linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *      PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*      I think it would be in everyone's best interest to follow this
  24 *      guidelines when writing PDC wrappers:
  25 *
  26 *       - the name of the pdc wrapper should match one of the macros
  27 *         used for the first two arguments
  28 *       - don't use caps for random parts of the name
  29 *       - use the static PDC result buffers and "copyout" to structs
  30 *         supplied by the caller to encapsulate alignment restrictions
  31 *       - hold pdc_lock while in PDC or using static result buffers
  32 *       - use __pa() to convert virtual (kernel) pointers to physical
  33 *         ones.
  34 *       - the name of the struct used for pdc return values should equal
  35 *         one of the macros used for the first two arguments to the
  36 *         corresponding PDC call
  37 *       - keep the order of arguments
  38 *       - don't be smart (setting trailing NUL bytes for strings, return
  39 *         something useful even if the call failed) unless you are sure
  40 *         it's not going to affect functionality or performance
  41 *
  42 *      Example:
  43 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *      {
  45 *              int retval;
  46 *
  47 *              spin_lock_irq(&pdc_lock);
  48 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *              convert_to_wide(pdc_result);
  50 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *              spin_unlock_irq(&pdc_lock);
  52 *
  53 *              return retval;
  54 *      }
  55 *                                      prumpf  991016  
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/system.h>
  71#include <asm/processor.h>      /* for boot_cpu_data */
  72
  73static DEFINE_SPINLOCK(pdc_lock);
  74extern unsigned long pdc_result[NUM_PDC_RESULT];
  75extern unsigned long pdc_result2[NUM_PDC_RESULT];
  76
  77#ifdef CONFIG_64BIT
  78#define WIDE_FIRMWARE 0x1
  79#define NARROW_FIRMWARE 0x2
  80
  81/* Firmware needs to be initially set to narrow to determine the 
  82 * actual firmware width. */
  83int parisc_narrow_firmware __read_mostly = 1;
  84#endif
  85
  86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  87 * and MEM_PDC calls are always the same width as the OS.
  88 * Some PAT boxes may have 64-bit IODC I/O.
  89 *
  90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  92 * This allowed wide kernels to run on Cxxx boxes.
  93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  95 */
  96
  97#ifdef CONFIG_64BIT
  98long real64_call(unsigned long function, ...);
  99#endif
 100long real32_call(unsigned long function, ...);
 101
 102#ifdef CONFIG_64BIT
 103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 105#else
 106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 108#endif
 109
 110
 111/**
 112 * f_extend - Convert PDC addresses to kernel addresses.
 113 * @address: Address returned from PDC.
 114 *
 115 * This function is used to convert PDC addresses into kernel addresses
 116 * when the PDC address size and kernel address size are different.
 117 */
 118static unsigned long f_extend(unsigned long address)
 119{
 120#ifdef CONFIG_64BIT
 121        if(unlikely(parisc_narrow_firmware)) {
 122                if((address & 0xff000000) == 0xf0000000)
 123                        return 0xf0f0f0f000000000UL | (u32)address;
 124
 125                if((address & 0xf0000000) == 0xf0000000)
 126                        return 0xffffffff00000000UL | (u32)address;
 127        }
 128#endif
 129        return address;
 130}
 131
 132/**
 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 134 * @address: The return buffer from PDC.
 135 *
 136 * This function is used to convert the return buffer addresses retrieved from PDC
 137 * into kernel addresses when the PDC address size and kernel address size are
 138 * different.
 139 */
 140static void convert_to_wide(unsigned long *addr)
 141{
 142#ifdef CONFIG_64BIT
 143        int i;
 144        unsigned int *p = (unsigned int *)addr;
 145
 146        if(unlikely(parisc_narrow_firmware)) {
 147                for(i = 31; i >= 0; --i)
 148                        addr[i] = p[i];
 149        }
 150#endif
 151}
 152
 153#ifdef CONFIG_64BIT
 154void __cpuinit set_firmware_width_unlocked(void)
 155{
 156        int ret;
 157
 158        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 159                __pa(pdc_result), 0);
 160        convert_to_wide(pdc_result);
 161        if (pdc_result[0] != NARROW_FIRMWARE)
 162                parisc_narrow_firmware = 0;
 163}
 164        
 165/**
 166 * set_firmware_width - Determine if the firmware is wide or narrow.
 167 * 
 168 * This function must be called before any pdc_* function that uses the
 169 * convert_to_wide function.
 170 */
 171void __cpuinit set_firmware_width(void)
 172{
 173        unsigned long flags;
 174        spin_lock_irqsave(&pdc_lock, flags);
 175        set_firmware_width_unlocked();
 176        spin_unlock_irqrestore(&pdc_lock, flags);
 177}
 178#else
 179void __cpuinit set_firmware_width_unlocked(void) {
 180        return;
 181}
 182
 183void __cpuinit set_firmware_width(void) {
 184        return;
 185}
 186#endif /*CONFIG_64BIT*/
 187
 188/**
 189 * pdc_emergency_unlock - Unlock the linux pdc lock
 190 *
 191 * This call unlocks the linux pdc lock in case we need some PDC functions
 192 * (like pdc_add_valid) during kernel stack dump.
