linux/mm/memblock.c
<<
>>
Prefs
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.     June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23struct memblock memblock __initdata_memblock;
  24
  25int memblock_debug __initdata_memblock;
  26int memblock_can_resize __initdata_memblock;
  27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
  28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
  29
  30/* inline so we don't get a warning when pr_debug is compiled out */
  31static inline const char *memblock_type_name(struct memblock_type *type)
  32{
  33        if (type == &memblock.memory)
  34                return "memory";
  35        else if (type == &memblock.reserved)
  36                return "reserved";
  37        else
  38                return "unknown";
  39}
  40
  41/*
  42 * Address comparison utilities
  43 */
  44
  45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
  46{
  47        return addr & ~(size - 1);
  48}
  49
  50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
  51{
  52        return (addr + (size - 1)) & ~(size - 1);
  53}
  54
  55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  56                                       phys_addr_t base2, phys_addr_t size2)
  57{
  58        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  59}
  60
  61long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  62{
  63        unsigned long i;
  64
  65        for (i = 0; i < type->cnt; i++) {
  66                phys_addr_t rgnbase = type->regions[i].base;
  67                phys_addr_t rgnsize = type->regions[i].size;
  68                if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  69                        break;
  70        }
  71
  72        return (i < type->cnt) ? i : -1;
  73}
  74
  75/*
  76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
  77 * are top-down.
  78 */
  79
  80static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
  81                                          phys_addr_t size, phys_addr_t align)
  82{
  83        phys_addr_t base, res_base;
  84        long j;
  85
  86        /* In case, huge size is requested */
  87        if (end < size)
  88                return MEMBLOCK_ERROR;
  89
  90        base = memblock_align_down((end - size), align);
  91
  92        /* Prevent allocations returning 0 as it's also used to
  93         * indicate an allocation failure
  94         */
  95        if (start == 0)
  96                start = PAGE_SIZE;
  97
  98        while (start <= base) {
  99                j = memblock_overlaps_region(&memblock.reserved, base, size);
 100                if (j < 0)
 101                        return base;
 102                res_base = memblock.reserved.regions[j].base;
 103                if (res_base < size)
 104                        break;
 105                base = memblock_align_down(res_base - size, align);
 106        }
 107
 108        return MEMBLOCK_ERROR;
 109}
 110
 111static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
 112                        phys_addr_t align, phys_addr_t start, phys_addr_t end)
 113{
 114        long i;
 115
 116        BUG_ON(0 == size);
 117
 118        /* Pump up max_addr */
 119        if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 120                end = memblock.current_limit;
 121
 122        /* We do a top-down search, this tends to limit memory
 123         * fragmentation by keeping early boot allocs near the
 124         * top of memory
 125         */
 126        for (i = memblock.memory.cnt - 1; i >= 0; i--) {
 127                phys_addr_t memblockbase = memblock.memory.regions[i].base;
 128                phys_addr_t memblocksize = memblock.memory.regions[i].size;
 129                phys_addr_t bottom, top, found;
 130
 131                if (memblocksize < size)
 132                        continue;
 133                if ((memblockbase + memblocksize) <= start)
 134                        break;
 135                bottom = max(memblockbase, start);
 136                top = min(memblockbase + memblocksize, end);
 137                if (bottom >= top)
 138                        continue;
 139                found = memblock_find_region(bottom, top, size, align);
 140                if (found != MEMBLOCK_ERROR)
 141                        return found;
 142        }
 143        return MEMBLOCK_ERROR;
 144}
 145
 146/*
 147 * Find a free area with specified alignment in a specific range.
