linux/crypto/vmac.c
<<
>>
Prefs
   1/*
   2 * Modified to interface to the Linux kernel
   3 * Copyright (c) 2009, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  16 * Place - Suite 330, Boston, MA 02111-1307 USA.
  17 */
  18
  19/* --------------------------------------------------------------------------
  20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
  21 * This implementation is herby placed in the public domain.
  22 * The authors offers no warranty. Use at your own risk.
  23 * Please send bug reports to the authors.
  24 * Last modified: 17 APR 08, 1700 PDT
  25 * ----------------------------------------------------------------------- */
  26
  27#include <linux/init.h>
  28#include <linux/types.h>
  29#include <linux/crypto.h>
  30#include <linux/scatterlist.h>
  31#include <asm/byteorder.h>
  32#include <crypto/scatterwalk.h>
  33#include <crypto/vmac.h>
  34#include <crypto/internal/hash.h>
  35
  36/*
  37 * Constants and masks
  38 */
  39#define UINT64_C(x) x##ULL
  40const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
  41const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */
  42const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */
  43const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */
  44const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */
  45
  46#define pe64_to_cpup le64_to_cpup               /* Prefer little endian */
  47
  48#ifdef __LITTLE_ENDIAN
  49#define INDEX_HIGH 1
  50#define INDEX_LOW 0
  51#else
  52#define INDEX_HIGH 0
  53#define INDEX_LOW 1
  54#endif
  55
  56/*
  57 * The following routines are used in this implementation. They are
  58 * written via macros to simulate zero-overhead call-by-reference.
  59 *
  60 * MUL64: 64x64->128-bit multiplication
  61 * PMUL64: assumes top bits cleared on inputs
  62 * ADD128: 128x128->128-bit addition
  63 */
  64
  65#define ADD128(rh, rl, ih, il)                                          \
  66        do {                                                            \
  67                u64 _il = (il);                                         \
  68                (rl) += (_il);                                          \
  69                if ((rl) < (_il))                                       \
  70                        (rh)++;                                         \
  71                (rh) += (ih);                                           \
  72        } while (0)
  73
  74#define MUL32(i1, i2)   ((u64)(u32)(i1)*(u32)(i2))
  75
  76#define PMUL64(rh, rl, i1, i2)  /* Assumes m doesn't overflow */        \
  77        do {                                                            \
  78                u64 _i1 = (i1), _i2 = (i2);                             \
  79                u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
  80                rh = MUL32(_i1>>32, _i2>>32);                           \
  81                rl = MUL32(_i1, _i2);                                   \
  82                ADD128(rh, rl, (m >> 32), (m << 32));                   \
  83        } while (0)
  84
  85#define MUL64(rh, rl, i1, i2)                                           \
  86        do {                                                            \
  87                u64 _i1 = (i1), _i2 = (i2);                             \
  88                u64 m1 = MUL32(_i1, _i2>>32);                           \
  89                u64 m2 = MUL32(_i1>>32, _i2);                           \
  90                rh = MUL32(_i1>>32, _i2>>32);                           \
  91                rl = MUL32(_i1, _i2);                                   \
  92                ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
  93                ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
  94        } while (0)
  95
  96/*
  97 * For highest performance the L1 NH and L2 polynomial hashes should be
  98 * carefully implemented to take advantage of one's target architecture.
  99 * Here these two hash functions are defined multiple time; once for
 100 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
 101 * for the rest (32-bit) architectures.
 102 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
 103 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
 104 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
 105 * NH computations at once).
