linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
  42#define SCHED_RESET_ON_FORK     0x40000000
  43
  44#ifdef __KERNEL__
  45
  46struct sched_param {
  47        int sched_priority;
  48};
  49
  50#include <asm/param.h>  /* for HZ */
  51
  52#include <linux/capability.h>
  53#include <linux/threads.h>
  54#include <linux/kernel.h>
  55#include <linux/types.h>
  56#include <linux/timex.h>
  57#include <linux/jiffies.h>
  58#include <linux/rbtree.h>
  59#include <linux/thread_info.h>
  60#include <linux/cpumask.h>
  61#include <linux/errno.h>
  62#include <linux/nodemask.h>
  63#include <linux/mm_types.h>
  64
  65#include <asm/system.h>
  66#include <asm/page.h>
  67#include <asm/ptrace.h>
  68#include <asm/cputime.h>
  69
  70#include <linux/smp.h>
  71#include <linux/sem.h>
  72#include <linux/signal.h>
  73#include <linux/path.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rculist.h>
  83#include <linux/rtmutex.h>
  84
  85#include <linux/time.h>
  86#include <linux/param.h>
  87#include <linux/resource.h>
  88#include <linux/timer.h>
  89#include <linux/hrtimer.h>
  90#include <linux/task_io_accounting.h>
  91#include <linux/kobject.h>
  92#include <linux/latencytop.h>
  93#include <linux/cred.h>
  94
  95#include <asm/processor.h>
  96
  97struct exec_domain;
  98struct futex_pi_state;
  99struct robust_list_head;
 100struct bio_list;
 101struct fs_struct;
 102struct perf_event_context;
 103
 104/*
 105 * List of flags we want to share for kernel threads,
 106 * if only because they are not used by them anyway.
 107 */
 108#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 109
 110/*
 111 * These are the constant used to fake the fixed-point load-average
 112 * counting. Some notes:
 113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 114 *    a load-average precision of 10 bits integer + 11 bits fractional
 115 *  - if you want to count load-averages more often, you need more
 116 *    precision, or rounding will get you. With 2-second counting freq,
 117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 118 *    11 bit fractions.
 119 */
 120extern unsigned long avenrun[];         /* Load averages */
 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 122
 123#define FSHIFT          11              /* nr of bits of precision */
 124#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 125#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 126#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 127#define EXP_5           2014            /* 1/exp(5sec/5min) */
 128#define EXP_15          2037            /* 1/exp(5sec/15min) */
 129
 130#define CALC_LOAD(load,exp,n) \
 131        load *= exp; \
 132        load += n*(FIXED_1-exp); \
 133        load >>= FSHIFT;
 134
 135extern unsigned long total_forks;
 136extern int nr_threads;
 137DECLARE_PER_CPU(unsigned long, process_counts);
 138extern int nr_processes(void);
 139extern unsigned long nr_running(void);
 140extern unsigned long nr_uninterruptible(void);
 141extern unsigned long nr_iowait(void);
 142extern unsigned long nr_iowait_cpu(int cpu);
 143extern unsigned long this_cpu_load(void);
 144
 145
 146extern void calc_global_load(void);
 147
 148extern unsigned long get_parent_ip(unsigned long addr);
 149
 150struct seq_file;
 151struct cfs_rq;
 152struct task_group;
 153#ifdef CONFIG_SCHED_DEBUG
 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 155extern void proc_sched_set_task(struct task_struct *p);
 156extern void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 158#else
 159static inline void
 160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 161{
 162}
 163static inline void proc_sched_set_task(struct task_struct *p)
 164{
 165}
 166static inline void
 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 168{
 169}
 170#endif
 171
 172/*
 173 * Task state bitmask. NOTE! These bits are also
 174 * encoded in fs/proc/array.c: get_task_state().
 175 *
 176 * We have two separate sets of flags: task->state
 177 * is about runnability, while task->exit_state are
 178 * about the task exiting. Confusing, but this way
 179 * modifying one set can't modify the other one by
 180 * mistake.