 148 */
 149u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
 150{
 151        return memblock_find_base(size, align, start, end);
 152}
 153
 154/*
 155 * Free memblock.reserved.regions
 156 */
 157int __init_memblock memblock_free_reserved_regions(void)
 158{
 159        if (memblock.reserved.regions == memblock_reserved_init_regions)
 160                return 0;
 161
 162        return memblock_free(__pa(memblock.reserved.regions),
 163                 sizeof(struct memblock_region) * memblock.reserved.max);
 164}
 165
 166/*
 167 * Reserve memblock.reserved.regions
 168 */
 169int __init_memblock memblock_reserve_reserved_regions(void)
 170{
 171        if (memblock.reserved.regions == memblock_reserved_init_regions)
 172                return 0;
 173
 174        return memblock_reserve(__pa(memblock.reserved.regions),
 175                 sizeof(struct memblock_region) * memblock.reserved.max);
 176}
 177
 178static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 179{
 180        unsigned long i;
 181
 182        for (i = r; i < type->cnt - 1; i++) {
 183                type->regions[i].base = type->regions[i + 1].base;
 184                type->regions[i].size = type->regions[i + 1].size;
 185        }
 186        type->cnt--;
 187
 188        /* Special case for empty arrays */
 189        if (type->cnt == 0) {
 190                type->cnt = 1;
 191                type->regions[0].base = 0;
 192                type->regions[0].size = 0;
 193        }
 194}
 195
 196/* Defined below but needed now */
 197static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
 198
 199static int __init_memblock memblock_double_array(struct memblock_type *type)
 200{
 201        struct memblock_region *new_array, *old_array;
 202        phys_addr_t old_size, new_size, addr;
 203        int use_slab = slab_is_available();
 204
 205        /* We don't allow resizing until we know about the reserved regions
 206         * of memory that aren't suitable for allocation
 207         */
 208        if (!memblock_can_resize)
 209                return -1;
 210
 211        /* Calculate new doubled size */
 212        old_size = type->max * sizeof(struct memblock_region);
 213        new_size = old_size << 1;
 214
 215        /* Try to find some space for it.
 216         *
 217         * WARNING: We assume that either slab_is_available() and we use it or
 218         * we use MEMBLOCK for allocations. That means that this is unsafe to use
 219         * when bootmem is currently active (unless bootmem itself is implemented
 220         * on top of MEMBLOCK which isn't the case yet)
 221         *
 222         * This should however not be an issue for now, as we currently only
 223         * call into MEMBLOCK while it's still active, or much later when slab is
 224         * active for memory hotplug operations
 225         */
 226        if (use_slab) {
 227                new_array = kmalloc(new_size, GFP_KERNEL);
 228                addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
 229        } else
 230                addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
 231        if (addr == MEMBLOCK_ERROR) {
 232                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 233                       memblock_type_name(type), type->max, type->max * 2);
 234                return -1;
 235        }
 236        new_array = __va(addr);
 237
 238        memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
 239                 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 240
 241        /* Found space, we now need to move the array over before
 242         * we add the reserved region since it may be our reserved
 243         * array itself that is full.
 244         */
 245        memcpy(new_array, type->regions, old_size);
 246        memset(new_array + type->max, 0, old_size);
 247        old_array = type->regions;
 248        type->regions = new_array;
 249        type->max <<= 1;
 250
 251        /* If we use SLAB that's it, we are done */
 252        if (use_slab)
 253                return 0;
 254
 255        /* Add the new reserved region now. Should not fail ! */
 256        BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
 257
 258        /* If the array wasn't our static init one, then free it. We only do
 259         * that before SLAB is available as later on, we don't know whether
 260         * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
 261         * anyways
 262         */
 263        if (old_array != memblock_memory_init_regions &&
 264            old_array != memblock_reserved_init_regions)
 265                memblock_free(__pa(old_array), old_size);
 266
 267        return 0;
 268}
 269
 270extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
 271                                          phys_addr_t addr2, phys_addr_t size2)
 272{
 273        return 1;
 274}
 275
 276static long __init_memblock memblock_add_region(struct memblock_type *type,
 277                                                phys_addr_t base, phys_addr_t size)
 278{
 279        phys_addr_t end = base + size;
 280        int i, slot = -1;
 281
 282        /* First try and coalesce this MEMBLOCK with others */
 283        for (i = 0; i < type->cnt; i++) {
 284                struct memblock_region *rgn = &type->regions[i];
 285                phys_addr_t rend = rgn->base + rgn->size;
 286
 287                /* Exit if there's no possible hits */
 288                if (rgn->base > end || rgn->size == 0)
 289                        break;
 290
 291                /* Check if we are fully enclosed within an existing
 292                 * block
 293                 */
 294                if (rgn->base <= base && rend >= end)
 295                        return 0;
 296
 297                /* Check if we overlap or are adjacent with the bottom
 298                 * of a block.
