linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
  42#define SCHED_RESET_ON_FORK     0x40000000
  43
  44#ifdef __KERNEL__
  45
  46struct sched_param {
  47        int sched_priority;
  48};
  49
  50#include <asm/param.h>  /* for HZ */
  51
  52#include <linux/capability.h>
  53#include <linux/threads.h>
  54#include <linux/kernel.h>
  55#include <linux/types.h>
  56#include <linux/timex.h>
  57#include <linux/jiffies.h>
  58#include <linux/rbtree.h>
  59#include <linux/thread_info.h>
  60#include <linux/cpumask.h>
  61#include <linux/errno.h>
  62#include <linux/nodemask.h>
  63#include <linux/mm_types.h>
  64
  65#include <asm/system.h>
  66#include <asm/page.h>
  67#include <asm/ptrace.h>
  68#include <asm/cputime.h>
  69
  70#include <linux/smp.h>
  71#include <linux/sem.h>
  72#include <linux/signal.h>
  73#include <linux/path.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rculist.h>
  83#include <linux/rtmutex.h>
  84
  85#include <linux/time.h>
  86#include <linux/param.h>
  87#include <linux/resource.h>
  88#include <linux/timer.h>
  89#include <linux/hrtimer.h>
  90#include <linux/task_io_accounting.h>
  91#include <linux/kobject.h>
  92#include <linux/latencytop.h>
  93#include <linux/cred.h>
  94
  95#include <asm/processor.h>
  96
  97struct exec_domain;
  98struct futex_pi_state;
  99struct robust_list_head;
 100struct bio_list;
 101struct fs_struct;
 102struct perf_event_context;
 103
 104/*
 105 * List of flags we want to share for kernel threads,
 106 * if only because they are not used by them anyway.
 107 */
 108#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 109
 110/*
 111 * These are the constant used to fake the fixed-point load-average
 112 * counting. Some notes:
 113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 114 *    a load-average precision of 10 bits integer + 11 bits fractional
 115 *  - if you want to count load-averages more often, you need more
 116 *    precision, or rounding will get you. With 2-second counting freq,
 117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 118 *    11 bit fractions.
 119 */
 120extern unsigned long avenrun[];         /* Load averages */
 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 122
 123#define FSHIFT          11              /* nr of bits of precision */
 124#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 125#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 126#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 127#define EXP_5           2014            /* 1/exp(5sec/5min) */
 128#define EXP_15          2037            /* 1/exp(5sec/15min) */
 129
 130#define CALC_LOAD(load,exp,n) \
 131        load *= exp; \
 132        load += n*(FIXED_1-exp); \
 133        load >>= FSHIFT;
 134
 135extern unsigned long total_forks;
 136extern int nr_threads;
 137DECLARE_PER_CPU(unsigned long, process_counts);
 138extern int nr_processes(void);
 139extern unsigned long nr_running(void);
 140extern unsigned long nr_uninterruptible(void);
 141extern unsigned long nr_iowait(void);
 142extern unsigned long nr_iowait_cpu(int cpu);
 143extern unsigned long this_cpu_load(void);
 144
 145
 146extern void calc_global_load(unsigned long ticks);
 147
 148extern unsigned long get_parent_ip(unsigned long addr);
 149
 150struct seq_file;
 151struct cfs_rq;
 152struct task_group;
 153#ifdef CONFIG_SCHED_DEBUG
 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 155extern void proc_sched_set_task(struct task_struct *p);
 156extern void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 158#else
 159static inline void
 160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 161{
 162}
 163static inline void proc_sched_set_task(struct task_struct *p)
 164{
 165}
 166static inline void
 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 168{
 169}
 170#endif
 171
 172/*
 173 * Task state bitmask. NOTE! These bits are also
 174 * encoded in fs/proc/array.c: get_task_state().
 175 *
 176 * We have two separate sets of flags: task->state
 177 * is about runnability, while task->exit_state are
 178 * about the task exiting. Confusing, but this way
 179 * modifying one set can't modify the other one by
 180 * mistake.
 181 */
 182#define TASK_RUNNING            0
 183#define TASK_INTERRUPTIBLE      1
 184#define TASK_UNINTERRUPTIBLE    2
 185#define __TASK_STOPPED          4
 186#define __TASK_TRACED           8
 187/* in tsk->exit_state */
 188#define EXIT_ZOMBIE             16
 189#define EXIT_DEAD               32
 190/* in tsk->state again */
 191#define TASK_DEAD               64
 192#define TASK_WAKEKILL           128
 193#define TASK_WAKING             256
 194#define TASK_STATE_MAX          512
 195
 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 197
 198extern char ___assert_task_state[1 - 2*!!(
 199                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 200
 201/* Convenience macros for the sake of set_task_state */
 202#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 203#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 204#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 205
 206/* Convenience macros for the sake of wake_up */
 207#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 208#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 209
 210/* get_task_state() */
 211#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 212                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 213                                 __TASK_TRACED)
 214
 215#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 216#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 217#define task_is_dead(task)      ((task)->exit_state != 0)
 218#define task_is_stopped_or_traced(task) \
 219                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 220#define task_contributes_to_load(task)  \
 221                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 222                                 (task->flags & PF_FREEZING) == 0)
 223
 224#define __set_task_state(tsk, state_value)              \
 225        do { (tsk)->state = (state_value); } while (0)
 226#define set_task_state(tsk, state_value)                \
 227        set_mb((tsk)->state, (state_value))
 228
 229/*
 230 * set_current_state() includes a barrier so that the write of current->state
 231 * is correctly serialised wrt the caller's subsequent test of whether to
 232 * actually sleep:
 233 *
 234 *      set_current_state(TASK_UNINTERRUPTIBLE);
 235 *      if (do_i_need_to_sleep())
 236 *              schedule();
 237 *
 238 * If the caller does not need such serialisation then use __set_current_state()
 239 */
 240#define __set_current_state(state_value)                        \
 241        do { current->state = (state_value); } while (0)
 242#define set_current_state(state_value)          \
 243        set_mb(current->state, (state_value))
 244
 245/* Task command name length */
 246#define TASK_COMM_LEN 16
 247
 248#include <linux/spinlock.h>
 249
 250/*
 251 * This serializes "schedule()" and also protects
 252 * the run-queue from deletions/modifications (but
 253 * _adding_ to the beginning of the run-queue has
 254 * a separate lock).
 255 */
 256extern rwlock_t tasklist_lock;
 257extern spinlock_t mmlist_lock;
 258
 259struct task_struct;
 260
 261#ifdef CONFIG_PROVE_RCU
 262extern int lockdep_tasklist_lock_is_held(void);
 263#endif /* #ifdef CONFIG_PROVE_RCU */
 264
 265extern void sched_init(void);
 266extern void sched_init_smp(void);
 267extern asmlinkage void schedule_tail(struct task_struct *prev);
 268extern void init_idle(struct task_struct *idle, int cpu);
 269extern void init_idle_bootup_task(struct task_struct *idle);
 270
 271extern int runqueue_is_locked(int cpu);
 272
 273extern cpumask_var_t nohz_cpu_mask;
 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 275extern void select_nohz_load_balancer(int stop_tick);
 276extern int get_nohz_timer_target(void);
 277#else
 278static inline void select_nohz_load_balancer(int stop_tick) { }
 279#endif
 280
 281/*
 282 * Only dump TASK_* tasks. (0 for all tasks)
 283 */
 284extern void show_state_filter(unsigned long state_filter);
 285
 286static inline void show_state(void)
 287{
 288        show_state_filter(0);
 289}
 290
 291extern void show_regs(struct pt_regs *);
 292
 293/*
 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 295 * task), SP is the stack pointer of the first frame that should be shown in the back
 296 * trace (or NULL if the entire call-chain of the task should be shown).
 297 */
 298extern void show_stack(struct task_struct *task, unsigned long *sp);
 299
 300void io_schedule(void);
 301long io_schedule_timeout(long timeout);
 302
 303extern void cpu_init (void);
 304extern void trap_init(void);
 305extern void update_process_times(int user);
 306extern void scheduler_tick(void);
 307
 308extern void sched_show_task(struct task_struct *p);
 309
 310#ifdef CONFIG_LOCKUP_DETECTOR
 311extern void touch_softlockup_watchdog(void);
 312extern void touch_softlockup_watchdog_sync(void);
 313extern void touch_all_softlockup_watchdogs(void);
 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 315                                  void __user *buffer,
 316                                  size_t *lenp, loff_t *ppos);
 317extern unsigned int  softlockup_panic;
 318extern int softlockup_thresh;
 319#else
 320static inline void touch_softlockup_watchdog(void)
 321{
 322}
 323static inline void touch_softlockup_watchdog_sync(void)
 324{
 325}
 326static inline void touch_all_softlockup_watchdogs(void)
 327{
 328}
 329#endif
 330
 331#ifdef CONFIG_DETECT_HUNG_TASK
 332extern unsigned int  sysctl_hung_task_panic;
 333extern unsigned long sysctl_hung_task_check_count;
 334extern unsigned long sysctl_hung_task_timeout_secs;
 335extern unsigned long sysctl_hung_task_warnings;
 336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 337                                         void __user *buffer,
 338                                         size_t *lenp, loff_t *ppos);
 339#else
 340/* Avoid need for ifdefs elsewhere in the code */
 341enum { sysctl_hung_task_timeout_secs = 0 };
 342#endif
 343
 344/* Attach to any functions which should be ignored in wchan output. */
 345#define __sched         __attribute__((__section__(".sched.text")))
 346
 347/* Linker adds these: start and end of __sched functions */
 348extern char __sched_text_start[], __sched_text_end[];
 349
 350/* Is this address in the __sched functions? */
 351extern int in_sched_functions(unsigned long addr);
 352
 353#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 354extern signed long schedule_timeout(signed long timeout);
 355extern signed long schedule_timeout_interruptible(signed long timeout);
 356extern signed long schedule_timeout_killable(signed long timeout);
 357extern signed long schedule_timeout_uninterruptible(signed long timeout);
 358asmlinkage void schedule(void);
 359extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
 360
 361struct nsproxy;
 362struct user_namespace;
 363
 364/*
 365 * Default maximum number of active map areas, this limits the number of vmas
 366 * per mm struct. Users can overwrite this number by sysctl but there is a
 367 * problem.