 193 */
 194void pdc_emergency_unlock(void)
 195{
 196        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 197        if (spin_is_locked(&pdc_lock))
 198                spin_unlock(&pdc_lock);
 199}
 200
 201
 202/**
 203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 204 * @address: Address to be verified.
 205 *
 206 * This PDC call attempts to read from the specified address and verifies
 207 * if the address is valid.
 208 * 
 209 * The return value is PDC_OK (0) in case accessing this address is valid.
 210 */
 211int pdc_add_valid(unsigned long address)
 212{
 213        int retval;
 214        unsigned long flags;
 215
 216        spin_lock_irqsave(&pdc_lock, flags);
 217        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 218        spin_unlock_irqrestore(&pdc_lock, flags);
 219
 220        return retval;
 221}
 222EXPORT_SYMBOL(pdc_add_valid);
 223
 224/**
 225 * pdc_chassis_info - Return chassis information.
 226 * @result: The return buffer.
 227 * @chassis_info: The memory buffer address.
 228 * @len: The size of the memory buffer address.
 229 *
 230 * An HVERSION dependent call for returning the chassis information.
 231 */
 232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 233{
 234        int retval;
 235        unsigned long flags;
 236
 237        spin_lock_irqsave(&pdc_lock, flags);
 238        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 239        memcpy(&pdc_result2, led_info, len);
 240        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 241                              __pa(pdc_result), __pa(pdc_result2), len);
 242        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 243        memcpy(led_info, pdc_result2, len);
 244        spin_unlock_irqrestore(&pdc_lock, flags);
 245
 246        return retval;
 247}
 248
 249/**
 250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 251 * @retval: -1 on error, 0 on success. Other value are PDC errors
 252 * 
 253 * Must be correctly formatted or expect system crash
 254 */
 255#ifdef CONFIG_64BIT
 256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 257{
 258        int retval = 0;
 259        unsigned long flags;
 260        
 261        if (!is_pdc_pat())
 262                return -1;
 263
 264        spin_lock_irqsave(&pdc_lock, flags);
 265        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 266        spin_unlock_irqrestore(&pdc_lock, flags);
 267
 268        return retval;
 269}
 270#endif
 271
 272/**
 273 * pdc_chassis_disp - Updates chassis code
 274 * @retval: -1 on error, 0 on success
 275 */
 276int pdc_chassis_disp(unsigned long disp)
 277{
 278        int retval = 0;
 279        unsigned long flags;
 280
 281        spin_lock_irqsave(&pdc_lock, flags);
 282        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 283        spin_unlock_irqrestore(&pdc_lock, flags);
 284
 285        return retval;
 286}
 287
 288/**
 289 * pdc_chassis_warn - Fetches chassis warnings
 290 * @retval: -1 on error, 0 on success
 291 */
 292int pdc_chassis_warn(unsigned long *warn)
 293{
 294        int retval = 0;
 295        unsigned long flags;
 296
 297        spin_lock_irqsave(&pdc_lock, flags);
 298        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 299        *warn = pdc_result[0];
 300        spin_unlock_irqrestore(&pdc_lock, flags);
 301
 302        return retval;
 303}
 304
 305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 306{
 307        int ret;
 308
 309        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 310        convert_to_wide(pdc_result);
 311        pdc_coproc_info->ccr_functional = pdc_result[0];
 312        pdc_coproc_info->ccr_present = pdc_result[1];
 313        pdc_coproc_info->revision = pdc_result[17];
 314        pdc_coproc_info->model = pdc_result[18];
 315
 316        return ret;
 317}
 318
 319/**
 320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 321 * @pdc_coproc_info: Return buffer address.
 322 *
 323 * This PDC call returns the presence and status of all the coprocessors
 324 * attached to the processor.
 325 */
 326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 327{
 328        int ret;
 329        unsigned long flags;
 330
 331        spin_lock_irqsave(&pdc_lock, flags);
 332        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 333        spin_unlock_irqrestore(&pdc_lock, flags);
 334
 335        return ret;
 336}
 337
 338/**
 339 * pdc_iodc_read - Read data from the modules IODC.
 340 * @actcnt: The actual number of bytes.
 341 * @hpa: The HPA of the module for the iodc read.
 342 * @index: The iodc entry point.
 343 * @iodc_data: A buffer memory for the iodc options.
 344 * @iodc_data_size: Size of the memory buffer.
 345 *
 346 * This PDC call reads from the IODC of the module specified by the hpa
 347 * argument.
 348 */
 349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 350                  void *iodc_data, unsigned int iodc_data_size)
 351{
 352        int retval;
 353        unsigned long flags;
 354
 355        spin_lock_irqsave(&pdc_lock, flags);
 356        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 357                              index, __pa(pdc_result2), iodc_data_size);
 358        convert_to_wide(pdc_result);
 359        *actcnt = pdc_result[0];
 360        memcpy(iodc_data, pdc_result2, iodc_data_size);
 361        spin_unlock_irqrestore(&pdc_lock, flags);
 362
 363        return retval;
 364}
 365EXPORT_SYMBOL(pdc_iodc_read);
 366
 367/**
 368 * pdc_system_map_find_mods - Locate unarchitected modules.