 299                 */
 300                if (base < rgn->base && end >= rgn->base) {
 301                        /* If we can't coalesce, create a new block */
 302                        if (!memblock_memory_can_coalesce(base, size,
 303                                                          rgn->base,
 304                                                          rgn->size)) {
 305                                /* Overlap & can't coalesce are mutually
 306                                 * exclusive, if you do that, be prepared
 307                                 * for trouble
 308                                 */
 309                                WARN_ON(end != rgn->base);
 310                                goto new_block;
 311                        }
 312                        /* We extend the bottom of the block down to our
 313                         * base
 314                         */
 315                        rgn->base = base;
 316                        rgn->size = rend - base;
 317
 318                        /* Return if we have nothing else to allocate
 319                         * (fully coalesced)
 320                         */
 321                        if (rend >= end)
 322                                return 0;
 323
 324                        /* We continue processing from the end of the
 325                         * coalesced block.
 326                         */
 327                        base = rend;
 328                        size = end - base;
 329                }
 330
 331                /* Now check if we overlap or are adjacent with the
 332                 * top of a block
 333                 */
 334                if (base <= rend && end >= rend) {
 335                        /* If we can't coalesce, create a new block */
 336                        if (!memblock_memory_can_coalesce(rgn->base,
 337                                                          rgn->size,
 338                                                          base, size)) {
 339                                /* Overlap & can't coalesce are mutually
 340                                 * exclusive, if you do that, be prepared
 341                                 * for trouble
 342                                 */
 343                                WARN_ON(rend != base);
 344                                goto new_block;
 345                        }
 346                        /* We adjust our base down to enclose the
 347                         * original block and destroy it. It will be
 348                         * part of our new allocation. Since we've
 349                         * freed an entry, we know we won't fail
 350                         * to allocate one later, so we won't risk
 351                         * losing the original block allocation.
 352                         */
 353                        size += (base - rgn->base);
 354                        base = rgn->base;
 355                        memblock_remove_region(type, i--);
 356                }
 357        }
 358
 359        /* If the array is empty, special case, replace the fake
 360         * filler region and return
 361         */
 362        if ((type->cnt == 1) && (type->regions[0].size == 0)) {
 363                type->regions[0].base = base;
 364                type->regions[0].size = size;
 365                return 0;
 366        }
 367
 368 new_block:
 369        /* If we are out of space, we fail. It's too late to resize the array
 370         * but then this shouldn't have happened in the first place.
 371         */
 372        if (WARN_ON(type->cnt >= type->max))
 373                return -1;
 374
 375        /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
 376        for (i = type->cnt - 1; i >= 0; i--) {
 377                if (base < type->regions[i].base) {
 378                        type->regions[i+1].base = type->regions[i].base;
 379                        type->regions[i+1].size = type->regions[i].size;
 380                } else {
 381                        type->regions[i+1].base = base;
 382                        type->regions[i+1].size = size;
 383                        slot = i + 1;
 384                        break;
 385                }
 386        }
 387        if (base < type->regions[0].base) {
 388                type->regions[0].base = base;
 389                type->regions[0].size = size;
 390                slot = 0;
 391        }
 392        type->cnt++;
 393
 394        /* The array is full ? Try to resize it. If that fails, we undo
 395         * our allocation and return an error
 396         */
 397        if (type->cnt == type->max && memblock_double_array(type)) {
 398                BUG_ON(slot < 0);
 399                memblock_remove_region(type, slot);
 400                return -1;
 401        }
 402
 403        return 0;
 404}
 405
 406long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 407{
