = dev->class;
2596                else
2597                        classes[dev->devno] = ATA_DEV_NONE;
2598
2599                dev->class = ATA_DEV_UNKNOWN;
2600        }
2601
2602        /* read IDENTIFY page and configure devices. We have to do the identify
2603           specific sequence bass-ackwards so that PDIAG- is released by
2604           the slave device */
2605
2606        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2607                if (tries[dev->devno])
2608                        dev->class = classes[dev->devno];
2609
2610                if (!ata_dev_enabled(dev))
2611                        continue;
2612
2613                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2614                                     dev->id);
2615                if (rc)
2616                        goto fail;
2617        }
2618
2619        /* Now ask for the cable type as PDIAG- should have been released */
2620        if (ap->ops->cable_detect)
2621                ap->cbl = ap->ops->cable_detect(ap);
2622
2623        /* We may have SATA bridge glue hiding here irrespective of
2624         * the reported cable types and sensed types.  When SATA
2625         * drives indicate we have a bridge, we don't know which end
2626         * of the link the bridge is which is a problem.
2627         */
2628        ata_for_each_dev(dev, &ap->link, ENABLED)
2629                if (ata_id_is_sata(dev->id))
2630                        ap->cbl = ATA_CBL_SATA;
2631
2632        /* After the identify sequence we can now set up the devices. We do
2633           this in the normal order so that the user doesn't get confused */
2634
2635        ata_for_each_dev(dev, &ap->link, ENABLED) {
2636                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2637                rc = ata_dev_configure(dev);
2638                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2639                if (rc)
2640                        goto fail;
2641        }
2642
2643        /* configure transfer mode */
2644        rc = ata_set_mode(&ap->link, &dev);
2645        if (rc)
2646                goto fail;
2647
2648        ata_for_each_dev(dev, &ap->link, ENABLED)
2649                return 0;
2650
2651        return -ENODEV;
2652
2653 fail:
2654        tries[dev->devno]--;
2655
2656        switch (rc) {
2657        case -EINVAL:
2658                /* eeek, something went very wrong, give up */
2659                tries[dev->devno] = 0;
2660                break;
2661
2662        case -ENODEV:
2663                /* give it just one more chance */
2664                tries[dev->devno] = min(tries[dev->devno], 1);
2665        case -EIO:
2666                if (tries[dev->devno] == 1) {
2667                        /* This is the last chance, better to slow
2668                         * down than lose it.
2669                         */
2670                        sata_down_spd_limit(&ap->link, 0);
2671                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2672                }
2673        }
2674
2675        if (!tries[dev->devno])
2676                ata_dev_disable(dev);
2677
2678        goto retry;
2679}
2680
2681/**
2682 *      sata_print_link_status - Print SATA link status
2683 *      @link: SATA link to printk link status about
2684 *
2685 *      This function prints link speed and status of a SATA link.
2686 *
2687 *      LOCKING:
2688 *      None.
2689 */
2690static void sata_print_link_status(struct ata_link *link)
2691{
2692        u32 sstatus, scontrol, tmp;
2693
2694        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2695                return;
2696        sata_scr_read(link, SCR_CONTROL, &scontrol);
2697
2698        if (ata_phys_link_online(link)) {
2699                tmp = (sstatus >> 4) & 0xf;
2700                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2701                              sata_spd_string(tmp), sstatus, scontrol);
2702        } else {
2703                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2704                              sstatus, scontrol);
2705        }
2706}
2707
2708/**
2709 *      ata_dev_pair            -       return other device on cable
2710 *      @adev: device
2711 *
2712 *      Obtain the other device on the same cable, or if none is
2713 *      present NULL is returned
2714 */
2715
2716struct ata_device *ata_dev_pair(struct ata_device *adev)
2717{
2718        struct ata_link *link = adev->link;
2719        struct ata_device *pair = &link->device[1 - adev->devno];
2720        if (!ata_dev_enabled(pair))
2721                return NULL;
2722        return pair;
2723}
2724
2725/**
2726 *      sata_down_spd_limit - adjust SATA spd limit downward
2727 *      @link: Link to adjust SATA spd limit for
2728 *      @spd_limit: Additional limit
2729 *
2730 *      Adjust SATA spd limit of @link downward.  Note that this
2731 *      function only adjusts the limit.  The change must be applied
2732 *      using sata_set_spd().
2733 *
2734 *      If @spd_limit is non-zero, the speed is limited to equal to or
2735 *      lower than @spd_limit if such speed is supported.  If
2736 *      @spd_limit is slower than any supported speed, only the lowest
2737 *      supported speed is allowed.
2738 *
2739 *      LOCKING:
2740 *      Inherited from caller.
2741 *
2742 *      RETURNS:
2743 *      0 on success, negative errno on failure
2744 */
2745int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2746{
2747        u32 sstatus, spd, mask;
2748        int rc, bit;
2749
2750        if (!sata_scr_valid(link))
2751                return -EOPNOTSUPP;
2752
2753        /* If SCR can be read, use it to determine the current SPD.
2754         * If not, use cached value in link->sata_spd.
2755         */
2756        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2757        if (rc == 0 && ata_sstatus_online(sstatus))
2758                spd = (sstatus >> 4) & 0xf;
2759        else
2760                spd = link->sata_spd;
2761
2762        mask = link->sata_spd_limit;
2763        if (mask <= 1)
2764                return -EINVAL;
2765
2766        /* unconditionally mask off the highest bit */
2767        bit = fls(mask) - 1;
2768        mask &= ~(1 << bit);
2769
2770        /* Mask off all speeds higher than or equal to the current
2771         * one.  Force 1.5Gbps if current SPD is not available.
2772         */
2773        if (spd > 1)
2774                mask &= (1 << (spd - 1)) - 1;
2775        else
2776                mask &= 1;
2777
2778        /* were we already at the bottom? */
2779        if (!mask)
2780                return -EINVAL;
2781
2782        if (spd_limit) {
2783                if (mask & ((1 << spd_limit) - 1))
2784                        mask &= (1 << spd_limit) - 1;
2785                else {
2786                        bit = ffs(mask) - 1;
2787                        mask = 1 << bit;
2788                }
2789        }
2790
2791        link->sata_spd_limit = mask;
2792
2793        ata_link_warn(link, "limiting SATA link speed to %s\n",
2794                      sata_spd_string(fls(mask)));
2795
2796        return 0;
2797}
2798
2799static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2800{
2801        struct ata_link *host_link = &link->ap->link;
2802        u32 limit, target, spd;
2803
2804        limit = link->sata_spd_limit;
2805
2806        /* Don't configure downstream link faster than upstream link.
2807         * It doesn't speed up anything and some PMPs choke on such
2808         * configuration.
2809         */
2810        if (!ata_is_host_link(link) && host_link->sata_spd)
2811                limit &= (1 << host_link->sata_spd) - 1;
2812
2813        if (limit == UINT_MAX)
2814                target = 0;
2815        else
2816                target = fls(limit);
2817
2818        spd = (*scontrol >> 4) & 0xf;
2819        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2820
2821        return spd != target;
2822}
2823
2824/**
2825 *      sata_set_spd_needed - is SATA spd configuration needed
2826 *      @link: Link in question
2827 *
2828 *      Test whether the spd limit in SControl matches
2829 *      @link->sata_spd_limit.  This function is used to determine
2830 *      whether hardreset is necessary to apply SATA spd
2831 *      configuration.
2832 *
2833 *      LOCKING:
2834 *      Inherited from caller.
2835 *
2836 *      RETURNS:
2837 *      1 if SATA spd configuration is needed, 0 otherwise.
2838 */
2839static int sata_set_spd_needed(struct ata_link *link)
2840{
2841        u32 scontrol;
2842
2843        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2844                return 1;
2845
2846        return __sata_set_spd_needed(link, &scontrol);
2847}
2848
2849/**
2850 *      sata_set_spd - set SATA spd according to spd limit
2851 *      @link: Link to set SATA spd for
2852 *
2853 *      Set SATA spd of @link according to sata_spd_limit.
2854 *
2855 *      LOCKING:
2856 *      Inherited from caller.
2857 *
2858 *      RETURNS:
2859 *      0 if spd doesn't need to be changed, 1 if spd has been
2860 *      changed.  Negative errno if SCR registers are inaccessible.
2861 */
2862int sata_set_spd(struct ata_link *link)
2863{
2864        u32 scontrol;
2865        int rc;
2866
2867        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2868                return rc;
2869
2870        if (!__sata_set_spd_needed(link, &scontrol))
2871                return 0;
2872
2873        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2874                return rc;
2875
2876        return 1;
2877}
2878
2879/*
2880 * This mode timing computation functionality is ported over from
2881 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2882 */
2883/*
2884 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2885 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2886 * for UDMA6, which is currently supported only by Maxtor drives.
2887 *
2888 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2889 */
2890
2891static const struct ata_timing ata_timing[] = {
2892/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2893        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2894        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2895        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2896        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2897        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2898        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2899        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2900
2901        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2902        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2903        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2904
2905        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2906        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2907        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2908        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2909        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2910
2911/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2912        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2913        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2914        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2915        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2916        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2917        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2918        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2919
2920        { 0xFF }
2921};
2922
2923#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2924#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2925
2926static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2927{
2928        q->setup        = EZ(t->setup      * 1000,  T);
2929        q->act8b        = EZ(t->act8b      * 1000,  T);
2930        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2931        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2932        q->active       = EZ(t->active     * 1000,  T);
2933        q->recover      = EZ(t->recover    * 1000,  T);
2934        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2935        q->cycle        = EZ(t->cycle      * 1000,  T);
2936        q->udma         = EZ(t->udma       * 1000, UT);
2937}
2938
2939void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2940                      struct ata_timing *m, unsigned int what)
2941{
2942        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2943        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2944        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2945        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2946        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2947        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2948        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2949        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2950        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2951}
2952
2953const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2954{
2955        const struct ata_timing *t = ata_timing;
2956
2957        while (xfer_mode > t->mode)
2958                t++;
2959
2960        if (xfer_mode == t->mode)
2961                return t;
2962
2963        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2964                        __func__, xfer_mode);
2965
2966        return NULL;
2967}
2968
2969int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2970                       struct ata_timing *t, int T, int UT)
2971{
2972        const u16 *id = adev->id;
2973        const struct ata_timing *s;
2974        struct ata_timing p;
2975
2976        /*
2977         * Find the mode.
2978         */
2979
2980        if (!(s = ata_timing_find_mode(speed)))
2981                return -EINVAL;
2982
2983        memcpy(t, s, sizeof(*s));
2984
2985        /*
2986         * If the drive is an EIDE drive, it can tell us it needs extended
2987         * PIO/MW_DMA cycle timing.