 181 */
 182#define TASK_RUNNING            0
 183#define TASK_INTERRUPTIBLE      1
 184#define TASK_UNINTERRUPTIBLE    2
 185#define __TASK_STOPPED          4
 186#define __TASK_TRACED           8
 187/* in tsk->exit_state */
 188#define EXIT_ZOMBIE             16
 189#define EXIT_DEAD               32
 190/* in tsk->state again */
 191#define TASK_DEAD               64
 192#define TASK_WAKEKILL           128
 193#define TASK_WAKING             256
 194#define TASK_STATE_MAX          512
 195
 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 197
 198extern char ___assert_task_state[1 - 2*!!(
 199                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 200
 201/* Convenience macros for the sake of set_task_state */
 202#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 203#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 204#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 205
 206/* Convenience macros for the sake of wake_up */
 207#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 208#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 209
 210/* get_task_state() */
 211#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 212                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 213                                 __TASK_TRACED)
 214
 215#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 216#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 217#define task_is_dead(task)      ((task)->exit_state != 0)
 218#define task_is_stopped_or_traced(task) \
 219                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 220#define task_contributes_to_load(task)  \
 221                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 222                                 (task->flags & PF_FREEZING) == 0)
 223
 224#define __set_task_state(tsk, state_value)              \
 225        do { (tsk)->state = (state_value); } while (0)
 226#define set_task_state(tsk, state_value)                \
 227        set_mb((tsk)->state, (state_value))
 228
 229/*
 230 * set_current_state() includes a barrier so that the write of current->state
 231 * is correctly serialised wrt the caller's subsequent test of whether to
 232 * actually sleep:
 233 *
 234 *      set_current_state(TASK_UNINTERRUPTIBLE);
 235 *      if (do_i_need_to_sleep())
 236 *              schedule();
 237 *
 238 * If the caller does not need such serialisation then use __set_current_state()
 239 */
 240#define __set_current_state(state_value)                        \
 241        do { current->state = (state_value); } while (0)
 242#define set_current_state(state_value)          \
 243        set_mb(current->state, (state_value))
 244
 245/* Task command name length */
 246#define TASK_COMM_LEN 16
 247
 248#include <linux/spinlock.h>
 249
 250/*
 251 * This serializes "schedule()" and also protects
 252 * the run-queue from deletions/modifications (but
 253 * _adding_ to the beginning of the run-queue has
 254 * a separate lock).
 255 */
 256extern rwlock_t tasklist_lock;
 257extern spinlock_t mmlist_lock;
 258
 259struct task_struct;
 260
 261#ifdef CONFIG_PROVE_RCU
 262extern int lockdep_tasklist_lock_is_held(void);
 263#endif /* #ifdef CONFIG_PROVE_RCU */
 264
 265extern void sched_init(void);
 266extern void sched_init_smp(void);
 267extern asmlinkage void schedule_tail(struct task_struct *prev);
 268extern void init_idle(struct task_struct *idle, int cpu);
 269extern void init_idle_bootup_task(struct task_struct *idle);
 270
 271extern int runqueue_is_locked(int cpu);
 272
 273extern cpumask_var_t nohz_cpu_mask;
 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 275extern void select_nohz_load_balancer(int stop_tick);
 276extern int get_nohz_timer_target(void);
 277#else
 278static inline void select_nohz_load_balancer(int stop_tick) { }
 279#endif
 280
 281/*
 282 * Only dump TASK_* tasks. (0 for all tasks)
 283 */
 284extern void show_state_filter(unsigned long state_filter);
 285
 286static inline void show_state(void)
 287{
 288        show_state_filter(0);
 289}
 290
 291extern void show_regs(struct pt_regs *);
 292
 293/*
 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 295 * task), SP is the stack pointer of the first frame that should be shown in the back
 296 * trace (or NULL if the entire call-chain of the task should be shown).