 368 *
 369 * When a program's coredump is generated as ELF format, a section is created
 370 * per a vma. In ELF, the number of sections is represented in unsigned short.
 371 * This means the number of sections should be smaller than 65535 at coredump.
 372 * Because the kernel adds some informative sections to a image of program at
 373 * generating coredump, we need some margin. The number of extra sections is
 374 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 375 */
 376#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 377#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 378
 379extern int sysctl_max_map_count;
 380
 381#include <linux/aio.h>
 382
 383#ifdef CONFIG_MMU
 384extern void arch_pick_mmap_layout(struct mm_struct *mm);
 385extern unsigned long
 386arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 387                       unsigned long, unsigned long);
 388extern unsigned long
 389arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 390                          unsigned long len, unsigned long pgoff,
 391                          unsigned long flags);
 392extern void arch_unmap_area(struct mm_struct *, unsigned long);
 393extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 394#else
 395static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 396#endif
 397
 398
 399extern void set_dumpable(struct mm_struct *mm, int value);
 400extern int get_dumpable(struct mm_struct *mm);
 401
 402/* mm flags */
 403/* dumpable bits */
 404#define MMF_DUMPABLE      0  /* core dump is permitted */
 405#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 406
 407#define MMF_DUMPABLE_BITS 2
 408#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 409
 410/* coredump filter bits */
 411#define MMF_DUMP_ANON_PRIVATE   2
 412#define MMF_DUMP_ANON_SHARED    3
 413#define MMF_DUMP_MAPPED_PRIVATE 4
 414#define MMF_DUMP_MAPPED_SHARED  5
 415#define MMF_DUMP_ELF_HEADERS    6
 416#define MMF_DUMP_HUGETLB_PRIVATE 7
 417#define MMF_DUMP_HUGETLB_SHARED  8
 418
 419#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 420#define MMF_DUMP_FILTER_BITS    7
 421#define MMF_DUMP_FILTER_MASK \
 422        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 423#define MMF_DUMP_FILTER_DEFAULT \
 424        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 425         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 426
 427#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 428# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 429#else
 430# define MMF_DUMP_MASK_DEFAULT_ELF      0
 431#endif
 432                                        /* leave room for more dump flags */
 433#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 434
 435#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 436
 437struct sighand_struct {
 438        atomic_t                count;
 439        struct k_sigaction      action[_NSIG];
 440        spinlock_t              siglock;
 441        wait_queue_head_t       signalfd_wqh;
 442};
 443
 444struct pacct_struct {
 445        int                     ac_flag;
 446        long                    ac_exitcode;
 447        unsigned long           ac_mem;
 448        cputime_t               ac_utime, ac_stime;
 449        unsigned long           ac_minflt, ac_majflt;
 450};
 451
 452struct cpu_itimer {
 453        cputime_t expires;
 454        cputime_t incr;
 455        u32 error;
 456        u32 incr_error;
 457};
 458
 459/**
 460 * struct task_cputime - collected CPU time counts
 461 * @utime:              time spent in user mode, in &cputime_t units
 462 * @stime:              time spent in kernel mode, in &cputime_t units
 463 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 464 *
 465 * This structure groups together three kinds of CPU time that are
 466 * tracked for threads and thread groups.  Most things considering
 467 * CPU time want to group these counts together and treat all three
 468 * of them in parallel.
 469 */
 470struct task_cputime {
 471        cputime_t utime;
 472        cputime_t stime;
 473        unsigned long long sum_exec_runtime;
 474};
 475/* Alternate field names when used to cache expirations. */
 476#define prof_exp        stime
 477#define virt_exp        utime
 478#define sched_exp       sum_exec_runtime
 479
 480#define INIT_CPUTIME    \
 481        (struct task_cputime) {                                 \
 482                .utime = cputime_zero,                          \
 483                .stime = cputime_zero,                          \
 484                .sum_exec_runtime = 0,                          \
 485        }
 486
 487/*
 488 * Disable preemption until the scheduler is running.
 489 * Reset by start_kernel()->sched_init()->init_idle().
 490 *
 491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 492 * before the scheduler is active -- see should_resched().
 493 */
 494#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 495
 496/**
 497 * struct thread_group_cputimer - thread group interval timer counts
 498 * @cputime:            thread group interval timers.
 499 * @running:            non-zero when there are timers running and
 500 *                      @cputime receives updates.
 501 * @lock:               lock for fields in this struct.
 502 *
 503 * This structure contains the version of task_cputime, above, that is
 504 * used for thread group CPU timer calculations.
 505 */
 506struct thread_group_cputimer {
 507        struct task_cputime cputime;
 508        int running;
 509        spinlock_t lock;
 510};
 511
 512/*
 513 * NOTE! "signal_struct" does not have it's own
 514 * locking, because a shared signal_struct always
 515 * implies a shared sighand_struct, so locking
 516 * sighand_struct is always a proper superset of
 517 * the locking of signal_struct.
 518 */
 519struct signal_struct {
 520        atomic_t                sigcnt;
 521        atomic_t                live;
 522        int                     nr_threads;
 523
 524        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 525
 526        /* current thread group signal load-balancing target: */
 527        struct task_struct      *curr_target;
 528
 529        /* shared signal handling: */
 530        struct sigpending       shared_pending;
 531
 532        /* thread group exit support */
 533        int                     group_exit_code;
 534        /* overloaded:
 535         * - notify group_exit_task when ->count is equal to notify_count
 536         * - everyone except group_exit_task is stopped during signal delivery
 537         *   of fatal signals, group_exit_task processes the signal.
 538         */
 539        int                     notify_count;
 540        struct task_struct      *group_exit_task;
 541
 542        /* thread group stop support, overloads group_exit_code too */
 543        int                     group_stop_count;
 544        unsigned int            flags; /* see SIGNAL_* flags below */
 545
 546        /* POSIX.1b Interval Timers */
 547        struct list_head posix_timers;
 548
 549        /* ITIMER_REAL timer for the process */
 550        struct hrtimer real_timer;
 551        struct pid *leader_pid;
 552        ktime_t it_real_incr;
 553
 554        /*
 555         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 556         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 557         * values are defined to 0 and 1 respectively
 558         */
 559        struct cpu_itimer it[2];
 560
 561        /*
 562         * Thread group totals for process CPU timers.
 563         * See thread_group_cputimer(), et al, for details.
 564         */
 565        struct thread_group_cputimer cputimer;
 566
 567        /* Earliest-expiration cache. */
 568        struct task_cputime cputime_expires;
 569
 570        struct list_head cpu_timers[3];
 571
 572        struct pid *tty_old_pgrp;
 573
 574        /* boolean value for session group leader */
 575        int leader;
 576
 577        struct tty_struct *tty; /* NULL if no tty */
 578
 579        /*
 580         * Cumulative resource counters for dead threads in the group,
 581         * and for reaped dead child processes forked by this group.
 582         * Live threads maintain their own counters and add to these
 583         * in __exit_signal, except for the group leader.
 584         */
 585        cputime_t utime, stime, cutime, cstime;
 586        cputime_t gtime;
 587        cputime_t cgtime;
 588#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 589        cputime_t prev_utime, prev_stime;
 590#endif
 591        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 592        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 593        unsigned long inblock, oublock, cinblock, coublock;
 594        unsigned long maxrss, cmaxrss;
 595        struct task_io_accounting ioac;
 596
 597        /*
 598         * Cumulative ns of schedule CPU time fo dead threads in the
 599         * group, not including a zombie group leader, (This only differs
 600         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 601         * other than jiffies.)
 602         */
 603        unsigned long long sum_sched_runtime;
 604
 605        /*
 606         * We don't bother to synchronize most readers of this at all,
 607         * because there is no reader checking a limit that actually needs
 608         * to get both rlim_cur and rlim_max atomically, and either one
 609         * alone is a single word that can safely be read normally.
 610         * getrlimit/setrlimit use task_lock(current->group_leader) to
 611         * protect this instead of the siglock, because they really
 612         * have no need to disable irqs.
 613         */
 614        struct rlimit rlim[RLIM_NLIMITS];
 615
 616#ifdef CONFIG_BSD_PROCESS_ACCT
 617        struct pacct_struct pacct;      /* per-process accounting information */
 618#endif
 619#ifdef CONFIG_TASKSTATS
 620        struct taskstats *stats;
 621#endif
 622#ifdef CONFIG_AUDIT
 623        unsigned audit_tty;
 624        struct tty_audit_buf *tty_audit_buf;
 625#endif
 626
 627        int oom_adj;            /* OOM kill score adjustment (bit shift) */
 628        int oom_score_adj;      /* OOM kill score adjustment */
 629
 630        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 631                                         * credential calculations
 632                                         * (notably. ptrace) */
 633};
 634
 635/* Context switch must be unlocked if interrupts are to be enabled */
 636#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 637# define __ARCH_WANT_UNLOCKED_CTXSW
 638#endif
 639
 640/*
 641 * Bits in flags field of signal_struct.
 642 */
 643#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 644#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 645#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 646#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 647/*
 648 * Pending notifications to parent.