2988         */
2989
2990        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2991                memset(&p, 0, sizeof(p));
2992
2993                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2994                        if (speed <= XFER_PIO_2)
2995                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2996                        else if ((speed <= XFER_PIO_4) ||
2997                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2998                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2999                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3000                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3001
3002                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3003        }
3004
3005        /*
3006         * Convert the timing to bus clock counts.
3007         */
3008
3009        ata_timing_quantize(t, t, T, UT);
3010
3011        /*
3012         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3013         * S.M.A.R.T * and some other commands. We have to ensure that the
3014         * DMA cycle timing is slower/equal than the fastest PIO timing.
3015         */
3016
3017        if (speed > XFER_PIO_6) {
3018                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3019                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3020        }
3021
3022        /*
3023         * Lengthen active & recovery time so that cycle time is correct.
3024         */
3025
3026        if (t->act8b + t->rec8b < t->cyc8b) {
3027                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3028                t->rec8b = t->cyc8b - t->act8b;
3029        }
3030
3031        if (t->active + t->recover < t->cycle) {
3032                t->active += (t->cycle - (t->active + t->recover)) / 2;
3033                t->recover = t->cycle - t->active;
3034        }
3035
3036        /* In a few cases quantisation may produce enough errors to
3037           leave t->cycle too low for the sum of active and recovery
3038           if so we must correct this */
3039        if (t->active + t->recover > t->cycle)
3040                t->cycle = t->active + t->recover;
3041
3042        return 0;
3043}
3044
3045/**
3046 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3047 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3048 *      @cycle: cycle duration in ns
3049 *
3050 *      Return matching xfer mode for @cycle.  The returned mode is of
3051 *      the transfer type specified by @xfer_shift.  If @cycle is too
3052 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3053 *      than the fastest known mode, the fasted mode is returned.
3054 *
3055 *      LOCKING:
3056 *      None.
3057 *
3058 *      RETURNS:
3059 *      Matching xfer_mode, 0xff if no match found.
3060 */
3061u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3062{
3063        u8 base_mode = 0xff, last_mode = 0xff;
3064        const struct ata_xfer_ent *ent;
3065        const struct ata_timing *t;
3066
3067        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3068                if (ent->shift == xfer_shift)
3069                        base_mode = ent->base;
3070
3071        for (t = ata_timing_find_mode(base_mode);
3072             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3073                unsigned short this_cycle;
3074
3075                switch (xfer_shift) {
3076                case ATA_SHIFT_PIO:
3077                case ATA_SHIFT_MWDMA:
3078                        this_cycle = t->cycle;
3079                        break;
3080                case ATA_SHIFT_UDMA:
3081                        this_cycle = t->udma;
3082                        break;
3083                default:
3084                        return 0xff;
3085                }
3086
3087                if (cycle > this_cycle)
3088                        break;
3089
3090                last_mode = t->mode;
3091        }
3092
3093        return last_mode;
3094}
3095
3096/**
3097 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3098 *      @dev: Device to adjust xfer masks
3099 *      @sel: ATA_DNXFER_* selector
3100 *
3101 *      Adjust xfer masks of @dev downward.  Note that this function
3102 *      does not apply the change.  Invoking ata_set_mode() afterwards
3103 *      will apply the limit.
3104 *
3105 *      LOCKING:
3106 *      Inherited from caller.
3107 *
3108 *      RETURNS:
3109 *      0 on success, negative errno on failure
3110 */
3111int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3112{
3113        char buf[32];
3114        unsigned long orig_mask, xfer_mask;
3115        unsigned long pio_mask, mwdma_mask, udma_mask;
3116        int quiet, highbit;
3117
3118        quiet = !!(sel & ATA_DNXFER_QUIET);
3119        sel &= ~ATA_DNXFER_QUIET;
3120
3121        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3122                                                  dev->mwdma_mask,
3123                                                  dev->udma_mask);
3124        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3125
3126        switch (sel) {
3127        case ATA_DNXFER_PIO:
3128                highbit = fls(pio_mask) - 1;
3129                pio_mask &= ~(1 << highbit);
3130                break;
3131
3132        case ATA_DNXFER_DMA:
3133                if (udma_mask) {
3134                        highbit = fls(udma_mask) - 1;
3135                        udma_mask &= ~(1 << highbit);
3136                        if (!udma_mask)
3137                                return -ENOENT;
3138                } else if (mwdma_mask) {
3139                        highbit = fls(mwdma_mask) - 1;
3140                        mwdma_mask &= ~(1 << highbit);
3141                        if (!mwdma_mask)
3142                                return -ENOENT;
3143                }
3144                break;
3145
3146        case ATA_DNXFER_40C:
3147                udma_mask &= ATA_UDMA_MASK_40C;
3148                break;
3149
3150        case ATA_DNXFER_FORCE_PIO0:
3151                pio_mask &= 1;
3152        case ATA_DNXFER_FORCE_PIO:
3153                mwdma_mask = 0;
3154                udma_mask = 0;
3155                break;
3156
3157        default:
3158                BUG();
3159        }
3160
3161        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3162
3163        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3164                return -ENOENT;
3165
3166        if (!quiet) {
3167                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3168                        snprintf(buf, sizeof(buf), "%s:%s",
3169                                 ata_mode_string(xfer_mask),
3170                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3171                else
3172                        snprintf(buf, sizeof(buf), "%s",
3173                                 ata_mode_string(xfer_mask));
3174
3175                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3176        }
3177
3178        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3179                            &dev->udma_mask);
3180
3181        return 0;
3182}
3183
3184static int ata_dev_set_mode(struct ata_device *dev)
3185{
3186        struct ata_port *ap = dev->link->ap;
3187        struct ata_eh_context *ehc = &dev->link->eh_context;
3188        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3189        const char *dev_err_whine = "";
3190        int ign_dev_err = 0;
3191        unsigned int err_mask = 0;
3192        int rc;
3193
3194        dev->flags &= ~ATA_DFLAG_PIO;
3195        if (dev->xfer_shift == ATA_SHIFT_PIO)
3196                dev->flags |= ATA_DFLAG_PIO;
3197
3198        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3199                dev_err_whine = " (SET_XFERMODE skipped)";
3200        else {
3201                if (nosetxfer)
3202                        ata_dev_warn(dev,
3203                                     "NOSETXFER but PATA detected - can't "
3204                                     "skip SETXFER, might malfunction\n");
3205                err_mask = ata_dev_set_xfermode(dev);
3206        }
3207
3208        if (err_mask & ~AC_ERR_DEV)
3209                goto fail;
3210
3211        /* revalidate */
3212        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3213        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3214        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3215        if (rc)
3216                return rc;
3217
3218        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3219                /* Old CFA may refuse this command, which is just fine */
3220                if (ata_id_is_cfa(dev->id))
3221                        ign_dev_err = 1;
3222                /* Catch several broken garbage emulations plus some pre
3223                   ATA devices */
3224                if (ata_id_major_version(dev->id) == 0 &&
3225                                        dev->pio_mode <= XFER_PIO_2)
3226                        ign_dev_err = 1;
3227                /* Some very old devices and some bad newer ones fail
3228                   any kind of SET_XFERMODE request but support PIO0-2
3229                   timings and no IORDY */
3230                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3231                        ign_dev_err = 1;
3232        }
3233        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3234           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3235        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3236            dev->dma_mode == XFER_MW_DMA_0 &&
3237            (dev->id[63] >> 8) & 1)
3238                ign_dev_err = 1;
3239
3240        /* if the device is actually configured correctly, ignore dev err */
3241        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3242                ign_dev_err = 1;
3243
3244        if (err_mask & AC_ERR_DEV) {
3245                if (!ign_dev_err)
3246                        goto fail;
3247                else
3248                        dev_err_whine = " (device error ignored)";
3249        }
3250
3251        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3252                dev->xfer_shift, (int)dev->xfer_mode);
3253
3254        ata_dev_info(dev, "configured for %s%s\n",
3255                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3256                     dev_err_whine);
3257
3258        return 0;
3259
3260 fail:
3261        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3262        return -EIO;
3263}
3264
3265/**
3266 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3267 *      @link: link on which timings will be programmed
3268 *      @r_failed_dev: out parameter for failed device
3269 *
3270 *      Standard implementation of the function used to tune and set
3271 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3272 *      ata_dev_set_mode() fails, pointer to the failing device is
3273 *      returned in @r_failed_dev.
3274 *
3275 *      LOCKING:
3276 *      PCI/etc. bus probe sem.
3277 *
3278 *      RETURNS:
3279 *      0 on success, negative errno otherwise
3280 */
3281
3282int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3283{
3284        struct ata_port *ap = link->ap;
3285        struct ata_device *dev;
3286        int rc = 0, used_dma = 0, found = 0;
3287
3288        /* step 1: calculate xfer_mask */
3289        ata_for_each_dev(dev, link, ENABLED) {
3290                unsigned long pio_mask, dma_mask;
3291                unsigned int mode_mask;
3292
3293                mode_mask = ATA_DMA_MASK_ATA;
3294                if (dev->class == ATA_DEV_ATAPI)
3295                        mode_mask = ATA_DMA_MASK_ATAPI;
3296                else if (ata_id_is_cfa(dev->id))
3297                        mode_mask = ATA_DMA_MASK_CFA;
3298
3299                ata_dev_xfermask(dev);
3300                ata_force_xfermask(dev);
3301
3302                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3303
3304                if (libata_dma_mask & mode_mask)
3305                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3306                                                     dev->udma_mask);
3307                else
3308                        dma_mask = 0;
3309
3310                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3311                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3312
3313                found = 1;
3314                if (ata_dma_enabled(dev))
3315                        used_dma = 1;
3316        }
3317        if (!found)
3318                goto out;
3319
3320        /* step 2: always set host PIO timings */
3321        ata_for_each_dev(dev, link, ENABLED) {
3322                if (dev->pio_mode == 0xff) {
3323                        ata_dev_warn(dev, "no PIO support\n");
3324                        rc = -EINVAL;
3325                        goto out;
3326                }
3327
3328                dev->xfer_mode = dev->pio_mode;
3329                dev->xfer_shift = ATA_SHIFT_PIO;
3330                if (ap->ops->set_piomode)
3331                        ap->ops->set_piomode(ap, dev);
3332        }
3333
3334        /* step 3: set host DMA timings */
3335        ata_for_each_dev(dev, link, ENABLED) {
3336                if (!ata_dma_enabled(dev))
3337                        continue;
3338
3339                dev->xfer_mode = dev->dma_mode;
3340                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3341                if (ap->ops->set_dmamode)
3342                        ap->ops->set_dmamode(ap, dev);
3343        }
3344
3345        /* step 4: update devices' xfer mode */
3346        ata_for_each_dev(dev, link, ENABLED) {
3347                rc = ata_dev_set_mode(dev);
3348                if (rc)
3349                        goto out;
3350        }
3351
3352        /* Record simplex status. If we selected DMA then the other
3353         * host channels are not permitted to do so.
