linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 107
 108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 110                         unsigned long nr_segs, loff_t pos);
 111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 112                          unsigned long nr_segs, loff_t pos);
 113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 114
 115static int sock_close(struct inode *inode, struct file *file);
 116static unsigned int sock_poll(struct file *file,
 117                              struct poll_table_struct *wait);
 118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 119#ifdef CONFIG_COMPAT
 120static long compat_sock_ioctl(struct file *file,
 121                              unsigned int cmd, unsigned long arg);
 122#endif
 123static int sock_fasync(int fd, struct file *filp, int on);
 124static ssize_t sock_sendpage(struct file *file, struct page *page,
 125                             int offset, size_t size, loff_t *ppos, int more);
 126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 127                                struct pipe_inode_info *pipe, size_t len,
 128                                unsigned int flags);
 129
 130/*
 131 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 132 *      in the operation structures but are done directly via the socketcall() multiplexor.
 133 */
 134
 135static const struct file_operations socket_file_ops = {
 136        .owner =        THIS_MODULE,
 137        .llseek =       no_llseek,
 138        .aio_read =     sock_aio_read,
 139        .aio_write =    sock_aio_write,
 140        .poll =         sock_poll,
 141        .unlocked_ioctl = sock_ioctl,
 142#ifdef CONFIG_COMPAT
 143        .compat_ioctl = compat_sock_ioctl,
 144#endif
 145        .mmap =         sock_mmap,
 146        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 147        .release =      sock_close,
 148        .fasync =       sock_fasync,
 149        .sendpage =     sock_sendpage,
 150        .splice_write = generic_splice_sendpage,
 151        .splice_read =  sock_splice_read,
 152};
 153
 154/*
 155 *      The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 *      Statistics counters of the socket lists
 163 */
 164
 165static DEFINE_PER_CPU(int, sockets_in_use);
 166
 167/*
 168 * Support routines.
 169 * Move socket addresses back and forth across the kernel/user
 170 * divide and look after the messy bits.
 171 */
 172
 173/**
 174 *      move_addr_to_kernel     -       copy a socket address into kernel space
 175 *      @uaddr: Address in user space
 176 *      @kaddr: Address in kernel space
 177 *      @ulen: Length in user space
 178 *
 179 *      The address is copied into kernel space. If the provided address is
 180 *      too long an error code of -EINVAL is returned. If the copy gives
 181 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 182 */
 183
 184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
 185{
 186        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 187                return -EINVAL;
 188        if (ulen == 0)
 189                return 0;
 190        if (copy_from_user(kaddr, uaddr, ulen))
 191                return -EFAULT;
 192        return audit_sockaddr(ulen, kaddr);
 193}
 194
 195/**
 196 *      move_addr_to_user       -       copy an address to user space
 197 *      @kaddr: kernel space address
 198 *      @klen: length of address in kernel
 199 *      @uaddr: user space address
 200 *      @ulen: pointer to user length field
 201 *
 202 *      The value pointed to by ulen on entry is the buffer length available.
 203 *      This is overwritten with the buffer space used. -EINVAL is returned
 204 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 205 *      is returned if either the buffer or the length field are not
 206 *      accessible.
 207 *      After copying the data up to the limit the user specifies, the true
 208 *      length of the data is written over the length limit the user
 209 *      specified. Zero is returned for a success.
 210 */
 211
 212static int move_addr_to_user(struct sockaddr *kaddr, int klen,
 213                             void __user *uaddr, int __user *ulen)
 214{
 215        int err;
 216        int len;
 217
 218        err = get_user(len, ulen);
 219        if (err)
 220                return err;
 221        if (len > klen)
 222                len = klen;
 223        if (len < 0 || len > sizeof(struct sockaddr_storage))
 224                return -EINVAL;
 225        if (len) {
 226                if (audit_sockaddr(klen, kaddr))
 227                        return -ENOMEM;
 228                if (copy_to_user(uaddr, kaddr, len))
 229                        return -EFAULT;
 230        }
 231        /*
 232         *      "fromlen shall refer to the value before truncation.."
 233         *                      1003.1g
 234         */
 235        return __put_user(klen, ulen);
 236}
 237
 238static struct kmem_cache *sock_inode_cachep __read_mostly;
 239
 240static struct inode *sock_alloc_inode(struct super_block *sb)
 241{
 242        struct socket_alloc *ei;
 243        struct socket_wq *wq;
 244
 245        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 246        if (!ei)
 247                return NULL;
 248        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 249        if (!wq) {
 250                kmem_cache_free(sock_inode_cachep, ei);
 251                return NULL;
 252        }
 253        init_waitqueue_head(&wq->wait);
 254        wq->fasync_list = NULL;
 255        RCU_INIT_POINTER(ei->socket.wq, wq);
 256
 257        ei->socket.state = SS_UNCONNECTED;
 258        ei->socket.flags = 0;
 259        ei->socket.ops = NULL;
 260        ei->socket.sk = NULL;
 261        ei->socket.file = NULL;
 262
 263        return &ei->vfs_inode;
 264}
 265
 266static void sock_destroy_inode(struct inode *inode)
 267{
 268        struct socket_alloc *ei;
 269        struct socket_wq *wq;
 270
 271        ei = container_of(inode, struct socket_alloc, vfs_inode);
 272        wq = rcu_dereference_protected(ei->socket.wq, 1);
 273        kfree_rcu(wq, rcu);
 274        kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279        struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281        inode_init_once(&ei->vfs_inode);
 282}
 283
 284static int init_inodecache(void)
 285{
 286        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287                                              sizeof(struct socket_alloc),
 288                                              0,
 289                                              (SLAB_HWCACHE_ALIGN |
 290                                               SLAB_RECLAIM_ACCOUNT |
 291                                               SLAB_MEM_SPREAD),
 292                                              init_once);
 293        if (sock_inode_cachep == NULL)
 294                return -ENOMEM;
 295        return 0;
 296}
 297
 298static const struct super_operations sockfs_ops = {
 299        .alloc_inode    = sock_alloc_inode,
 300        .destroy_inode  = sock_destroy_inode,
 301        .statfs         = simple_statfs,
 302};
 303
 304/*
 305 * sockfs_dname() is called from d_path().
 306 */
 307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 308{
 309        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 310                                dentry->d_inode->i_ino);
 311}
 312
 313static const struct dentry_operations sockfs_dentry_operations = {
 314        .d_dname  = sockfs_dname,
 315};
 316
 317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 318                         int flags, const char *dev_name, void *data)
 319{
 320        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 321                &sockfs_dentry_operations, SOCKFS_MAGIC);
 322}
 323
 324static struct vfsmount *sock_mnt __read_mostly;
 325
 326static struct file_system_type sock_fs_type = {
 327        .name =         "sockfs",
 328        .mount =        sockfs_mount,
 329        .kill_sb =      kill_anon_super,
 330};
 331
 332/*
 333 *      Obtains the first available file descriptor and sets it up for use.
 334 *
 335 *      These functions create file structures and maps them to fd space
 336 *      of the current process. On success it returns file descriptor
 337 *      and file struct implicitly stored in sock->file.
 338 *      Note that another thread may close file descriptor before we return
 339 *      from this function. We use the fact that now we do not refer
 340 *      to socket after mapping. If one day we will need it, this
 341 *      function will increment ref. count on file by 1.
 342 *
 343 *      In any case returned fd MAY BE not valid!
 344 *      This race condition is unavoidable
 345 *      with shared fd spaces, we cannot solve it inside kernel,
 346 *      but we take care of internal coherence yet.
 347 */
 348
 349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 350{
 351        struct qstr name = { .name = "" };
 352        struct path path;
 353        struct file *file;
 354        int fd;
 355
 356        fd = get_unused_fd_flags(flags);
 357        if (unlikely(fd < 0))
 358                return fd;
 359
 360        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 361        if (unlikely(!path.dentry)) {
 362                put_unused_fd(fd);
 363                return -ENOMEM;
 364        }
 365        path.mnt = mntget(sock_mnt);
 366
 367        d_instantiate(path.dentry, SOCK_INODE(sock));
 368        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 369
 370        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 371                  &socket_file_ops);
 372        if (unlikely(!file)) {
 373                /* drop dentry, keep inode */
 374                ihold(path.dentry->d_inode);
 375                path_put(&path);
 376                put_unused_fd(fd);
 377                return -ENFILE;
 378        }
 379
 380        sock->file = file;
 381        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382        file->f_pos = 0;
 383        file->private_data = sock;
 384
 385        *f = file;
 386        return fd;
 387}
 388
 389int sock_map_fd(struct socket *sock, int flags)
 390{
 391        struct file *newfile;
 392        int fd = sock_alloc_file(sock, &newfile, flags);
 393
 394        if (likely(fd >= 0))
 395                fd_install(fd, newfile);
 396
 397        return fd;
 398}
 399EXPORT_SYMBOL(sock_map_fd);
 400
 401static struct socket *sock_from_file(struct file *file, int *err)
 402{
 403        if (file->f_op == &socket_file_ops)
 404                return file->private_data;      /* set in sock_map_fd */
 405
 406        *err = -ENOTSOCK;
 407        return NULL;
 408}
 409
 410/**
 411 *      sockfd_lookup - Go from a file number to its socket slot
 412 *      @fd: file handle
 413 *      @err: pointer to an error code return
 414 *
 415 *      The file handle passed in is locked and the socket it is bound
 416 *      too is returned. If an error occurs the err pointer is overwritten
 417 *      with a negative errno code and NULL is returned. The function checks
 418 *      for both invalid handles and passing a handle which is not a socket.
 419 *
 420 *      On a success the socket object pointer is returned.
 421 */
 422
 423struct socket *sockfd_lookup(int fd, int *err)
 424{
 425        struct file *file;
 426        struct socket *sock;
 427
 428        file = fget(fd);
 429        if (!file) {
 430                *err = -EBADF;
 431                return NULL;
 432        }
 433
 434        sock = sock_from_file(file, err);
 435        if (!sock)
 436                fput(file);
 437        return sock;
 438}
 439EXPORT_SYMBOL(sockfd_lookup);
 440
 441static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 442{
 443        struct file *file;
 444        struct socket *sock;
 445
 446        *err = -EBADF;
 447        file = fget_light(fd, fput_needed);
 448        if (file) {
 449                sock = sock_from_file(file, err);
 450                if (sock)
 451                        return sock;
 452                fput_light(file, *fput_needed);
 453        }
 454        return NULL;
 455}
 456
 457/**
 458 *      sock_alloc      -       allocate a socket
 459 *
 460 *      Allocate a new inode and socket object. The two are bound together
 461 *      and initialised. The socket is then returned. If we are out of inodes
 462 *      NULL is returned.
 463 */
 464
 465static struct socket *sock_alloc(void)
 466{
 467        struct inode *inode;
 468        struct socket *sock;
 469
 470        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 471        if (!inode)
 472                return NULL;
 473
 474        sock = SOCKET_I(inode);
 475
 476        kmemcheck_annotate_bitfield(sock, type);
 477        inode->i_ino = get_next_ino();
 478        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 479        inode->i_uid = current_fsuid();
 480        inode->i_gid = current_fsgid();
 481
 482        percpu_add(sockets_in_use, 1);
 483        return sock;
 484}
 485
 486/*
 487 *      In theory you can't get an open on this inode, but /proc provides
 488 *      a back door. Remember to keep it shut otherwise you'll let the
 489 *      creepy crawlies in.