 649 */
 650#define SIGNAL_CLD_STOPPED      0x00000010
 651#define SIGNAL_CLD_CONTINUED    0x00000020
 652#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 653
 654#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 655
 656/* If true, all threads except ->group_exit_task have pending SIGKILL */
 657static inline int signal_group_exit(const struct signal_struct *sig)
 658{
 659        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 660                (sig->group_exit_task != NULL);
 661}
 662
 663/*
 664 * Some day this will be a full-fledged user tracking system..
 665 */
 666struct user_struct {
 667        atomic_t __count;       /* reference count */
 668        atomic_t processes;     /* How many processes does this user have? */
 669        atomic_t files;         /* How many open files does this user have? */
 670        atomic_t sigpending;    /* How many pending signals does this user have? */
 671#ifdef CONFIG_INOTIFY_USER
 672        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 673        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 674#endif
 675#ifdef CONFIG_FANOTIFY
 676        atomic_t fanotify_listeners;
 677#endif
 678#ifdef CONFIG_EPOLL
 679        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 680#endif
 681#ifdef CONFIG_POSIX_MQUEUE
 682        /* protected by mq_lock */
 683        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 684#endif
 685        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 686
 687#ifdef CONFIG_KEYS
 688        struct key *uid_keyring;        /* UID specific keyring */
 689        struct key *session_keyring;    /* UID's default session keyring */
 690#endif
 691
 692        /* Hash table maintenance information */
 693        struct hlist_node uidhash_node;
 694        uid_t uid;
 695        struct user_namespace *user_ns;
 696
 697#ifdef CONFIG_PERF_EVENTS
 698        atomic_long_t locked_vm;
 699#endif
 700};
 701
 702extern int uids_sysfs_init(void);
 703
 704extern struct user_struct *find_user(uid_t);
 705
 706extern struct user_struct root_user;
 707#define INIT_USER (&root_user)
 708
 709
 710struct backing_dev_info;
 711struct reclaim_state;
 712
 713#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 714struct sched_info {
 715        /* cumulative counters */
 716        unsigned long pcount;         /* # of times run on this cpu */
 717        unsigned long long run_delay; /* time spent waiting on a runqueue */
 718
 719        /* timestamps */
 720        unsigned long long last_arrival,/* when we last ran on a cpu */
 721                           last_queued; /* when we were last queued to run */
 722#ifdef CONFIG_SCHEDSTATS
 723        /* BKL stats */
 724        unsigned int bkl_count;
 725#endif
 726};
 727#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 728
 729#ifdef CONFIG_TASK_DELAY_ACCT
 730struct task_delay_info {
 731        spinlock_t      lock;
 732        unsigned int    flags;  /* Private per-task flags */
 733
 734        /* For each stat XXX, add following, aligned appropriately
 735         *
 736         * struct timespec XXX_start, XXX_end;
 737         * u64 XXX_delay;
 738         * u32 XXX_count;
 739         *
 740         * Atomicity of updates to XXX_delay, XXX_count protected by
 741         * single lock above (split into XXX_lock if contention is an issue).
 742         */
 743
 744        /*
 745         * XXX_count is incremented on every XXX operation, the delay
 746         * associated with the operation is added to XXX_delay.
 747         * XXX_delay contains the accumulated delay time in nanoseconds.
 748         */
 749        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 750        u64 blkio_delay;        /* wait for sync block io completion */
 751        u64 swapin_delay;       /* wait for swapin block io completion */
 752        u32 blkio_count;        /* total count of the number of sync block */
 753                                /* io operations performed */
 754        u32 swapin_count;       /* total count of the number of swapin block */
 755                                /* io operations performed */
 756
 757        struct timespec freepages_start, freepages_end;
 758        u64 freepages_delay;    /* wait for memory reclaim */
 759        u32 freepages_count;    /* total count of memory reclaim */
 760};
 761#endif  /* CONFIG_TASK_DELAY_ACCT */
 762
 763static inline int sched_info_on(void)
 764{
 765#ifdef CONFIG_SCHEDSTATS
 766        return 1;
 767#elif defined(CONFIG_TASK_DELAY_ACCT)
 768        extern int delayacct_on;
 769        return delayacct_on;
 770#else
 771        return 0;
 772#endif
 773}
 774
 775enum cpu_idle_type {
 776        CPU_IDLE,
 777        CPU_NOT_IDLE,
 778        CPU_NEWLY_IDLE,
 779        CPU_MAX_IDLE_TYPES
 780};
 781
 782/*
 783 * sched-domains (multiprocessor balancing) declarations:
 784 */
 785
 786/*
 787 * Increase resolution of nice-level calculations:
 788 */
 789#define SCHED_LOAD_SHIFT        10
 790#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 791
 792#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 793
 794#ifdef CONFIG_SMP
 795#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 796#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 797#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 798#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 799#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 800#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 801#define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
 802#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 803#define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
 804#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 805#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 806#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
 807#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 808
 809enum powersavings_balance_level {
 810        POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 811        POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
 812                                         * first for long running threads
 813                                         */
 814        POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
 815                                         * cpu package for power savings
 816                                         */
 817        MAX_POWERSAVINGS_BALANCE_LEVELS
 818};
 819
 820extern int sched_mc_power_savings, sched_smt_power_savings;
 821
 822static inline int sd_balance_for_mc_power(void)
 823{
 824        if (sched_smt_power_savings)
 825                return SD_POWERSAVINGS_BALANCE;
 826
 827        if (!sched_mc_power_savings)
 828                return SD_PREFER_SIBLING;
 829
 830        return 0;
 831}
 832
 833static inline int sd_balance_for_package_power(void)
 834{
 835        if (sched_mc_power_savings | sched_smt_power_savings)
 836                return SD_POWERSAVINGS_BALANCE;
 837
 838        return SD_PREFER_SIBLING;
 839}
 840
 841extern int __weak arch_sd_sibiling_asym_packing(void);
 842
 843/*
 844 * Optimise SD flags for power savings:
 845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 847 */
 848
 849static inline int sd_power_saving_flags(void)
 850{
 851        if (sched_mc_power_savings | sched_smt_power_savings)
 852                return SD_BALANCE_NEWIDLE;
 853
 854        return 0;
 855}
 856
 857struct sched_group {
 858        struct sched_group *next;       /* Must be a circular list */
 859
 860        /*
 861         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 862         * single CPU.
 863         */
 864        unsigned int cpu_power, cpu_power_orig;
 865        unsigned int group_weight;
 866
 867        /*
 868         * The CPUs this group covers.
 869         *
 870         * NOTE: this field is variable length. (Allocated dynamically
 871         * by attaching extra space to the end of the structure,
 872         * depending on how many CPUs the kernel has booted up with)
 873         *
 874         * It is also be embedded into static data structures at build
 875         * time. (See 'struct static_sched_group' in kernel/sched.c)
 876         */
 877        unsigned long cpumask[0];
 878};
 879
 880static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 881{
 882        return to_cpumask(sg->cpumask);
 883}
 884
 885enum sched_domain_level {
 886        SD_LV_NONE = 0,
 887        SD_LV_SIBLING,
 888        SD_LV_MC,
 889        SD_LV_BOOK,
 890        SD_LV_CPU,
 891        SD_LV_NODE,
 892        SD_LV_ALLNODES,
 893        SD_LV_MAX
 894};
 895
 896struct sched_domain_attr {
 897        int relax_domain_level;
 898};
 899
 900#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 901        .relax_domain_level = -1,                       \
 902}
 903
 904struct sched_domain {
 905        /* These fields must be setup */
 906        struct sched_domain *parent;    /* top domain must be null terminated */
 907        struct sched_domain *child;     /* bottom domain must be null terminated */
 908        struct sched_group *groups;     /* the balancing groups of the domain */
 909        unsigned long min_interval;     /* Minimum balance interval ms */
 910        unsigned long max_interval;     /* Maximum balance interval ms */
 911        unsigned int busy_factor;       /* less balancing by factor if busy */
 912        unsigned int imbalance_pct;     /* No balance until over watermark */
 913        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 914        unsigned int busy_idx;
 915        unsigned int idle_idx;
 916        unsigned int newidle_idx;
 917        unsigned int wake_idx;
 918        unsigned int forkexec_idx;
 919        unsigned int smt_gain;
 920        int flags;                      /* See SD_* */
 921        enum sched_domain_level level;
 922
 923        /* Runtime fields. */
 924        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 925        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 926        unsigned int nr_balance_failed; /* initialise to 0 */
 927
 928        u64 last_update;
 929
 930#ifdef CONFIG_SCHEDSTATS
 931        /* load_balance() stats */
 932        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 933        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 934        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 935        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 936        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 937        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 938        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 939        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 940
 941        /* Active load balancing */
 942        unsigned int alb_count;
 943        unsigned int alb_failed;
 944        unsigned int alb_pushed;
 945
 946        /* SD_BALANCE_EXEC stats */
 947        unsigned int sbe_count;
 948        unsigned int sbe_balanced;
 949        unsigned int sbe_pushed;
 950
 951        /* SD_BALANCE_FORK stats */
 952        unsigned int sbf_count;
 953        unsigned int sbf_balanced;
 954        unsigned int sbf_pushed;
 955
 956        /* try_to_wake_up() stats */
 957        unsigned int ttwu_wake_remote;
 958        unsigned int ttwu_move_affine;
 959        unsigned int ttwu_move_balance;
 960#endif
 961#ifdef CONFIG_SCHED_DEBUG
 962        char *name;
 963#endif
 964
 965        unsigned int span_weight;
 966        /*
 967         * Span of all CPUs in this domain.