3354         */
3355        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3356                ap->host->simplex_claimed = ap;
3357
3358 out:
3359        if (rc)
3360                *r_failed_dev = dev;
3361        return rc;
3362}
3363
3364/**
3365 *      ata_wait_ready - wait for link to become ready
3366 *      @link: link to be waited on
3367 *      @deadline: deadline jiffies for the operation
3368 *      @check_ready: callback to check link readiness
3369 *
3370 *      Wait for @link to become ready.  @check_ready should return
3371 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3372 *      link doesn't seem to be occupied, other errno for other error
3373 *      conditions.
3374 *
3375 *      Transient -ENODEV conditions are allowed for
3376 *      ATA_TMOUT_FF_WAIT.
3377 *
3378 *      LOCKING:
3379 *      EH context.
3380 *
3381 *      RETURNS:
3382 *      0 if @linke is ready before @deadline; otherwise, -errno.
3383 */
3384int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3385                   int (*check_ready)(struct ata_link *link))
3386{
3387        unsigned long start = jiffies;
3388        unsigned long nodev_deadline;
3389        int warned = 0;
3390
3391        /* choose which 0xff timeout to use, read comment in libata.h */
3392        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3393                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3394        else
3395                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3396
3397        /* Slave readiness can't be tested separately from master.  On
3398         * M/S emulation configuration, this function should be called
3399         * only on the master and it will handle both master and slave.
3400         */
3401        WARN_ON(link == link->ap->slave_link);
3402
3403        if (time_after(nodev_deadline, deadline))
3404                nodev_deadline = deadline;
3405
3406        while (1) {
3407                unsigned long now = jiffies;
3408                int ready, tmp;
3409
3410                ready = tmp = check_ready(link);
3411                if (ready > 0)
3412                        return 0;
3413
3414                /*
3415                 * -ENODEV could be transient.  Ignore -ENODEV if link
3416                 * is online.  Also, some SATA devices take a long
3417                 * time to clear 0xff after reset.  Wait for
3418                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3419                 * offline.
3420                 *
3421                 * Note that some PATA controllers (pata_ali) explode
3422                 * if status register is read more than once when
3423                 * there's no device attached.
3424                 */
3425                if (ready == -ENODEV) {
3426                        if (ata_link_online(link))
3427                                ready = 0;
3428                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3429                                 !ata_link_offline(link) &&
3430                                 time_before(now, nodev_deadline))
3431                                ready = 0;
3432                }
3433
3434                if (ready)
3435                        return ready;
3436                if (time_after(now, deadline))
3437                        return -EBUSY;
3438
3439                if (!warned && time_after(now, start + 5 * HZ) &&
3440                    (deadline - now > 3 * HZ)) {
3441                        ata_link_warn(link,
3442                                "link is slow to respond, please be patient "
3443                                "(ready=%d)\n", tmp);
3444                        warned = 1;
3445                }
3446
3447                ata_msleep(link->ap, 50);
3448        }
3449}
3450
3451/**
3452 *      ata_wait_after_reset - wait for link to become ready after reset
3453 *      @link: link to be waited on
3454 *      @deadline: deadline jiffies for the operation
3455 *      @check_ready: callback to check link readiness
3456 *
3457 *      Wait for @link to become ready after reset.
3458 *
3459 *      LOCKING:
3460 *      EH context.
3461 *
3462 *      RETURNS:
3463 *      0 if @linke is ready before @deadline; otherwise, -errno.
3464 */
3465int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3466                                int (*check_ready)(struct ata_link *link))
3467{
3468        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3469
3470        return ata_wait_ready(link, deadline, check_ready);
3471}
3472
3473/**
3474 *      sata_link_debounce - debounce SATA phy status
3475 *      @link: ATA link to debounce SATA phy status for
3476 *      @params: timing parameters { interval, duratinon, timeout } in msec
3477 *      @deadline: deadline jiffies for the operation
3478 *
3479 *      Make sure SStatus of @link reaches stable state, determined by
3480 *      holding the same value where DET is not 1 for @duration polled
3481 *      every @interval, before @timeout.  Timeout constraints the
3482 *      beginning of the stable state.  Because DET gets stuck at 1 on
3483 *      some controllers after hot unplugging, this functions waits
3484 *      until timeout then returns 0 if DET is stable at 1.
3485 *
3486 *      @timeout is further limited by @deadline.  The sooner of the
3487 *      two is used.
3488 *
3489 *      LOCKING:
3490 *      Kernel thread context (may sleep)
3491 *
3492 *      RETURNS:
3493 *      0 on success, -errno on failure.
3494 */
3495int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3496                       unsigned long deadline)
3497{
3498        unsigned long interval = params[0];
3499        unsigned long duration = params[1];
3500        unsigned long last_jiffies, t;
3501        u32 last, cur;
3502        int rc;
3503
3504        t = ata_deadline(jiffies, params[2]);
3505        if (time_before(t, deadline))
3506                deadline = t;
3507
3508        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3509                return rc;
3510        cur &= 0xf;
3511
3512        last = cur;
3513        last_jiffies = jiffies;
3514
3515        while (1) {
3516                ata_msleep(link->ap, interval);
3517                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3518                        return rc;
3519                cur &= 0xf;
3520
3521                /* DET stable? */
3522                if (cur == last) {
3523                        if (cur == 1 && time_before(jiffies, deadline))
3524                                continue;
3525                        if (time_after(jiffies,
3526                                       ata_deadline(last_jiffies, duration)))
3527                                return 0;
3528                        continue;
3529                }
3530
3531                /* unstable, start over */
3532                last = cur;
3533                last_jiffies = jiffies;
3534
3535                /* Check deadline.  If debouncing failed, return
3536                 * -EPIPE to tell upper layer to lower link speed.
3537                 */
3538                if (time_after(jiffies, deadline))
3539                        return -EPIPE;
3540        }
3541}
3542
3543/**
3544 *      sata_link_resume - resume SATA link
3545 *      @link: ATA link to resume SATA
3546 *      @params: timing parameters { interval, duratinon, timeout } in msec
3547 *      @deadline: deadline jiffies for the operation
3548 *
3549 *      Resume SATA phy @link and debounce it.
3550 *
3551 *      LOCKING:
3552 *      Kernel thread context (may sleep)
3553 *
3554 *      RETURNS:
3555 *      0 on success, -errno on failure.
3556 */
3557int sata_link_resume(struct ata_link *link, const unsigned long *params,
3558                     unsigned long deadline)
3559{
3560        int tries = ATA_LINK_RESUME_TRIES;
3561        u32 scontrol, serror;
3562        int rc;
3563
3564        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3565                return rc;
3566
3567        /*
3568         * Writes to SControl sometimes get ignored under certain
3569         * controllers (ata_piix SIDPR).  Make sure DET actually is
3570         * cleared.
3571         */
3572        do {
3573                scontrol = (scontrol & 0x0f0) | 0x300;
3574                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3575                        return rc;
3576                /*
3577                 * Some PHYs react badly if SStatus is pounded
3578                 * immediately after resuming.  Delay 200ms before
3579                 * debouncing.
3580                 */
3581                ata_msleep(link->ap, 200);
3582
3583                /* is SControl restored correctly? */
3584                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585                        return rc;
3586        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3587
3588        if ((scontrol & 0xf0f) != 0x300) {
3589                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3590                             scontrol);
3591                return 0;
3592        }
3593
3594        if (tries < ATA_LINK_RESUME_TRIES)
3595                ata_link_warn(link, "link resume succeeded after %d retries\n",
3596                              ATA_LINK_RESUME_TRIES - tries);
3597
3598        if ((rc = sata_link_debounce(link, params, deadline)))
3599                return rc;
3600
3601        /* clear SError, some PHYs require this even for SRST to work */
3602        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3603                rc = sata_scr_write(link, SCR_ERROR, serror);
3604
3605        return rc != -EINVAL ? rc : 0;
3606}
3607
3608/**
3609 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3610 *      @link: ATA link to manipulate SControl for
3611 *      @policy: LPM policy to configure
3612 *      @spm_wakeup: initiate LPM transition to active state
3613 *
3614 *      Manipulate the IPM field of the SControl register of @link
3615 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3616 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3617 *      the link.  This function also clears PHYRDY_CHG before
3618 *      returning.
3619 *
3620 *      LOCKING:
3621 *      EH context.
3622 *
3623 *      RETURNS:
3624 *      0 on succes, -errno otherwise.
3625 */
3626int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3627                      bool spm_wakeup)
3628{
3629        struct ata_eh_context *ehc = &link->eh_context;
3630        bool woken_up = false;
3631        u32 scontrol;
3632        int rc;
3633
3634        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3635        if (rc)
3636                return rc;
3637
3638        switch (policy) {
3639        case ATA_LPM_MAX_POWER:
3640                /* disable all LPM transitions */
3641                scontrol |= (0x7 << 8);
3642                /* initiate transition to active state */
3643                if (spm_wakeup) {
3644                        scontrol |= (0x4 << 12);
3645                        woken_up = true;
3646                }
3647                break;
3648        case ATA_LPM_MED_POWER:
3649                /* allow LPM to PARTIAL */
3650                scontrol &= ~(0x1 << 8);
3651                scontrol |= (0x6 << 8);
3652                break;
3653        case ATA_LPM_MIN_POWER:
3654                if (ata_link_nr_enabled(link) > 0)
3655                        /* no restrictions on LPM transitions */
3656                        scontrol &= ~(0x7 << 8);
3657                else {
3658                        /* empty port, power off */
3659                        scontrol &= ~0xf;
3660                        scontrol |= (0x1 << 2);
3661                }
3662                break;
3663        default:
3664                WARN_ON(1);
3665        }
3666
3667        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3668        if (rc)
3669                return rc;
3670
3671        /* give the link time to transit out of LPM state */
3672        if (woken_up)
3673                msleep(10);
3674
3675        /* clear PHYRDY_CHG from SError */
3676        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3677        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3678}
3679
3680/**
3681 *      ata_std_prereset - prepare for reset
3682 *      @link: ATA link to be reset
3683 *      @deadline: deadline jiffies for the operation
3684 *
3685 *      @link is about to be reset.  Initialize it.  Failure from
3686 *      prereset makes libata abort whole reset sequence and give up
3687 *      that port, so prereset should be best-effort.  It does its
3688 *      best to prepare for reset sequence but if things go wrong, it
3689 *      should just whine, not fail.