 490 */
 491
 492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 493{
 494        return -ENXIO;
 495}
 496
 497const struct file_operations bad_sock_fops = {
 498        .owner = THIS_MODULE,
 499        .open = sock_no_open,
 500        .llseek = noop_llseek,
 501};
 502
 503/**
 504 *      sock_release    -       close a socket
 505 *      @sock: socket to close
 506 *
 507 *      The socket is released from the protocol stack if it has a release
 508 *      callback, and the inode is then released if the socket is bound to
 509 *      an inode not a file.
 510 */
 511
 512void sock_release(struct socket *sock)
 513{
 514        if (sock->ops) {
 515                struct module *owner = sock->ops->owner;
 516
 517                sock->ops->release(sock);
 518                sock->ops = NULL;
 519                module_put(owner);
 520        }
 521
 522        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 523                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 524
 525        percpu_sub(sockets_in_use, 1);
 526        if (!sock->file) {
 527                iput(SOCK_INODE(sock));
 528                return;
 529        }
 530        sock->file = NULL;
 531}
 532EXPORT_SYMBOL(sock_release);
 533
 534int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 535{
 536        *tx_flags = 0;
 537        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 538                *tx_flags |= SKBTX_HW_TSTAMP;
 539        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 540                *tx_flags |= SKBTX_SW_TSTAMP;
 541        return 0;
 542}
 543EXPORT_SYMBOL(sock_tx_timestamp);
 544
 545static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 546                                       struct msghdr *msg, size_t size)
 547{
 548        struct sock_iocb *si = kiocb_to_siocb(iocb);
 549
 550        sock_update_classid(sock->sk);
 551
 552        si->sock = sock;
 553        si->scm = NULL;
 554        si->msg = msg;
 555        si->size = size;
 556
 557        return sock->ops->sendmsg(iocb, sock, msg, size);
 558}
 559
 560static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 561                                 struct msghdr *msg, size_t size)
 562{
 563        int err = security_socket_sendmsg(sock, msg, size);
 564
 565        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 566}
 567
 568int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 569{
 570        struct kiocb iocb;
 571        struct sock_iocb siocb;
 572        int ret;
 573
 574        init_sync_kiocb(&iocb, NULL);
 575        iocb.private = &siocb;
 576        ret = __sock_sendmsg(&iocb, sock, msg, size);
 577        if (-EIOCBQUEUED == ret)
 578                ret = wait_on_sync_kiocb(&iocb);
 579        return ret;
 580}
 581EXPORT_SYMBOL(sock_sendmsg);
 582
 583static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 584{
 585        struct kiocb iocb;
 586        struct sock_iocb siocb;
 587        int ret;
 588
 589        init_sync_kiocb(&iocb, NULL);
 590        iocb.private = &siocb;
 591        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 592        if (-EIOCBQUEUED == ret)
 593                ret = wait_on_sync_kiocb(&iocb);
 594        return ret;
 595}
 596
 597int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 598                   struct kvec *vec, size_t num, size_t size)
 599{
 600        mm_segment_t oldfs = get_fs();
 601        int result;
 602
 603        set_fs(KERNEL_DS);
 604        /*
 605         * the following is safe, since for compiler definitions of kvec and
 606         * iovec are identical, yielding the same in-core layout and alignment
 607         */
 608        msg->msg_iov = (struct iovec *)vec;
 609        msg->msg_iovlen = num;
 610        result = sock_sendmsg(sock, msg, size);
 611        set_fs(oldfs);
 612        return result;
 613}
 614EXPORT_SYMBOL(kernel_sendmsg);
 615
 616static int ktime2ts(ktime_t kt, struct timespec *ts)
 617{
 618        if (kt.tv64) {
 619                *ts = ktime_to_timespec(kt);
 620                return 1;
 621        } else {
 622                return 0;
 623        }
 624}
 625
 626/*
 627 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 628 */
 629void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 630        struct sk_buff *skb)
 631{
 632        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 633        struct timespec ts[3];
 634        int empty = 1;
 635        struct skb_shared_hwtstamps *shhwtstamps =
 636                skb_hwtstamps(skb);
 637
 638        /* Race occurred between timestamp enabling and packet
 639           receiving.  Fill in the current time for now. */
 640        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 641                __net_timestamp(skb);
 642
 643        if (need_software_tstamp) {
 644                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 645                        struct timeval tv;
 646                        skb_get_timestamp(skb, &tv);
 647                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 648                                 sizeof(tv), &tv);
 649                } else {
 650                        skb_get_timestampns(skb, &ts[0]);
 651                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 652                                 sizeof(ts[0]), &ts[0]);
 653                }
 654        }
 655
 656
 657        memset(ts, 0, sizeof(ts));
 658        if (skb->tstamp.tv64 &&
 659            sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 660                skb_get_timestampns(skb, ts + 0);
 661                empty = 0;
 662        }
 663        if (shhwtstamps) {
 664                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 665                    ktime2ts(shhwtstamps->syststamp, ts + 1))
 666                        empty = 0;
 667                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 668                    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 669                        empty = 0;
 670        }
 671        if (!empty)
 672                put_cmsg(msg, SOL_SOCKET,
 673                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 674}
 675EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 676
 677static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 678                                   struct sk_buff *skb)
 679{
 680        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 681                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 682                        sizeof(__u32), &skb->dropcount);
 683}
 684
 685void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 686        struct sk_buff *skb)
 687{
 688        sock_recv_timestamp(msg, sk, skb);
 689        sock_recv_drops(msg, sk, skb);
 690}
 691EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 692
 693static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 694                                       struct msghdr *msg, size_t size, int flags)
 695{
 696        struct sock_iocb *si = kiocb_to_siocb(iocb);
 697
 698        sock_update_classid(sock->sk);
 699
 700        si->sock = sock;
 701        si->scm = NULL;
 702        si->msg = msg;
 703        si->size = size;
 704        si->flags = flags;
 705
 706        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 707}
 708
 709static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 710                                 struct msghdr *msg, size_t size, int flags)
 711{
 712        int err = security_socket_recvmsg(sock, msg, size, flags);
 713
 714        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 715}
 716
 717int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 718                 size_t size, int flags)
 719{
 720        struct kiocb iocb;
 721        struct sock_iocb siocb;
 722        int ret;
 723
 724        init_sync_kiocb(&iocb, NULL);
 725        iocb.private = &siocb;
 726        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 727        if (-EIOCBQUEUED == ret)
 728                ret = wait_on_sync_kiocb(&iocb);
 729        return ret;
 730}
 731EXPORT_SYMBOL(sock_recvmsg);
 732
 733static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 734                              size_t size, int flags)
 735{
 736        struct kiocb iocb;
 737        struct sock_iocb siocb;
 738        int ret;
 739
 740        init_sync_kiocb(&iocb, NULL);
 741        iocb.private = &siocb;
 742        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 743        if (-EIOCBQUEUED == ret)
 744                ret = wait_on_sync_kiocb(&iocb);
 745        return ret;
 746}
 747
 748/**
 749 * kernel_recvmsg - Receive a message from a socket (kernel space)
 750 * @sock:       The socket to receive the message from
 751 * @msg:        Received message
 752 * @vec:        Input s/g array for message data
 753 * @num:        Size of input s/g array
 754 * @size:       Number of bytes to read
 755 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 756 *
 757 * On return the msg structure contains the scatter/gather array passed in the
 758 * vec argument. The array is modified so that it consists of the unfilled
 759 * portion of the original array.
 760 *
 761 * The returned value is the total number of bytes received, or an error.
 762 */
 763int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 764                   struct kvec *vec, size_t num, size_t size, int flags)
 765{
 766        mm_segment_t oldfs = get_fs();
 767        int result;
 768
 769        set_fs(KERNEL_DS);
 770        /*
 771         * the following is safe, since for compiler definitions of kvec and
 772         * iovec are identical, yielding the same in-core layout and alignment
 773         */
 774        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 775        result = sock_recvmsg(sock, msg, size, flags);
 776        set_fs(oldfs);
 777        return result;
 778}
 779EXPORT_SYMBOL(kernel_recvmsg);
 780
 781static void sock_aio_dtor(struct kiocb *iocb)
 782{
 783        kfree(iocb->private);
 784}
 785
 786static ssize_t sock_sendpage(struct file *file, struct page *page,
 787                             int offset, size_t size, loff_t *ppos, int more)
 788{
 789        struct socket *sock;
 790        int flags;
 791
 792        sock = file->private_data;
 793
 794        flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
 795        if (more)
 796                flags |= MSG_MORE;
 797
 798        return kernel_sendpage(sock, page, offset, size, flags);
 799}
 800
 801static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 802                                struct pipe_inode_info *pipe, size_t len,
 803                                unsigned int flags)
 804{
 805        struct socket *sock = file->private_data;
 806
 807        if (unlikely(!sock->ops->splice_read))
 808                return -EINVAL;
 809
 810        sock_update_classid(sock->sk);
 811
 812        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 813}
 814
 815static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 816                                         struct sock_iocb *siocb)
 817{
 818        if (!is_sync_kiocb(iocb)) {
 819                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 820                if (!siocb)
 821                        return NULL;
 822                iocb->ki_dtor = sock_aio_dtor;
 823        }
 824
 825        siocb->kiocb = iocb;
 826        iocb->private = siocb;
 827        return siocb;
 828}
 829
 830static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 831                struct file *file, const struct iovec *iov,
 832                unsigned long nr_segs)
 833{
 834        struct socket *sock = file->private_data;
 835        size_t size = 0;
 836        int i;
 837
 838        for (i = 0; i < nr_segs; i++)
 839                size += iov[i].iov_len;
 840
 841        msg->msg_name = NULL;
 842        msg->msg_namelen = 0;
 843        msg->msg_control = NULL;
 844        msg->msg_controllen = 0;
 845        msg->msg_iov = (struct iovec *)iov;
 846        msg->msg_iovlen = nr_segs;
 847        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 848
 849        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 850}
 851
 852static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 853                                unsigned long nr_segs, loff_t pos)
 854{
 855        struct sock_iocb siocb, *x;
 856
 857        if (pos != 0)
 858                return -ESPIPE;
 859
 860        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 861                return 0;
 862
 863
 864        x = alloc_sock_iocb(iocb, &siocb);
 865        if (!x)
 866                return -ENOMEM;
 867        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 868}
 869
 870static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 871                        struct file *file, const struct iovec *iov,
 872                        unsigned long nr_segs)
 873{
 874        struct socket *sock = file->private_data;
 875        size_t size = 0;
 876        int i;
 877
 878        for (i = 0; i < nr_segs; i++)
 879                size += iov[i].iov_len;
 880
 881        msg->msg_name = NULL;
 882        msg->msg_namelen = 0;
 883        msg->msg_control = NULL;
 884        msg->msg_controllen = 0;
 885        msg->msg_iov = (struct iovec *)iov;
 886        msg->msg_iovlen = nr_segs;
 887        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 888        if (sock->type == SOCK_SEQPACKET)
 889                msg->msg_flags |= MSG_EOR;
 890
 891        return __sock_sendmsg(iocb, sock, msg, size);
 892}
 893
 894static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 895                          unsigned long nr_segs, loff_t pos)
 896{
 897        struct sock_iocb siocb, *x;
 898
 899        if (pos != 0)
 900                return -ESPIPE;
 901
 902        x = alloc_sock_iocb(iocb, &siocb);
 903        if (!x)
 904                return -ENOMEM;
 905
 906        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 907}
 908
 909/*
 910 * Atomic setting of ioctl hooks to avoid race
 911 * with module unload.