 106 */
 107
 108#ifdef CONFIG_64BIT
 109
 110#define nh_16(mp, kp, nw, rh, rl)                                       \
 111        do {                                                            \
 112                int i; u64 th, tl;                                      \
 113                rh = rl = 0;                                            \
 114                for (i = 0; i < nw; i += 2) {                           \
 115                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 116                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 117                        ADD128(rh, rl, th, tl);                         \
 118                }                                                       \
 119        } while (0)
 120
 121#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)                           \
 122        do {                                                            \
 123                int i; u64 th, tl;                                      \
 124                rh1 = rl1 = rh = rl = 0;                                \
 125                for (i = 0; i < nw; i += 2) {                           \
 126                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 127                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 128                        ADD128(rh, rl, th, tl);                         \
 129                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
 130                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
 131                        ADD128(rh1, rl1, th, tl);                       \
 132                }                                                       \
 133        } while (0)
 134
 135#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
 136#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
 137        do {                                                            \
 138                int i; u64 th, tl;                                      \
 139                rh = rl = 0;                                            \
 140                for (i = 0; i < nw; i += 8) {                           \
 141                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 142                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 143                        ADD128(rh, rl, th, tl);                         \
 144                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
 145                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
 146                        ADD128(rh, rl, th, tl);                         \
 147                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
 148                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
 149                        ADD128(rh, rl, th, tl);                         \
 150                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
 151                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
 152                        ADD128(rh, rl, th, tl);                         \
 153                }                                                       \
 154        } while (0)
 155
 156#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)                 \
 157        do {                                                            \
 158                int i; u64 th, tl;                                      \
 159                rh1 = rl1 = rh = rl = 0;                                \
 160                for (i = 0; i < nw; i += 8) {                           \
 161                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
 162                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
 163                        ADD128(rh, rl, th, tl);                         \
 164                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
 165                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
 166                        ADD128(rh1, rl1, th, tl);                       \
 167                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
 168                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
 169                        ADD128(rh, rl, th, tl);                         \
 170                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
 171                                pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
 172                        ADD128(rh1, rl1, th, tl);                       \
 173                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
 174                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
 175                        ADD128(rh, rl, th, tl);                         \
 176                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