3690 *
3691 *      LOCKING:
3692 *      Kernel thread context (may sleep)
3693 *
3694 *      RETURNS:
3695 *      0 on success, -errno otherwise.
3696 */
3697int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3698{
3699        struct ata_port *ap = link->ap;
3700        struct ata_eh_context *ehc = &link->eh_context;
3701        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3702        int rc;
3703
3704        /* if we're about to do hardreset, nothing more to do */
3705        if (ehc->i.action & ATA_EH_HARDRESET)
3706                return 0;
3707
3708        /* if SATA, resume link */
3709        if (ap->flags & ATA_FLAG_SATA) {
3710                rc = sata_link_resume(link, timing, deadline);
3711                /* whine about phy resume failure but proceed */
3712                if (rc && rc != -EOPNOTSUPP)
3713                        ata_link_warn(link,
3714                                      "failed to resume link for reset (errno=%d)\n",
3715                                      rc);
3716        }
3717
3718        /* no point in trying softreset on offline link */
3719        if (ata_phys_link_offline(link))
3720                ehc->i.action &= ~ATA_EH_SOFTRESET;
3721
3722        return 0;
3723}
3724
3725/**
3726 *      sata_link_hardreset - reset link via SATA phy reset
3727 *      @link: link to reset
3728 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3729 *      @deadline: deadline jiffies for the operation
3730 *      @online: optional out parameter indicating link onlineness
3731 *      @check_ready: optional callback to check link readiness
3732 *
3733 *      SATA phy-reset @link using DET bits of SControl register.
3734 *      After hardreset, link readiness is waited upon using
3735 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3736 *      allowed to not specify @check_ready and wait itself after this
3737 *      function returns.  Device classification is LLD's
3738 *      responsibility.
3739 *
3740 *      *@online is set to one iff reset succeeded and @link is online
3741 *      after reset.
3742 *
3743 *      LOCKING:
3744 *      Kernel thread context (may sleep)
3745 *
3746 *      RETURNS:
3747 *      0 on success, -errno otherwise.
3748 */
3749int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3750                        unsigned long deadline,
3751                        bool *online, int (*check_ready)(struct ata_link *))
3752{
3753        u32 scontrol;
3754        int rc;
3755
3756        DPRINTK("ENTER\n");
3757
3758        if (online)
3759                *online = false;
3760
3761        if (sata_set_spd_needed(link)) {
3762                /* SATA spec says nothing about how to reconfigure
3763                 * spd.  To be on the safe side, turn off phy during
3764                 * reconfiguration.  This works for at least ICH7 AHCI
3765                 * and Sil3124.
3766                 */
3767                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768                        goto out;
3769
3770                scontrol = (scontrol & 0x0f0) | 0x304;
3771
3772                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3773                        goto out;
3774
3775                sata_set_spd(link);
3776        }
3777
3778        /* issue phy wake/reset */
3779        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780                goto out;
3781
3782        scontrol = (scontrol & 0x0f0) | 0x301;
3783
3784        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3785                goto out;
3786
3787        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3788         * 10.4.2 says at least 1 ms.
3789         */
3790        ata_msleep(link->ap, 1);
3791
3792        /* bring link back */
3793        rc = sata_link_resume(link, timing, deadline);
3794        if (rc)
3795                goto out;
3796        /* if link is offline nothing more to do */
3797        if (ata_phys_link_offline(link))
3798                goto out;
3799
3800        /* Link is online.  From this point, -ENODEV too is an error. */
3801        if (online)
3802                *online = true;
3803
3804        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3805                /* If PMP is supported, we have to do follow-up SRST.
3806                 * Some PMPs don't send D2H Reg FIS after hardreset if
3807                 * the first port is empty.  Wait only for
3808                 * ATA_TMOUT_PMP_SRST_WAIT.
3809                 */
3810                if (check_ready) {
3811                        unsigned long pmp_deadline;
3812
3813                        pmp_deadline = ata_deadline(jiffies,
3814                                                    ATA_TMOUT_PMP_SRST_WAIT);
3815                        if (time_after(pmp_deadline, deadline))
3816                                pmp_deadline = deadline;
3817                        ata_wait_ready(link, pmp_deadline, check_ready);
3818                }
3819                rc = -EAGAIN;
3820                goto out;
3821        }
3822
3823        rc = 0;
3824        if (check_ready)
3825                rc = ata_wait_ready(link, deadline, check_ready);
3826 out:
3827        if (rc && rc != -EAGAIN) {
3828                /* online is set iff link is online && reset succeeded */
3829                if (online)
3830                        *online = false;
3831                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3832        }
3833        DPRINTK("EXIT, rc=%d\n", rc);
3834        return rc;
3835}
3836
3837/**
3838 *      sata_std_hardreset - COMRESET w/o waiting or classification
3839 *      @link: link to reset
3840 *      @class: resulting class of attached device
3841 *      @deadline: deadline jiffies for the operation
3842 *
3843 *      Standard SATA COMRESET w/o waiting or classification.
3844 *
3845 *      LOCKING:
3846 *      Kernel thread context (may sleep)
3847 *
3848 *      RETURNS:
3849 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3850 */
3851int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3852                       unsigned long deadline)
3853{
3854        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3855        bool online;
3856        int rc;
3857
3858        /* do hardreset */
3859        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3860        return online ? -EAGAIN : rc;
3861}
3862
3863/**
3864 *      ata_std_postreset - standard postreset callback
3865 *      @link: the target ata_link
3866 *      @classes: classes of attached devices
3867 *
3868 *      This function is invoked after a successful reset.  Note that
3869 *      the device might have been reset more than once using
3870 *      different reset methods before postreset is invoked.
3871 *
3872 *      LOCKING:
3873 *      Kernel thread context (may sleep)
3874 */
3875void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3876{
3877        u32 serror;
3878
3879        DPRINTK("ENTER\n");
3880
3881        /* reset complete, clear SError */
3882        if (!sata_scr_read(link, SCR_ERROR, &serror))
3883                sata_scr_write(link, SCR_ERROR, serror);
3884
3885        /* print link status */
3886        sata_print_link_status(link);
3887
3888        DPRINTK("EXIT\n");
3889}
3890
3891/**
3892 *      ata_dev_same_device - Determine whether new ID matches configured device
3893 *      @dev: device to compare against
3894 *      @new_class: class of the new device
3895 *      @new_id: IDENTIFY page of the new device
3896 *
3897 *      Compare @new_class and @new_id against @dev and determine
3898 *      whether @dev is the device indicated by @new_class and
3899 *      @new_id.
3900 *
3901 *      LOCKING:
3902 *      None.
3903 *
3904 *      RETURNS:
3905 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3906 */
3907static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3908                               const u16 *new_id)
3909{
3910        const u16 *old_id = dev->id;
3911        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3912        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3913
3914        if (dev->class != new_class) {
3915                ata_dev_info(dev, "class mismatch %d != %d\n",
3916                             dev->class, new_class);
3917                return 0;
3918        }
3919
3920        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3921        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3922        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3923        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3924
3925        if (strcmp(model[0], model[1])) {
3926                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3927                             model[0], model[1]);
3928                return 0;
3929        }
3930
3931        if (strcmp(serial[0], serial[1])) {
3932                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3933                             serial[0], serial[1]);
3934                return 0;
3935        }
3936
3937        return 1;
3938}
3939
3940/**
3941 *      ata_dev_reread_id - Re-read IDENTIFY data
3942 *      @dev: target ATA device
3943 *      @readid_flags: read ID flags
3944 *
3945 *      Re-read IDENTIFY page and make sure @dev is still attached to
3946 *      the port.
3947 *
3948 *      LOCKING:
3949 *      Kernel thread context (may sleep)
3950 *
3951 *      RETURNS:
3952 *      0 on success, negative errno otherwise
3953 */
3954int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3955{
3956        unsigned int class = dev->class;
3957        u16 *id = (void *)dev->link->ap->sector_buf;
3958        int rc;
3959
3960        /* read ID data */
3961        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3962        if (rc)
3963                return rc;
3964
3965        /* is the device still there? */
3966        if (!ata_dev_same_device(dev, class, id))
3967                return -ENODEV;
3968
3969        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3970        return 0;
3971}
3972
3973/**
3974 *      ata_dev_revalidate - Revalidate ATA device
3975 *      @dev: device to revalidate
3976 *      @new_class: new class code
3977 *      @readid_flags: read ID flags
3978 *
3979 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3980 *      port and reconfigure it according to the new IDENTIFY page.
3981 *
3982 *      LOCKING:
3983 *      Kernel thread context (may sleep)
3984 *
3985 *      RETURNS:
3986 *      0 on success, negative errno otherwise
3987 */
3988int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3989                       unsigned int readid_flags)
3990{
3991        u64 n_sectors = dev->n_sectors;
3992        u64 n_native_sectors = dev->n_native_sectors;
3993        int rc;
3994
3995        if (!ata_dev_enabled(dev))
3996                return -ENODEV;
3997
3998        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3999        if (ata_class_enabled(new_class) &&
4000            new_class != ATA_DEV_ATA &&
4001            new_class != ATA_DEV_ATAPI &&
4002            new_class != ATA_DEV_SEMB) {
4003                ata_dev_info(dev, "class mismatch %u != %u\n",
4004                             dev->class, new_class);
4005                rc = -ENODEV;
4006                goto fail;
4007        }
4008
4009        /* re-read ID */
4010        rc = ata_dev_reread_id(dev, readid_flags);
4011        if (rc)
4012                goto fail;
4013
4014        /* configure device according to the new ID */
4015        rc = ata_dev_configure(dev);
4016        if (rc)
4017                goto fail;
4018
4019        /* verify n_sectors hasn't changed */
4020        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4021            dev->n_sectors == n_sectors)
4022                return 0;
4023
4024        /* n_sectors has changed */
4025        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4026                     (unsigned long long)n_sectors,
4027                     (unsigned long long)dev->n_sectors);
4028
4029        /*
4030         * Something could have caused HPA to be unlocked
4031         * involuntarily.  If n_native_sectors hasn't changed and the
4032         * new size matches it, keep the device.
4033         */
4034        if (dev->n_native_sectors == n_native_sectors &&
4035            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4036                ata_dev_warn(dev,
4037                             "new n_sectors matches native, probably "
4038                             "late HPA unlock, n_sectors updated\n");
4039                /* use the larger n_sectors */
4040                return 0;
4041        }
4042
4043        /*
4044         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4045         * unlocking HPA in those cases.