 912 */
 913
 914static DEFINE_MUTEX(br_ioctl_mutex);
 915static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 916
 917void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 918{
 919        mutex_lock(&br_ioctl_mutex);
 920        br_ioctl_hook = hook;
 921        mutex_unlock(&br_ioctl_mutex);
 922}
 923EXPORT_SYMBOL(brioctl_set);
 924
 925static DEFINE_MUTEX(vlan_ioctl_mutex);
 926static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 927
 928void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 929{
 930        mutex_lock(&vlan_ioctl_mutex);
 931        vlan_ioctl_hook = hook;
 932        mutex_unlock(&vlan_ioctl_mutex);
 933}
 934EXPORT_SYMBOL(vlan_ioctl_set);
 935
 936static DEFINE_MUTEX(dlci_ioctl_mutex);
 937static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 938
 939void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 940{
 941        mutex_lock(&dlci_ioctl_mutex);
 942        dlci_ioctl_hook = hook;
 943        mutex_unlock(&dlci_ioctl_mutex);
 944}
 945EXPORT_SYMBOL(dlci_ioctl_set);
 946
 947static long sock_do_ioctl(struct net *net, struct socket *sock,
 948                                 unsigned int cmd, unsigned long arg)
 949{
 950        int err;
 951        void __user *argp = (void __user *)arg;
 952
 953        err = sock->ops->ioctl(sock, cmd, arg);
 954
 955        /*
 956         * If this ioctl is unknown try to hand it down
 957         * to the NIC driver.
 958         */
 959        if (err == -ENOIOCTLCMD)
 960                err = dev_ioctl(net, cmd, argp);
 961
 962        return err;
 963}
 964
 965/*
 966 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 967 *      what to do with it - that's up to the protocol still.
 968 */
 969
 970static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 971{
 972        struct socket *sock;
 973        struct sock *sk;
 974        void __user *argp = (void __user *)arg;
 975        int pid, err;
 976        struct net *net;
 977
 978        sock = file->private_data;
 979        sk = sock->sk;
 980        net = sock_net(sk);
 981        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 982                err = dev_ioctl(net, cmd, argp);
 983        } else
 984#ifdef CONFIG_WEXT_CORE
 985        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 986                err = dev_ioctl(net, cmd, argp);
 987        } else
 988#endif
 989                switch (cmd) {
 990                case FIOSETOWN:
 991                case SIOCSPGRP:
 992                        err = -EFAULT;
 993                        if (get_user(pid, (int __user *)argp))
 994                                break;
 995                        err = f_setown(sock->file, pid, 1);
 996                        break;
 997                case FIOGETOWN:
 998                case SIOCGPGRP:
 999                        err = put_user(f_getown(sock->file),
1000                                       (int __user *)argp);
1001                        break;
1002                case SIOCGIFBR:
1003                case SIOCSIFBR:
1004                case SIOCBRADDBR:
1005                case SIOCBRDELBR:
1006                        err = -ENOPKG;
1007                        if (!br_ioctl_hook)
1008                                request_module("bridge");
1009
1010                        mutex_lock(&br_ioctl_mutex);
1011                        if (br_ioctl_hook)
1012                                err = br_ioctl_hook(net, cmd, argp);
1013                        mutex_unlock(&br_ioctl_mutex);
1014                        break;
1015                case SIOCGIFVLAN:
1016                case SIOCSIFVLAN:
1017                        err = -ENOPKG;
1018                        if (!vlan_ioctl_hook)
1019                                request_module("8021q");
1020
1021                        mutex_lock(&vlan_ioctl_mutex);
1022                        if (vlan_ioctl_hook)
1023                                err = vlan_ioctl_hook(net, argp);
1024                        mutex_unlock(&vlan_ioctl_mutex);
1025                        break;
1026                case SIOCADDDLCI:
1027                case SIOCDELDLCI:
1028                        err = -ENOPKG;
1029                        if (!dlci_ioctl_hook)
1030                                request_module("dlci");
1031
1032                        mutex_lock(&dlci_ioctl_mutex);
1033                        if (dlci_ioctl_hook)
1034                                err = dlci_ioctl_hook(cmd, argp);
1035                        mutex_unlock(&dlci_ioctl_mutex);
1036                        break;
1037                default:
1038                        err = sock_do_ioctl(net, sock, cmd, arg);
1039                        break;
1040                }
1041        return err;
1042}
1043
1044int sock_create_lite(int family, int type, int protocol, struct socket **res)
1045{
1046        int err;
1047        struct socket *sock = NULL;
1048
1049        err = security_socket_create(family, type, protocol, 1);
1050        if (err)
1051                goto out;
1052
1053        sock = sock_alloc();
1054        if (!sock) {
1055                err = -ENOMEM;
1056                goto out;
1057        }
1058
1059        sock->type = type;
1060        err = security_socket_post_create(sock, family, type, protocol, 1);
1061        if (err)
1062                goto out_release;
1063
1064out:
1065        *res = sock;
1066        return err;
1067out_release:
1068        sock_release(sock);
1069        sock = NULL;
1070        goto out;
1071}
1072EXPORT_SYMBOL(sock_create_lite);
1073
1074/* No kernel lock held - perfect */
1075static unsigned int sock_poll(struct file *file, poll_table *wait)
1076{
1077        struct socket *sock;
1078
1079        /*
1080         *      We can't return errors to poll, so it's either yes or no.
1081         */
1082        sock = file->private_data;
1083        return sock->ops->poll(file, sock, wait);
1084}
1085
1086static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1087{
1088        struct socket *sock = file->private_data;
1089
1090        return sock->ops->mmap(file, sock, vma);
1091}
1092
1093static int sock_close(struct inode *inode, struct file *filp)
1094{
1095        /*
1096         *      It was possible the inode is NULL we were
1097         *      closing an unfinished socket.
1098         */
1099
1100        if (!inode) {
1101                printk(KERN_DEBUG "sock_close: NULL inode\n");
1102                return 0;
1103        }
1104        sock_release(SOCKET_I(inode));
1105        return 0;
1106}
1107
1108/*
1109 *      Update the socket async list
1110 *
1111 *      Fasync_list locking strategy.
1112 *
1113 *      1. fasync_list is modified only under process context socket lock
1114 *         i.e. under semaphore.
1115 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1116 *         or under socket lock
1117 */
1118
1119static int sock_fasync(int fd, struct file *filp, int on)
1120{
1121        struct socket *sock = filp->private_data;
1122        struct sock *sk = sock->sk;
1123        struct socket_wq *wq;
1124
1125        if (sk == NULL)
1126                return -EINVAL;
1127
1128        lock_sock(sk);
1129        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1130        fasync_helper(fd, filp, on, &wq->fasync_list);
1131
1132        if (!wq->fasync_list)
1133                sock_reset_flag(sk, SOCK_FASYNC);
1134        else
1135                sock_set_flag(sk, SOCK_FASYNC);
1136
1137        release_sock(sk);
1138        return 0;
1139}
1140
1141/* This function may be called only under socket lock or callback_lock or rcu_lock */
1142
1143int sock_wake_async(struct socket *sock, int how, int band)
1144{
1145        struct socket_wq *wq;
1146
1147        if (!sock)
1148                return -1;
1149        rcu_read_lock();
1150        wq = rcu_dereference(sock->wq);
1151        if (!wq || !wq->fasync_list) {
1152                rcu_read_unlock();
1153                return -1;
1154        }
1155        switch (how) {
1156        case SOCK_WAKE_WAITD:
1157                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1158                        break;
1159                goto call_kill;
1160        case SOCK_WAKE_SPACE:
1161                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1162                        break;
1163                /* fall through */
1164        case SOCK_WAKE_IO:
1165call_kill:
1166                kill_fasync(&wq->fasync_list, SIGIO, band);
1167                break;
1168        case SOCK_WAKE_URG:
1169                kill_fasync(&wq->fasync_list, SIGURG, band);
1170        }
1171        rcu_read_unlock();
1172        return 0;
1173}
1174EXPORT_SYMBOL(sock_wake_async);
1175
1176int __sock_create(struct net *net, int family, int type, int protocol,
1177                         struct socket **res, int kern)
1178{
1179        int err;
1180        struct socket *sock;
1181        const struct net_proto_family *pf;
1182
1183        /*
1184         *      Check protocol is in range
1185         */
1186        if (family < 0 || family >= NPROTO)
1187                return -EAFNOSUPPORT;
1188        if (type < 0 || type >= SOCK_MAX)
1189                return -EINVAL;
1190
1191        /* Compatibility.
1192
1193           This uglymoron is moved from INET layer to here to avoid
1194           deadlock in module load.
1195         */
1196        if (family == PF_INET && type == SOCK_PACKET) {
1197                static int warned;
1198                if (!warned) {
1199                        warned = 1;
1200                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1201                               current->comm);
1202                }
1203                family = PF_PACKET;
1204        }
1205
1206        err = security_socket_create(family, type, protocol, kern);
1207        if (err)
1208                return err;
1209
1210        /*
1211         *      Allocate the socket and allow the family to set things up. if
1212         *      the protocol is 0, the family is instructed to select an appropriate
1213         *      default.
1214         */
1215        sock = sock_alloc();
1216        if (!sock) {
1217                if (net_ratelimit())
1218                        printk(KERN_WARNING "socket: no more sockets\n");
1219                return -ENFILE; /* Not exactly a match, but its the
1220                                   closest posix thing */
1221        }
1222
1223        sock->type = type;
1224
1225#ifdef CONFIG_MODULES
1226        /* Attempt to load a protocol module if the find failed.
1227         *
1228         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1229         * requested real, full-featured networking support upon configuration.
1230         * Otherwise module support will break!
1231         */
1232        if (rcu_access_pointer(net_families[family]) == NULL)
1233                request_module("net-pf-%d", family);
1234#endif
1235
1236        rcu_read_lock();
1237        pf = rcu_dereference(net_families[family]);
1238        err = -EAFNOSUPPORT;
1239        if (!pf)
1240                goto out_release;
1241
1242        /*
1243         * We will call the ->create function, that possibly is in a loadable
1244         * module, so we have to bump that loadable module refcnt first.
1245         */
1246        if (!try_module_get(pf->owner))
1247                goto out_release;
1248
1249        /* Now protected by module ref count */
1250        rcu_read_unlock();
1251
1252        err = pf->create(net, sock, protocol, kern);
1253        if (err < 0)
1254                goto out_module_put;
1255
1256        /*
1257         * Now to bump the refcnt of the [loadable] module that owns this
1258         * socket at sock_release time we decrement its refcnt.
1259         */
1260        if (!try_module_get(sock->ops->owner))
1261                goto out_module_busy;
1262
1263        /*
1264         * Now that we're done with the ->create function, the [loadable]
1265         * module can have its refcnt decremented
1266         */
1267        module_put(pf->owner);
1268        err = security_socket_post_create(sock, family, type, protocol, kern);
1269        if (err)
1270                goto out_sock_release;
1271        *res = sock;
1272
1273        return 0;
1274
1275out_module_busy:
1276        err = -EAFNOSUPPORT;
1277out_module_put:
1278        sock->ops = NULL;
1279        module_put(pf->owner);
1280out_sock_release:
1281        sock_release(sock);
1282        return err;
1283
1284out_release:
1285        rcu_read_unlock();
1286        goto out_sock_release;
1287}
1288EXPORT_SYMBOL(__sock_create);
1289
1290int sock_create(int family, int type, int protocol, struct socket **res)
1291{
1292        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1293}
1294EXPORT_SYMBOL(sock_create);
1295
1296int sock_create_kern(int family, int type, int protocol, struct socket **res)
1297{
1298        return __sock_create(&init_net, family, type, protocol, res, 1);
1299}
1300EXPORT_SYMBOL(sock_create_kern);
1301
1302SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1303{
1304        int retval;
1305        struct socket *sock;
1306        int flags;
1307
1308        /* Check the SOCK_* constants for consistency.  */
1309        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1310        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1311        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1312        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1313
1314        flags = type & ~SOCK_TYPE_MASK;
1315        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1316                return -EINVAL;
1317        type &= SOCK_TYPE_MASK;
1318
1319        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1320                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1321
1322        retval = sock_create(family, type, protocol, &sock);
1323        if (retval < 0)
1324                goto out;
1325
1326        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1327        if (retval < 0)
1328                goto out_release;
1329
1330out:
1331        /* It may be already another descriptor 8) Not kernel problem. */
1332        return retval;
1333
1334out_release:
1335        sock_release(sock);
1336        return retval;
1337}
1338
1339/*
1340 *      Create a pair of connected sockets.