 408        return memblock_add_region(&memblock.memory, base, size);
 409
 410}
 411
 412static long __init_memblock __memblock_remove(struct memblock_type *type,
 413                                              phys_addr_t base, phys_addr_t size)
 414{
 415        phys_addr_t end = base + size;
 416        int i;
 417
 418        /* Walk through the array for collisions */
 419        for (i = 0; i < type->cnt; i++) {
 420                struct memblock_region *rgn = &type->regions[i];
 421                phys_addr_t rend = rgn->base + rgn->size;
 422
 423                /* Nothing more to do, exit */
 424                if (rgn->base > end || rgn->size == 0)
 425                        break;
 426
 427                /* If we fully enclose the block, drop it */
 428                if (base <= rgn->base && end >= rend) {
 429                        memblock_remove_region(type, i--);
 430                        continue;
 431                }
 432
 433                /* If we are fully enclosed within a block
 434                 * then we need to split it and we are done
 435                 */
 436                if (base > rgn->base && end < rend) {
 437                        rgn->size = base - rgn->base;
 438                        if (!memblock_add_region(type, end, rend - end))
 439                                return 0;
 440                        /* Failure to split is bad, we at least
 441                         * restore the block before erroring
 442                         */
 443                        rgn->size = rend - rgn->base;
 444                        WARN_ON(1);
 445                        return -1;
 446                }
 447
 448                /* Check if we need to trim the bottom of a block */
 449                if (rgn->base < end && rend > end) {
 450                        rgn->size -= end - rgn->base;
 451                        rgn->base = end;
 452                        break;
 453                }
 454
 455                /* And check if we need to trim the top of a block */
 456                if (base < rend)
 457                        rgn->size -= rend - base;
 458
 459        }
 460        return 0;
 461}
 462
 463long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 464{
 465        return __memblock_remove(&memblock.memory, base, size);
 466}
 467
 468long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 469{
 470        return __memblock_remove(&memblock.reserved, base, size);
 471}
 472
 473long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 474{
 475        struct memblock_type *_rgn = &memblock.reserved;
 476
 477        BUG_ON(0 == size);
 478
 479        return memblock_add_region(_rgn, base, size);
 480}
 481
 482phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 483{
 484        phys_addr_t found;
 485
 486        /* We align the size to limit fragmentation. Without this, a lot of
 487         * small allocs quickly eat up the whole reserve array on sparc
 488         */
 489        size = memblock_align_up(size, align);
 490
 491        found = memblock_find_base(size, align, 0, max_addr);
 492        if (found != MEMBLOCK_ERROR &&
 493            !memblock_add_region(&memblock.reserved, found, size))
 494                return found;
 495
 496        return 0;
 497}
 498
 499phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 500{
 501        phys_addr_t alloc;
 502
 503        alloc = __memblock_alloc_base(size, align, max_addr);
 504
 505        if (alloc == 0)
 506                panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
 507                      (unsigned long long) size, (unsigned long long) max_addr);
 508
 509        return alloc;
 510}
 511
 512phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 513{
 514        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 515}
 516
 517
 518/*
 519 * Additional node-local allocators. Search for node memory is bottom up
 520 * and walks memblock regions within that node bottom-up as well, but allocation
 521 * within an memblock region is top-down. XXX I plan to fix that at some stage
 522 *
 523 * WARNING: Only available after early_node_map[] has been populated,
 524 * on some architectures, that is after all the calls to add_active_range()
 525 * have been done to populate it.
 526 */
 527
 528phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
 529{
 530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 531        /*
 532         * This code originates from sparc which really wants use to walk by addresses
 533         * and returns the nid. This is not very convenient for early_pfn_map[] users
 534         * as the map isn't sorted yet, and it really wants to be walked by nid.
 535         *
 536         * For now, I implement the inefficient method below which walks the early
 537         * map multiple times. Eventually we may want to use an ARCH config option
 538         * to implement a completely different method for both case.