4046         *
4047         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4048         */
4049        if (dev->n_native_sectors == n_native_sectors &&
4050            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4051            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4052                ata_dev_warn(dev,
4053                             "old n_sectors matches native, probably "
4054                             "late HPA lock, will try to unlock HPA\n");
4055                /* try unlocking HPA */
4056                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4057                rc = -EIO;
4058        } else
4059                rc = -ENODEV;
4060
4061        /* restore original n_[native_]sectors and fail */
4062        dev->n_native_sectors = n_native_sectors;
4063        dev->n_sectors = n_sectors;
4064 fail:
4065        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4066        return rc;
4067}
4068
4069struct ata_blacklist_entry {
4070        const char *model_num;
4071        const char *model_rev;
4072        unsigned long horkage;
4073};
4074
4075static const struct ata_blacklist_entry ata_device_blacklist [] = {
4076        /* Devices with DMA related problems under Linux */
4077        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4078        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4079        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4080        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4081        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4082        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4083        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4084        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4085        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4086        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4087        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4088        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4089        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4090        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4091        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4092        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4093        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4094        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4095        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4096        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4097        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4098        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4099        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4100        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4101        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4102        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4103        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4104        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4105        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4106        /* Odd clown on sil3726/4726 PMPs */
4107        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4108
4109        /* Weird ATAPI devices */
4110        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4111        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4112        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4113
4114        /* Devices we expect to fail diagnostics */
4115
4116        /* Devices where NCQ should be avoided */
4117        /* NCQ is slow */
4118        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4119        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4120        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4121        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4122        /* NCQ is broken */
4123        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4124        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4125        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4126        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4127        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4128
4129        /* Seagate NCQ + FLUSH CACHE firmware bug */
4130        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4131                                                ATA_HORKAGE_FIRMWARE_WARN },
4132
4133        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4134                                                ATA_HORKAGE_FIRMWARE_WARN },
4135
4136        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4137                                                ATA_HORKAGE_FIRMWARE_WARN },
4138
4139        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4140                                                ATA_HORKAGE_FIRMWARE_WARN },
4141
4142        /* Blacklist entries taken from Silicon Image 3124/3132
4143           Windows driver .inf file - also several Linux problem reports */
4144        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4145        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4146        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4147
4148        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4149        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4150
4151        /* devices which puke on READ_NATIVE_MAX */
4152        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4153        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4154        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4155        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4156
4157        /* this one allows HPA unlocking but fails IOs on the area */
4158        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4159
4160        /* Devices which report 1 sector over size HPA */
4161        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4162        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4163        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4164
4165        /* Devices which get the IVB wrong */
4166        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4167        /* Maybe we should just blacklist TSSTcorp... */
4168        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4169
4170        /* Devices that do not need bridging limits applied */
4171        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4172        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4173
4174        /* Devices which aren't very happy with higher link speeds */
4175        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4176        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4177
4178        /*
4179         * Devices which choke on SETXFER.  Applies only if both the
4180         * device and controller are SATA.
4181         */
4182        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4183        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4184        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4185        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4186        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4187
4188        /* End Marker */
4189        { }
4190};
4191
4192/**
4193 *      glob_match - match a text string against a glob-style pattern
4194 *      @text: the string to be examined
4195 *      @pattern: the glob-style pattern to be matched against
4196 *
4197 *      Either/both of text and pattern can be empty strings.
4198 *
4199 *      Match text against a glob-style pattern, with wildcards and simple sets:
4200 *
4201 *              ?       matches any single character.
4202 *              *       matches any run of characters.
4203 *              [xyz]   matches a single character from the set: x, y, or z.
4204 *              [a-d]   matches a single character from the range: a, b, c, or d.
4205 *              [a-d0-9] matches a single character from either range.
4206 *
4207 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4208 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4209 *
4210 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4211 *
4212 *      This function uses one level of recursion per '*' in pattern.
4213 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4214 *      this will not cause stack problems for any reasonable use here.
4215 *
4216 *      RETURNS:
4217 *      0 on match, 1 otherwise.
4218 */
4219static int glob_match (const char *text, const char *pattern)
4220{
4221        do {
4222                /* Match single character or a '?' wildcard */
4223                if (*text == *pattern || *pattern == '?') {
4224                        if (!*pattern++)
4225                                return 0;  /* End of both strings: match */
4226                } else {
4227                        /* Match single char against a '[' bracketed ']' pattern set */
4228                        if (!*text || *pattern != '[')
4229                                break;  /* Not a pattern set */
4230                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4231                                if (*pattern == '-' && *(pattern - 1) != '[')
4232                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4233                                                ++pattern;
4234                                                break;
4235                                        }
4236                        }
4237                        if (!*pattern || *pattern == ']')
4238                                return 1;  /* No match */
4239                        while (*pattern && *pattern++ != ']');
4240                }
4241        } while (*++text && *pattern);
4242
4243        /* Match any run of chars against a '*' wildcard */
4244        if (*pattern == '*') {
4245                if (!*++pattern)
4246                        return 0;  /* Match: avoid recursion at end of pattern */
4247                /* Loop to handle additional pattern chars after the wildcard */
4248                while (*text) {
4249                        if (glob_match(text, pattern) == 0)
4250                                return 0;  /* Remainder matched */
4251                        ++text;  /* Absorb (match) this char and try again */
4252                }
4253        }
4254        if (!*text && !*pattern)
4255                return 0;  /* End of both strings: match */
4256        return 1;  /* No match */
4257}
4258
4259static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4260{
4261        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4263        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4264
4265        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4266        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4267
4268        while (ad->model_num) {
4269                if (!glob_match(model_num, ad->model_num)) {
4270                        if (ad->model_rev == NULL)
4271                                return ad->horkage;
4272                        if (!glob_match(model_rev, ad->model_rev))
4273                                return ad->horkage;
4274                }
4275                ad++;
4276        }
4277        return 0;
4278}
4279
4280static int ata_dma_blacklisted(const struct ata_device *dev)
4281{
4282        /* We don't support polling DMA.
4283         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4284         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4285         */
4286        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4287            (dev->flags & ATA_DFLAG_CDB_INTR))
4288                return 1;
4289        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4290}
4291
4292/**
4293 *      ata_is_40wire           -       check drive side detection
4294 *      @dev: device
4295 *
4296 *      Perform drive side detection decoding, allowing for device vendors
4297 *      who can't follow the documentation.
4298 */
4299
4300static int ata_is_40wire(struct ata_device *dev)
4301{
4302        if (dev->horkage & ATA_HORKAGE_IVB)
4303                return ata_drive_40wire_relaxed(dev->id);
4304        return ata_drive_40wire(dev->id);
4305}
4306
4307/**
4308 *      cable_is_40wire         -       40/80/SATA decider
4309 *      @ap: port to consider
4310 *
4311 *      This function encapsulates the policy for speed management
4312 *      in one place. At the moment we don't cache the result but
4313 *      there is a good case for setting ap->cbl to the result when
4314 *      we are called with unknown cables (and figuring out if it
4315 *      impacts hotplug at all).
4316 *
4317 *      Return 1 if the cable appears to be 40 wire.
4318 */
4319
4320static int cable_is_40wire(struct ata_port *ap)
4321{
4322        struct ata_link *link;
4323        struct ata_device *dev;
4324
4325        /* If the controller thinks we are 40 wire, we are. */
4326        if (ap->cbl == ATA_CBL_PATA40)
4327                return 1;
4328
4329        /* If the controller thinks we are 80 wire, we are. */
4330        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4331                return 0;
4332
4333        /* If the system is known to be 40 wire short cable (eg
4334         * laptop), then we allow 80 wire modes even if the drive
4335         * isn't sure.
4336         */
4337        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4338                return 0;
4339
4340        /* If the controller doesn't know, we scan.
4341         *
4342         * Note: We look for all 40 wire detects at this point.  Any
4343         *       80 wire detect is taken to be 80 wire cable because
4344         * - in many setups only the one drive (slave if present) will
4345         *   give a valid detect
4346         * - if you have a non detect capable drive you don't want it
4347         *   to colour the choice
4348         */
4349        ata_for_each_link(link, ap, EDGE) {
4350                ata_for_each_dev(dev, link, ENABLED) {
4351                        if (!ata_is_40wire(dev))
4352                                return 0;
4353                }
4354        }
4355        return 1;
4356}
4357
4358/**
4359 *      ata_dev_xfermask - Compute supported xfermask of the given device
4360 *      @dev: Device to compute xfermask for
4361 *
4362 *      Compute supported xfermask of @dev and store it in
4363 *      dev->*_mask.  This function is responsible for applying all
4364 *      known limits including host controller limits, device
4365 *      blacklist, etc...
4366 *
4367 *      LOCKING:
4368 *      None.
4369 */
4370static void ata_dev_xfermask(struct ata_device *dev)
4371{
4372        struct ata_link *link = dev->link;
4373        struct ata_port *ap = link->ap;
4374        struct ata_host *host = ap->host;
4375        unsigned long xfer_mask;
4376
4377        /* controller modes available */
4378        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4379                                      ap->mwdma_mask, ap->udma_mask);
4380
4381        /* drive modes available */
4382        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4383                                       dev->mwdma_mask, dev->udma_mask);
4384        xfer_mask &= ata_id_xfermask(dev->id);
4385
4386        /*
4387         *      CFA Advanced TrueIDE timings are not allowed on a shared
4388         *      cable
4389         */
4390        if (ata_dev_pair(dev)) {
4391                /* No PIO5 or PIO6 */
4392                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4393                /* No MWDMA3 or MWDMA 4 */
4394                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4395        }
4396
4397        if (ata_dma_blacklisted(dev)) {
4398                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4399                ata_dev_warn(dev,
4400                             "device is on DMA blacklist, disabling DMA\n");
4401        }
4402
4403        if ((host->flags & ATA_HOST_SIMPLEX) &&
4404            host->simplex_claimed && host->simplex_claimed != ap) {
4405                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4406                ata_dev_warn(dev,
4407                             "simplex DMA is claimed by other device, disabling DMA\n");
4408        }
4409
4410        if (ap->flags & ATA_FLAG_NO_IORDY)
4411                xfer_mask &= ata_pio_mask_no_iordy(dev);
4412
4413        if (ap->ops->mode_filter)
4414                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4415
4416        /* Apply cable rule here.  Don't apply it early because when
4417         * we handle hot plug the cable type can itself change.
4418         * Check this last so that we know if the transfer rate was
4419         * solely limited by the cable.
4420         * Unknown or 80 wire cables reported host side are checked
4421         * drive side as well. Cases where we know a 40wire cable
4422         * is used safely for 80 are not checked here.