 369 * @pdc_mod_info: Return buffer address.
 370 * @mod_path: pointer to dev path structure.
 371 * @mod_index: fixed address module index.
 372 *
 373 * To locate and identify modules which reside at fixed I/O addresses, which
 374 * do not self-identify via architected bus walks.
 375 */
 376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 377                             struct pdc_module_path *mod_path, long mod_index)
 378{
 379        int retval;
 380        unsigned long flags;
 381
 382        spin_lock_irqsave(&pdc_lock, flags);
 383        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 384                              __pa(pdc_result2), mod_index);
 385        convert_to_wide(pdc_result);
 386        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 387        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 388        spin_unlock_irqrestore(&pdc_lock, flags);
 389
 390        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 391        return retval;
 392}
 393
 394/**
 395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 396 * @pdc_addr_info: Return buffer address.
 397 * @mod_index: Fixed address module index.
 398 * @addr_index: Address range index.
 399 * 
 400 * Retrieve additional information about subsequent address ranges for modules
 401 * with multiple address ranges.  
 402 */
 403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 404                              long mod_index, long addr_index)
 405{
 406        int retval;
 407        unsigned long flags;
 408
 409        spin_lock_irqsave(&pdc_lock, flags);
 410        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 411                              mod_index, addr_index);
 412        convert_to_wide(pdc_result);
 413        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 414        spin_unlock_irqrestore(&pdc_lock, flags);
 415
 416        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 417        return retval;
 418}
 419
 420/**
 421 * pdc_model_info - Return model information about the processor.
 422 * @model: The return buffer.
 423 *
 424 * Returns the version numbers, identifiers, and capabilities from the processor module.
 425 */
 426int pdc_model_info(struct pdc_model *model) 
 427{
 428        int retval;
 429        unsigned long flags;
 430
 431        spin_lock_irqsave(&pdc_lock, flags);
 432        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 433        convert_to_wide(pdc_result);
 434        memcpy(model, pdc_result, sizeof(*model));
 435        spin_unlock_irqrestore(&pdc_lock, flags);
 436
 437        return retval;
 438}
 439
 440/**
 441 * pdc_model_sysmodel - Get the system model name.
 442 * @name: A char array of at least 81 characters.
 443 *
 444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 446 * on HP/UX.
 447 */
 448int pdc_model_sysmodel(char *name)
 449{
 450        int retval;
 451        unsigned long flags;
 452
 453        spin_lock_irqsave(&pdc_lock, flags);
 454        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 455                              OS_ID_HPUX, __pa(name));
 456        convert_to_wide(pdc_result);
 457
 458        if (retval == PDC_OK) {
 459                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 460        } else {
 461                name[0] = 0;
 462        }
 463        spin_unlock_irqrestore(&pdc_lock, flags);
 464
 465        return retval;
 466}
 467
 468/**
 469 * pdc_model_versions - Identify the version number of each processor.
 470 * @cpu_id: The return buffer.
 471 * @id: The id of the processor to check.
 472 *
 473 * Returns the version number for each processor component.
 474 *
 475 * This comment was here before, but I do not know what it means :( -RB
 476 * id: 0 = cpu revision, 1 = boot-rom-version
 477 */
 478int pdc_model_versions(unsigned long *versions, int id)
 479{
 480        int retval;
 481        unsigned long flags;
 482
 483        spin_lock_irqsave(&pdc_lock, flags);
 484        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 485        convert_to_wide(pdc_result);
 486        *versions = pdc_result[0];
 487        spin_unlock_irqrestore(&pdc_lock, flags);
 488
 489        return retval;
 490}
 491
 492/**
 493 * pdc_model_cpuid - Returns the CPU_ID.
 494 * @cpu_id: The return buffer.
 495 *
 496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 497 * the processor module.
 498 */
 499int pdc_model_cpuid(unsigned long *cpu_id)
 500{
 501        int retval;
 502        unsigned long flags;
 503
 504        spin_lock_irqsave(&pdc_lock, flags);
 505        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 506        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 507        convert_to_wide(pdc_result);
 508        *cpu_id = pdc_result[0];
 509        spin_unlock_irqrestore(&pdc_lock, flags);
 510
 511        return retval;
 512}
 513
 514/**
 515 * pdc_model_capabilities - Returns the platform capabilities.
 516 * @capabilities: The return buffer.
 517 *
 518 * Returns information about platform support for 32- and/or 64-bit
 519 * OSes, IO-PDIR coherency, and virtual aliasing.