 177                                pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
 178                        ADD128(rh1, rl1, th, tl);                       \
 179                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
 180                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
 181                        ADD128(rh, rl, th, tl);                         \
 182                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
 183                                pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
 184                        ADD128(rh1, rl1, th, tl);                       \
 185                }                                                       \
 186        } while (0)
 187#endif
 188
 189#define poly_step(ah, al, kh, kl, mh, ml)                               \
 190        do {                                                            \
 191                u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
 192                /* compute ab*cd, put bd into result registers */       \
 193                PMUL64(t3h, t3l, al, kh);                               \
 194                PMUL64(t2h, t2l, ah, kl);                               \
 195                PMUL64(t1h, t1l, ah, 2*kh);                             \
 196                PMUL64(ah, al, al, kl);                                 \
 197                /* add 2 * ac to result */                              \
 198                ADD128(ah, al, t1h, t1l);                               \
 199                /* add together ad + bc */                              \
 200                ADD128(t2h, t2l, t3h, t3l);                             \
 201                /* now (ah,al), (t2l,2*t2h) need summing */             \
 202                /* first add the high registers, carrying into t2h */   \
 203                ADD128(t2h, ah, z, t2l);                                \
 204                /* double t2h and add top bit of ah */                  \
 205                t2h = 2 * t2h + (ah >> 63);                             \
 206                ah &= m63;                                              \
 207                /* now add the low registers */                         \
 208                ADD128(ah, al, mh, ml);                                 \
 209                ADD128(ah, al, z, t2h);                                 \
 210        } while (0)
 211
 212#else /* ! CONFIG_64BIT */
 213
 214#ifndef nh_16
 215#define nh_16(mp, kp, nw, rh, rl)                                       \
 216        do {                                                            \
 217                u64 t1, t2, m1, m2, t;                                  \
 218                int i;                                                  \
 219                rh = rl = t = 0;                                        \
 220                for (i = 0; i < nw; i += 2)  {                          \
 221                        t1 = pe64_to_cpup(mp+i) + kp[i];                \
 222                        t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
 223                        m2 = MUL32(t1 >> 32, t2);                       \
 224                        m1 = MUL32(t1, t2 >> 32);                       \
 225                        ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
 226                                MUL32(t1, t2));                         \
 227                        rh += (u64)(u32)(m1 >> 32)                      \
 228                                + (u32)(m2 >> 32);                      \
 229                        t += (u64)(u32)m1 + (u32)m2;                    \
 230                }                                                       \
 231                ADD128(rh, rl, (t >> 32), (t << 32));                   \
 232        } while (0)
 233#endif
 234
 235static void poly_step_func(u64 *ahi, u64 *alo,
 236                        const u64 *kh, const u64 *kl,
 237                        const u64 *mh, const u64 *ml)
 238{
 239#define a0 (*(((u32 *)alo)+INDEX_LOW))
 240#define a1 (*(((u32 *)alo)+INDEX_HIGH))
 241#define a2 (*(((u32 *)ahi)+INDEX_LOW))
 242#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
 243#define k0 (*(((u32 *)kl)+INDEX_LOW))
 244#define k1 (*(((u32 *)kl)+INDEX_HIGH))
 245#define k2 (*(((u32 *)kh)+INDEX_LOW))
 246#define k3 (*(((u32 *)kh)+INDEX_HIGH))
 247
 248        u64 p, q, t;
 249        u32 t2;
 250
 251        p = MUL32(a3, k3);
 252        p += p;
 253        p += *(u64 *)mh;
 254        p += MUL32(a0, k2);
 255        p += MUL32(a1, k1);
 256        p += MUL32(a2, k0);
 257        t = (u32)(p);
 258        p >>= 32;
 259        p += MUL32(a0, k3);
 260        p += MUL32(a1, k2);
 261        p += MUL32(a2, k1);
 262        p += MUL32(a3, k0);
 263        t |= ((u64)((u32)p & 0x7fffffff)) << 32;