4423         */
4424        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4425                /* UDMA/44 or higher would be available */
4426                if (cable_is_40wire(ap)) {
4427                        ata_dev_warn(dev,
4428                                     "limited to UDMA/33 due to 40-wire cable\n");
4429                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4430                }
4431
4432        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4433                            &dev->mwdma_mask, &dev->udma_mask);
4434}
4435
4436/**
4437 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4438 *      @dev: Device to which command will be sent
4439 *
4440 *      Issue SET FEATURES - XFER MODE command to device @dev
4441 *      on port @ap.
4442 *
4443 *      LOCKING:
4444 *      PCI/etc. bus probe sem.
4445 *
4446 *      RETURNS:
4447 *      0 on success, AC_ERR_* mask otherwise.
4448 */
4449
4450static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4451{
4452        struct ata_taskfile tf;
4453        unsigned int err_mask;
4454
4455        /* set up set-features taskfile */
4456        DPRINTK("set features - xfer mode\n");
4457
4458        /* Some controllers and ATAPI devices show flaky interrupt
4459         * behavior after setting xfer mode.  Use polling instead.
4460         */
4461        ata_tf_init(dev, &tf);
4462        tf.command = ATA_CMD_SET_FEATURES;
4463        tf.feature = SETFEATURES_XFER;
4464        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4465        tf.protocol = ATA_PROT_NODATA;
4466        /* If we are using IORDY we must send the mode setting command */
4467        if (ata_pio_need_iordy(dev))
4468                tf.nsect = dev->xfer_mode;
4469        /* If the device has IORDY and the controller does not - turn it off */
4470        else if (ata_id_has_iordy(dev->id))
4471                tf.nsect = 0x01;
4472        else /* In the ancient relic department - skip all of this */
4473                return 0;
4474
4475        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4476
4477        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4478        return err_mask;
4479}
4480
4481/**
4482 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4483 *      @dev: Device to which command will be sent
4484 *      @enable: Whether to enable or disable the feature
4485 *      @feature: The sector count represents the feature to set
4486 *
4487 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4488 *      on port @ap with sector count
4489 *
4490 *      LOCKING:
4491 *      PCI/etc. bus probe sem.
4492 *
4493 *      RETURNS:
4494 *      0 on success, AC_ERR_* mask otherwise.
4495 */
4496unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4497{
4498        struct ata_taskfile tf;
4499        unsigned int err_mask;
4500
4501        /* set up set-features taskfile */
4502        DPRINTK("set features - SATA features\n");
4503
4504        ata_tf_init(dev, &tf);
4505        tf.command = ATA_CMD_SET_FEATURES;
4506        tf.feature = enable;
4507        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4508        tf.protocol = ATA_PROT_NODATA;
4509        tf.nsect = feature;
4510
4511        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4512
4513        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4514        return err_mask;
4515}
4516EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4517
4518/**
4519 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4520 *      @dev: Device to which command will be sent
4521 *      @heads: Number of heads (taskfile parameter)
4522 *      @sectors: Number of sectors (taskfile parameter)
4523 *
4524 *      LOCKING:
4525 *      Kernel thread context (may sleep)
4526 *
4527 *      RETURNS:
4528 *      0 on success, AC_ERR_* mask otherwise.
4529 */
4530static unsigned int ata_dev_init_params(struct ata_device *dev,
4531                                        u16 heads, u16 sectors)
4532{
4533        struct ata_taskfile tf;
4534        unsigned int err_mask;
4535
4536        /* Number of sectors per track 1-255. Number of heads 1-16 */
4537        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4538                return AC_ERR_INVALID;
4539
4540        /* set up init dev params taskfile */
4541        DPRINTK("init dev params \n");
4542
4543        ata_tf_init(dev, &tf);
4544        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4545        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4546        tf.protocol = ATA_PROT_NODATA;
4547        tf.nsect = sectors;
4548        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4549
4550        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4551        /* A clean abort indicates an original or just out of spec drive
4552           and we should continue as we issue the setup based on the
4553           drive reported working geometry */
4554        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4555                err_mask = 0;
4556
4557        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4558        return err_mask;
4559}
4560
4561/**
4562 *      ata_sg_clean - Unmap DMA memory associated with command
4563 *      @qc: Command containing DMA memory to be released
4564 *
4565 *      Unmap all mapped DMA memory associated with this command.
4566 *
4567 *      LOCKING:
4568 *      spin_lock_irqsave(host lock)
4569 */
4570void ata_sg_clean(struct ata_queued_cmd *qc)
4571{
4572        struct ata_port *ap = qc->ap;
4573        struct scatterlist *sg = qc->sg;
4574        int dir = qc->dma_dir;
4575
4576        WARN_ON_ONCE(sg == NULL);
4577
4578        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4579
4580        if (qc->n_elem)
4581                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4582
4583        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4584        qc->sg = NULL;
4585}
4586
4587/**
4588 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4589 *      @qc: Metadata associated with taskfile to check
4590 *
4591 *      Allow low-level driver to filter ATA PACKET commands, returning
4592 *      a status indicating whether or not it is OK to use DMA for the
4593 *      supplied PACKET command.
4594 *
4595 *      LOCKING:
4596 *      spin_lock_irqsave(host lock)
4597 *
4598 *      RETURNS: 0 when ATAPI DMA can be used
4599 *               nonzero otherwise
4600 */
4601int atapi_check_dma(struct ata_queued_cmd *qc)
4602{
4603        struct ata_port *ap = qc->ap;
4604
4605        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4606         * few ATAPI devices choke on such DMA requests.
4607         */
4608        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4609            unlikely(qc->nbytes & 15))
4610                return 1;
4611
4612        if (ap->ops->check_atapi_dma)
4613                return ap->ops->check_atapi_dma(qc);
4614
4615        return 0;
4616}
4617
4618/**
4619 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4620 *      @qc: ATA command in question
4621 *
4622 *      Non-NCQ commands cannot run with any other command, NCQ or
4623 *      not.  As upper layer only knows the queue depth, we are
4624 *      responsible for maintaining exclusion.  This function checks
4625 *      whether a new command @qc can be issued.
4626 *
4627 *      LOCKING:
4628 *      spin_lock_irqsave(host lock)
4629 *
4630 *      RETURNS:
4631 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4632 */
4633int ata_std_qc_defer(struct ata_queued_cmd *qc)
4634{
4635        struct ata_link *link = qc->dev->link;
4636
4637        if (qc->tf.protocol == ATA_PROT_NCQ) {
4638                if (!ata_tag_valid(link->active_tag))
4639                        return 0;
4640        } else {
4641                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4642                        return 0;
4643        }
4644
4645        return ATA_DEFER_LINK;
4646}
4647
4648void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4649
4650/**
4651 *      ata_sg_init - Associate command with scatter-gather table.
4652 *      @qc: Command to be associated
4653 *      @sg: Scatter-gather table.
4654 *      @n_elem: Number of elements in s/g table.
4655 *
4656 *      Initialize the data-related elements of queued_cmd @qc
4657 *      to point to a scatter-gather table @sg, containing @n_elem
4658 *      elements.
4659 *
4660 *      LOCKING:
4661 *      spin_lock_irqsave(host lock)
4662 */
4663void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4664                 unsigned int n_elem)
4665{
4666        qc->sg = sg;
4667        qc->n_elem = n_elem;
4668        qc->cursg = qc->sg;
4669}
4670
4671/**
4672 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4673 *      @qc: Command with scatter-gather table to be mapped.
4674 *
4675 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4676 *
4677 *      LOCKING:
4678 *      spin_lock_irqsave(host lock)
4679 *
4680 *      RETURNS:
4681 *      Zero on success, negative on error.
4682 *
4683 */
4684static int ata_sg_setup(struct ata_queued_cmd *qc)
4685{
4686        struct ata_port *ap = qc->ap;
4687        unsigned int n_elem;
4688
4689        VPRINTK("ENTER, ata%u\n", ap->print_id);
4690
4691        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4692        if (n_elem < 1)
4693                return -1;
4694
4695        DPRINTK("%d sg elements mapped\n", n_elem);
4696        qc->orig_n_elem = qc->n_elem;
4697        qc->n_elem = n_elem;
4698        qc->flags |= ATA_QCFLAG_DMAMAP;
4699
4700        return 0;
4701}
4702
4703/**
4704 *      swap_buf_le16 - swap halves of 16-bit words in place
4705 *      @buf:  Buffer to swap
4706 *      @buf_words:  Number of 16-bit words in buffer.
4707 *
4708 *      Swap halves of 16-bit words if needed to convert from
4709 *      little-endian byte order to native cpu byte order, or
4710 *      vice-versa.
4711 *
4712 *      LOCKING:
4713 *      Inherited from caller.
4714 */
4715void swap_buf_le16(u16 *buf, unsigned int buf_words)
4716{
4717#ifdef __BIG_ENDIAN
4718        unsigned int i;
4719
4720        for (i = 0; i < buf_words; i++)
4721                buf[i] = le16_to_cpu(buf[i]);
4722#endif /* __BIG_ENDIAN */
4723}
4724
4725/**
4726 *      ata_qc_new - Request an available ATA command, for queueing
4727 *      @ap: target port
4728 *
4729 *      LOCKING:
4730 *      None.
4731 */
4732
4733static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4734{
4735        struct ata_queued_cmd *qc = NULL;
4736        unsigned int i;
4737
4738        /* no command while frozen */
4739        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4740                return NULL;
4741
4742        /* the last tag is reserved for internal command. */
4743        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4744                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4745                        qc = __ata_qc_from_tag(ap, i);
4746                        break;
4747                }
4748
4749        if (qc)
4750                qc->tag = i;
4751
4752        return qc;
4753}
4754
4755/**
4756 *      ata_qc_new_init - Request an available ATA command, and initialize it
4757 *      @dev: Device from whom we request an available command structure
4758 *
4759 *      LOCKING:
4760 *      None.
4761 */
4762
4763struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4764{
4765        struct ata_port *ap = dev->link->ap;
4766        struct ata_queued_cmd *qc;
4767
4768        qc = ata_qc_new(ap);
4769        if (qc) {
4770                qc->scsicmd = NULL;
4771                qc->ap = ap;
4772                qc->dev = dev;
4773
4774                ata_qc_reinit(qc);
4775        }
4776
4777        return qc;
4778}
4779
4780/**
4781 *      ata_qc_free - free unused ata_queued_cmd
4782 *      @qc: Command to complete
4783 *
4784 *      Designed to free unused ata_queued_cmd object
4785 *      in case something prevents using it.