 539         */
 540        unsigned long start_pfn, end_pfn;
 541        int i;
 542
 543        for (i = 0; i < MAX_NUMNODES; i++) {
 544                get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
 545                if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
 546                        continue;
 547                *nid = i;
 548                return min(end, PFN_PHYS(end_pfn));
 549        }
 550#endif
 551        *nid = 0;
 552
 553        return end;
 554}
 555
 556static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
 557                                               phys_addr_t size,
 558                                               phys_addr_t align, int nid)
 559{
 560        phys_addr_t start, end;
 561
 562        start = mp->base;
 563        end = start + mp->size;
 564
 565        start = memblock_align_up(start, align);
 566        while (start < end) {
 567                phys_addr_t this_end;
 568                int this_nid;
 569
 570                this_end = memblock_nid_range(start, end, &this_nid);
 571                if (this_nid == nid) {
 572                        phys_addr_t ret = memblock_find_region(start, this_end, size, align);
 573                        if (ret != MEMBLOCK_ERROR &&
 574                            !memblock_add_region(&memblock.reserved, ret, size))
 575                                return ret;
 576                }
 577                start = this_end;
 578        }
 579
 580        return MEMBLOCK_ERROR;
 581}
 582
 583phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 584{
 585        struct memblock_type *mem = &memblock.memory;
 586        int i;
 587
 588        BUG_ON(0 == size);
 589
 590        /* We align the size to limit fragmentation. Without this, a lot of
 591         * small allocs quickly eat up the whole reserve array on sparc
 592         */
 593        size = memblock_align_up(size, align);
 594
 595        /* We do a bottom-up search for a region with the right
 596         * nid since that's easier considering how memblock_nid_range()
 597         * works
 598         */
 599        for (i = 0; i < mem->cnt; i++) {
 600                phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
 601                                               size, align, nid);
 602                if (ret != MEMBLOCK_ERROR)
 603                        return ret;
 604        }
 605
 606        return 0;
 607}
 608
 609phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 610{
 611        phys_addr_t res = memblock_alloc_nid(size, align, nid);
 612
 613        if (res)
 614                return res;
 615        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
 616}
 617
 618
 619/*
 620 * Remaining API functions
 621 */
 622
 623/* You must call memblock_analyze() before this. */
 624phys_addr_t __init memblock_phys_mem_size(void)
 625{
 626        return memblock.memory_size;
 627}
 628
 629phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 630{
 631        int idx = memblock.memory.cnt - 1;
 632
 633        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 634}
 635
 636/* You must call memblock_analyze() after this. */
 637void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
 638{
 639        unsigned long i;
 640        phys_addr_t limit;
 641        struct memblock_region *p;
 642
 643        if (!memory_limit)
 644                return;
 645
 646        /* Truncate the memblock regions to satisfy the memory limit. */
 647        limit = memory_limit;
 648        for (i = 0; i < memblock.memory.cnt; i++) {
 649                if (limit > memblock.memory.regions[i].size) {
 650                        limit -= memblock.memory.regions[i].size;
 651                        continue;
 652                }
 653
 654                memblock.memory.regions[i].size = limit;
 655                memblock.memory.cnt = i + 1;
 656                break;
 657        }
 658
 659        memory_limit = memblock_end_of_DRAM();
 660
 661        /* And truncate any reserves above the limit also. */
 662        for (i = 0; i < memblock.reserved.cnt; i++) {
 663                p = &memblock.reserved.regions[i];
 664
 665                if (p->base > memory_limit)
 666                        p->size = 0;
 667                else if ((p->base + p->size) > memory_limit)
 668                        p->size = memory_limit - p->base;
 669
 670                if (p->size == 0) {
 671                        memblock_remove_region(&memblock.reserved, i);
 672                        i--;
 673                }
 674        }
 675}
 676
 677static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 678{
 679        unsigned int left = 0, right = type->cnt;
 680
 681        do {
 682                unsigned int mid = (right + left) / 2;
 683
 684                if (addr < type->regions[mid].base)
 685                        right = mid;
 686                else if (addr >= (type->regions[mid].base +
 687                                  type->regions[mid].size))
 688                        left = mid + 1;
 689                else
 690                        return mid;
 691        } while (left < right);
 692        return -1;
 693}
 694
 695int __init memblock_is_reserved(phys_addr_t addr)
 696{
 697        return memblock_search(&memblock.reserved, addr) != -1;
 698}
 699
 700int __init_memblock memblock_is_memory(phys_addr_t addr)
 701{
 702        return memblock_search(&memblock.memory, addr) != -1;
 703}
 704