 264        p >>= 31;
 265        p += (u64)(((u32 *)ml)[INDEX_LOW]);
 266        p += MUL32(a0, k0);
 267        q =  MUL32(a1, k3);
 268        q += MUL32(a2, k2);
 269        q += MUL32(a3, k1);
 270        q += q;
 271        p += q;
 272        t2 = (u32)(p);
 273        p >>= 32;
 274        p += (u64)(((u32 *)ml)[INDEX_HIGH]);
 275        p += MUL32(a0, k1);
 276        p += MUL32(a1, k0);
 277        q =  MUL32(a2, k3);
 278        q += MUL32(a3, k2);
 279        q += q;
 280        p += q;
 281        *(u64 *)(alo) = (p << 32) | t2;
 282        p >>= 32;
 283        *(u64 *)(ahi) = p + t;
 284
 285#undef a0
 286#undef a1
 287#undef a2
 288#undef a3
 289#undef k0
 290#undef k1
 291#undef k2
 292#undef k3
 293}
 294
 295#define poly_step(ah, al, kh, kl, mh, ml)                               \
 296        poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
 297
 298#endif  /* end of specialized NH and poly definitions */
 299
 300/* At least nh_16 is defined. Defined others as needed here */
 301#ifndef nh_16_2
 302#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)                           \
 303        do {                                                            \
 304                nh_16(mp, kp, nw, rh, rl);                              \
 305                nh_16(mp, ((kp)+2), nw, rh2, rl2);                      \
 306        } while (0)
 307#endif
 308#ifndef nh_vmac_nhbytes
 309#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
 310        nh_16(mp, kp, nw, rh, rl)
 311#endif
 312#ifndef nh_vmac_nhbytes_2
 313#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)                 \
 314        do {                                                            \
 315                nh_vmac_nhbytes(mp, kp, nw, rh, rl);                    \
 316                nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);            \
 317        } while (0)
 318#endif
 319
 320static void vhash_abort(struct vmac_ctx *ctx)
 321{
 322        ctx->polytmp[0] = ctx->polykey[0] ;
 323        ctx->polytmp[1] = ctx->polykey[1] ;
 324        ctx->first_block_processed = 0;
 325}
 326
 327static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
 328{
 329        u64 rh, rl, t, z = 0;
 330
 331        /* fully reduce (p1,p2)+(len,0) mod p127 */
 332        t = p1 >> 63;
 333        p1 &= m63;
 334        ADD128(p1, p2, len, t);
 335        /* At this point, (p1,p2) is at most 2^127+(len<<64) */
 336        t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
 337        ADD128(p1, p2, z, t);
 338        p1 &= m63;
 339
 340        /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
 341        t = p1 + (p2 >> 32);
 342        t += (t >> 32);
 343        t += (u32)t > 0xfffffffeu;
 344        p1 += (t >> 32);
 345        p2 += (p1 << 32);
 346
 347        /* compute (p1+k1)%p64 and (p2+k2)%p64 */
 348        p1 += k1;
 349        p1 += (0 - (p1 < k1)) & 257;
 350        p2 += k2;
 351        p2 += (0 - (p2 < k2)) & 257;
 352
 353        /* compute (p1+k1)*(p2+k2)%p64 */
 354        MUL64(rh, rl, p1, p2);
 355        t = rh >> 56;
 356        ADD128(t, rl, z, rh);
 357        rh <<= 8;
 358        ADD128(t, rl, z, rh);
 359        t += t << 8;
 360        rl += t;
 361        rl += (0 - (rl < t)) & 257;
 362        rl += (0 - (rl > p64-1)) & 257;
 363        return rl;
 364}
 365
 366static void vhash_update(const unsigned char *m,
 367                        unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
 368                        struct vmac_ctx *ctx)
 369{
 370        u64 rh, rl, *mptr;
 371        const u64 *kptr = (u64 *)ctx->nhkey;
 372        int i;
 373        u64 ch, cl;
 374        u64 pkh = ctx->polykey[0];
 375        u64 pkl = ctx->polykey[1];
 376
 377        mptr = (u64 *)m;
 378        i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */
 379
 380        ch = ctx->polytmp[0];
 381        cl = ctx->polytmp[1];
 382
 383        if (!ctx->first_block_processed) {
 384                ctx->first_block_processed = 1;
 385                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 386                rh &= m62;
 387                ADD128(ch, cl, rh, rl);
 388                mptr += (VMAC_NHBYTES/sizeof(u64));
 389                i--;
 390        }
 391
 392        while (i--) {
 393                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 394                rh &= m62;
 395                poly_step(ch, cl, pkh, pkl, rh, rl);
 396                mptr += (VMAC_NHBYTES/sizeof(u64));
 397        }
 398
 399        ctx->polytmp[0] = ch;
 400        ctx->polytmp[1] = cl;
 401}
 402
 403static u64 vhash(unsigned char m[], unsigned int mbytes,
 404                        u64 *tagl, struct vmac_ctx *ctx)
 405{
 406        u64 rh, rl, *mptr;
 407        const u64 *kptr = (u64 *)ctx->nhkey;