 520 */
 521int pdc_model_capabilities(unsigned long *capabilities)
 522{
 523        int retval;
 524        unsigned long flags;
 525
 526        spin_lock_irqsave(&pdc_lock, flags);
 527        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 528        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 529        convert_to_wide(pdc_result);
 530        if (retval == PDC_OK) {
 531                *capabilities = pdc_result[0];
 532        } else {
 533                *capabilities = PDC_MODEL_OS32;
 534        }
 535        spin_unlock_irqrestore(&pdc_lock, flags);
 536
 537        return retval;
 538}
 539
 540/**
 541 * pdc_cache_info - Return cache and TLB information.
 542 * @cache_info: The return buffer.
 543 *
 544 * Returns information about the processor's cache and TLB.
 545 */
 546int pdc_cache_info(struct pdc_cache_info *cache_info)
 547{
 548        int retval;
 549        unsigned long flags;
 550
 551        spin_lock_irqsave(&pdc_lock, flags);
 552        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 553        convert_to_wide(pdc_result);
 554        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 555        spin_unlock_irqrestore(&pdc_lock, flags);
 556
 557        return retval;
 558}
 559
 560/**
 561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 562 * @space_bits: Should be 0, if not, bad mojo!
 563 *
 564 * Returns information about Space ID hashing.
 565 */
 566int pdc_spaceid_bits(unsigned long *space_bits)
 567{
 568        int retval;
 569        unsigned long flags;
 570
 571        spin_lock_irqsave(&pdc_lock, flags);
 572        pdc_result[0] = 0;
 573        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 574        convert_to_wide(pdc_result);
 575        *space_bits = pdc_result[0];
 576        spin_unlock_irqrestore(&pdc_lock, flags);
 577
 578        return retval;
 579}
 580
 581#ifndef CONFIG_PA20
 582/**
 583 * pdc_btlb_info - Return block TLB information.
 584 * @btlb: The return buffer.
 585 *
 586 * Returns information about the hardware Block TLB.
 587 */
 588int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 589{
 590        int retval;
 591        unsigned long flags;
 592
 593        spin_lock_irqsave(&pdc_lock, flags);
 594        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 595        memcpy(btlb, pdc_result, sizeof(*btlb));
 596        spin_unlock_irqrestore(&pdc_lock, flags);
 597
 598        if(retval < 0) {
 599                btlb->max_size = 0;
 600        }
 601        return retval;
 602}
 603
 604/**
 605 * pdc_mem_map_hpa - Find fixed module information.  
 606 * @address: The return buffer
 607 * @mod_path: pointer to dev path structure.
 608 *
 609 * This call was developed for S700 workstations to allow the kernel to find
 610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 612 * call.
 613 *
 614 * This call is supported by all existing S700 workstations (up to  Gecko).
 615 */
 616int pdc_mem_map_hpa(struct pdc_memory_map *address,
 617                struct pdc_module_path *mod_path)
 618{
 619        int retval;
 620        unsigned long flags;
 621
 622        spin_lock_irqsave(&pdc_lock, flags);
 623        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 624        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 625                                __pa(pdc_result2));
 626        memcpy(address, pdc_result, sizeof(*address));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        return retval;
 630}
 631#endif  /* !CONFIG_PA20 */
 632
 633/**
 634 * pdc_lan_station_id - Get the LAN address.
 635 * @lan_addr: The return buffer.
 636 * @hpa: The network device HPA.
 637 *
 638 * Get the LAN station address when it is not directly available from the LAN hardware.
 639 */
 640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 641{
 642        int retval;
 643        unsigned long flags;
 644
 645        spin_lock_irqsave(&pdc_lock, flags);
 646        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 647                        __pa(pdc_result), hpa);
 648        if (retval < 0) {
 649                /* FIXME: else read MAC from NVRAM */
 650                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 651        } else {
 652                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 653        }
 654        spin_unlock_irqrestore(&pdc_lock, flags);
 655
 656        return retval;
 657}
 658EXPORT_SYMBOL(pdc_lan_station_id);
 659
 660/**
 661 * pdc_stable_read - Read data from Stable Storage.
 662 * @staddr: Stable Storage address to access.
 663 * @memaddr: The memory address where Stable Storage data shall be copied.
 664 * @count: number of bytes to transfer. count is multiple of 4.
 665 *
 666 * This PDC call reads from the Stable Storage address supplied in staddr
 667 * and copies count bytes to the memory address memaddr.
 668 * The call will fail if staddr+count > PDC_STABLE size.
 669 */
 670int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 671{
 672       int retval;
 673        unsigned long flags;
 674
 675       spin_lock_irqsave(&pdc_lock, flags);
 676       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 677               __pa(pdc_result), count);
 678       convert_to_wide(pdc_result);
 679       memcpy(memaddr, pdc_result, count);
 680       spin_unlock_irqrestore(&pdc_lock, flags);
 681
 682       return retval;
 683}
 684EXPORT_SYMBOL(pdc_stable_read);
 685
 686/**
 687 * pdc_stable_write - Write data to Stable Storage.
 688 * @staddr: Stable Storage address to access.
 689 * @memaddr: The memory address where Stable Storage data shall be read from.
 690 * @count: number of bytes to transfer. count is multiple of 4.