1341 */
1342
1343SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1344                int __user *, usockvec)
1345{
1346        struct socket *sock1, *sock2;
1347        int fd1, fd2, err;
1348        struct file *newfile1, *newfile2;
1349        int flags;
1350
1351        flags = type & ~SOCK_TYPE_MASK;
1352        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1353                return -EINVAL;
1354        type &= SOCK_TYPE_MASK;
1355
1356        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1357                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1358
1359        /*
1360         * Obtain the first socket and check if the underlying protocol
1361         * supports the socketpair call.
1362         */
1363
1364        err = sock_create(family, type, protocol, &sock1);
1365        if (err < 0)
1366                goto out;
1367
1368        err = sock_create(family, type, protocol, &sock2);
1369        if (err < 0)
1370                goto out_release_1;
1371
1372        err = sock1->ops->socketpair(sock1, sock2);
1373        if (err < 0)
1374                goto out_release_both;
1375
1376        fd1 = sock_alloc_file(sock1, &newfile1, flags);
1377        if (unlikely(fd1 < 0)) {
1378                err = fd1;
1379                goto out_release_both;
1380        }
1381
1382        fd2 = sock_alloc_file(sock2, &newfile2, flags);
1383        if (unlikely(fd2 < 0)) {
1384                err = fd2;
1385                fput(newfile1);
1386                put_unused_fd(fd1);
1387                sock_release(sock2);
1388                goto out;
1389        }
1390
1391        audit_fd_pair(fd1, fd2);
1392        fd_install(fd1, newfile1);
1393        fd_install(fd2, newfile2);
1394        /* fd1 and fd2 may be already another descriptors.
1395         * Not kernel problem.
1396         */
1397
1398        err = put_user(fd1, &usockvec[0]);
1399        if (!err)
1400                err = put_user(fd2, &usockvec[1]);
1401        if (!err)
1402                return 0;
1403
1404        sys_close(fd2);
1405        sys_close(fd1);
1406        return err;
1407
1408out_release_both:
1409        sock_release(sock2);
1410out_release_1:
1411        sock_release(sock1);
1412out:
1413        return err;
1414}
1415
1416/*
1417 *      Bind a name to a socket. Nothing much to do here since it's
1418 *      the protocol's responsibility to handle the local address.
1419 *
1420 *      We move the socket address to kernel space before we call
1421 *      the protocol layer (having also checked the address is ok).
1422 */
1423
1424SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1425{
1426        struct socket *sock;
1427        struct sockaddr_storage address;
1428        int err, fput_needed;
1429
1430        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1431        if (sock) {
1432                err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1433                if (err >= 0) {
1434                        err = security_socket_bind(sock,
1435                                                   (struct sockaddr *)&address,
1436                                                   addrlen);
1437                        if (!err)
1438                                err = sock->ops->bind(sock,
1439                                                      (struct sockaddr *)
1440                                                      &address, addrlen);
1441                }
1442                fput_light(sock->file, fput_needed);
1443        }
1444        return err;
1445}
1446
1447/*
1448 *      Perform a listen. Basically, we allow the protocol to do anything
1449 *      necessary for a listen, and if that works, we mark the socket as
1450 *      ready for listening.
1451 */
1452
1453SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1454{
1455        struct socket *sock;
1456        int err, fput_needed;
1457        int somaxconn;
1458
1459        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1460        if (sock) {
1461                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1462                if ((unsigned)backlog > somaxconn)
1463                        backlog = somaxconn;
1464
1465                err = security_socket_listen(sock, backlog);
1466                if (!err)
1467                        err = sock->ops->listen(sock, backlog);
1468
1469                fput_light(sock->file, fput_needed);
1470        }
1471        return err;
1472}
1473
1474/*
1475 *      For accept, we attempt to create a new socket, set up the link
1476 *      with the client, wake up the client, then return the new
1477 *      connected fd. We collect the address of the connector in kernel
1478 *      space and move it to user at the very end. This is unclean because
1479 *      we open the socket then return an error.
1480 *
1481 *      1003.1g adds the ability to recvmsg() to query connection pending
1482 *      status to recvmsg. We need to add that support in a way thats
1483 *      clean when we restucture accept also.
1484 */
1485
1486SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1487                int __user *, upeer_addrlen, int, flags)
1488{
1489        struct socket *sock, *newsock;
1490        struct file *newfile;
1491        int err, len, newfd, fput_needed;
1492        struct sockaddr_storage address;
1493
1494        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1495                return -EINVAL;
1496
1497        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1498                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1499
1500        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1501        if (!sock)
1502                goto out;
1503
1504        err = -ENFILE;
1505        newsock = sock_alloc();
1506        if (!newsock)
1507                goto out_put;
1508
1509        newsock->type = sock->type;
1510        newsock->ops = sock->ops;
1511
1512        /*
1513         * We don't need try_module_get here, as the listening socket (sock)
1514         * has the protocol module (sock->ops->owner) held.
1515         */
1516        __module_get(newsock->ops->owner);
1517
1518        newfd = sock_alloc_file(newsock, &newfile, flags);
1519        if (unlikely(newfd < 0)) {
1520                err = newfd;
1521                sock_release(newsock);
1522                goto out_put;
1523        }
1524
1525        err = security_socket_accept(sock, newsock);
1526        if (err)
1527                goto out_fd;
1528
1529        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1530        if (err < 0)
1531                goto out_fd;
1532
1533        if (upeer_sockaddr) {
1534                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1535                                          &len, 2) < 0) {
1536                        err = -ECONNABORTED;
1537                        goto out_fd;
1538                }
1539                err = move_addr_to_user((struct sockaddr *)&address,
1540                                        len, upeer_sockaddr, upeer_addrlen);
1541                if (err < 0)
1542                        goto out_fd;
1543        }
1544
1545        /* File flags are not inherited via accept() unlike another OSes. */
1546
1547        fd_install(newfd, newfile);
1548        err = newfd;
1549
1550out_put:
1551        fput_light(sock->file, fput_needed);
1552out:
1553        return err;
1554out_fd:
1555        fput(newfile);
1556        put_unused_fd(newfd);
1557        goto out_put;
1558}
1559
1560SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1561                int __user *, upeer_addrlen)
1562{
1563        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1564}
1565
1566/*
1567 *      Attempt to connect to a socket with the server address.  The address
1568 *      is in user space so we verify it is OK and move it to kernel space.
1569 *
1570 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1571 *      break bindings
1572 *
1573 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1574 *      other SEQPACKET protocols that take time to connect() as it doesn't
1575 *      include the -EINPROGRESS status for such sockets.
1576 */
1577
1578SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1579                int, addrlen)
1580{
1581        struct socket *sock;
1582        struct sockaddr_storage address;
1583        int err, fput_needed;
1584
1585        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1586        if (!sock)
1587                goto out;
1588        err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1589        if (err < 0)
1590                goto out_put;
1591
1592        err =
1593            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1594        if (err)
1595                goto out_put;
1596
1597        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1598                                 sock->file->f_flags);
1599out_put:
1600        fput_light(sock->file, fput_needed);
1601out:
1602        return err;
1603}
1604
1605/*
1606 *      Get the local address ('name') of a socket object. Move the obtained
1607 *      name to user space.
1608 */
1609
1610SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1611                int __user *, usockaddr_len)
1612{
1613        struct socket *sock;
1614        struct sockaddr_storage address;
1615        int len, err, fput_needed;
1616
1617        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618        if (!sock)
1619                goto out;
1620
1621        err = security_socket_getsockname(sock);
1622        if (err)
1623                goto out_put;
1624
1625        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1626        if (err)
1627                goto out_put;
1628        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1629
1630out_put:
1631        fput_light(sock->file, fput_needed);
1632out:
1633        return err;
1634}
1635
1636/*
1637 *      Get the remote address ('name') of a socket object. Move the obtained
1638 *      name to user space.
1639 */
1640
1641SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1642                int __user *, usockaddr_len)
1643{
1644        struct socket *sock;
1645        struct sockaddr_storage address;
1646        int len, err, fput_needed;
1647
1648        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649        if (sock != NULL) {
1650                err = security_socket_getpeername(sock);
1651                if (err) {
1652                        fput_light(sock->file, fput_needed);
1653                        return err;
1654                }
1655
1656                err =
1657                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1658                                       1);
1659                if (!err)
1660                        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1661                                                usockaddr_len);
1662                fput_light(sock->file, fput_needed);
1663        }
1664        return err;
1665}
1666
1667/*
1668 *      Send a datagram to a given address. We move the address into kernel
1669 *      space and check the user space data area is readable before invoking
1670 *      the protocol.
1671 */
1672
1673SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1674                unsigned, flags, struct sockaddr __user *, addr,
1675                int, addr_len)
1676{
1677        struct socket *sock;
1678        struct sockaddr_storage address;
1679        int err;
1680        struct msghdr msg;
1681        struct iovec iov;
1682        int fput_needed;
1683
1684        if (len > INT_MAX)
1685                len = INT_MAX;
1686        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687        if (!sock)
1688                goto out;
1689
1690        iov.iov_base = buff;
1691        iov.iov_len = len;
1692        msg.msg_name = NULL;
1693        msg.msg_iov = &iov;
1694        msg.msg_iovlen = 1;
1695        msg.msg_control = NULL;
1696        msg.msg_controllen = 0;
1697        msg.msg_namelen = 0;
1698        if (addr) {
1699                err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1700                if (err < 0)
1701                        goto out_put;
1702                msg.msg_name = (struct sockaddr *)&address;
1703                msg.msg_namelen = addr_len;
1704        }
1705        if (sock->file->f_flags & O_NONBLOCK)
1706                flags |= MSG_DONTWAIT;
1707        msg.msg_flags = flags;
1708        err = sock_sendmsg(sock, &msg, len);
1709
1710out_put:
1711        fput_light(sock->file, fput_needed);
1712out:
1713        return err;
1714}
1715
1716/*
1717 *      Send a datagram down a socket.
1718 */
1719
1720SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1721                unsigned, flags)
1722{
1723        return sys_sendto(fd, buff, len, flags, NULL, 0);
1724}
1725
1726/*
1727 *      Receive a frame from the socket and optionally record the address of the
1728 *      sender. We verify the buffers are writable and if needed move the
1729 *      sender address from kernel to user space.
1730 */
1731
1732SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1733                unsigned, flags, struct sockaddr __user *, addr,
1734                int __user *, addr_len)
1735{
1736        struct socket *sock;
1737        struct iovec iov;
1738        struct msghdr msg;
1739        struct sockaddr_storage address;
1740        int err, err2;
1741        int fput_needed;
1742
1743        if (size > INT_MAX)
1744                size = INT_MAX;
1745        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746        if (!sock)
1747                goto out;
1748
1749        msg.msg_control = NULL;
1750        msg.msg_controllen = 0;
1751        msg.msg_iovlen = 1;
1752        msg.msg_iov = &iov;
1753        iov.iov_len = size;
1754        iov.iov_base = ubuf;
1755        msg.msg_name = (struct sockaddr *)&address;
1756        msg.msg_namelen = sizeof(address);
1757        if (sock->file->f_flags & O_NONBLOCK)
1758                flags |= MSG_DONTWAIT;
1759        err = sock_recvmsg(sock, &msg, size, flags);
1760
1761        if (err >= 0 && addr != NULL) {
1762                err2 = move_addr_to_user((struct sockaddr *)&address,
1763                                         msg.msg_namelen, addr, addr_len);
1764                if (err2 < 0)
1765                        err = err2;
1766        }
1767
1768        fput_light(sock->file, fput_needed);
1769out:
1770        return err;
1771}
1772
1773/*
1774 *      Receive a datagram from a socket.