 705int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 706{
 707        int idx = memblock_search(&memblock.memory, base);
 708
 709        if (idx == -1)
 710                return 0;
 711        return memblock.memory.regions[idx].base <= base &&
 712                (memblock.memory.regions[idx].base +
 713                 memblock.memory.regions[idx].size) >= (base + size);
 714}
 715
 716int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 717{
 718        return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 719}
 720
 721
 722void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 723{
 724        memblock.current_limit = limit;
 725}
 726
 727static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
 728{
 729        unsigned long long base, size;
 730        int i;
 731
 732        pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
 733
 734        for (i = 0; i < region->cnt; i++) {
 735                base = region->regions[i].base;
 736                size = region->regions[i].size;
 737
 738                pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
 739                    name, i, base, base + size - 1, size);
 740        }
 741}
 742
 743void __init_memblock memblock_dump_all(void)
 744{
 745        if (!memblock_debug)
 746                return;
 747
 748        pr_info("MEMBLOCK configuration:\n");
 749        pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
 750
 751        memblock_dump(&memblock.memory, "memory");
 752        memblock_dump(&memblock.reserved, "reserved");
 753}
 754
 755void __init memblock_analyze(void)
 756{
 757        int i;
 758
 759        /* Check marker in the unused last array entry */
 760        WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
 761                != MEMBLOCK_INACTIVE);
 762        WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
 763                != MEMBLOCK_INACTIVE);
 764
 765        memblock.memory_size = 0;
 766
 767        for (i = 0; i < memblock.memory.cnt; i++)
 768                memblock.memory_size += memblock.memory.regions[i].size;
 769
 770        /* We allow resizing from there */
 771        memblock_can_resize = 1;
 772}
 773
 774void __init memblock_init(void)
 775{
 776        static int init_done __initdata = 0;
 777
 778        if (init_done)
 779                return;
 780        init_done = 1;
 781
 782        /* Hookup the initial arrays */
 783        memblock.memory.regions = memblock_memory_init_regions;
 784        memblock.memory.max             = INIT_MEMBLOCK_REGIONS;
 785        memblock.reserved.regions       = memblock_reserved_init_regions;
 786        memblock.reserved.max   = INIT_MEMBLOCK_REGIONS;
 787
 788        /* Write a marker in the unused last array entry */
 789        memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 790        memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 791
 792        /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
 793         * This simplifies the memblock_add() code below...
 794         */
 795        memblock.memory.regions[0].base = 0;
 796        memblock.memory.regions[0].size = 0;
 797        memblock.memory.cnt = 1;
 798
 799        /* Ditto. */
 800        memblock.reserved.regions[0].base = 0;
 801        memblock.reserved.regions[0].size = 0;
 802        memblock.reserved.cnt = 1;
 803
 804        memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
 805}
 806
 807static int __init early_memblock(char *p)
 808{
 809        if (p && strstr(p, "debug"))
 810                memblock_debug = 1;
 811        return 0;
 812}
 813early_param("memblock", early_memblock);
 814
 815#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
 816
 817static int memblock_debug_show(struct seq_file *m, void *private)
 818{
 819        struct memblock_type *type = m->private;
 820        struct memblock_region *reg;
 821        int i;
 822
 823        for (i = 0; i < type->cnt; i++) {
 824                reg = &type->regions[i];
 825                seq_printf(m, "%4d: ", i);
 826                if (sizeof(phys_addr_t) == 4)
 827                        seq_printf(m, "0x%08lx..0x%08lx\n",
 828                                   (unsigned long)reg->base,
 829                                   (unsigned long)(reg->base + reg->size - 1));
 830                else
 831                        seq_printf(m, "0x%016llx..0x%016llx\n",
 832                                   (unsigned long long)reg->base,
 833                                   (unsigned long long)(reg->base + reg->size - 1));
 834
 835        }
 836        return 0;
 837}
 838
 839static int memblock_debug_open(struct inode *inode, struct file *file)
 840{
 841        return single_open(file, memblock_debug_show, inode->i_private);
 842}
 843
 844static const struct file_operations memblock_debug_fops = {
 845        .open = memblock_debug_open,
 846        .read = seq_read,
 847        .llseek = seq_lseek,
 848        .release = single_release,
 849};
 850
 851static int __init memblock_init_debugfs(void)
 852{
 853        struct dentry *root = debugfs_create_dir("memblock", NULL);
 854        if (!root)
 855                return -ENXIO;
 856        debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 857        debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 858
 859        return 0;
 860}
 861__initcall(memblock_init_debugfs);
 862
 863#endif /* CONFIG_DEBUG_FS */
 864
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.