4786 *
4787 *      LOCKING:
4788 *      spin_lock_irqsave(host lock)
4789 */
4790void ata_qc_free(struct ata_queued_cmd *qc)
4791{
4792        struct ata_port *ap;
4793        unsigned int tag;
4794
4795        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796        ap = qc->ap;
4797
4798        qc->flags = 0;
4799        tag = qc->tag;
4800        if (likely(ata_tag_valid(tag))) {
4801                qc->tag = ATA_TAG_POISON;
4802                clear_bit(tag, &ap->qc_allocated);
4803        }
4804}
4805
4806void __ata_qc_complete(struct ata_queued_cmd *qc)
4807{
4808        struct ata_port *ap;
4809        struct ata_link *link;
4810
4811        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4812        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4813        ap = qc->ap;
4814        link = qc->dev->link;
4815
4816        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4817                ata_sg_clean(qc);
4818
4819        /* command should be marked inactive atomically with qc completion */
4820        if (qc->tf.protocol == ATA_PROT_NCQ) {
4821                link->sactive &= ~(1 << qc->tag);
4822                if (!link->sactive)
4823                        ap->nr_active_links--;
4824        } else {
4825                link->active_tag = ATA_TAG_POISON;
4826                ap->nr_active_links--;
4827        }
4828
4829        /* clear exclusive status */
4830        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4831                     ap->excl_link == link))
4832                ap->excl_link = NULL;
4833
4834        /* atapi: mark qc as inactive to prevent the interrupt handler
4835         * from completing the command twice later, before the error handler
4836         * is called. (when rc != 0 and atapi request sense is needed)
4837         */
4838        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4839        ap->qc_active &= ~(1 << qc->tag);
4840
4841        /* call completion callback */
4842        qc->complete_fn(qc);
4843}
4844
4845static void fill_result_tf(struct ata_queued_cmd *qc)
4846{
4847        struct ata_port *ap = qc->ap;
4848
4849        qc->result_tf.flags = qc->tf.flags;
4850        ap->ops->qc_fill_rtf(qc);
4851}
4852
4853static void ata_verify_xfer(struct ata_queued_cmd *qc)
4854{
4855        struct ata_device *dev = qc->dev;
4856
4857        if (ata_is_nodata(qc->tf.protocol))
4858                return;
4859
4860        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4861                return;
4862
4863        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4864}
4865
4866/**
4867 *      ata_qc_complete - Complete an active ATA command
4868 *      @qc: Command to complete
4869 *
4870 *      Indicate to the mid and upper layers that an ATA command has
4871 *      completed, with either an ok or not-ok status.
4872 *
4873 *      Refrain from calling this function multiple times when
4874 *      successfully completing multiple NCQ commands.
4875 *      ata_qc_complete_multiple() should be used instead, which will
4876 *      properly update IRQ expect state.
4877 *
4878 *      LOCKING:
4879 *      spin_lock_irqsave(host lock)
4880 */
4881void ata_qc_complete(struct ata_queued_cmd *qc)
4882{
4883        struct ata_port *ap = qc->ap;
4884
4885        /* XXX: New EH and old EH use different mechanisms to
4886         * synchronize EH with regular execution path.
4887         *
4888         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4889         * Normal execution path is responsible for not accessing a
4890         * failed qc.  libata core enforces the rule by returning NULL
4891         * from ata_qc_from_tag() for failed qcs.
4892         *
4893         * Old EH depends on ata_qc_complete() nullifying completion
4894         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4895         * not synchronize with interrupt handler.  Only PIO task is
4896         * taken care of.
4897         */
4898        if (ap->ops->error_handler) {
4899                struct ata_device *dev = qc->dev;
4900                struct ata_eh_info *ehi = &dev->link->eh_info;
4901
4902                if (unlikely(qc->err_mask))
4903                        qc->flags |= ATA_QCFLAG_FAILED;
4904
4905                /*
4906                 * Finish internal commands without any further processing
4907                 * and always with the result TF filled.
4908                 */
4909                if (unlikely(ata_tag_internal(qc->tag))) {
4910                        fill_result_tf(qc);
4911                        __ata_qc_complete(qc);
4912                        return;
4913                }
4914
4915                /*
4916                 * Non-internal qc has failed.  Fill the result TF and
4917                 * summon EH.
4918                 */
4919                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4920                        fill_result_tf(qc);
4921                        ata_qc_schedule_eh(qc);
4922                        return;
4923                }
4924
4925                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4926
4927                /* read result TF if requested */
4928                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4929                        fill_result_tf(qc);
4930
4931                /* Some commands need post-processing after successful
4932                 * completion.
4933                 */
4934                switch (qc->tf.command) {
4935                case ATA_CMD_SET_FEATURES:
4936                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4937                            qc->tf.feature != SETFEATURES_WC_OFF)
4938                                break;
4939                        /* fall through */
4940                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4941                case ATA_CMD_SET_MULTI: /* multi_count changed */
4942                        /* revalidate device */
4943                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4944                        ata_port_schedule_eh(ap);
4945                        break;
4946
4947                case ATA_CMD_SLEEP:
4948                        dev->flags |= ATA_DFLAG_SLEEPING;
4949                        break;
4950                }
4951
4952                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4953                        ata_verify_xfer(qc);
4954
4955                __ata_qc_complete(qc);
4956        } else {
4957                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4958                        return;
4959
4960                /* read result TF if failed or requested */
4961                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4962                        fill_result_tf(qc);
4963
4964                __ata_qc_complete(qc);
4965        }
4966}
4967
4968/**
4969 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4970 *      @ap: port in question
4971 *      @qc_active: new qc_active mask
4972 *
4973 *      Complete in-flight commands.  This functions is meant to be
4974 *      called from low-level driver's interrupt routine to complete
4975 *      requests normally.  ap->qc_active and @qc_active is compared
4976 *      and commands are completed accordingly.
4977 *
4978 *      Always use this function when completing multiple NCQ commands
4979 *      from IRQ handlers instead of calling ata_qc_complete()
4980 *      multiple times to keep IRQ expect status properly in sync.
4981 *
4982 *      LOCKING:
4983 *      spin_lock_irqsave(host lock)
4984 *
4985 *      RETURNS:
4986 *      Number of completed commands on success, -errno otherwise.
4987 */
4988int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4989{
4990        int nr_done = 0;
4991        u32 done_mask;
4992
4993        done_mask = ap->qc_active ^ qc_active;
4994
4995        if (unlikely(done_mask & qc_active)) {
4996                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4997                             ap->qc_active, qc_active);
4998                return -EINVAL;
4999        }
5000
5001        while (done_mask) {
5002                struct ata_queued_cmd *qc;
5003                unsigned int tag = __ffs(done_mask);
5004
5005                qc = ata_qc_from_tag(ap, tag);
5006                if (qc) {
5007                        ata_qc_complete(qc);
5008                        nr_done++;
5009                }
5010                done_mask &= ~(1 << tag);
5011        }
5012
5013        return nr_done;
5014}
5015
5016/**
5017 *      ata_qc_issue - issue taskfile to device
5018 *      @qc: command to issue to device
5019 *
5020 *      Prepare an ATA command to submission to device.
5021 *      This includes mapping the data into a DMA-able
5022 *      area, filling in the S/G table, and finally
5023 *      writing the taskfile to hardware, starting the command.
5024 *
5025 *      LOCKING:
5026 *      spin_lock_irqsave(host lock)
5027 */
5028void ata_qc_issue(struct ata_queued_cmd *qc)
5029{
5030        struct ata_port *ap = qc->ap;
5031        struct ata_link *link = qc->dev->link;
5032        u8 prot = qc->tf.protocol;
5033
5034        /* Make sure only one non-NCQ command is outstanding.  The
5035         * check is skipped for old EH because it reuses active qc to
5036         * request ATAPI sense.
5037         */
5038        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5039
5040        if (ata_is_ncq(prot)) {
5041                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5042
5043                if (!link->sactive)
5044                        ap->nr_active_links++;
5045                link->sactive |= 1 << qc->tag;
5046        } else {
5047                WARN_ON_ONCE(link->sactive);
5048
5049                ap->nr_active_links++;
5050                link->active_tag = qc->tag;
5051        }
5052
5053        qc->flags |= ATA_QCFLAG_ACTIVE;
5054        ap->qc_active |= 1 << qc->tag;
5055
5056        /*
5057         * We guarantee to LLDs that they will have at least one
5058         * non-zero sg if the command is a data command.
5059         */
5060        if (WARN_ON_ONCE(ata_is_data(prot) &&
5061                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5062                goto sys_err;
5063
5064        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5065                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5066                if (ata_sg_setup(qc))
5067                        goto sys_err;
5068
5069        /* if device is sleeping, schedule reset and abort the link */
5070        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5071                link->eh_info.action |= ATA_EH_RESET;
5072                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5073                ata_link_abort(link);
5074                return;
5075        }
5076
5077        ap->ops->qc_prep(qc);
5078
5079        qc->err_mask |= ap->ops->qc_issue(qc);
5080        if (unlikely(qc->err_mask))
5081                goto err;
5082        return;
5083
5084sys_err:
5085        qc->err_mask |= AC_ERR_SYSTEM;
5086err:
5087        ata_qc_complete(qc);
5088}
5089
5090/**
5091 *      sata_scr_valid - test whether SCRs are accessible
5092 *      @link: ATA link to test SCR accessibility for
5093 *
5094 *      Test whether SCRs are accessible for @link.
5095 *
5096 *      LOCKING:
5097 *      None.
5098 *
5099 *      RETURNS:
5100 *      1 if SCRs are accessible, 0 otherwise.
5101 */
5102int sata_scr_valid(struct ata_link *link)
5103{
5104        struct ata_port *ap = link->ap;
5105
5106        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5107}
5108
5109/**
5110 *      sata_scr_read - read SCR register of the specified port
5111 *      @link: ATA link to read SCR for
5112 *      @reg: SCR to read
5113 *      @val: Place to store read value
5114 *
5115 *      Read SCR register @reg of @link into *@val.  This function is
5116 *      guaranteed to succeed if @link is ap->link, the cable type of
5117 *      the port is SATA and the port implements ->scr_read.
5118 *
5119 *      LOCKING:
5120 *      None if @link is ap->link.  Kernel thread context otherwise.
5121 *
5122 *      RETURNS:
5123 *      0 on success, negative errno on failure.
5124 */
5125int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5126{
5127        if (ata_is_host_link(link)) {
5128                if (sata_scr_valid(link))
5129                        return link->ap->ops->scr_read(link, reg, val);
5130                return -EOPNOTSUPP;
5131        }
5132
5133        return sata_pmp_scr_read(link, reg, val);
5134}
5135
5136/**
5137 *      sata_scr_write - write SCR register of the specified port
5138 *      @link: ATA link to write SCR for
5139 *      @reg: SCR to write
5140 *      @val: value to write
5141 *
5142 *      Write @val to SCR register @reg of @link.  This function is
5143 *      guaranteed to succeed if @link is ap->link, the cable type of
5144 *      the port is SATA and the port implements ->scr_read.