1775 */
1776
1777asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1778                         unsigned flags)
1779{
1780        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1781}
1782
1783/*
1784 *      Set a socket option. Because we don't know the option lengths we have
1785 *      to pass the user mode parameter for the protocols to sort out.
1786 */
1787
1788SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1789                char __user *, optval, int, optlen)
1790{
1791        int err, fput_needed;
1792        struct socket *sock;
1793
1794        if (optlen < 0)
1795                return -EINVAL;
1796
1797        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798        if (sock != NULL) {
1799                err = security_socket_setsockopt(sock, level, optname);
1800                if (err)
1801                        goto out_put;
1802
1803                if (level == SOL_SOCKET)
1804                        err =
1805                            sock_setsockopt(sock, level, optname, optval,
1806                                            optlen);
1807                else
1808                        err =
1809                            sock->ops->setsockopt(sock, level, optname, optval,
1810                                                  optlen);
1811out_put:
1812                fput_light(sock->file, fput_needed);
1813        }
1814        return err;
1815}
1816
1817/*
1818 *      Get a socket option. Because we don't know the option lengths we have
1819 *      to pass a user mode parameter for the protocols to sort out.
1820 */
1821
1822SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1823                char __user *, optval, int __user *, optlen)
1824{
1825        int err, fput_needed;
1826        struct socket *sock;
1827
1828        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829        if (sock != NULL) {
1830                err = security_socket_getsockopt(sock, level, optname);
1831                if (err)
1832                        goto out_put;
1833
1834                if (level == SOL_SOCKET)
1835                        err =
1836                            sock_getsockopt(sock, level, optname, optval,
1837                                            optlen);
1838                else
1839                        err =
1840                            sock->ops->getsockopt(sock, level, optname, optval,
1841                                                  optlen);
1842out_put:
1843                fput_light(sock->file, fput_needed);
1844        }
1845        return err;
1846}
1847
1848/*
1849 *      Shutdown a socket.
1850 */
1851
1852SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1853{
1854        int err, fput_needed;
1855        struct socket *sock;
1856
1857        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858        if (sock != NULL) {
1859                err = security_socket_shutdown(sock, how);
1860                if (!err)
1861                        err = sock->ops->shutdown(sock, how);
1862                fput_light(sock->file, fput_needed);
1863        }
1864        return err;
1865}
1866
1867/* A couple of helpful macros for getting the address of the 32/64 bit
1868 * fields which are the same type (int / unsigned) on our platforms.
1869 */
1870#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1871#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1872#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1873
1874struct used_address {
1875        struct sockaddr_storage name;
1876        unsigned int name_len;
1877};
1878
1879static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1880                         struct msghdr *msg_sys, unsigned flags,
1881                         struct used_address *used_address)
1882{
1883        struct compat_msghdr __user *msg_compat =
1884            (struct compat_msghdr __user *)msg;
1885        struct sockaddr_storage address;
1886        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1887        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1888            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1889        /* 20 is size of ipv6_pktinfo */
1890        unsigned char *ctl_buf = ctl;
1891        int err, ctl_len, iov_size, total_len;
1892
1893        err = -EFAULT;
1894        if (MSG_CMSG_COMPAT & flags) {
1895                if (get_compat_msghdr(msg_sys, msg_compat))
1896                        return -EFAULT;
1897        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1898                return -EFAULT;
1899
1900        /* do not move before msg_sys is valid */
1901        err = -EMSGSIZE;
1902        if (msg_sys->msg_iovlen > UIO_MAXIOV)
1903                goto out;
1904
1905        /* Check whether to allocate the iovec area */
1906        err = -ENOMEM;
1907        iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1908        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1909                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1910                if (!iov)
1911                        goto out;
1912        }
1913
1914        /* This will also move the address data into kernel space */
1915        if (MSG_CMSG_COMPAT & flags) {
1916                err = verify_compat_iovec(msg_sys, iov,
1917                                          (struct sockaddr *)&address,
1918                                          VERIFY_READ);
1919        } else
1920                err = verify_iovec(msg_sys, iov,
1921                                   (struct sockaddr *)&address,
1922                                   VERIFY_READ);
1923        if (err < 0)
1924                goto out_freeiov;
1925        total_len = err;
1926
1927        err = -ENOBUFS;
1928
1929        if (msg_sys->msg_controllen > INT_MAX)
1930                goto out_freeiov;
1931        ctl_len = msg_sys->msg_controllen;
1932        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1933                err =
1934                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1935                                                     sizeof(ctl));
1936                if (err)
1937                        goto out_freeiov;
1938                ctl_buf = msg_sys->msg_control;
1939                ctl_len = msg_sys->msg_controllen;
1940        } else if (ctl_len) {
1941                if (ctl_len > sizeof(ctl)) {
1942                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1943                        if (ctl_buf == NULL)
1944                                goto out_freeiov;
1945                }
1946                err = -EFAULT;
1947                /*
1948                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1949                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1950                 * checking falls down on this.
1951                 */
1952                if (copy_from_user(ctl_buf,
1953                                   (void __user __force *)msg_sys->msg_control,
1954                                   ctl_len))
1955                        goto out_freectl;
1956                msg_sys->msg_control = ctl_buf;
1957        }
1958        msg_sys->msg_flags = flags;
1959
1960        if (sock->file->f_flags & O_NONBLOCK)
1961                msg_sys->msg_flags |= MSG_DONTWAIT;
1962        /*
1963         * If this is sendmmsg() and current destination address is same as
1964         * previously succeeded address, omit asking LSM's decision.
1965         * used_address->name_len is initialized to UINT_MAX so that the first
1966         * destination address never matches.
1967         */
1968        if (used_address && msg_sys->msg_name &&
1969            used_address->name_len == msg_sys->msg_namelen &&
1970            !memcmp(&used_address->name, msg_sys->msg_name,
1971                    used_address->name_len)) {
1972                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1973                goto out_freectl;
1974        }
1975        err = sock_sendmsg(sock, msg_sys, total_len);
1976        /*
1977         * If this is sendmmsg() and sending to current destination address was
1978         * successful, remember it.
1979         */
1980        if (used_address && err >= 0) {
1981                used_address->name_len = msg_sys->msg_namelen;
1982                if (msg_sys->msg_name)
1983                        memcpy(&used_address->name, msg_sys->msg_name,
1984                               used_address->name_len);
1985        }
1986
1987out_freectl:
1988        if (ctl_buf != ctl)
1989                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1990out_freeiov:
1991        if (iov != iovstack)
1992                sock_kfree_s(sock->sk, iov, iov_size);
1993out:
1994        return err;
1995}
1996
1997/*
1998 *      BSD sendmsg interface
1999 */
2000
2001SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2002{
2003        int fput_needed, err;
2004        struct msghdr msg_sys;
2005        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2006
2007        if (!sock)
2008                goto out;
2009
2010        err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2011
2012        fput_light(sock->file, fput_needed);
2013out:
2014        return err;
2015}
2016
2017/*
2018 *      Linux sendmmsg interface
2019 */
2020
2021int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2022                   unsigned int flags)
2023{
2024        int fput_needed, err, datagrams;
2025        struct socket *sock;
2026        struct mmsghdr __user *entry;
2027        struct compat_mmsghdr __user *compat_entry;
2028        struct msghdr msg_sys;
2029        struct used_address used_address;
2030
2031        if (vlen > UIO_MAXIOV)
2032                vlen = UIO_MAXIOV;
2033
2034        datagrams = 0;
2035
2036        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2037        if (!sock)
2038                return err;
2039
2040        used_address.name_len = UINT_MAX;
2041        entry = mmsg;
2042        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2043        err = 0;
2044
2045        while (datagrams < vlen) {
2046                if (MSG_CMSG_COMPAT & flags) {
2047                        err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2048                                            &msg_sys, flags, &used_address);
2049                        if (err < 0)
2050                                break;
2051                        err = __put_user(err, &compat_entry->msg_len);
2052                        ++compat_entry;
2053                } else {
2054                        err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2055                                            &msg_sys, flags, &used_address);
2056                        if (err < 0)
2057                                break;
2058                        err = put_user(err, &entry->msg_len);
2059                        ++entry;
2060                }
2061
2062                if (err)
2063                        break;
2064                ++datagrams;
2065        }
2066
2067        fput_light(sock->file, fput_needed);
2068
2069        /* We only return an error if no datagrams were able to be sent */
2070        if (datagrams != 0)
2071                return datagrams;
2072
2073        return err;
2074}
2075
2076SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2077                unsigned int, vlen, unsigned int, flags)
2078{
2079        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2080}
2081
2082static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2083                         struct msghdr *msg_sys, unsigned flags, int nosec)
2084{
2085        struct compat_msghdr __user *msg_compat =
2086            (struct compat_msghdr __user *)msg;
2087        struct iovec iovstack[UIO_FASTIOV];
2088        struct iovec *iov = iovstack;
2089        unsigned long cmsg_ptr;
2090        int err, iov_size, total_len, len;
2091
2092        /* kernel mode address */
2093        struct sockaddr_storage addr;
2094
2095        /* user mode address pointers */
2096        struct sockaddr __user *uaddr;
2097        int __user *uaddr_len;
2098
2099        if (MSG_CMSG_COMPAT & flags) {
2100                if (get_compat_msghdr(msg_sys, msg_compat))
2101                        return -EFAULT;
2102        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2103                return -EFAULT;
2104
2105        err = -EMSGSIZE;
2106        if (msg_sys->msg_iovlen > UIO_MAXIOV)
2107                goto out;
2108
2109        /* Check whether to allocate the iovec area */
2110        err = -ENOMEM;
2111        iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2112        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2113                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2114                if (!iov)
2115                        goto out;
2116        }
2117
2118        /*
2119         *      Save the user-mode address (verify_iovec will change the
2120         *      kernel msghdr to use the kernel address space)
2121         */
2122
2123        uaddr = (__force void __user *)msg_sys->msg_name;
2124        uaddr_len = COMPAT_NAMELEN(msg);
2125        if (MSG_CMSG_COMPAT & flags) {
2126                err = verify_compat_iovec(msg_sys, iov,
2127                                          (struct sockaddr *)&addr,
2128                                          VERIFY_WRITE);
2129        } else
2130                err = verify_iovec(msg_sys, iov,
2131                                   (struct sockaddr *)&addr,
2132                                   VERIFY_WRITE);
2133        if (err < 0)
2134                goto out_freeiov;
2135        total_len = err;
2136
2137        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2138        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2139
2140        if (sock->file->f_flags & O_NONBLOCK)
2141                flags |= MSG_DONTWAIT;
2142        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2143                                                          total_len, flags);
2144        if (err < 0)
2145                goto out_freeiov;
2146        len = err;
2147
2148        if (uaddr != NULL) {
2149                err = move_addr_to_user((struct sockaddr *)&addr,
2150                                        msg_sys->msg_namelen, uaddr,
2151                                        uaddr_len);
2152                if (err < 0)
2153                        goto out_freeiov;
2154        }
2155        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2156                         COMPAT_FLAGS(msg));
2157        if (err)
2158                goto out_freeiov;
2159        if (MSG_CMSG_COMPAT & flags)
2160                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2161                                 &msg_compat->msg_controllen);
2162        else
2163                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2164                                 &msg->msg_controllen);
2165        if (err)
2166                goto out_freeiov;
2167        err = len;
2168
2169out_freeiov:
2170        if (iov != iovstack)
2171                sock_kfree_s(sock->sk, iov, iov_size);
2172out:
2173        return err;
2174}
2175
2176/*
2177 *      BSD recvmsg interface
2178 */
2179
2180SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2181                unsigned int, flags)
2182{
2183        int fput_needed, err;
2184        struct msghdr msg_sys;
2185        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186
2187        if (!sock)
2188                goto out;
2189
2190        err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2191
2192        fput_light(sock->file, fput_needed);
2193out:
2194        return err;
2195}
2196
2197/*
2198 *     Linux recvmmsg interface
2199 */
2200
2201int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2202                   unsigned int flags, struct timespec *timeout)
2203{
2204        int fput_needed, err, datagrams;
2205        struct socket *sock;
2206        struct mmsghdr __user *entry;
2207        struct compat_mmsghdr __user *compat_entry;
2208        struct msghdr msg_sys;
2209        struct timespec end_time;
2210
2211        if (timeout &&
2212            poll_select_set_timeout(&end_time, timeout->tv_sec,
2213                                    timeout->tv_nsec))
2214                return -EINVAL;
2215
2216        datagrams = 0;
2217
2218        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2219        if (!sock)
2220                return err;
2221
2222        err = sock_error(sock->sk);
2223        if (err)
2224                goto out_put;
2225
2226        entry = mmsg;
2227        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2228
2229        while (datagrams < vlen) {
2230                /*
2231                 * No need to ask LSM for more than the first datagram.