 691 *
 692 * This PDC call reads count bytes from the supplied memaddr address,
 693 * and copies count bytes to the Stable Storage address staddr.
 694 * The call will fail if staddr+count > PDC_STABLE size.
 695 */
 696int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 697{
 698       int retval;
 699        unsigned long flags;
 700
 701       spin_lock_irqsave(&pdc_lock, flags);
 702       memcpy(pdc_result, memaddr, count);
 703       convert_to_wide(pdc_result);
 704       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 705               __pa(pdc_result), count);
 706       spin_unlock_irqrestore(&pdc_lock, flags);
 707
 708       return retval;
 709}
 710EXPORT_SYMBOL(pdc_stable_write);
 711
 712/**
 713 * pdc_stable_get_size - Get Stable Storage size in bytes.
 714 * @size: pointer where the size will be stored.
 715 *
 716 * This PDC call returns the number of bytes in the processor's Stable
 717 * Storage, which is the number of contiguous bytes implemented in Stable
 718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 719 * which is a multiple of four.
 720 */
 721int pdc_stable_get_size(unsigned long *size)
 722{
 723       int retval;
 724        unsigned long flags;
 725
 726       spin_lock_irqsave(&pdc_lock, flags);
 727       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 728       *size = pdc_result[0];
 729       spin_unlock_irqrestore(&pdc_lock, flags);
 730
 731       return retval;
 732}
 733EXPORT_SYMBOL(pdc_stable_get_size);
 734
 735/**
 736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 737 *
 738 * This PDC call is meant to be used to check the integrity of the current
 739 * contents of Stable Storage.
 740 */
 741int pdc_stable_verify_contents(void)
 742{
 743       int retval;
 744        unsigned long flags;
 745
 746       spin_lock_irqsave(&pdc_lock, flags);
 747       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 748       spin_unlock_irqrestore(&pdc_lock, flags);
 749
 750       return retval;
 751}
 752EXPORT_SYMBOL(pdc_stable_verify_contents);
 753
 754/**
 755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 756 * the validity indicator.
 757 *
 758 * This PDC call will erase all contents of Stable Storage. Use with care!
 759 */
 760int pdc_stable_initialize(void)
 761{
 762       int retval;
 763        unsigned long flags;
 764
 765       spin_lock_irqsave(&pdc_lock, flags);
 766       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 767       spin_unlock_irqrestore(&pdc_lock, flags);
 768
 769       return retval;
 770}
 771EXPORT_SYMBOL(pdc_stable_initialize);
 772
 773/**
 774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 775 * @hwpath: fully bc.mod style path to the device.
 776 * @initiator: the array to return the result into
 777 *
 778 * Get the SCSI operational parameters from PDC.
 779 * Needed since HPUX never used BIOS or symbios card NVRAM.
 780 * Most ncr/sym cards won't have an entry and just use whatever
 781 * capabilities of the card are (eg Ultra, LVD). But there are
 782 * several cases where it's useful:
 783 *    o set SCSI id for Multi-initiator clusters,
 784 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 785 *    o bus width exported is less than what the interface chip supports.
 786 */
 787int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 788{
 789        int retval;
 790        unsigned long flags;
 791
 792        spin_lock_irqsave(&pdc_lock, flags);
 793
 794/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 795#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 796        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 797
 798        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 799                              __pa(pdc_result), __pa(hwpath));
 800        if (retval < PDC_OK)
 801                goto out;
 802
 803        if (pdc_result[0] < 16) {
 804                initiator->host_id = pdc_result[0];
 805        } else {
 806                initiator->host_id = -1;
 807        }
 808
 809        /*
 810         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 811         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 812         */
 813        switch (pdc_result[1]) {
 814                case  1: initiator->factor = 50; break;
 815                case  2: initiator->factor = 25; break;
 816                case  5: initiator->factor = 12; break;
 817                case 25: initiator->factor = 10; break;
 818                case 20: initiator->factor = 12; break;
 819                case 40: initiator->factor = 10; break;
 820                default: initiator->factor = -1; break;
 821        }
 822
 823        if (IS_SPROCKETS()) {
 824                initiator->width = pdc_result[4];
 825                initiator->mode = pdc_result[5];
 826        } else {
 827                initiator->width = -1;
 828                initiator->mode = -1;
 829        }
 830
 831 out:
 832        spin_unlock_irqrestore(&pdc_lock, flags);
 833
 834        return (retval >= PDC_OK);
 835}
 836EXPORT_SYMBOL(pdc_get_initiator);
 837
 838
 839/**
 840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 841 * @num_entries: The return value.
 842 * @hpa: The HPA for the device.
 843 *
 844 * This PDC function returns the number of entries in the specified cell's
 845 * interrupt table.
 846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 847 */ 
 848int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 849{
 850        int retval;
 851        unsigned long flags;
 852
 853        spin_lock_irqsave(&pdc_lock, flags);
 854        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 855                              __pa(pdc_result), hpa);
 856        convert_to_wide(pdc_result);
 857        *num_entries = pdc_result[0];
 858        spin_unlock_irqrestore(&pdc_lock, flags);
 859
 860        return retval;
 861}
 862
 863/** 
 864 * pdc_pci_irt - Get the PCI interrupt routing table.