 968         *
 969         * NOTE: this field is variable length. (Allocated dynamically
 970         * by attaching extra space to the end of the structure,
 971         * depending on how many CPUs the kernel has booted up with)
 972         *
 973         * It is also be embedded into static data structures at build
 974         * time. (See 'struct static_sched_domain' in kernel/sched.c)
 975         */
 976        unsigned long span[0];
 977};
 978
 979static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 980{
 981        return to_cpumask(sd->span);
 982}
 983
 984extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 985                                    struct sched_domain_attr *dattr_new);
 986
 987/* Allocate an array of sched domains, for partition_sched_domains(). */
 988cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 989void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 990
 991/* Test a flag in parent sched domain */
 992static inline int test_sd_parent(struct sched_domain *sd, int flag)
 993{
 994        if (sd->parent && (sd->parent->flags & flag))
 995                return 1;
 996
 997        return 0;
 998}
 999
1000unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1001unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1002
1003#else /* CONFIG_SMP */
1004
1005struct sched_domain_attr;
1006
1007static inline void
1008partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1009                        struct sched_domain_attr *dattr_new)
1010{
1011}
1012#endif  /* !CONFIG_SMP */
1013
1014
1015struct io_context;                      /* See blkdev.h */
1016
1017
1018#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1019extern void prefetch_stack(struct task_struct *t);
1020#else
1021static inline void prefetch_stack(struct task_struct *t) { }
1022#endif
1023
1024struct audit_context;           /* See audit.c */
1025struct mempolicy;
1026struct pipe_inode_info;
1027struct uts_namespace;
1028
1029struct rq;
1030struct sched_domain;
1031
1032/*
1033 * wake flags
1034 */
1035#define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1036#define WF_FORK         0x02            /* child wakeup after fork */
1037
1038#define ENQUEUE_WAKEUP          1
1039#define ENQUEUE_WAKING          2
1040#define ENQUEUE_HEAD            4
1041
1042#define DEQUEUE_SLEEP           1
1043
1044struct sched_class {
1045        const struct sched_class *next;
1046
1047        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1048        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1049        void (*yield_task) (struct rq *rq);
1050
1051        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1052
1053        struct task_struct * (*pick_next_task) (struct rq *rq);
1054        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1055
1056#ifdef CONFIG_SMP
1057        int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1058                               int sd_flag, int flags);
1059
1060        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1061        void (*post_schedule) (struct rq *this_rq);
1062        void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1063        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1064
1065        void (*set_cpus_allowed)(struct task_struct *p,
1066                                 const struct cpumask *newmask);
1067
1068        void (*rq_online)(struct rq *rq);
1069        void (*rq_offline)(struct rq *rq);
1070#endif
1071
1072        void (*set_curr_task) (struct rq *rq);
1073        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1074        void (*task_fork) (struct task_struct *p);
1075
1076        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1077                               int running);
1078        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1079                             int running);
1080        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1081                             int oldprio, int running);
1082
1083        unsigned int (*get_rr_interval) (struct rq *rq,
1084                                         struct task_struct *task);
1085
1086#ifdef CONFIG_FAIR_GROUP_SCHED
1087        void (*task_move_group) (struct task_struct *p, int on_rq);
1088#endif
1089};
1090
1091struct load_weight {
1092        unsigned long weight, inv_weight;
1093};
1094
1095#ifdef CONFIG_SCHEDSTATS
1096struct sched_statistics {
1097        u64                     wait_start;
1098        u64                     wait_max;
1099        u64                     wait_count;
1100        u64                     wait_sum;
1101        u64                     iowait_count;
1102        u64                     iowait_sum;
1103
1104        u64                     sleep_start;
1105        u64                     sleep_max;
1106        s64                     sum_sleep_runtime;
1107
1108        u64                     block_start;
1109        u64                     block_max;
1110        u64                     exec_max;
1111        u64                     slice_max;
1112
1113        u64                     nr_migrations_cold;
1114        u64                     nr_failed_migrations_affine;
1115        u64                     nr_failed_migrations_running;
1116        u64                     nr_failed_migrations_hot;
1117        u64                     nr_forced_migrations;
1118
1119        u64                     nr_wakeups;
1120        u64                     nr_wakeups_sync;
1121        u64                     nr_wakeups_migrate;
1122        u64                     nr_wakeups_local;
1123        u64                     nr_wakeups_remote;
1124        u64                     nr_wakeups_affine;
1125        u64                     nr_wakeups_affine_attempts;
1126        u64                     nr_wakeups_passive;
1127        u64                     nr_wakeups_idle;
1128};
1129#endif
1130
1131struct sched_entity {
1132        struct load_weight      load;           /* for load-balancing */
1133        struct rb_node          run_node;
1134        struct list_head        group_node;
1135        unsigned int            on_rq;
1136
1137        u64                     exec_start;
1138        u64                     sum_exec_runtime;
1139        u64                     vruntime;
1140        u64                     prev_sum_exec_runtime;
1141
1142        u64                     nr_migrations;
1143
1144#ifdef CONFIG_SCHEDSTATS
1145        struct sched_statistics statistics;
1146#endif
1147
1148#ifdef CONFIG_FAIR_GROUP_SCHED
1149        struct sched_entity     *parent;
1150        /* rq on which this entity is (to be) queued: */
1151        struct cfs_rq           *cfs_rq;
1152        /* rq "owned" by this entity/group: */
1153        struct cfs_rq           *my_q;
1154#endif
1155};
1156
1157struct sched_rt_entity {
1158        struct list_head run_list;
1159        unsigned long timeout;
1160        unsigned int time_slice;
1161        int nr_cpus_allowed;
1162
1163        struct sched_rt_entity *back;
1164#ifdef CONFIG_RT_GROUP_SCHED
1165        struct sched_rt_entity  *parent;
1166        /* rq on which this entity is (to be) queued: */
1167        struct rt_rq            *rt_rq;
1168        /* rq "owned" by this entity/group: */
1169        struct rt_rq            *my_q;
1170#endif
1171};
1172
1173struct rcu_node;
1174
1175enum perf_event_task_context {
1176        perf_invalid_context = -1,
1177        perf_hw_context = 0,
1178        perf_sw_context,
1179        perf_nr_task_contexts,
1180};
1181
1182struct task_struct {
1183        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1184        void *stack;
1185        atomic_t usage;
1186        unsigned int flags;     /* per process flags, defined below */
1187        unsigned int ptrace;
1188
1189        int lock_depth;         /* BKL lock depth */
1190
1191#ifdef CONFIG_SMP
1192#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1193        int oncpu;
1194#endif
1195#endif
1196
1197        int prio, static_prio, normal_prio;
1198        unsigned int rt_priority;
1199        const struct sched_class *sched_class;
1200        struct sched_entity se;
1201        struct sched_rt_entity rt;
1202
1203#ifdef CONFIG_PREEMPT_NOTIFIERS
1204        /* list of struct preempt_notifier: */
1205        struct hlist_head preempt_notifiers;
1206#endif
1207
1208        /*
1209         * fpu_counter contains the number of consecutive context switches
1210         * that the FPU is used. If this is over a threshold, the lazy fpu
1211         * saving becomes unlazy to save the trap. This is an unsigned char
1212         * so that after 256 times the counter wraps and the behavior turns
1213         * lazy again; this to deal with bursty apps that only use FPU for
1214         * a short time
1215         */
1216        unsigned char fpu_counter;
1217#ifdef CONFIG_BLK_DEV_IO_TRACE
1218        unsigned int btrace_seq;
1219#endif
1220
1221        unsigned int policy;
1222        cpumask_t cpus_allowed;
1223
1224#ifdef CONFIG_PREEMPT_RCU
1225        int rcu_read_lock_nesting;
1226        char rcu_read_unlock_special;
1227        struct list_head rcu_node_entry;
1228#endif /* #ifdef CONFIG_PREEMPT_RCU */
1229#ifdef CONFIG_TREE_PREEMPT_RCU
1230        struct rcu_node *rcu_blocked_node;
1231#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1232
1233#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1234        struct sched_info sched_info;
1235#endif
1236
1237        struct list_head tasks;
1238        struct plist_node pushable_tasks;
1239
1240        struct mm_struct *mm, *active_mm;
1241#if defined(SPLIT_RSS_COUNTING)
1242        struct task_rss_stat    rss_stat;
1243#endif
1244/* task state */
1245        int exit_state;
1246        int exit_code, exit_signal;
1247        int pdeath_signal;  /*  The signal sent when the parent dies  */
1248        /* ??? */
1249        unsigned int personality;
1250        unsigned did_exec:1;
1251        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1252                                 * execve */
1253        unsigned in_iowait:1;
1254
1255
1256        /* Revert to default priority/policy when forking */
1257        unsigned sched_reset_on_fork:1;
1258
1259        pid_t pid;
1260        pid_t tgid;
1261
1262#ifdef CONFIG_CC_STACKPROTECTOR
1263        /* Canary value for the -fstack-protector gcc feature */
1264        unsigned long stack_canary;
1265#endif
1266
1267        /* 
1268         * pointers to (original) parent process, youngest child, younger sibling,
1269         * older sibling, respectively.  (p->father can be replaced with 
1270         * p->real_parent->pid)
1271         */
1272        struct task_struct *real_parent; /* real parent process */
1273        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1274        /*
1275         * children/sibling forms the list of my natural children
1276         */
1277        struct list_head children;      /* list of my children */
1278        struct list_head sibling;       /* linkage in my parent's children list */
1279        struct task_struct *group_leader;       /* threadgroup leader */
1280
1281        /*
1282         * ptraced is the list of tasks this task is using ptrace on.
1283         * This includes both natural children and PTRACE_ATTACH targets.