2232                 */
2233                if (MSG_CMSG_COMPAT & flags) {
2234                        err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2235                                            &msg_sys, flags & ~MSG_WAITFORONE,
2236                                            datagrams);
2237                        if (err < 0)
2238                                break;
2239                        err = __put_user(err, &compat_entry->msg_len);
2240                        ++compat_entry;
2241                } else {
2242                        err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2243                                            &msg_sys, flags & ~MSG_WAITFORONE,
2244                                            datagrams);
2245                        if (err < 0)
2246                                break;
2247                        err = put_user(err, &entry->msg_len);
2248                        ++entry;
2249                }
2250
2251                if (err)
2252                        break;
2253                ++datagrams;
2254
2255                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2256                if (flags & MSG_WAITFORONE)
2257                        flags |= MSG_DONTWAIT;
2258
2259                if (timeout) {
2260                        ktime_get_ts(timeout);
2261                        *timeout = timespec_sub(end_time, *timeout);
2262                        if (timeout->tv_sec < 0) {
2263                                timeout->tv_sec = timeout->tv_nsec = 0;
2264                                break;
2265                        }
2266
2267                        /* Timeout, return less than vlen datagrams */
2268                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2269                                break;
2270                }
2271
2272                /* Out of band data, return right away */
2273                if (msg_sys.msg_flags & MSG_OOB)
2274                        break;
2275        }
2276
2277out_put:
2278        fput_light(sock->file, fput_needed);
2279
2280        if (err == 0)
2281                return datagrams;
2282
2283        if (datagrams != 0) {
2284                /*
2285                 * We may return less entries than requested (vlen) if the
2286                 * sock is non block and there aren't enough datagrams...
2287                 */
2288                if (err != -EAGAIN) {
2289                        /*
2290                         * ... or  if recvmsg returns an error after we
2291                         * received some datagrams, where we record the
2292                         * error to return on the next call or if the
2293                         * app asks about it using getsockopt(SO_ERROR).
2294                         */
2295                        sock->sk->sk_err = -err;
2296                }
2297
2298                return datagrams;
2299        }
2300
2301        return err;
2302}
2303
2304SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2305                unsigned int, vlen, unsigned int, flags,
2306                struct timespec __user *, timeout)
2307{
2308        int datagrams;
2309        struct timespec timeout_sys;
2310
2311        if (!timeout)
2312                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2313
2314        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2315                return -EFAULT;
2316
2317        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2318
2319        if (datagrams > 0 &&
2320            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2321                datagrams = -EFAULT;
2322
2323        return datagrams;
2324}
2325
2326#ifdef __ARCH_WANT_SYS_SOCKETCALL
2327/* Argument list sizes for sys_socketcall */
2328#define AL(x) ((x) * sizeof(unsigned long))
2329static const unsigned char nargs[21] = {
2330        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2331        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2332        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2333        AL(4), AL(5), AL(4)
2334};
2335
2336#undef AL
2337
2338/*
2339 *      System call vectors.
2340 *
2341 *      Argument checking cleaned up. Saved 20% in size.
2342 *  This function doesn't need to set the kernel lock because
2343 *  it is set by the callees.
2344 */
2345
2346SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2347{
2348        unsigned long a[6];
2349        unsigned long a0, a1;
2350        int err;
2351        unsigned int len;
2352
2353        if (call < 1 || call > SYS_SENDMMSG)
2354                return -EINVAL;
2355
2356        len = nargs[call];
2357        if (len > sizeof(a))
2358                return -EINVAL;
2359
2360        /* copy_from_user should be SMP safe. */
2361        if (copy_from_user(a, args, len))
2362                return -EFAULT;
2363
2364        audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2365
2366        a0 = a[0];
2367        a1 = a[1];
2368
2369        switch (call) {
2370        case SYS_SOCKET:
2371                err = sys_socket(a0, a1, a[2]);
2372                break;
2373        case SYS_BIND:
2374                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2375                break;
2376        case SYS_CONNECT:
2377                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2378                break;
2379        case SYS_LISTEN:
2380                err = sys_listen(a0, a1);
2381                break;
2382        case SYS_ACCEPT:
2383                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2384                                  (int __user *)a[2], 0);
2385                break;
2386        case SYS_GETSOCKNAME:
2387                err =
2388                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2389                                    (int __user *)a[2]);
2390                break;
2391        case SYS_GETPEERNAME:
2392                err =
2393                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2394                                    (int __user *)a[2]);
2395                break;
2396        case SYS_SOCKETPAIR:
2397                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2398                break;
2399        case SYS_SEND:
2400                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2401                break;
2402        case SYS_SENDTO:
2403                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2404                                 (struct sockaddr __user *)a[4], a[5]);
2405                break;
2406        case SYS_RECV:
2407                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2408                break;
2409        case SYS_RECVFROM:
2410                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2411                                   (struct sockaddr __user *)a[4],
2412                                   (int __user *)a[5]);
2413                break;
2414        case SYS_SHUTDOWN:
2415                err = sys_shutdown(a0, a1);
2416                break;
2417        case SYS_SETSOCKOPT:
2418                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2419                break;
2420        case SYS_GETSOCKOPT:
2421                err =
2422                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2423                                   (int __user *)a[4]);
2424                break;
2425        case SYS_SENDMSG:
2426                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2427                break;
2428        case SYS_SENDMMSG:
2429                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2430                break;
2431        case SYS_RECVMSG:
2432                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2433                break;
2434        case SYS_RECVMMSG:
2435                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2436                                   (struct timespec __user *)a[4]);
2437                break;
2438        case SYS_ACCEPT4:
2439                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2440                                  (int __user *)a[2], a[3]);
2441                break;
2442        default:
2443                err = -EINVAL;
2444                break;
2445        }
2446        return err;
2447}
2448
2449#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2450
2451/**
2452 *      sock_register - add a socket protocol handler
2453 *      @ops: description of protocol
2454 *
2455 *      This function is called by a protocol handler that wants to
2456 *      advertise its address family, and have it linked into the
2457 *      socket interface. The value ops->family coresponds to the
2458 *      socket system call protocol family.
2459 */
2460int sock_register(const struct net_proto_family *ops)
2461{
2462        int err;
2463
2464        if (ops->family >= NPROTO) {
2465                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2466                       NPROTO);
2467                return -ENOBUFS;
2468        }
2469
2470        spin_lock(&net_family_lock);
2471        if (rcu_dereference_protected(net_families[ops->family],
2472                                      lockdep_is_held(&net_family_lock)))
2473                err = -EEXIST;
2474        else {
2475                rcu_assign_pointer(net_families[ops->family], ops);
2476                err = 0;
2477        }
2478        spin_unlock(&net_family_lock);
2479
2480        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2481        return err;
2482}
2483EXPORT_SYMBOL(sock_register);
2484
2485/**
2486 *      sock_unregister - remove a protocol handler
2487 *      @family: protocol family to remove
2488 *
2489 *      This function is called by a protocol handler that wants to
2490 *      remove its address family, and have it unlinked from the
2491 *      new socket creation.
2492 *
2493 *      If protocol handler is a module, then it can use module reference
2494 *      counts to protect against new references. If protocol handler is not
2495 *      a module then it needs to provide its own protection in
2496 *      the ops->create routine.
2497 */
2498void sock_unregister(int family)
2499{
2500        BUG_ON(family < 0 || family >= NPROTO);
2501
2502        spin_lock(&net_family_lock);
2503        rcu_assign_pointer(net_families[family], NULL);
2504        spin_unlock(&net_family_lock);
2505
2506        synchronize_rcu();
2507
2508        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2509}
2510EXPORT_SYMBOL(sock_unregister);
2511
2512static int __init sock_init(void)
2513{
2514        int err;
2515
2516        /*
2517         *      Initialize sock SLAB cache.
2518         */
2519
2520        sk_init();
2521
2522        /*
2523         *      Initialize skbuff SLAB cache
2524         */
2525        skb_init();
2526
2527        /*
2528         *      Initialize the protocols module.
2529         */
2530
2531        init_inodecache();
2532
2533        err = register_filesystem(&sock_fs_type);
2534        if (err)
2535                goto out_fs;
2536        sock_mnt = kern_mount(&sock_fs_type);
2537        if (IS_ERR(sock_mnt)) {
2538                err = PTR_ERR(sock_mnt);
2539                goto out_mount;
2540        }
2541
2542        /* The real protocol initialization is performed in later initcalls.