 865 * @num_entries: The number of entries in the table.
 866 * @hpa: The Hard Physical Address of the device.
 867 * @tbl: 
 868 *
 869 * Get the PCI interrupt routing table for the device at the given HPA.
 870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 871 */
 872int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 873{
 874        int retval;
 875        unsigned long flags;
 876
 877        BUG_ON((unsigned long)tbl & 0x7);
 878
 879        spin_lock_irqsave(&pdc_lock, flags);
 880        pdc_result[0] = num_entries;
 881        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 882                              __pa(pdc_result), hpa, __pa(tbl));
 883        spin_unlock_irqrestore(&pdc_lock, flags);
 884
 885        return retval;
 886}
 887
 888
 889#if 0   /* UNTEST CODE - left here in case someone needs it */
 890
 891/** 
 892 * pdc_pci_config_read - read PCI config space.
 893 * @hpa         token from PDC to indicate which PCI device
 894 * @pci_addr    configuration space address to read from
 895 *
 896 * Read PCI Configuration space *before* linux PCI subsystem is running.
 897 */
 898unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 899{
 900        int retval;
 901        unsigned long flags;
 902
 903        spin_lock_irqsave(&pdc_lock, flags);
 904        pdc_result[0] = 0;
 905        pdc_result[1] = 0;
 906        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 907                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 908        spin_unlock_irqrestore(&pdc_lock, flags);
 909
 910        return retval ? ~0 : (unsigned int) pdc_result[0];
 911}
 912
 913
 914/** 
 915 * pdc_pci_config_write - read PCI config space.
 916 * @hpa         token from PDC to indicate which PCI device
 917 * @pci_addr    configuration space address to write
 918 * @val         value we want in the 32-bit register
 919 *
 920 * Write PCI Configuration space *before* linux PCI subsystem is running.
 921 */
 922void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 923{
 924        int retval;
 925        unsigned long flags;
 926
 927        spin_lock_irqsave(&pdc_lock, flags);
 928        pdc_result[0] = 0;
 929        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 930                              __pa(pdc_result), hpa,
 931                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 932        spin_unlock_irqrestore(&pdc_lock, flags);
 933
 934        return retval;
 935}
 936#endif /* UNTESTED CODE */
 937
 938/**
 939 * pdc_tod_read - Read the Time-Of-Day clock.
 940 * @tod: The return buffer:
 941 *
 942 * Read the Time-Of-Day clock
 943 */
 944int pdc_tod_read(struct pdc_tod *tod)
 945{
 946        int retval;
 947        unsigned long flags;
 948
 949        spin_lock_irqsave(&pdc_lock, flags);
 950        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 951        convert_to_wide(pdc_result);
 952        memcpy(tod, pdc_result, sizeof(*tod));
 953        spin_unlock_irqrestore(&pdc_lock, flags);
 954
 955        return retval;
 956}
 957EXPORT_SYMBOL(pdc_tod_read);
 958
 959/**
 960 * pdc_tod_set - Set the Time-Of-Day clock.
 961 * @sec: The number of seconds since epoch.
 962 * @usec: The number of micro seconds.
 963 *
 964 * Set the Time-Of-Day clock.
 965 */ 
 966int pdc_tod_set(unsigned long sec, unsigned long usec)
 967{
 968        int retval;
 969        unsigned long flags;
 970
 971        spin_lock_irqsave(&pdc_lock, flags);
 972        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 973        spin_unlock_irqrestore(&pdc_lock, flags);
 974
 975        return retval;
 976}
 977EXPORT_SYMBOL(pdc_tod_set);
 978
 979#ifdef CONFIG_64BIT
 980int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 981                struct pdc_memory_table *tbl, unsigned long entries)
 982{
 983        int retval;
 984        unsigned long flags;
 985
 986        spin_lock_irqsave(&pdc_lock, flags);
 987        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 988        convert_to_wide(pdc_result);
 989        memcpy(r_addr, pdc_result, sizeof(*r_addr));
 990        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 991        spin_unlock_irqrestore(&pdc_lock, flags);
 992
 993        return retval;
 994}
 995#endif /* CONFIG_64BIT */
 996
 997/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 998 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 999 * it later. :)
1000 */
1001int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002{
1003        int retval;
1004        unsigned long flags;
1005
1006        spin_lock_irqsave(&pdc_lock, flags);
1007        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009        spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011        return retval;
1012}
1013
1014/*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
1019int pdc_do_reset(void)
1020{
1021        int retval;
1022        unsigned long flags;
1023
1024        spin_lock_irqsave(&pdc_lock, flags);
1025        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026        spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028        return retval;
1029}
1030
1031/*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
1037int __init pdc_soft_power_info(unsigned long *power_reg)
1038{
1039        int retval;
1040        unsigned long flags;
1041
1042        *power_reg = (unsigned long) (-1);
1043        
1044        spin_lock_irqsave(&pdc_lock, flags);
1045        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046        if (retval == PDC_OK) {
1047                convert_to_wide(pdc_result);
1048                *power_reg = f_extend(pdc_result[0]);
1049        }
1050        spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052        return retval;
1053}
1054
1055/*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control 
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut 
1063 * down the system. Under hardware control pressing the power button 
1064 * powers off the system immediately.