 297 */
 298extern void show_stack(struct task_struct *task, unsigned long *sp);
 299
 300void io_schedule(void);
 301long io_schedule_timeout(long timeout);
 302
 303extern void cpu_init (void);
 304extern void trap_init(void);
 305extern void update_process_times(int user);
 306extern void scheduler_tick(void);
 307
 308extern void sched_show_task(struct task_struct *p);
 309
 310#ifdef CONFIG_LOCKUP_DETECTOR
 311extern void touch_softlockup_watchdog(void);
 312extern void touch_softlockup_watchdog_sync(void);
 313extern void touch_all_softlockup_watchdogs(void);
 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 315                                  void __user *buffer,
 316                                  size_t *lenp, loff_t *ppos);
 317extern unsigned int  softlockup_panic;
 318extern int softlockup_thresh;
 319#else
 320static inline void touch_softlockup_watchdog(void)
 321{
 322}
 323static inline void touch_softlockup_watchdog_sync(void)
 324{
 325}
 326static inline void touch_all_softlockup_watchdogs(void)
 327{
 328}
 329#endif
 330
 331#ifdef CONFIG_DETECT_HUNG_TASK
 332extern unsigned int  sysctl_hung_task_panic;
 333extern unsigned long sysctl_hung_task_check_count;
 334extern unsigned long sysctl_hung_task_timeout_secs;
 335extern unsigned long sysctl_hung_task_warnings;
 336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 337                                         void __user *buffer,
 338                                         size_t *lenp, loff_t *ppos);
 339#endif
 340
 341/* Attach to any functions which should be ignored in wchan output. */
 342#define __sched         __attribute__((__section__(".sched.text")))
 343
 344/* Linker adds these: start and end of __sched functions */
 345extern char __sched_text_start[], __sched_text_end[];
 346
 347/* Is this address in the __sched functions? */
 348extern int in_sched_functions(unsigned long addr);
 349
 350#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 351extern signed long schedule_timeout(signed long timeout);
 352extern signed long schedule_timeout_interruptible(signed long timeout);
 353extern signed long schedule_timeout_killable(signed long timeout);
 354extern signed long schedule_timeout_uninterruptible(signed long timeout);
 355asmlinkage void schedule(void);
 356extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
 357
 358struct nsproxy;
 359struct user_namespace;
 360
 361/*
 362 * Default maximum number of active map areas, this limits the number of vmas
 363 * per mm struct. Users can overwrite this number by sysctl but there is a
 364 * problem.
 365 *
 366 * When a program's coredump is generated as ELF format, a section is created
 367 * per a vma. In ELF, the number of sections is represented in unsigned short.
 368 * This means the number of sections should be smaller than 65535 at coredump.
 369 * Because the kernel adds some informative sections to a image of program at
 370 * generating coredump, we need some margin. The number of extra sections is
 371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 372 */
 373#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 374#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 375
 376extern int sysctl_max_map_count;
 377
 378#include <linux/aio.h>
 379
 380#ifdef CONFIG_MMU
 381extern void arch_pick_mmap_layout(struct mm_struct *mm);
 382extern unsigned long
 383arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 384                       unsigned long, unsigned long);
 385extern unsigned long
 386arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 387                          unsigned long len, unsigned long pgoff,
 388                          unsigned long flags);
 389extern void arch_unmap_area(struct mm_struct *, unsigned long);
 390extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 391#else
 392static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 393#endif
 394
 395
 396extern void set_dumpable(struct mm_struct *mm, int value);
 397extern int get_dumpable(struct mm_struct *mm);
 398
 399/* mm flags */
 400/* dumpable bits */
 401#define MMF_DUMPABLE      0  /* core dump is permitted */
 402#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 403
 404#define MMF_DUMPABLE_BITS 2
 405#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 406
 407/* coredump filter bits */
 408#define MMF_DUMP_ANON_PRIVATE   2
 409#define MMF_DUMP_ANON_SHARED    3
 410#define MMF_DUMP_MAPPED_PRIVATE 4
 411#define MMF_DUMP_MAPPED_SHARED  5
 412#define MMF_DUMP_ELF_HEADERS    6
 413#define MMF_DUMP_HUGETLB_PRIVATE 7
 414#define MMF_DUMP_HUGETLB_SHARED  8
 415
 416#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 417#define MMF_DUMP_FILTER_BITS    7
 418#define MMF_DUMP_FILTER_MASK \
 419        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 420#define MMF_DUMP_FILTER_DEFAULT \
 421        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 422         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 423
 424#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 425# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 426#else