2543         */
2544
2545#ifdef CONFIG_NETFILTER
2546        netfilter_init();
2547#endif
2548
2549#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2550        skb_timestamping_init();
2551#endif
2552
2553out:
2554        return err;
2555
2556out_mount:
2557        unregister_filesystem(&sock_fs_type);
2558out_fs:
2559        goto out;
2560}
2561
2562core_initcall(sock_init);       /* early initcall */
2563
2564#ifdef CONFIG_PROC_FS
2565void socket_seq_show(struct seq_file *seq)
2566{
2567        int cpu;
2568        int counter = 0;
2569
2570        for_each_possible_cpu(cpu)
2571            counter += per_cpu(sockets_in_use, cpu);
2572
2573        /* It can be negative, by the way. 8) */
2574        if (counter < 0)
2575                counter = 0;
2576
2577        seq_printf(seq, "sockets: used %d\n", counter);
2578}
2579#endif                          /* CONFIG_PROC_FS */
2580
2581#ifdef CONFIG_COMPAT
2582static int do_siocgstamp(struct net *net, struct socket *sock,
2583                         unsigned int cmd, struct compat_timeval __user *up)
2584{
2585        mm_segment_t old_fs = get_fs();
2586        struct timeval ktv;
2587        int err;
2588
2589        set_fs(KERNEL_DS);
2590        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2591        set_fs(old_fs);
2592        if (!err) {
2593                err = put_user(ktv.tv_sec, &up->tv_sec);
2594                err |= __put_user(ktv.tv_usec, &up->tv_usec);
2595        }
2596        return err;
2597}
2598
2599static int do_siocgstampns(struct net *net, struct socket *sock,
2600                         unsigned int cmd, struct compat_timespec __user *up)
2601{
2602        mm_segment_t old_fs = get_fs();
2603        struct timespec kts;
2604        int err;
2605
2606        set_fs(KERNEL_DS);
2607        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2608        set_fs(old_fs);
2609        if (!err) {
2610                err = put_user(kts.tv_sec, &up->tv_sec);
2611                err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2612        }
2613        return err;
2614}
2615
2616static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2617{
2618        struct ifreq __user *uifr;
2619        int err;
2620
2621        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2622        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2623                return -EFAULT;
2624
2625        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2626        if (err)
2627                return err;
2628
2629        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2630                return -EFAULT;
2631
2632        return 0;
2633}
2634
2635static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2636{
2637        struct compat_ifconf ifc32;
2638        struct ifconf ifc;
2639        struct ifconf __user *uifc;
2640        struct compat_ifreq __user *ifr32;
2641        struct ifreq __user *ifr;
2642        unsigned int i, j;
2643        int err;
2644
2645        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2646                return -EFAULT;
2647
2648        if (ifc32.ifcbuf == 0) {
2649                ifc32.ifc_len = 0;
2650                ifc.ifc_len = 0;
2651                ifc.ifc_req = NULL;
2652                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2653        } else {
2654                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2655                        sizeof(struct ifreq);
2656                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2657                ifc.ifc_len = len;
2658                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2659                ifr32 = compat_ptr(ifc32.ifcbuf);
2660                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2661                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2662                                return -EFAULT;
2663                        ifr++;
2664                        ifr32++;
2665                }
2666        }
2667        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2668                return -EFAULT;
2669
2670        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2671        if (err)
2672                return err;
2673
2674        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2675                return -EFAULT;
2676
2677        ifr = ifc.ifc_req;
2678        ifr32 = compat_ptr(ifc32.ifcbuf);
2679        for (i = 0, j = 0;
2680             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2681             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2682                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2683                        return -EFAULT;
2684                ifr32++;
2685                ifr++;
2686        }
2687
2688        if (ifc32.ifcbuf == 0) {
2689                /* Translate from 64-bit structure multiple to
2690                 * a 32-bit one.
2691                 */
2692                i = ifc.ifc_len;
2693                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2694                ifc32.ifc_len = i;
2695        } else {
2696                ifc32.ifc_len = i;
2697        }
2698        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2699                return -EFAULT;
2700
2701        return 0;
2702}
2703
2704static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2705{
2706        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2707        bool convert_in = false, convert_out = false;
2708        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2709        struct ethtool_rxnfc __user *rxnfc;
2710        struct ifreq __user *ifr;
2711        u32 rule_cnt = 0, actual_rule_cnt;
2712        u32 ethcmd;
2713        u32 data;
2714        int ret;
2715
2716        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2717                return -EFAULT;
2718
2719        compat_rxnfc = compat_ptr(data);
2720
2721        if (get_user(ethcmd, &compat_rxnfc->cmd))
2722                return -EFAULT;
2723
2724        /* Most ethtool structures are defined without padding.
2725         * Unfortunately struct ethtool_rxnfc is an exception.
2726         */
2727        switch (ethcmd) {
2728        default:
2729                break;
2730        case ETHTOOL_GRXCLSRLALL:
2731                /* Buffer size is variable */
2732                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2733                        return -EFAULT;
2734                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2735                        return -ENOMEM;
2736                buf_size += rule_cnt * sizeof(u32);
2737                /* fall through */
2738        case ETHTOOL_GRXRINGS:
2739        case ETHTOOL_GRXCLSRLCNT:
2740        case ETHTOOL_GRXCLSRULE:
2741                convert_out = true;
2742                /* fall through */
2743        case ETHTOOL_SRXCLSRLDEL:
2744        case ETHTOOL_SRXCLSRLINS:
2745                buf_size += sizeof(struct ethtool_rxnfc);
2746                convert_in = true;
2747                break;
2748        }
2749
2750        ifr = compat_alloc_user_space(buf_size);
2751        rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2752
2753        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2754                return -EFAULT;
2755
2756        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2757                     &ifr->ifr_ifru.ifru_data))
2758                return -EFAULT;
2759
2760        if (convert_in) {
2761                /* We expect there to be holes between fs.m_ext and
2762                 * fs.ring_cookie and at the end of fs, but nowhere else.
2763                 */
2764                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2765                             sizeof(compat_rxnfc->fs.m_ext) !=
2766                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2767                             sizeof(rxnfc->fs.m_ext));
2768                BUILD_BUG_ON(
2769                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2770                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2771                        offsetof(struct ethtool_rxnfc, fs.location) -
2772                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2773
2774                if (copy_in_user(rxnfc, compat_rxnfc,
2775                                 (void *)(&rxnfc->fs.m_ext + 1) -
2776                                 (void *)rxnfc) ||
2777                    copy_in_user(&rxnfc->fs.ring_cookie,
2778                                 &compat_rxnfc->fs.ring_cookie,
2779                                 (void *)(&rxnfc->fs.location + 1) -
2780                                 (void *)&rxnfc->fs.ring_cookie) ||
2781                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2782                                 sizeof(rxnfc->rule_cnt)))
2783                        return -EFAULT;
2784        }
2785
2786        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2787        if (ret)
2788                return ret;
2789
2790        if (convert_out) {
2791                if (copy_in_user(compat_rxnfc, rxnfc,
2792                                 (const void *)(&rxnfc->fs.m_ext + 1) -
2793                                 (const void *)rxnfc) ||
2794                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2795                                 &rxnfc->fs.ring_cookie,
2796                                 (const void *)(&rxnfc->fs.location + 1) -
2797                                 (const void *)&rxnfc->fs.ring_cookie) ||
2798                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2799                                 sizeof(rxnfc->rule_cnt)))
2800                        return -EFAULT;
2801
2802                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2803                        /* As an optimisation, we only copy the actual
2804                         * number of rules that the underlying
2805                         * function returned.  Since Mallory might
2806                         * change the rule count in user memory, we
2807                         * check that it is less than the rule count
2808                         * originally given (as the user buffer size),
2809                         * which has been range-checked.
2810                         */
2811                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2812                                return -EFAULT;
2813                        if (actual_rule_cnt < rule_cnt)
2814                                rule_cnt = actual_rule_cnt;
2815                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2816                                         &rxnfc->rule_locs[0],
2817                                         rule_cnt * sizeof(u32)))
2818                                return -EFAULT;
2819                }
2820        }
2821
2822        return 0;
2823}
2824
2825static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2826{
2827        void __user *uptr;
2828        compat_uptr_t uptr32;
2829        struct ifreq __user *uifr;
2830
2831        uifr = compat_alloc_user_space(sizeof(*uifr));
2832        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2833                return -EFAULT;
2834
2835        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2836                return -EFAULT;
2837
2838        uptr = compat_ptr(uptr32);
2839
2840        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2841                return -EFAULT;
2842
2843        return dev_ioctl(net, SIOCWANDEV, uifr);
2844}
2845
2846static int bond_ioctl(struct net *net, unsigned int cmd,
2847                         struct compat_ifreq __user *ifr32)
2848{
2849        struct ifreq kifr;
2850        struct ifreq __user *uifr;
2851        mm_segment_t old_fs;
2852        int err;
2853        u32 data;
2854        void __user *datap;
2855
2856        switch (cmd) {
2857        case SIOCBONDENSLAVE:
2858        case SIOCBONDRELEASE:
2859        case SIOCBONDSETHWADDR:
2860        case SIOCBONDCHANGEACTIVE:
2861                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2862                        return -EFAULT;
2863
2864                old_fs = get_fs();
2865                set_fs(KERNEL_DS);
2866                err = dev_ioctl(net, cmd,
2867                                (struct ifreq __user __force *) &kifr);
2868                set_fs(old_fs);
2869
2870                return err;
2871        case SIOCBONDSLAVEINFOQUERY:
2872        case SIOCBONDINFOQUERY:
2873                uifr = compat_alloc_user_space(sizeof(*uifr));
2874                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2875                        return -EFAULT;
2876
2877                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2878                        return -EFAULT;
2879
2880                datap = compat_ptr(data);
2881                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2882                        return -EFAULT;
2883
2884                return dev_ioctl(net, cmd, uifr);
2885        default:
2886                return -EINVAL;
2887        }
2888}
2889
2890static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2891                                 struct compat_ifreq __user *u_ifreq32)
2892{
2893        struct ifreq __user *u_ifreq64;
2894        char tmp_buf[IFNAMSIZ];
2895        void __user *data64;
2896        u32 data32;
2897
2898        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899                           IFNAMSIZ))
2900                return -EFAULT;
2901        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902                return -EFAULT;
2903        data64 = compat_ptr(data32);
2904
2905        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907        /* Don't check these user accesses, just let that get trapped
2908         * in the ioctl handler instead.