1065 */
1066int pdc_soft_power_button(int sw_control)
1067{
1068        int retval;
1069        unsigned long flags;
1070
1071        spin_lock_irqsave(&pdc_lock, flags);
1072        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073        spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075        return retval;
1076}
1077
1078/*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
1083void pdc_io_reset(void)
1084{
1085        unsigned long flags;
1086
1087        spin_lock_irqsave(&pdc_lock, flags);
1088        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089        spin_unlock_irqrestore(&pdc_lock, flags);
1090}
1091
1092/*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu 
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
1101void pdc_io_reset_devices(void)
1102{
1103        unsigned long flags;
1104
1105        spin_lock_irqsave(&pdc_lock, flags);
1106        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107        spin_unlock_irqrestore(&pdc_lock, flags);
1108}
1109
1110/* locked by pdc_console_lock */
1111static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114/**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
1124int pdc_iodc_print(const unsigned char *str, unsigned count)
1125{
1126        unsigned int i;
1127        unsigned long flags;
1128
1129        for (i = 0; i < count;) {
1130                switch(str[i]) {
1131                case '\n':
1132                        iodc_dbuf[i+0] = '\r';
1133                        iodc_dbuf[i+1] = '\n';
1134                        i += 2;
1135                        goto print;
1136                default:
1137                        iodc_dbuf[i] = str[i];
1138                        i++;
1139                        break;
1140                }
1141        }
1142
1143print:
1144        spin_lock_irqsave(&pdc_lock, flags);
1145        real32_call(PAGE0->mem_cons.iodc_io,
1146                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149        spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151        return i;
1152}
1153
1154/**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
1160int pdc_iodc_getc(void)
1161{
1162        int ch;
1163        int status;
1164        unsigned long flags;
1165
1166        /* Bail if no console input device. */
1167        if (!PAGE0->mem_kbd.iodc_io)
1168                return 0;
1169        
1170        /* wait for a keyboard (rs232)-input */
1171        spin_lock_irqsave(&pdc_lock, flags);
1172        real32_call(PAGE0->mem_kbd.iodc_io,
1173                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1175                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177        ch = *iodc_dbuf;
1178        status = *iodc_retbuf;
1179        spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181        if (status == 0)
1182            return -1;
1183        
1184        return ch;
1185}
1186
1187int pdc_sti_call(unsigned long func, unsigned long flags,
1188                 unsigned long inptr, unsigned long outputr,
1189                 unsigned long glob_cfg)
1190{
1191        int retval;
1192        unsigned long irqflags;
1193
1194        spin_lock_irqsave(&pdc_lock, irqflags);  
1195        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196        spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198        return retval;
1199}
1200EXPORT_SYMBOL(pdc_sti_call);
1201
1202#ifdef CONFIG_64BIT
1203/**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
1210int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211{
1212        int retval;
1213        unsigned long flags;
1214
1215        spin_lock_irqsave(&pdc_lock, flags);
1216        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218        spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220        return retval;
1221}
1222
1223/**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
1234int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235                        unsigned long view_type, void *mem_addr)
1236{
1237        int retval;
1238        unsigned long flags;
1239        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241        spin_lock_irqsave(&pdc_lock, flags);
1242        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1243                              ploc, mod, view_type, __pa(&result));
1244        if(!retval) {
1245                *actcnt = pdc_result[0];
1246                memcpy(mem_addr, &result, *actcnt);
1247        }
1248        spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250        return retval;
1251}
1252
1253/**
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
1260int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261{
1262        int retval;
1263        unsigned long flags;
1264
1265        spin_lock_irqsave(&pdc_lock, flags);
1266        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267                              __pa(&pdc_result), hpa);
1268        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269        spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271        return retval;
1272}
1273
1274/**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
1282int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283{
1284        int retval;
1285        unsigned long flags;
1286
1287        spin_lock_irqsave(&pdc_lock, flags);
1288        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289                              __pa(pdc_result), cell_num);
1290        *num_entries = pdc_result[0];
1291        spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293        return retval;
1294}
1295
1296/**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
1303int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304{
1305        int retval;
1306        unsigned long flags;
1307
1308        spin_lock_irqsave(&pdc_lock, flags);
1309        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310                              __pa(r_addr), cell_num);
1311        spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313        return retval;
1314}
1315
1316/**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
1324int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1325                            unsigned long count, unsigned long offset)
1326{
1327        int retval;
1328        unsigned long flags;
1329
1330        spin_lock_irqsave(&pdc_lock, flags);
1331        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1332                              __pa(pdc_result2), count, offset);
1333        *actual_len = pdc_result[0];
1334        memcpy(mem_addr, pdc_result2, *actual_len);
1335        spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337        return retval;
1338}
1339
1340/**
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
1347int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348{
1349        int retval;
1350        unsigned long flags;
1351
1352        spin_lock_irqsave(&pdc_lock, flags);
1353        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354                                        __pa(pdc_result), pci_addr, pci_size);
1355        switch(pci_size) {
1356                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1357                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1358                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1359        }
1360        spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362        return retval;
1363}
1364
1365/**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write  request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1370 *         written to PCI Config space.