 408        int i, remaining;
 409        u64 ch, cl;
 410        u64 pkh = ctx->polykey[0];
 411        u64 pkl = ctx->polykey[1];
 412
 413        mptr = (u64 *)m;
 414        i = mbytes / VMAC_NHBYTES;
 415        remaining = mbytes % VMAC_NHBYTES;
 416
 417        if (ctx->first_block_processed) {
 418                ch = ctx->polytmp[0];
 419                cl = ctx->polytmp[1];
 420        } else if (i) {
 421                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
 422                ch &= m62;
 423                ADD128(ch, cl, pkh, pkl);
 424                mptr += (VMAC_NHBYTES/sizeof(u64));
 425                i--;
 426        } else if (remaining) {
 427                nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
 428                ch &= m62;
 429                ADD128(ch, cl, pkh, pkl);
 430                mptr += (VMAC_NHBYTES/sizeof(u64));
 431                goto do_l3;
 432        } else {/* Empty String */
 433                ch = pkh; cl = pkl;
 434                goto do_l3;
 435        }
 436
 437        while (i--) {
 438                nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 439                rh &= m62;
 440                poly_step(ch, cl, pkh, pkl, rh, rl);
 441                mptr += (VMAC_NHBYTES/sizeof(u64));
 442        }
 443        if (remaining) {
 444                nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
 445                rh &= m62;
 446                poly_step(ch, cl, pkh, pkl, rh, rl);
 447        }
 448
 449do_l3:
 450        vhash_abort(ctx);
 451        remaining *= 8;
 452        return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
 453}
 454
 455static u64 vmac(unsigned char m[], unsigned int mbytes,
 456                        unsigned char n[16], u64 *tagl,
 457                        struct vmac_ctx_t *ctx)
 458{
 459        u64 *in_n, *out_p;
 460        u64 p, h;
 461        int i;
 462
 463        in_n = ctx->__vmac_ctx.cached_nonce;
 464        out_p = ctx->__vmac_ctx.cached_aes;
 465
 466        i = n[15] & 1;
 467        if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
 468                in_n[0] = *(u64 *)(n);
 469                in_n[1] = *(u64 *)(n+8);
 470                ((unsigned char *)in_n)[15] &= 0xFE;
 471                crypto_cipher_encrypt_one(ctx->child,
 472                        (unsigned char *)out_p, (unsigned char *)in_n);
 473
 474                ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
 475        }
 476        p = be64_to_cpup(out_p + i);
 477        h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
 478        return le64_to_cpu(p + h);
 479}
 480
 481static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
 482{
 483        u64 in[2] = {0}, out[2];
 484        unsigned i;
 485        int err = 0;
 486
 487        err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
 488        if (err)
 489                return err;
 490
 491        /* Fill nh key */
 492        ((unsigned char *)in)[0] = 0x80;
 493        for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
 494                crypto_cipher_encrypt_one(ctx->child,
 495                        (unsigned char *)out, (unsigned char *)in);
 496                ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
 497                ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
 498                ((unsigned char *)in)[15] += 1;
 499        }
 500
 501        /* Fill poly key */
 502        ((unsigned char *)in)[0] = 0xC0;
 503        in[1] = 0;
 504        for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
 505                crypto_cipher_encrypt_one(ctx->child,
 506                        (unsigned char *)out, (unsigned char *)in);
 507                ctx->__vmac_ctx.polytmp[i] =
 508                        ctx->__vmac_ctx.polykey[i] =
 509                                be64_to_cpup(out) & mpoly;
 510                ctx->__vmac_ctx.polytmp[i+1] =
 511                        ctx->__vmac_ctx.polykey[i+1] =
 512                                be64_to_cpup(out+1) & mpoly;
 513                ((unsigned char *)in)[15] += 1;
 514        }
 515
 516        /* Fill ip key */
 517        ((unsigned char *)in)[0] = 0xE0;
 518        in[1] = 0;
 519        for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
 520                do {
 521                        crypto_cipher_encrypt_one(ctx->child,
 522                                (unsigned char *)out, (unsigned char *)in);
 523                        ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
 524                        ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
 525                        ((unsigned char *)in)[15] += 1;
 526                } while (ctx->__vmac_ctx.l3key[i] >= p64