2909         */
2910        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2911                         IFNAMSIZ))
2912                return -EFAULT;
2913        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2914                return -EFAULT;
2915
2916        return dev_ioctl(net, cmd, u_ifreq64);
2917}
2918
2919static int dev_ifsioc(struct net *net, struct socket *sock,
2920                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2921{
2922        struct ifreq __user *uifr;
2923        int err;
2924
2925        uifr = compat_alloc_user_space(sizeof(*uifr));
2926        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2927                return -EFAULT;
2928
2929        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2930
2931        if (!err) {
2932                switch (cmd) {
2933                case SIOCGIFFLAGS:
2934                case SIOCGIFMETRIC:
2935                case SIOCGIFMTU:
2936                case SIOCGIFMEM:
2937                case SIOCGIFHWADDR:
2938                case SIOCGIFINDEX:
2939                case SIOCGIFADDR:
2940                case SIOCGIFBRDADDR:
2941                case SIOCGIFDSTADDR:
2942                case SIOCGIFNETMASK:
2943                case SIOCGIFPFLAGS:
2944                case SIOCGIFTXQLEN:
2945                case SIOCGMIIPHY:
2946                case SIOCGMIIREG:
2947                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2948                                err = -EFAULT;
2949                        break;
2950                }
2951        }
2952        return err;
2953}
2954
2955static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2956                        struct compat_ifreq __user *uifr32)
2957{
2958        struct ifreq ifr;
2959        struct compat_ifmap __user *uifmap32;
2960        mm_segment_t old_fs;
2961        int err;
2962
2963        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2964        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2965        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2966        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2967        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2968        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2969        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2970        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2971        if (err)
2972                return -EFAULT;
2973
2974        old_fs = get_fs();
2975        set_fs(KERNEL_DS);
2976        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2977        set_fs(old_fs);
2978
2979        if (cmd == SIOCGIFMAP && !err) {
2980                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2981                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2982                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2983                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2984                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2985                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2986                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2987                if (err)
2988                        err = -EFAULT;
2989        }
2990        return err;
2991}
2992
2993static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2994{
2995        void __user *uptr;
2996        compat_uptr_t uptr32;
2997        struct ifreq __user *uifr;
2998
2999        uifr = compat_alloc_user_space(sizeof(*uifr));
3000        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3001                return -EFAULT;
3002
3003        if (get_user(uptr32, &uifr32->ifr_data))
3004                return -EFAULT;
3005
3006        uptr = compat_ptr(uptr32);
3007
3008        if (put_user(uptr, &uifr->ifr_data))
3009                return -EFAULT;
3010
3011        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3012}
3013
3014struct rtentry32 {
3015        u32             rt_pad1;
3016        struct sockaddr rt_dst;         /* target address               */
3017        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3018        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3019        unsigned short  rt_flags;
3020        short           rt_pad2;
3021        u32             rt_pad3;
3022        unsigned char   rt_tos;
3023        unsigned char   rt_class;
3024        short           rt_pad4;
3025        short           rt_metric;      /* +1 for binary compatibility! */
3026        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3027        u32             rt_mtu;         /* per route MTU/Window         */
3028        u32             rt_window;      /* Window clamping              */
3029        unsigned short  rt_irtt;        /* Initial RTT                  */
3030};
3031
3032struct in6_rtmsg32 {
3033        struct in6_addr         rtmsg_dst;
3034        struct in6_addr         rtmsg_src;
3035        struct in6_addr         rtmsg_gateway;
3036        u32                     rtmsg_type;
3037        u16                     rtmsg_dst_len;
3038        u16                     rtmsg_src_len;
3039        u32                     rtmsg_metric;
3040        u32                     rtmsg_info;
3041        u32                     rtmsg_flags;
3042        s32                     rtmsg_ifindex;
3043};
3044
3045static int routing_ioctl(struct net *net, struct socket *sock,
3046                         unsigned int cmd, void __user *argp)
3047{
3048        int ret;
3049        void *r = NULL;
3050        struct in6_rtmsg r6;
3051        struct rtentry r4;
3052        char devname[16];
3053        u32 rtdev;
3054        mm_segment_t old_fs = get_fs();
3055
3056        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3057                struct in6_rtmsg32 __user *ur6 = argp;
3058                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3059                        3 * sizeof(struct in6_addr));
3060                ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3061                ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3062                ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3063                ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3064                ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3065                ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3066                ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3067
3068                r = (void *) &r6;
3069        } else { /* ipv4 */
3070                struct rtentry32 __user *ur4 = argp;
3071                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3072                                        3 * sizeof(struct sockaddr));
3073                ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3074                ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3075                ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3076                ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3077                ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3078                ret |= __get_user(rtdev, &(ur4->rt_dev));
3079                if (rtdev) {
3080                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3081                        r4.rt_dev = (char __user __force *)devname;
3082                        devname[15] = 0;
3083                } else
3084                        r4.rt_dev = NULL;
3085
3086                r = (void *) &r4;
3087        }
3088
3089        if (ret) {
3090                ret = -EFAULT;
3091                goto out;
3092        }
3093
3094        set_fs(KERNEL_DS);
3095        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3096        set_fs(old_fs);
3097
3098out:
3099        return ret;
3100}
3101
3102/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3103 * for some operations; this forces use of the newer bridge-utils that
3104 * use compatible ioctls
3105 */
3106static int old_bridge_ioctl(compat_ulong_t __user *argp)
3107{
3108        compat_ulong_t tmp;
3109
3110        if (get_user(tmp, argp))
3111                return -EFAULT;
3112        if (tmp == BRCTL_GET_VERSION)
3113                return BRCTL_VERSION + 1;
3114        return -EINVAL;
3115}
3116
3117static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3118                         unsigned int cmd, unsigned long arg)
3119{
3120        void __user *argp = compat_ptr(arg);
3121        struct sock *sk = sock->sk;
3122        struct net *net = sock_net(sk);
3123
3124        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3125                return siocdevprivate_ioctl(net, cmd, argp);
3126
3127        switch (cmd) {
3128        case SIOCSIFBR:
3129        case SIOCGIFBR:
3130                return old_bridge_ioctl(argp);
3131        case SIOCGIFNAME:
3132                return dev_ifname32(net, argp);
3133        case SIOCGIFCONF:
3134                return dev_ifconf(net, argp);
3135        case SIOCETHTOOL:
3136                return ethtool_ioctl(net, argp);
3137        case SIOCWANDEV:
3138                return compat_siocwandev(net, argp);
3139        case SIOCGIFMAP:
3140        case SIOCSIFMAP:
3141                return compat_sioc_ifmap(net, cmd, argp);
3142        case SIOCBONDENSLAVE:
3143        case SIOCBONDRELEASE:
3144        case SIOCBONDSETHWADDR:
3145        case SIOCBONDSLAVEINFOQUERY:
3146        case SIOCBONDINFOQUERY:
3147        case SIOCBONDCHANGEACTIVE:
3148                return bond_ioctl(net, cmd, argp);
3149        case SIOCADDRT:
3150        case SIOCDELRT:
3151                return routing_ioctl(net, sock, cmd, argp);
3152        case SIOCGSTAMP:
3153                return do_siocgstamp(net, sock, cmd, argp);
3154        case SIOCGSTAMPNS:
3155                return do_siocgstampns(net, sock, cmd, argp);
3156        case SIOCSHWTSTAMP:
3157                return compat_siocshwtstamp(net, argp);
3158
3159        case FIOSETOWN:
3160        case SIOCSPGRP:
3161        case FIOGETOWN:
3162        case SIOCGPGRP:
3163        case SIOCBRADDBR:
3164        case SIOCBRDELBR:
3165        case SIOCGIFVLAN:
3166        case SIOCSIFVLAN:
3167        case SIOCADDDLCI:
3168        case SIOCDELDLCI:
3169                return sock_ioctl(file, cmd, arg);
3170
3171        case SIOCGIFFLAGS:
3172        case SIOCSIFFLAGS:
3173        case SIOCGIFMETRIC:
3174        case SIOCSIFMETRIC:
3175        case SIOCGIFMTU:
3176        case SIOCSIFMTU:
3177        case SIOCGIFMEM:
3178        case SIOCSIFMEM:
3179        case SIOCGIFHWADDR:
3180        case SIOCSIFHWADDR:
3181        case SIOCADDMULTI:
3182        case SIOCDELMULTI:
3183        case SIOCGIFINDEX:
3184        case SIOCGIFADDR:
3185        case SIOCSIFADDR:
3186        case SIOCSIFHWBROADCAST:
3187        case SIOCDIFADDR:
3188        case SIOCGIFBRDADDR:
3189        case SIOCSIFBRDADDR:
3190        case SIOCGIFDSTADDR:
3191        case SIOCSIFDSTADDR:
3192        case SIOCGIFNETMASK:
3193        case SIOCSIFNETMASK:
3194        case SIOCSIFPFLAGS:
3195        case SIOCGIFPFLAGS:
3196        case SIOCGIFTXQLEN:
3197        case SIOCSIFTXQLEN:
3198        case SIOCBRADDIF:
3199        case SIOCBRDELIF:
3200        case SIOCSIFNAME:
3201        case SIOCGMIIPHY:
3202        case SIOCGMIIREG:
3203        case SIOCSMIIREG:
3204                return dev_ifsioc(net, sock, cmd, argp);
3205
3206        case SIOCSARP:
3207        case SIOCGARP:
3208        case SIOCDARP:
3209        case SIOCATMARK:
3210                return sock_do_ioctl(net, sock, cmd, arg);
3211        }
3212
3213        /* Prevent warning from compat_sys_ioctl, these always
3214         * result in -EINVAL in the native case anyway. */
3215        switch (cmd) {
3216        case SIOCRTMSG:
3217        case SIOCGIFCOUNT:
3218        case SIOCSRARP:
3219        case SIOCGRARP:
3220        case SIOCDRARP:
3221        case SIOCSIFLINK:
3222        case SIOCGIFSLAVE:
3223        case SIOCSIFSLAVE:
3224                return -EINVAL;
3225        }
3226
3227        return -ENOIOCTLCMD;
3228}
3229
3230static long compat_sock_ioctl(struct file *file, unsigned cmd,
3231                              unsigned long arg)
3232{
3233        struct socket *sock = file->private_data;
3234        int ret = -ENOIOCTLCMD;
3235        struct sock *sk;
3236        struct net *net;
3237
3238        sk = sock->sk;
3239        net = sock_net(sk);
3240
3241        if (sock->ops->compat_ioctl)
3242                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243
3244        if (ret == -ENOIOCTLCMD &&
3245            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246                ret = compat_wext_handle_ioctl(net, cmd, arg);
3247
3248        if (ret == -ENOIOCTLCMD)
3249                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250
3251        return ret;
3252}
3253#endif
3254
3255int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256{
3257        return sock->ops->bind(sock, addr, addrlen);
3258}
3259EXPORT_SYMBOL(kernel_bind);
3260
3261int kernel_listen(struct socket *sock, int backlog)
3262{
3263        return sock->ops->listen(sock, backlog);
3264}
3265EXPORT_SYMBOL(kernel_listen);
3266
3267int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268{
3269        struct sock *sk = sock->sk;
3270        int err;
3271
3272        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273                               newsock);
3274        if (err < 0)
3275                goto done;
3276
3277        err = sock->ops->accept(sock, *newsock, flags);
3278        if (err < 0) {
3279                sock_release(*newsock);
3280                *newsock = NULL;
3281                goto done;
3282        }
3283
3284        (*newsock)->ops = sock->ops;
3285        __module_get((*newsock)->ops->owner);
3286
3287done:
3288        return err;
3289}
3290EXPORT_SYMBOL(kernel_accept);
3291
3292int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293                   int flags)
3294{
3295        return sock->ops->connect(sock, addr, addrlen, flags);
3296}
3297EXPORT_SYMBOL(kernel_connect);
3298
3299int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300                         int *addrlen)
3301{
3302        return sock->ops->getname(sock, addr, addrlen, 0);
3303}
3304EXPORT_SYMBOL(kernel_getsockname);
3305
3306int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307                         int *addrlen)
3308{
3309        return sock->ops->getname(sock, addr, addrlen, 1);
3310}
3311EXPORT_SYMBOL(kernel_getpeername);
3312
3313int kernel_getsockopt(struct socket *sock, int level, int optname,
3314                        char *optval, int *optlen)
3315{
3316        mm_segment_t oldfs = get_fs();
3317        char __user *uoptval;
3318        int __user *uoptlen;
3319        int err;
3320
3321        uoptval = (char __user __force *) optval;
3322        uoptlen = (int __user __force *) optlen;
3323
3324        set_fs(KERNEL_DS);
3325        if (level == SOL_SOCKET)
3326                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327        else
3328                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329                                            uoptlen);
3330        set_fs(oldfs);
3331        return err;
3332}
3333EXPORT_SYMBOL(kernel_getsockopt);
3334
3335int kernel_setsockopt(struct socket *sock, int level, int optname,
3336                        char *optval, unsigned int optlen)
3337{
3338        mm_segment_t oldfs = get_fs();
3339        char __user *uoptval;
3340        int err;
3341
3342        uoptval = (char __user __force *) optval;
3343
3344        set_fs(KERNEL_DS);
3345        if (level == SOL_SOCKET)
3346                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347        else
3348                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349                                            optlen);
3350        set_fs(oldfs);
3351        return err;
3352}
3353EXPORT_SYMBOL(kernel_setsockopt);
3354
3355int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356                    size_t size, int flags)
3357{
3358        sock_update_classid(sock->sk);
3359
3360        if (sock->ops->sendpage)
3361                return sock->ops->sendpage(sock, page, offset, size, flags);
3362
3363        return sock_no_sendpage(sock, page, offset, size, flags);
3364}
3365EXPORT_SYMBOL(kernel_sendpage);
3366
3367int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368{
3369        mm_segment_t oldfs = get_fs();
3370        int err;
3371
3372        set_fs(KERNEL_DS);
3373        err = sock->ops->ioctl(sock, cmd, arg);
3374        set_fs(oldfs);
3375
3376        return err;
3377}
3378EXPORT_SYMBOL(kernel_sock_ioctl);
3379
3380int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381{
3382        return sock->ops->shutdown(sock, how);
3383}
3384EXPORT_SYMBOL(kernel_sock_shutdown);
3385
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.