1371 *
1372 */
1373int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374{
1375        int retval;
1376        unsigned long flags;
1377
1378        spin_lock_irqsave(&pdc_lock, flags);
1379        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380                                pci_addr, pci_size, val);
1381        spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383        return retval;
1384}
1385#endif /* CONFIG_64BIT */
1386
1387
1388/***************** 32-bit real-mode calls ***********/
1389/* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394struct narrow_stack {
1395        /* use int, not long which is 64 bits */
1396        unsigned int arg13;
1397        unsigned int arg12;
1398        unsigned int arg11;
1399        unsigned int arg10;
1400        unsigned int arg9;
1401        unsigned int arg8;
1402        unsigned int arg7;
1403        unsigned int arg6;
1404        unsigned int arg5;
1405        unsigned int arg4;
1406        unsigned int arg3;
1407        unsigned int arg2;
1408        unsigned int arg1;
1409        unsigned int arg0;
1410        unsigned int frame_marker[8];
1411        unsigned int sp;
1412        /* in reality, there's nearly 8k of stack after this */
1413};
1414
1415long real32_call(unsigned long fn, ...)
1416{
1417        va_list args;
1418        extern struct narrow_stack real_stack;
1419        extern unsigned long real32_call_asm(unsigned int *,
1420                                             unsigned int *, 
1421                                             unsigned int);
1422        
1423        va_start(args, fn);
1424        real_stack.arg0 = va_arg(args, unsigned int);
1425        real_stack.arg1 = va_arg(args, unsigned int);
1426        real_stack.arg2 = va_arg(args, unsigned int);
1427        real_stack.arg3 = va_arg(args, unsigned int);
1428        real_stack.arg4 = va_arg(args, unsigned int);
1429        real_stack.arg5 = va_arg(args, unsigned int);
1430        real_stack.arg6 = va_arg(args, unsigned int);
1431        real_stack.arg7 = va_arg(args, unsigned int);
1432        real_stack.arg8 = va_arg(args, unsigned int);
1433        real_stack.arg9 = va_arg(args, unsigned int);
1434        real_stack.arg10 = va_arg(args, unsigned int);
1435        real_stack.arg11 = va_arg(args, unsigned int);
1436        real_stack.arg12 = va_arg(args, unsigned int);
1437        real_stack.arg13 = va_arg(args, unsigned int);
1438        va_end(args);
1439        
1440        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441}
1442
1443#ifdef CONFIG_64BIT
1444/***************** 64-bit real-mode calls ***********/
1445
1446struct wide_stack {
1447        unsigned long arg0;
1448        unsigned long arg1;
1449        unsigned long arg2;
1450        unsigned long arg3;
1451        unsigned long arg4;
1452        unsigned long arg5;
1453        unsigned long arg6;
1454        unsigned long arg7;
1455        unsigned long arg8;
1456        unsigned long arg9;
1457        unsigned long arg10;
1458        unsigned long arg11;
1459        unsigned long arg12;
1460        unsigned long arg13;
1461        unsigned long frame_marker[2];  /* rp, previous sp */
1462        unsigned long sp;
1463        /* in reality, there's nearly 8k of stack after this */
1464};
1465
1466long real64_call(unsigned long fn, ...)
1467{
1468        va_list args;
1469        extern struct wide_stack real64_stack;
1470        extern unsigned long real64_call_asm(unsigned long *,
1471                                             unsigned long *, 
1472                                             unsigned long);
1473    
1474        va_start(args, fn);
1475        real64_stack.arg0 = va_arg(args, unsigned long);
1476        real64_stack.arg1 = va_arg(args, unsigned long);
1477        real64_stack.arg2 = va_arg(args, unsigned long);
1478        real64_stack.arg3 = va_arg(args, unsigned long);
1479        real64_stack.arg4 = va_arg(args, unsigned long);
1480        real64_stack.arg5 = va_arg(args, unsigned long);
1481        real64_stack.arg6 = va_arg(args, unsigned long);
1482        real64_stack.arg7 = va_arg(args, unsigned long);
1483        real64_stack.arg8 = va_arg(args, unsigned long);
1484        real64_stack.arg9 = va_arg(args, unsigned long);
1485        real64_stack.arg10 = va_arg(args, unsigned long);
1486        real64_stack.arg11 = va_arg(args, unsigned long);
1487        real64_stack.arg12 = va_arg(args, unsigned long);
1488        real64_stack.arg13 = va_arg(args, unsigned long);
1489        va_end(args);
1490        
1491        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492}
1493
1494#endif /* CONFIG_64BIT */
1495
1496