 527                        || ctx->__vmac_ctx.l3key[i+1] >= p64);
 528        }
 529
 530        /* Invalidate nonce/aes cache and reset other elements */
 531        ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
 532        ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */
 533        ctx->__vmac_ctx.first_block_processed = 0;
 534
 535        return err;
 536}
 537
 538static int vmac_setkey(struct crypto_shash *parent,
 539                const u8 *key, unsigned int keylen)
 540{
 541        struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 542
 543        if (keylen != VMAC_KEY_LEN) {
 544                crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
 545                return -EINVAL;
 546        }
 547
 548        return vmac_set_key((u8 *)key, ctx);
 549}
 550
 551static int vmac_init(struct shash_desc *pdesc)
 552{
 553        return 0;
 554}
 555
 556static int vmac_update(struct shash_desc *pdesc, const u8 *p,
 557                unsigned int len)
 558{
 559        struct crypto_shash *parent = pdesc->tfm;
 560        struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 561
 562        vhash_update(p, len, &ctx->__vmac_ctx);
 563
 564        return 0;
 565}
 566
 567static int vmac_final(struct shash_desc *pdesc, u8 *out)
 568{
 569        struct crypto_shash *parent = pdesc->tfm;
 570        struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 571        vmac_t mac;
 572        u8 nonce[16] = {};
 573
 574        mac = vmac(NULL, 0, nonce, NULL, ctx);
 575        memcpy(out, &mac, sizeof(vmac_t));
 576        memset(&mac, 0, sizeof(vmac_t));
 577        memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
 578        return 0;
 579}
 580
 581static int vmac_init_tfm(struct crypto_tfm *tfm)
 582{
 583        struct crypto_cipher *cipher;
 584        struct crypto_instance *inst = (void *)tfm->__crt_alg;
 585        struct crypto_spawn *spawn = crypto_instance_ctx(inst);
 586        struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
 587
 588        cipher = crypto_spawn_cipher(spawn);
 589        if (IS_ERR(cipher))
 590                return PTR_ERR(cipher);
 591
 592        ctx->child = cipher;
 593        return 0;
 594}
 595
 596static void vmac_exit_tfm(struct crypto_tfm *tfm)
 597{
 598        struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
 599        crypto_free_cipher(ctx->child);
 600}
 601
 602static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
 603{
 604        struct shash_instance *inst;
 605        struct crypto_alg *alg;
 606        int err;
 607
 608        err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
 609        if (err)
 610                return err;
 611
 612        alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
 613                        CRYPTO_ALG_TYPE_MASK);
 614        if (IS_ERR(alg))
 615                return PTR_ERR(alg);
 616
 617        inst = shash_alloc_instance("vmac", alg);
 618        err = PTR_ERR(inst);
 619        if (IS_ERR(inst))
 620                goto out_put_alg;
 621
 622        err = crypto_init_spawn(shash_instance_ctx(inst), alg,
 623                        shash_crypto_instance(inst),
 624                        CRYPTO_ALG_TYPE_MASK);
 625        if (err)
 626                goto out_free_inst;
 627
 628        inst->alg.base.cra_priority = alg->cra_priority;
 629        inst->alg.base.cra_blocksize = alg->cra_blocksize;
 630        inst->alg.base.cra_alignmask = alg->cra_alignmask;
 631
 632        inst->alg.digestsize = sizeof(vmac_t);
 633        inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
 634        inst->alg.base.cra_init = vmac_init_tfm;
 635        inst->alg.base.cra_exit = vmac_exit_tfm;
 636
 637        inst->alg.init = vmac_init;
 638        inst->alg.update = vmac_update;
 639        inst->alg.final = vmac_final;
 640        inst->alg.setkey = vmac_setkey;
 641
 642        err = shash_register_instance(tmpl, inst);
 643        if (err) {
 644out_free_inst:
 645                shash_free_instance(shash_crypto_instance(inst));
 646        }
 647
 648out_put_alg:
 649        crypto_mod_put(alg);
 650        return err;
 651}
 652
 653static struct crypto_template vmac_tmpl = {
 654        .name = "vmac",
 655        .create = vmac_create,
 656        .free = shash_free_instance,
 657        .module = THIS_MODULE,
 658};
 659
 660static int __init vmac_module_init(void)
 661{
 662        return crypto_register_template(&vmac_tmpl);
 663}
 664
 665static void __exit vmac_module_exit(void)
 666{
 667        crypto_unregister_template(&vmac_tmpl);
 668}
 669
 670module_init(vmac_module_init);
 671module_exit(vmac_module_exit);
 672
 673MODULE_LICENSE("GPL");
 674MODULE_DESCRIPTION("VMAC hash algorithm");
 675
 676
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.