1284         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1285         */
1286        struct list_head ptraced;
1287        struct list_head ptrace_entry;
1288
1289        /* PID/PID hash table linkage. */
1290        struct pid_link pids[PIDTYPE_MAX];
1291        struct list_head thread_group;
1292
1293        struct completion *vfork_done;          /* for vfork() */
1294        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1295        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1296
1297        cputime_t utime, stime, utimescaled, stimescaled;
1298        cputime_t gtime;
1299#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1300        cputime_t prev_utime, prev_stime;
1301#endif
1302        unsigned long nvcsw, nivcsw; /* context switch counts */
1303        struct timespec start_time;             /* monotonic time */
1304        struct timespec real_start_time;        /* boot based time */
1305/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1306        unsigned long min_flt, maj_flt;
1307
1308        struct task_cputime cputime_expires;
1309        struct list_head cpu_timers[3];
1310
1311/* process credentials */
1312        const struct cred __rcu *real_cred; /* objective and real subjective task
1313                                         * credentials (COW) */
1314        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1315                                         * credentials (COW) */
1316        struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1317
1318        char comm[TASK_COMM_LEN]; /* executable name excluding path
1319                                     - access with [gs]et_task_comm (which lock
1320                                       it with task_lock())
1321                                     - initialized normally by setup_new_exec */
1322/* file system info */
1323        int link_count, total_link_count;
1324#ifdef CONFIG_SYSVIPC
1325/* ipc stuff */
1326        struct sysv_sem sysvsem;
1327#endif
1328#ifdef CONFIG_DETECT_HUNG_TASK
1329/* hung task detection */
1330        unsigned long last_switch_count;
1331#endif
1332/* CPU-specific state of this task */
1333        struct thread_struct thread;
1334/* filesystem information */
1335        struct fs_struct *fs;
1336/* open file information */
1337        struct files_struct *files;
1338/* namespaces */
1339        struct nsproxy *nsproxy;
1340/* signal handlers */
1341        struct signal_struct *signal;
1342        struct sighand_struct *sighand;
1343
1344        sigset_t blocked, real_blocked;
1345        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1346        struct sigpending pending;
1347
1348        unsigned long sas_ss_sp;
1349        size_t sas_ss_size;
1350        int (*notifier)(void *priv);
1351        void *notifier_data;
1352        sigset_t *notifier_mask;
1353        struct audit_context *audit_context;
1354#ifdef CONFIG_AUDITSYSCALL
1355        uid_t loginuid;
1356        unsigned int sessionid;
1357#endif
1358        seccomp_t seccomp;
1359
1360/* Thread group tracking */
1361        u32 parent_exec_id;
1362        u32 self_exec_id;
1363/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1364 * mempolicy */
1365        spinlock_t alloc_lock;
1366
1367#ifdef CONFIG_GENERIC_HARDIRQS
1368        /* IRQ handler threads */
1369        struct irqaction *irqaction;
1370#endif
1371
1372        /* Protection of the PI data structures: */
1373        raw_spinlock_t pi_lock;
1374
1375#ifdef CONFIG_RT_MUTEXES
1376        /* PI waiters blocked on a rt_mutex held by this task */
1377        struct plist_head pi_waiters;
1378        /* Deadlock detection and priority inheritance handling */
1379        struct rt_mutex_waiter *pi_blocked_on;
1380#endif
1381
1382#ifdef CONFIG_DEBUG_MUTEXES
1383        /* mutex deadlock detection */
1384        struct mutex_waiter *blocked_on;
1385#endif
1386#ifdef CONFIG_TRACE_IRQFLAGS
1387        unsigned int irq_events;
1388        unsigned long hardirq_enable_ip;
1389        unsigned long hardirq_disable_ip;
1390        unsigned int hardirq_enable_event;
1391        unsigned int hardirq_disable_event;
1392        int hardirqs_enabled;
1393        int hardirq_context;
1394        unsigned long softirq_disable_ip;
1395        unsigned long softirq_enable_ip;
1396        unsigned int softirq_disable_event;
1397        unsigned int softirq_enable_event;
1398        int softirqs_enabled;
1399        int softirq_context;
1400#endif
1401#ifdef CONFIG_LOCKDEP
1402# define MAX_LOCK_DEPTH 48UL
1403        u64 curr_chain_key;
1404        int lockdep_depth;
1405        unsigned int lockdep_recursion;
1406        struct held_lock held_locks[MAX_LOCK_DEPTH];
1407        gfp_t lockdep_reclaim_gfp;
1408#endif
1409
1410/* journalling filesystem info */
1411        void *journal_info;
1412
1413/* stacked block device info */
1414        struct bio_list *bio_list;
1415
1416/* VM state */
1417        struct reclaim_state *reclaim_state;
1418
1419        struct backing_dev_info *backing_dev_info;
1420
1421        struct io_context *io_context;
1422
1423        unsigned long ptrace_message;
1424        siginfo_t *last_siginfo; /* For ptrace use.  */
1425        struct task_io_accounting ioac;
1426#if defined(CONFIG_TASK_XACCT)
1427        u64 acct_rss_mem1;      /* accumulated rss usage */
1428        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1429        cputime_t acct_timexpd; /* stime + utime since last update */
1430#endif
1431#ifdef CONFIG_CPUSETS
1432        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1433        int mems_allowed_change_disable;
1434        int cpuset_mem_spread_rotor;
1435        int cpuset_slab_spread_rotor;
1436#endif
1437#ifdef CONFIG_CGROUPS
1438        /* Control Group info protected by css_set_lock */
1439        struct css_set __rcu *cgroups;
1440        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1441        struct list_head cg_list;
1442#endif
1443#ifdef CONFIG_FUTEX
1444        struct robust_list_head __user *robust_list;
1445#ifdef CONFIG_COMPAT
1446        struct compat_robust_list_head __user *compat_robust_list;
1447#endif
1448        struct list_head pi_state_list;
1449        struct futex_pi_state *pi_state_cache;
1450#endif
1451#ifdef CONFIG_PERF_EVENTS
1452        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1453        struct mutex perf_event_mutex;
1454        struct list_head perf_event_list;
1455#endif
1456#ifdef CONFIG_NUMA
1457        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1458        short il_next;
1459#endif
1460        atomic_t fs_excl;       /* holding fs exclusive resources */
1461        struct rcu_head rcu;
1462
1463        /*
1464         * cache last used pipe for splice
1465         */
1466        struct pipe_inode_info *splice_pipe;
1467#ifdef  CONFIG_TASK_DELAY_ACCT
1468        struct task_delay_info *delays;
1469#endif
1470#ifdef CONFIG_FAULT_INJECTION
1471        int make_it_fail;
1472#endif
1473        struct prop_local_single dirties;
1474#ifdef CONFIG_LATENCYTOP
1475        int latency_record_count;
1476        struct latency_record latency_record[LT_SAVECOUNT];
1477#endif
1478        /*
1479         * time slack values; these are used to round up poll() and
1480         * select() etc timeout values. These are in nanoseconds.
1481         */
1482        unsigned long timer_slack_ns;
1483        unsigned long default_timer_slack_ns;
1484
1485        struct list_head        *scm_work_list;
1486#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1487        /* Index of current stored address in ret_stack */
1488        int curr_ret_stack;
1489        /* Stack of return addresses for return function tracing */
1490        struct ftrace_ret_stack *ret_stack;
1491        /* time stamp for last schedule */
1492        unsigned long long ftrace_timestamp;
1493        /*
1494         * Number of functions that haven't been traced
1495         * because of depth overrun.
1496         */
1497        atomic_t trace_overrun;
1498        /* Pause for the tracing */
1499        atomic_t tracing_graph_pause;
1500#endif
1501#ifdef CONFIG_TRACING
1502        /* state flags for use by tracers */
1503        unsigned long trace;
1504        /* bitmask of trace recursion */
1505        unsigned long trace_recursion;
1506#endif /* CONFIG_TRACING */
1507#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1508        struct memcg_batch_info {
1509                int do_batch;   /* incremented when batch uncharge started */
1510                struct mem_cgroup *memcg; /* target memcg of uncharge */
1511                unsigned long bytes;            /* uncharged usage */
1512                unsigned long memsw_bytes; /* uncharged mem+swap usage */
1513        } memcg_batch;
1514#endif
1515};
1516
1517/* Future-safe accessor for struct task_struct's cpus_allowed. */
1518#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1519
1520/*
1521 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1522 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1523 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1524 * values are inverted: lower p->prio value means higher priority.
1525 *
1526 * The MAX_USER_RT_PRIO value allows the actual maximum
1527 * RT priority to be separate from the value exported to
1528 * user-space.  This allows kernel threads to set their
1529 * priority to a value higher than any user task. Note:
1530 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1531 */
1532
1533#define MAX_USER_RT_PRIO        100
1534#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1535
1536#define MAX_PRIO                (MAX_RT_PRIO + 40)
1537#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1538
1539static inline int rt_prio(int prio)
1540{
1541        if (unlikely(prio < MAX_RT_PRIO))
1542                return 1;
1543        return 0;
1544}
1545
1546static inline int rt_task(struct task_struct *p)
1547{
1548        return rt_prio(p->prio);
1549}
1550
1551static inline struct pid *task_pid(struct task_struct *task)
1552{
1553        return task->pids[PIDTYPE_PID].pid;
1554}
1555
1556static inline struct pid *task_tgid(struct task_struct *task)
1557{
1558        return task->group_leader->pids[PIDTYPE_PID].pid;
1559}
1560
1561/*
1562 * Without tasklist or rcu lock it is not safe to dereference
1563 * the result of task_pgrp/task_session even if task == current,
1564 * we can race with another thread doing sys_setsid/sys_setpgid.