 427# define MMF_DUMP_MASK_DEFAULT_ELF      0
 428#endif
 429                                        /* leave room for more dump flags */
 430#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 431
 432#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 433
 434struct sighand_struct {
 435        atomic_t                count;
 436        struct k_sigaction      action[_NSIG];
 437        spinlock_t              siglock;
 438        wait_queue_head_t       signalfd_wqh;
 439};
 440
 441struct pacct_struct {
 442        int                     ac_flag;
 443        long                    ac_exitcode;
 444        unsigned long           ac_mem;
 445        cputime_t               ac_utime, ac_stime;
 446        unsigned long           ac_minflt, ac_majflt;
 447};
 448
 449struct cpu_itimer {
 450        cputime_t expires;
 451        cputime_t incr;
 452        u32 error;
 453        u32 incr_error;
 454};
 455
 456/**
 457 * struct task_cputime - collected CPU time counts
 458 * @utime:              time spent in user mode, in &cputime_t units
 459 * @stime:              time spent in kernel mode, in &cputime_t units
 460 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 461 *
 462 * This structure groups together three kinds of CPU time that are
 463 * tracked for threads and thread groups.  Most things considering
 464 * CPU time want to group these counts together and treat all three
 465 * of them in parallel.
 466 */
 467struct task_cputime {
 468        cputime_t utime;
 469        cputime_t stime;
 470        unsigned long long sum_exec_runtime;
 471};
 472/* Alternate field names when used to cache expirations. */
 473#define prof_exp        stime
 474#define virt_exp        utime
 475#define sched_exp       sum_exec_runtime
 476
 477#define INIT_CPUTIME    \
 478        (struct task_cputime) {                                 \
 479                .utime = cputime_zero,                          \
 480                .stime = cputime_zero,                          \
 481                .sum_exec_runtime = 0,                          \
 482        }
 483
 484/*
 485 * Disable preemption until the scheduler is running.
 486 * Reset by start_kernel()->sched_init()->init_idle().
 487 *
 488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 489 * before the scheduler is active -- see should_resched().
 490 */
 491#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 492
 493/**
 494 * struct thread_group_cputimer - thread group interval timer counts
 495 * @cputime:            thread group interval timers.
 496 * @running:            non-zero when there are timers running and
 497 *                      @cputime receives updates.
 498 * @lock:               lock for fields in this struct.
 499 *
 500 * This structure contains the version of task_cputime, above, that is
 501 * used for thread group CPU timer calculations.
 502 */
 503struct thread_group_cputimer {
 504        struct task_cputime cputime;
 505        int running;
 506        spinlock_t lock;
 507};
 508
 509/*
 510 * NOTE! "signal_struct" does not have it's own
 511 * locking, because a shared signal_struct always
 512 * implies a shared sighand_struct, so locking
 513 * sighand_struct is always a proper superset of
 514 * the locking of signal_struct.
 515 */
 516struct signal_struct {
 517        atomic_t                sigcnt;
 518        atomic_t                live;
 519        int                     nr_threads;
 520
 521        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 522
 523        /* current thread group signal load-balancing target: */
 524        struct task_struct      *curr_target;
 525
 526        /* shared signal handling: */
 527        struct sigpending       shared_pending;
 528
 529        /* thread group exit support */
 530        int                     group_exit_code;
 531        /* overloaded:
 532         * - notify group_exit_task when ->count is equal to notify_count
 533         * - everyone except group_exit_task is stopped during signal delivery
 534         *   of fatal signals, group_exit_task processes the signal.
 535         */
 536        int                     notify_count;
 537        struct task_struct      *group_exit_task;
 538
 539        /* thread group stop support, overloads group_exit_code too */
 540        int                     group_stop_count;
 541        unsigned int            flags; /* see SIGNAL_* flags below */
 542
 543        /* POSIX.1b Interval Timers */
 544        struct list_head posix_timers;
 545
 546        /* ITIMER_REAL timer for the process */
 547        struct hrtimer real_timer;
 548        struct pid *leader_pid;
 549        ktime_t it_real_incr;
 550
 551        /*
 552         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 553         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 554         * values are defined to 0 and 1 respectively
 555         */
 556        struct cpu_itimer it[2];
 557
 558        /*
 559         * Thread group totals for process CPU timers.