5145 *
5146 *      LOCKING:
5147 *      None if @link is ap->link.  Kernel thread context otherwise.
5148 *
5149 *      RETURNS:
5150 *      0 on success, negative errno on failure.
5151 */
5152int sata_scr_write(struct ata_link *link, int reg, u32 val)
5153{
5154        if (ata_is_host_link(link)) {
5155                if (sata_scr_valid(link))
5156                        return link->ap->ops->scr_write(link, reg, val);
5157                return -EOPNOTSUPP;
5158        }
5159
5160        return sata_pmp_scr_write(link, reg, val);
5161}
5162
5163/**
5164 *      sata_scr_write_flush - write SCR register of the specified port and flush
5165 *      @link: ATA link to write SCR for
5166 *      @reg: SCR to write
5167 *      @val: value to write
5168 *
5169 *      This function is identical to sata_scr_write() except that this
5170 *      function performs flush after writing to the register.
5171 *
5172 *      LOCKING:
5173 *      None if @link is ap->link.  Kernel thread context otherwise.
5174 *
5175 *      RETURNS:
5176 *      0 on success, negative errno on failure.
5177 */
5178int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5179{
5180        if (ata_is_host_link(link)) {
5181                int rc;
5182
5183                if (sata_scr_valid(link)) {
5184                        rc = link->ap->ops->scr_write(link, reg, val);
5185                        if (rc == 0)
5186                                rc = link->ap->ops->scr_read(link, reg, &val);
5187                        return rc;
5188                }
5189                return -EOPNOTSUPP;
5190        }
5191
5192        return sata_pmp_scr_write(link, reg, val);
5193}
5194
5195/**
5196 *      ata_phys_link_online - test whether the given link is online
5197 *      @link: ATA link to test
5198 *
5199 *      Test whether @link is online.  Note that this function returns
5200 *      0 if online status of @link cannot be obtained, so
5201 *      ata_link_online(link) != !ata_link_offline(link).
5202 *
5203 *      LOCKING:
5204 *      None.
5205 *
5206 *      RETURNS:
5207 *      True if the port online status is available and online.
5208 */
5209bool ata_phys_link_online(struct ata_link *link)
5210{
5211        u32 sstatus;
5212
5213        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5214            ata_sstatus_online(sstatus))
5215                return true;
5216        return false;
5217}
5218
5219/**
5220 *      ata_phys_link_offline - test whether the given link is offline
5221 *      @link: ATA link to test
5222 *
5223 *      Test whether @link is offline.  Note that this function
5224 *      returns 0 if offline status of @link cannot be obtained, so
5225 *      ata_link_online(link) != !ata_link_offline(link).
5226 *
5227 *      LOCKING:
5228 *      None.
5229 *
5230 *      RETURNS:
5231 *      True if the port offline status is available and offline.
5232 */
5233bool ata_phys_link_offline(struct ata_link *link)
5234{
5235        u32 sstatus;
5236
5237        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5238            !ata_sstatus_online(sstatus))
5239                return true;
5240        return false;
5241}
5242
5243/**
5244 *      ata_link_online - test whether the given link is online
5245 *      @link: ATA link to test
5246 *
5247 *      Test whether @link is online.  This is identical to
5248 *      ata_phys_link_online() when there's no slave link.  When
5249 *      there's a slave link, this function should only be called on
5250 *      the master link and will return true if any of M/S links is
5251 *      online.
5252 *
5253 *      LOCKING:
5254 *      None.
5255 *
5256 *      RETURNS:
5257 *      True if the port online status is available and online.
5258 */
5259bool ata_link_online(struct ata_link *link)
5260{
5261        struct ata_link *slave = link->ap->slave_link;
5262
5263        WARN_ON(link == slave); /* shouldn't be called on slave link */
5264
5265        return ata_phys_link_online(link) ||
5266                (slave && ata_phys_link_online(slave));
5267}
5268
5269/**
5270 *      ata_link_offline - test whether the given link is offline
5271 *      @link: ATA link to test
5272 *
5273 *      Test whether @link is offline.  This is identical to
5274 *      ata_phys_link_offline() when there's no slave link.  When
5275 *      there's a slave link, this function should only be called on
5276 *      the master link and will return true if both M/S links are
5277 *      offline.
5278 *
5279 *      LOCKING:
5280 *      None.
5281 *
5282 *      RETURNS:
5283 *      True if the port offline status is available and offline.
5284 */
5285bool ata_link_offline(struct ata_link *link)
5286{
5287        struct ata_link *slave = link->ap->slave_link;
5288
5289        WARN_ON(link == slave); /* shouldn't be called on slave link */
5290
5291        return ata_phys_link_offline(link) &&
5292                (!slave || ata_phys_link_offline(slave));
5293}
5294
5295#ifdef CONFIG_PM
5296static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5297                               unsigned int action, unsigned int ehi_flags,
5298                               int *async)
5299{
5300        struct ata_link *link;
5301        unsigned long flags;
5302        int rc = 0;
5303
5304        /* Previous resume operation might still be in
5305         * progress.  Wait for PM_PENDING to clear.
5306         */
5307        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5308                if (async) {
5309                        *async = -EAGAIN;
5310                        return 0;
5311                }
5312                ata_port_wait_eh(ap);
5313                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5314        }
5315
5316        /* request PM ops to EH */
5317        spin_lock_irqsave(ap->lock, flags);
5318
5319        ap->pm_mesg = mesg;
5320        if (async)
5321                ap->pm_result = async;
5322        else
5323                ap->pm_result = &rc;
5324
5325        ap->pflags |= ATA_PFLAG_PM_PENDING;
5326        ata_for_each_link(link, ap, HOST_FIRST) {
5327                link->eh_info.action |= action;
5328                link->eh_info.flags |= ehi_flags;
5329        }
5330
5331        ata_port_schedule_eh(ap);
5332
5333        spin_unlock_irqrestore(ap->lock, flags);
5334
5335        /* wait and check result */
5336        if (!async) {
5337                ata_port_wait_eh(ap);
5338                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5339        }
5340
5341        return rc;
5342}
5343
5344static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5345{
5346        /*
5347         * On some hardware, device fails to respond after spun down
5348         * for suspend.  As the device won't be used before being
5349         * resumed, we don't need to touch the device.  Ask EH to skip
5350         * the usual stuff and proceed directly to suspend.
5351         *
5352         * http://thread.gmane.org/gmane.linux.ide/46764
5353         */
5354        unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5355                                 ATA_EHI_NO_RECOVERY;
5356        return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5357}
5358
5359static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5360{
5361        struct ata_port *ap = to_ata_port(dev);
5362
5363        return __ata_port_suspend_common(ap, mesg, NULL);
5364}
5365
5366static int ata_port_suspend(struct device *dev)
5367{
5368        if (pm_runtime_suspended(dev))
5369                return 0;
5370
5371        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5372}
5373
5374static int ata_port_do_freeze(struct device *dev)
5375{
5376        if (pm_runtime_suspended(dev))
5377                return 0;
5378
5379        return ata_port_suspend_common(dev, PMSG_FREEZE);
5380}
5381
5382static int ata_port_poweroff(struct device *dev)
5383{
5384        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5385}
5386
5387static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5388                                    int *async)
5389{
5390        int rc;
5391
5392        rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5393                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5394        return rc;
5395}
5396
5397static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5398{
5399        struct ata_port *ap = to_ata_port(dev);
5400
5401        return __ata_port_resume_common(ap, mesg, NULL);
5402}
5403
5404static int ata_port_resume(struct device *dev)
5405{
5406        int rc;
5407
5408        rc = ata_port_resume_common(dev, PMSG_RESUME);
5409        if (!rc) {
5410                pm_runtime_disable(dev);
5411                pm_runtime_set_active(dev);
5412                pm_runtime_enable(dev);
5413        }
5414
5415        return rc;
5416}
5417
5418/*
5419 * For ODDs, the upper layer will poll for media change every few seconds,
5420 * which will make it enter and leave suspend state every few seconds. And
5421 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422 * is very little and the ODD may malfunction after constantly being reset.
5423 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424 * ODD is attached to the port.
5425 */
5426static int ata_port_runtime_idle(struct device *dev)
5427{
5428        struct ata_port *ap = to_ata_port(dev);
5429        struct ata_link *link;
5430        struct ata_device *adev;
5431
5432        ata_for_each_link(link, ap, HOST_FIRST) {
5433                ata_for_each_dev(adev, link, ENABLED)
5434                        if (adev->class == ATA_DEV_ATAPI &&
5435                            !zpodd_dev_enabled(adev))
5436                                return -EBUSY;
5437        }
5438
5439        return pm_runtime_suspend(dev);
5440}
5441
5442static int ata_port_runtime_suspend(struct device *dev)
5443{
5444        return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5445}
5446
5447static int ata_port_runtime_resume(struct device *dev)
5448{
5449        return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5450}
5451
5452static const struct dev_pm_ops ata_port_pm_ops = {
5453        .suspend = ata_port_suspend,
5454        .resume = ata_port_resume,
5455        .freeze = ata_port_do_freeze,
5456        .thaw = ata_port_resume,
5457        .poweroff = ata_port_poweroff,
5458        .restore = ata_port_resume,
5459
5460        .runtime_suspend = ata_port_runtime_suspend,
5461        .runtime_resume = ata_port_runtime_resume,
5462        .runtime_idle = ata_port_runtime_idle,
5463};
5464
5465/* sas ports don't participate in pm runtime management of ata_ports,
5466 * and need to resume ata devices at the domain level, not the per-port
5467 * level. sas suspend/resume is async to allow parallel port recovery
5468 * since sas has multiple ata_port instances per Scsi_Host.
5469 */
5470int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5471{
5472        return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5473}
5474EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5475
5476int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5477{
5478        return __ata_port_resume_common(ap, PMSG_RESUME, async);
5479}
5480EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5481
5482
5483/**
5484 *      ata_host_suspend - suspend host
5485 *      @host: host to suspend
5486 *      @mesg: PM message
5487 *
5488 *      Suspend @host.  Actual operation is performed by port suspend.
5489 */
5490int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5491{
5492        host->dev->power.power_state = mesg;
5493        return 0;
5494}
5495
5496/**
5497 *      ata_host_resume - resume host
5498 *      @host: host to resume
5499 *
5500 *      Resume @host.  Actual operation is performed by port resume.
5501 */
5502void ata_host_resume(struct ata_host *host)
5503{
5504        host->dev->