1565 */
1566static inline struct pid *task_pgrp(struct task_struct *task)
1567{
1568        return task->group_leader->pids[PIDTYPE_PGID].pid;
1569}
1570
1571static inline struct pid *task_session(struct task_struct *task)
1572{
1573        return task->group_leader->pids[PIDTYPE_SID].pid;
1574}
1575
1576struct pid_namespace;
1577
1578/*
1579 * the helpers to get the task's different pids as they are seen
1580 * from various namespaces
1581 *
1582 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1583 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1584 *                     current.
1585 * task_xid_nr_ns()  : id seen from the ns specified;
1586 *
1587 * set_task_vxid()   : assigns a virtual id to a task;
1588 *
1589 * see also pid_nr() etc in include/linux/pid.h
1590 */
1591pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1592                        struct pid_namespace *ns);
1593
1594static inline pid_t task_pid_nr(struct task_struct *tsk)
1595{
1596        return tsk->pid;
1597}
1598
1599static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1600                                        struct pid_namespace *ns)
1601{
1602        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1603}
1604
1605static inline pid_t task_pid_vnr(struct task_struct *tsk)
1606{
1607        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1608}
1609
1610
1611static inline pid_t task_tgid_nr(struct task_struct *tsk)
1612{
1613        return tsk->tgid;
1614}
1615
1616pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1617
1618static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1619{
1620        return pid_vnr(task_tgid(tsk));
1621}
1622
1623
1624static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1625                                        struct pid_namespace *ns)
1626{
1627        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1628}
1629
1630static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1631{
1632        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1633}
1634
1635
1636static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1637                                        struct pid_namespace *ns)
1638{
1639        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1640}
1641
1642static inline pid_t task_session_vnr(struct task_struct *tsk)
1643{
1644        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1645}
1646
1647/* obsolete, do not use */
1648static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1649{
1650        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1651}
1652
1653/**
1654 * pid_alive - check that a task structure is not stale
1655 * @p: Task structure to be checked.
1656 *
1657 * Test if a process is not yet dead (at most zombie state)
1658 * If pid_alive fails, then pointers within the task structure
1659 * can be stale and must not be dereferenced.
1660 */
1661static inline int pid_alive(struct task_struct *p)
1662{
1663        return p->pids[PIDTYPE_PID].pid != NULL;
1664}
1665
1666/**
1667 * is_global_init - check if a task structure is init
1668 * @tsk: Task structure to be checked.
1669 *
1670 * Check if a task structure is the first user space task the kernel created.
1671 */
1672static inline int is_global_init(struct task_struct *tsk)
1673{
1674        return tsk->pid == 1;
1675}
1676
1677/*
1678 * is_container_init:
1679 * check whether in the task is init in its own pid namespace.
1680 */
1681extern int is_container_init(struct task_struct *tsk);
1682
1683extern struct pid *cad_pid;
1684
1685extern void free_task(struct task_struct *tsk);
1686#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1687
1688extern void __put_task_struct(struct task_struct *t);
1689
1690static inline void put_task_struct(struct task_struct *t)
1691{
1692        if (atomic_dec_and_test(&t->usage))
1693                __put_task_struct(t);
1694}
1695
1696extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1697extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1698
1699/*
1700 * Per process flags
1701 */
1702#define PF_KSOFTIRQD    0x00000001      /* I am ksoftirqd */
1703#define PF_STARTING     0x00000002      /* being created */
1704#define PF_EXITING      0x00000004      /* getting shut down */
1705#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1706#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1707#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1708#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1709#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1710#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1711#define PF_DUMPCORE     0x00000200      /* dumped core */
1712#define PF_SIGNALED     0x00000400      /* killed by a signal */
1713#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1714#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1715#define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1716#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1717#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1718#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1719#define PF_KSWAPD       0x00040000      /* I am kswapd */
1720#define PF_OOM_ORIGIN   0x00080000      /* Allocating much memory to others */
1721#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1722#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1723#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1724#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1725#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1726#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1727#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1728#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1729#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1730#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1731#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1732#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1733
1734/*
1735 * Only the _current_ task can read/write to tsk->flags, but other
1736 * tasks can access tsk->flags in readonly mode for example
1737 * with tsk_used_math (like during threaded core dumping).
1738 * There is however an exception to this rule during ptrace
1739 * or during fork: the ptracer task is allowed to write to the
1740 * child->flags of its traced child (same goes for fork, the parent
1741 * can write to the child->flags), because we're guaranteed the
1742 * child is not running and in turn not changing child->flags
1743 * at the same time the parent does it.
1744 */
1745#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1746#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1747#define clear_used_math() clear_stopped_child_used_math(current)
1748#define set_used_math() set_stopped_child_used_math(current)
1749#define conditional_stopped_child_used_math(condition, child) \
1750        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1751#define conditional_used_math(condition) \
1752        conditional_stopped_child_used_math(condition, current)
1753#define copy_to_stopped_child_used_math(child) \
1754        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1755/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1756#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1757#define used_math() tsk_used_math(current)
1758
1759#ifdef CONFIG_PREEMPT_RCU
1760
1761#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1762#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1763
1764static inline void rcu_copy_process(struct task_struct *p)
1765{
1766        p->rcu_read_lock_nesting = 0;
1767        p->rcu_read_unlock_special = 0;
1768#ifdef CONFIG_TREE_PREEMPT_RCU
1769        p->rcu_blocked_node = NULL;
1770#endif
1771        INIT_LIST_HEAD(&p->rcu_node_entry);
1772}
1773
1774#else
1775
1776static inline void rcu_copy_process(struct task_struct *p)
1777{
1778}
1779
1780#endif
1781
1782#ifdef CONFIG_SMP
1783extern int set_cpus_allowed_ptr(struct task_struct *p,
1784                                const struct cpumask *new_mask);
1785#else
1786static inline int set_cpus_allowed_ptr(struct task_struct *p,
1787                                       const struct cpumask *new_mask)
1788{
1789        if (!cpumask_test_cpu(0, new_mask))
1790                return -EINVAL;
1791        return 0;
1792}
1793#endif
1794
1795#ifndef CONFIG_CPUMASK_OFFSTACK
1796static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1797{
1798        return set_cpus_allowed_ptr(p, &new_mask);
1799}
1800#endif
1801
1802/*
1803 * Do not use outside of architecture code which knows its limitations.
1804 *
1805 * sched_clock() has no promise of monotonicity or bounded drift between
1806 * CPUs, use (which you should not) requires disabling IRQs.
1807 *
1808 * Please use one of the three interfaces below.
1809 */
1810extern unsigned long long notrace sched_clock(void);
1811/*
1812 * See the comment in kernel/sched_clock.c
1813 */
1814extern u64 cpu_clock(int cpu);
1815extern u64 local_clock(void);
1816extern u64 sched_clock_cpu(int cpu);
1817
1818
1819extern void sched_clock_init(void);
1820
1821#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1822static inline void sched_clock_tick(void)
1823{
1824}
1825
1826static inline void sched_clock_idle_sleep_event(void)
1827{
1828}
1829
1830static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1831{
1832}
1833#else
1834/*
1835 * Architectures can set this to 1 if they have specified
1836 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1837 * but then during bootup it turns out that sched_clock()
1838 * is reliable after all:
1839 */
1840extern int sched_clock_stable;
1841
1842extern void sched_clock_tick(void);
1843extern void sched_clock_idle_sleep_event(void);
1844extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845#endif
1846
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848/*
1849 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1850 * The reason for this explicit opt-in is not to have perf penalty with
1851 * slow sched_clocks.
1852 */
1853extern void enable_sched_clock_irqtime(void);
1854extern void disable_sched_clock_irqtime(void);
1855#else
1856static inline void enable_sched_clock_irqtime(void) {}
1857static inline void disable_sched_clock_irqtime(void) {}
1858#endif
1859
1860extern unsigned long long
1861task_sched_runtime(struct task_struct *task);
1862extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1863
1864/* sched_exec is called by processes performing an exec */
1865#ifdef CONFIG_SMP
1866extern void sched_exec(void);
1867#else
1868#define sched_exec()   {}
1869#endif
1870
1871extern void sched_clock_idle_sleep_event(void);
1872extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1873
1874#ifdef CONFIG_HOTPLUG_CPU
1875extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1876extern void idle_task_exit(void);
1877#else
1878static inline void idle_task_exit(void) {}
1879#endif
1880
1881extern void sched_idle_next(void);
1882
1883#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1884extern void wake_up_idle_cpu(int cpu);
1885#else
1886static inline void wake_up_idle_cpu(int cpu) { }
1887#endif
1888
1889extern unsigned int sysctl_sched_latency;
1890extern unsigned int sysctl_sched_min_granularity;
1891extern unsigned int sysctl_sched_wakeup_granularity;
1892extern unsigned int sysctl_sched_shares_ratelimit;
1893extern unsigned int sysctl_sched_shares_thresh;
1894extern unsigned int sysctl_sched_child_runs_first;
1895
1896enum sched_tunable_scaling {
1897        SCHED_TUNABLESCALING_NONE,
1898        SCHED_TUNABLESCALING_LOG,
1899        SCHED_TUNABLESCALING_LINEAR,
1900        SCHED_TUNABLESCALING_END,
1901};
1902extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1903
1904#ifdef CONFIG_SCHED_DEBUG
1905extern unsigned int sysctl_sched_migration_cost;
1906extern unsigned int sysctl_sched_nr_migrate;
1907extern unsigned int sysctl_sched_time_avg;
1908extern unsigned int sysctl_timer_migration;
1909
1910int sched_proc_update_handler(struct ctl_table *table, int write,
1911                void __user *buffer, size_t *length,
1912                loff_t *ppos);
1913#endif
1914#ifdef CONFIG_SCHED_DEBUG
1915static inline unsigned int get_sysctl_timer_migration(void)
1916{
1917        return sysctl_timer_migration;
1918}
1919#else
1920static inline unsigned int get_sysctl_timer_migration(void)
1921{
1922        return 1;
1923}
1924#endif
1925extern unsigned int sysctl_sched_rt_period;
1926extern int sysctl_sched_rt_runtime;
1927
1928int sched_rt_handler(struct ctl_table *table, int write,
1929                void __user *buffer, size_t *lenp,
1930                loff_t *ppos);
1931
1932extern unsigned int sysctl_sched_compat_yield;
1933
1934#ifdef CONFIG_RT_MUTEXES
1935extern int rt_mutex_getprio(struct task_struct *p);
1936extern void rt_mutex_setprio(struct task_struct *p, int prio);
1937extern void rt_mutex_adjust_pi(struct task_struct *p);
1938#else
1939static inline int rt_mutex_getprio(struct task_struct *p)
1940{
1941        return p->normal_prio;
1942}
1943# define rt_mutex_adjust_pi(p)          do { } while (0)
1944#endif
1945
1946extern void set_user_nice(struct task_struct *p, long nice);
1947extern int task_prio(const struct task_struct *p);
1948extern int task_nice(const struct task_struct *p);
1949extern int can_nice(const struct task_struct *p, const int nice);
1950extern int task_curr(const struct task_struct *p);
1951extern int idle_cpu(int cpu);
1952extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1953extern int sched_setscheduler_nocheck(struct task_struct *, int,
1954                                      struct sched_param *);
1955extern struct task_struct *idle_task(int cpu);
1956extern struct task_struct *curr_task(int cpu);
1957extern void set_curr_task(int cpu, struct task_struct *p);
1958
1959void yield(void);
1960
1961/*
1962 * The default (Linux) execution domain.
1963 */
1964extern struct exec_domain       default_exec_domain;
1965
1966union thread_union {
1967        struct thread_info thread_info;
1968        unsigned long stack[THREAD_SIZE/sizeof(long)];
1969};
1970
1971#ifndef __HAVE_ARCH_KSTACK_END
1972static inline int kstack_end(void *addr)
1973{
1974        /* Reliable end of stack detection:
1975         * Some APM bios versions misalign the stack
1976         */
1977        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1978}
1979#endif
1980
1981extern union thread_union init_thread_union;
1982extern struct task_struct init_task;
1983
1984extern struct   mm_struct init_mm;
1985
1986extern struct pid_namespace init_pid_ns;
1987
1988/*
1989 * find a task by one of its numerical ids
1990 *
1991 * find_task_by_pid_ns():
1992 *      finds a task by its pid in the specified namespace
1993 * find_task_by_vpid():
1994 *      finds a task by its virtual pid
1995 *
1996 * see also find_vpid() etc in include/linux/pid.h
1997 */
1998
1999extern struct task_struct *find_task_by_vpid(pid_t nr);
2000extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2001                struct pid_namespace *ns);
2002
2003extern void __set_special_pids(struct pid *pid);
2004
2005/* per-UID process charging. */
2006extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2007static inline struct user_struct *get_uid(struct user_struct *u)
2008{
2009        atomic_inc(&u->__count);
2010        return u;
2011}
2012extern void free_uid(struct user_struct *);
2013extern void release_uids(struct user_namespace *ns);
2014
2015#include <asm/current.h>
2016
2017extern void do_timer(unsigned long ticks);
2018
2019extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2020extern int wake_up_process(struct task_struct *tsk);
2021extern void wake_up_new_task(struct task_struct *tsk,
2022                                unsigned long clone_flags);
2023#ifdef CONFIG_SMP
2024 extern void kick_process(struct task_struct *tsk);
2025#else
2026 static inline void kick_process(struct task_struct *tsk) { }
2027#endif
2028extern void sched_fork(struct task_struct *p, int clone_flags);
2029extern void sched_dead(struct task_struct *p);
2030
2031extern void proc_caches_init(void);
2032extern void flush_signals(struct task_struct *);
2033extern void __flush_signals(struct task_struct *);
2034extern void ignore_signals(struct task_struct *);
2035extern void flush_signal_handlers(struct task_struct *, int force_default);
2036extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2037
2038static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2039{
2040        unsigned long flags;
2041        int ret;
2042
2043        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2044        ret = dequeue_signal(tsk, mask, info);
2045        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2046
2047        return ret;
2048}       
2049
2050extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2051                              sigset_t *mask);
2052extern void unblock_all_signals(void);
2053extern void release_task(struct task_struct * p);
2054extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2055extern int force_sigsegv(int, struct task_struct *);
2056extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2057extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2058extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2059extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2060extern int kill_pgrp(struct pid *pid, int sig, int priv);
2061extern int kill_pid(struct pid *pid, int sig, int priv);
2062extern int kill_proc_info(int, struct siginfo *, pid_t);
2063extern int do_notify_parent(struct task_struct *, int);
2064extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2065extern void force_sig(int, struct task_struct *);
2066extern int send_sig(int, struct task_struct *, int);
2067extern int zap_other_threads(struct task_struct *p);
2068extern struct sigqueue *sigqueue_alloc(void);
2069extern void sigqueue_free(struct sigqueue *);
2070extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2071extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2072extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2073
2074static inline int kill_cad_pid(int sig, int priv)
2075{
2076        return kill_pid(cad_pid, sig, priv);
2077}
2078
2079/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2080#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2081#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2082#define SEND_SIG_FORCED ((struct siginfo *) 2)
2083
2084/*
2085 * True if we are on the alternate signal stack.
2086 */
2087static inline int on_sig_stack(unsigned long sp)
2088{
2089#ifdef CONFIG_STACK_GROWSUP
2090        return sp >= current->sas_ss_sp &&
2091                sp - current->sas_ss_sp < current->sas_ss_size;
2092#else
2093        return sp > current->sas_ss_sp &&
2094                sp - current->sas_ss_sp <= current->sas_ss_size;
2095#endif
2096}
2097
2098static inline int sas_ss_flags(unsigned long sp)
2099{
2100        return (current->sas_ss_size == 0 ? SS_DISABLE
2101                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2102}
2103
2104/*
2105 * Routines for handling mm_structs
2106 */
2107extern struct mm_struct * mm_alloc(void);
2108
2109/* mmdrop drops the mm and the page tables */
2110extern void __mmdrop(struct mm_struct *);
2111static inline void mmdrop(struct mm_struct * mm)
2112{
2113        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2114                __mmdrop(mm);
2115}
2116
2117/* mmput gets rid of the mappings and all user-space */
2118extern void mmput(struct mm_struct *);
2119/* Grab a reference to a task's mm, if it is not already going away */
2120extern struct mm_struct *get_task_mm(struct task_struct *task);
2121/* Remove the current tasks stale references to the old mm_struct */
2122extern void mm_release(struct task_struct *, struct mm_struct *);
2123/* Allocate a new mm structure and copy contents from tsk->mm */
2124extern struct mm_struct *dup_mm(struct task_struct *tsk);
2125
2126extern int copy_thread(unsigned long, unsigned long, unsigned long,
2127                        struct task_struct *, struct pt_regs *);
2128extern void flush_thread(void);
2129extern void exit_thread(void);
2130
2131extern void exit_files(struct task_struct *);
2132extern void __cleanup_sighand(struct sighand_struct *);
2133
2134extern void exit_itimers(struct signal_struct *);
2135extern void flush_itimer_signals(void);
2136
2137extern NORET_TYPE void do_group_exit(int);
2138
2139extern void daemonize(const char *, ...);
2140extern int allow_signal(int);
2141extern int disallow_signal(int);
2142
2143extern int do_execve(const char *,
2144                     const char __user * const __user *,
2145                     const char __user * const __user *, struct pt_regs *);
2146extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2147struct task_struct *fork_idle(int);
2148
2149extern void set_task_comm(struct task_struct *tsk, char *from);
2150extern char *get_task_comm(char *to, struct task_struct *tsk);
2151
2152#ifdef CONFIG_SMP
2153extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2154#else
2155static inline unsigned long wait_task_inactive(struct task_struct *p,
2156                                               long match_state)
2157{
2158        return 1;
2159}
2160#endif
2161
2162#define next_task(p) \
2163        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2164
2165#define for_each_process(p) \
2166        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2167
2168extern bool current_is_single_threaded(void);
2169
2170/*
2171 * Careful: do_each_thread/while_each_thread is a double loop so
2172 *          'break' will not work as expected - use goto instead.
2173 */
2174#define do_each_thread(g, t) \
2175        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2176
2177#define while_each_thread(g, t) \
2178        while ((t = next_thread(t)) != g)
2179
2180static inline int get_nr_threads(struct task_struct *tsk)
2181{
2182        return tsk->signal->nr_threads;
2183}
2184
2185/* de_thread depends on thread_group_leader not being a pid based check */
2186#define thread_group_leader(p)  (p == p->group_leader)
2187
2188/* Do to the insanities of de_thread it is possible for a process
2189 * to have the pid of the thread group leader without actually being
2190 * the thread group leader.  For iteration through the pids in proc
2191 * all we care about is that we have a task with the appropriate
2192 * pid, we don't actually care if we have the right task.
2193 */
2194static inline int has_group_leader_pid(struct task_struct *p)
2195{
2196        return p->pid == p->tgid;
2197}
2198
2199static inline
2200int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2201{
2202        return p1->tgid == p2->tgid;
2203}
2204
2205static inline struct task_struct *next_thread(const struct task_struct *p)
2206{
2207        return list_entry_rcu(p->thread_group.next,
2208                              struct task_struct, thread_group);
2209}
2210
2211static inline int thread_group_empty(struct task_struct *p)
2212{
2213        return list_empty(&p->thread_group);
2214}
2215
2216#define delay_group_leader(p) \
2217                (thread_group_leader(p) && !thread_group_empty(p))
2218
2219static inline int task_detached(struct task_struct *p)
2220{
2221        return p->exit_signal == -1;
2222}
2223
2224/*
2225 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2226 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2227 * pins the final release of task.io_context.  Also protects ->cpuset and
2228 * ->cgroup.subsys[].
2229 *
2230 * Nests both inside and outside of read_lock(&tasklist_lock).
2231 * It must not be nested with write_lock_irq(&tasklist_lock),
2232 * neither inside nor outside.
2233 */
2234static inline void task_lock(struct task_struct *p)
2235{
2236        spin_lock(&p->alloc_lock);
2237}
2238
2239static inline void task_unlock(struct task_struct *p)
2240{
2241        spin_unlock(&p->alloc_lock);
2242}
2243
2244extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2245                                                        unsigned long *flags);
2246
2247#define lock_task_sighand(tsk, flags)                                   \
2248({      struct sighand_struct *__ss;                                    \
2249        __cond_lock(&(tsk)->sighand->siglock,                           \
2250                    (__ss = __lock_task_sighand(tsk, flags)));          \
2251        __ss;                                                           \
2252})                                                                      \
2253
2254static inline void unlock_task_sighand(struct task_struct *tsk,
2255                                                unsigned long *flags)
2256{
2257        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2258}
2259
2260#ifndef __HAVE_THREAD_FUNCTIONS
2261
2262#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2263#define task_stack_page(task)   ((task)->stack)
2264
2265static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2266{
2267        *task_thread_info(p) = *task_thread_info(org);
2268        task_thread_info(p)->task = p;
2269}
2270
2271static inline unsigned long *end_of_stack(struct task_struct *p)
2272{
2273        return (unsigned long *)(task_thread_info(p) + 1);
2274}
2275
2276#endif
2277
2278static inline int object_is_on_stack(void *obj)
2279{
2280        void *stack = task_stack_page(current);
2281
2282        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2283}
2284
2285extern void thread_info_cache_init(void);
2286
2287#ifdef CONFIG_DEBUG_STACK_USAGE
2288static inline unsigned long stack_not_used(struct task_struct *p)
2289{
2290        unsigned long *n = end_of_stack(p);
2291
2292        do {    /* Skip over canary */
2293                n++;
2294        } while (!*n);
2295
2296        return (unsigned long)n - (unsigned long)end_of_stack(p);
2297}
2298#endif
2299
2300/* set thread flags in other task's structures
2301 * - see asm/thread_info.h for TIF_xxxx flags available
2302 */
2303static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2304{
2305        set_ti_thread_flag(task_thread_info(tsk), flag);
2306}
2307
2308static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2309{
2310        clear_ti_thread_flag(task_thread_info(tsk), flag);
2311}
2312
2313static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2314{
2315        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2316}
2317
2318static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2319{
2320        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2321}
2322
2323static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2324{
2325        return test_ti_thread_flag(task_thread_info(tsk), flag);
2326}
2327
2328static inline void set_tsk_need_resched(struct task_struct *tsk)
2329{
2330        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2331}
2332
2333static inline void clear_tsk_need_resched(struct task_struct *tsk)
2334{
2335        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2336}
2337
2338static inline int test_tsk_need_resched(struct task_struct *tsk)
2339{
2340        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2341}
2342
2343static inline int restart_syscall(void)
2344{
2345        set_tsk_thread_flag(current, TIF_SIGPENDING);
2346        return -ERESTARTNOINTR;
2347}
2348
2349static inline int signal_pending(struct task_struct *p)
2350{
2351        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2352}
2353
2354static inline int __fatal_signal_pending(struct task_struct *p)
2355{
2356        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2357}
2358
2359static inline int fatal_signal_pending(struct task_struct *p)
2360{
2361        return signal_pending(p) && __fatal_signal_pending(p);
2362}
2363
2364static inline int signal_pending_state(long state, struct task_struct *p)
2365{
2366        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2367                return 0;
2368        if (!signal_pending(p))
2369                return 0;
2370
2371        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2372}
2373
2374static inline int need_resched(void)
2375{
2376        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2377}
2378
2379/*
2380 * cond_resched() and cond_resched_lock(): latency reduction via
2381 * explicit rescheduling in places that are safe. The return
2382 * value indicates whether a reschedule was done in fact.
2383 * cond_resched_lock() will drop the spinlock before scheduling,
2384 * cond_resched_softirq() will enable bhs before scheduling.
2385 */
2386extern int _cond_resched(void);
2387
2388#define cond_resched() ({                       \
2389        __might_sleep(__FILE__, __LINE__, 0);   \
2390        _cond_resched();                        \
2391})
2392
2393extern int __cond_resched_lock(spinlock_t *lock);
2394
2395#ifdef CONFIG_PREEMPT
2396#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2397#else
2398#define PREEMPT_LOCK_OFFSET     0
2399#endif
2400
2401#define cond_resched_lock(lock) ({                              \
2402        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2403        __cond_resched_lock(lock);                              \
2404})
2405
2406extern int __cond_resched_softirq(void);
2407
2408#define cond_resched_softirq() ({                                       \
2409        __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2410        __cond_resched_softirq();                                       \
2411})
2412
2413/*
2414 * Does a critical section need to be broken due to another
2415 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2416 * but a general need for low latency)
2417 */
2418static inline int spin_needbreak(spinlock_t *lock)
2419{
2420#ifdef CONFIG_PREEMPT
2421        return spin_is_contended(lock);
2422#else
2423        return 0;
2424#endif
2425}
2426
2427/*
2428 * Thread group CPU time accounting.
2429 */
2430void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2431void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2432
2433static inline void thread_group_cputime_init(struct signal_struct *sig)
2434{
2435        spin_lock_init(&sig->cputimer.lock);
2436}
2437
2438/*
2439 * Reevaluate whether the task has signals pending delivery.
2440 * Wake the task if so.
2441 * This is required every time the blocked sigset_t changes.
2442 * callers must hold sighand->siglock.
2443 */
2444extern void recalc_sigpending_and_wake(struct task_struct *t);
2445extern void recalc_sigpending(void);
2446
2447extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2448
2449/*
2450 * Wrappers for p->thread_info->cpu access. No-op on UP.
2451 */
2452#ifdef CONFIG_SMP
2453
2454static inline unsigned int task_cpu(const struct task_struct *p)
2455{
2456        return task_thread_info(p)->cpu;
2457}
2458
2459extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2460
2461#else
2462
2463static inline unsigned int task_cpu(const struct task_struct *p)
2464{
2465        return 0;
2466}
2467
2468static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2469{
2470}
2471
2472#endif /* CONFIG_SMP */
2473
2474extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2475extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2476
2477extern void normalize_rt_tasks(void);
2478
2479#ifdef CONFIG_CGROUP_SCHED
2480
2481extern struct task_group init_task_group;
2482
2483extern struct task_group *sched_create_group(struct task_group *parent);
2484extern void sched_destroy_group(struct task_group *tg);
2485extern void sched_move_task(struct task_struct *tsk);
2486#ifdef CONFIG_FAIR_GROUP_SCHED
2487extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2488extern unsigned long sched_group_shares(struct task_group *tg);
2489#endif
2490#ifdef CONFIG_RT_GROUP_SCHED
2491extern int sched_group_set_rt_runtime(struct task_group *tg,
2492                                      long rt_runtime_us);
2493extern long sched_group_rt_runtime(struct task_group *tg);
2494extern int sched_group_set_rt_period(struct task_group *tg,
2495                                      long rt_period_us);
2496extern long sched_group_rt_period(struct task_group *tg);
2497extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2498#endif
2499#endif
2500
2501extern int task_can_switch_user(struct user_struct *up,
2502                                        struct task_struct *tsk);
2503
2504#ifdef CONFIG_TASK_XACCT
2505static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2506{
2507        tsk->ioac.rchar += amt;
2508}
2509
2510static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2511{
2512        tsk->ioac.wchar += amt;
2513}
2514
2515static inline void inc_syscr(struct task_struct *tsk)
2516{
2517        tsk->ioac.syscr++;
2518}
2519
2520static inline void inc_syscw(struct task_struct *tsk)
2521{
2522        tsk->ioac.syscw++;
2523}
2524#else
2525static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2526{
2527}
2528
2529static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2530{
2531}
2532
2533static inline void inc_syscr(struct task_struct *tsk)
2534{
2535}
2536
2537static inline void inc_syscw(struct task_struct *tsk)
2538{
2539}
2540#endif
2541
2542#ifndef TASK_SIZE_OF
2543#define TASK_SIZE_OF(tsk)       TASK_SIZE
2544#endif
2545
2546/*
2547 * Call the function if the target task is executing on a CPU right now:
2548 */
2549extern void task_oncpu_function_call(struct task_struct *p,
2550                                     void (*func) (void *info), void *info);
2551
2552
2553#ifdef CONFIG_MM_OWNER
2554extern void mm_update_next_owner(struct mm_struct *mm);
2555extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2556#else
2557static inline void mm_update_next_owner(struct mm_struct *mm)
2558{
2559}
2560
2561static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2562{
2563}
2564#endif /* CONFIG_MM_OWNER */
2565
2566static inline unsigned long task_rlimit(const struct task_struct *tsk,
2567                unsigned int limit)
2568{
2569        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2570}
2571
2572static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2573                unsigned int limit)
2574{
2575        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2576}
2577
2578static inline unsigned long rlimit(unsigned int limit)
2579{
2580        return task_rlimit(current, limit);
2581}
2582
2583static inline unsigned long rlimit_max(unsigned int limit)
2584{
2585        return task_rlimit_max(current, limit);
2586}
2587
2588#endif /* __KERNEL__ */
2589
2590#endif
2591
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.