 560         * See thread_group_cputimer(), et al, for details.
 561         */
 562        struct thread_group_cputimer cputimer;
 563
 564        /* Earliest-expiration cache. */
 565        struct task_cputime cputime_expires;
 566
 567        struct list_head cpu_timers[3];
 568
 569        struct pid *tty_old_pgrp;
 570
 571        /* boolean value for session group leader */
 572        int leader;
 573
 574        struct tty_struct *tty; /* NULL if no tty */
 575
 576        /*
 577         * Cumulative resource counters for dead threads in the group,
 578         * and for reaped dead child processes forked by this group.
 579         * Live threads maintain their own counters and add to these
 580         * in __exit_signal, except for the group leader.
 581         */
 582        cputime_t utime, stime, cutime, cstime;
 583        cputime_t gtime;
 584        cputime_t cgtime;
 585#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 586        cputime_t prev_utime, prev_stime;
 587#endif
 588        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 589        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 590        unsigned long inblock, oublock, cinblock, coublock;
 591        unsigned long maxrss, cmaxrss;
 592        struct task_io_accounting ioac;
 593
 594        /*
 595         * Cumulative ns of schedule CPU time fo dead threads in the
 596         * group, not including a zombie group leader, (This only differs
 597         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 598         * other than jiffies.)
 599         */
 600        unsigned long long sum_sched_runtime;
 601
 602        /*
 603         * We don't bother to synchronize most readers of this at all,
 604         * because there is no reader checking a limit that actually needs
 605         * to get both rlim_cur and rlim_max atomically, and either one
 606         * alone is a single word that can safely be read normally.
 607         * getrlimit/setrlimit use task_lock(current->group_leader) to
 608         * protect this instead of the siglock, because they really
 609         * have no need to disable irqs.
 610         */
 611        struct rlimit rlim[RLIM_NLIMITS];
 612
 613#ifdef CONFIG_BSD_PROCESS_ACCT
 614        struct pacct_struct pacct;      /* per-process accounting information */
 615#endif
 616#ifdef CONFIG_TASKSTATS
 617        struct taskstats *stats;
 618#endif
 619#ifdef CONFIG_AUDIT
 620        unsigned audit_tty;
 621        struct tty_audit_buf *tty_audit_buf;
 622#endif
 623
 624        int oom_adj;            /* OOM kill score adjustment (bit shift) */
 625        int oom_score_adj;      /* OOM kill score adjustment */
 626};
 627
 628/* Context switch must be unlocked if interrupts are to be enabled */
 629#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 630# define __ARCH_WANT_UNLOCKED_CTXSW
 631#endif
 632
 633/*
 634 * Bits in flags field of signal_struct.
 635 */
 636#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 637#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 638#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 639#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 640/*
 641 * Pending notifications to parent.
 642 */
 643#define SIGNAL_CLD_STOPPED      0x00000010
 644#define SIGNAL_CLD_CONTINUED    0x00000020
 645#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 646
 647#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 648
 649/* If true, all threads except ->group_exit_task have pending SIGKILL */
 650static inline int signal_group_exit(const struct signal_struct *sig)
 651{
 652        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 653                (sig->group_exit_task != NULL);
 654}
 655
 656/*
 657 * Some day this will be a full-fledged user tracking system..
 658 */
 659struct user_struct {
 660        atomic_t __count;       /* reference count */
 661        atomic_t processes;     /* How many processes does this user have? */
 662        atomic_t files;         /* How many open files does this user have? */
 663        atomic_t sigpending;    /* How many pending signals does this user have? */
 664#ifdef CONFIG_INOTIFY_USER
 665        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 666        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 667#endif
 668#ifdef CONFIG_EPOLL
 669        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 670#endif
 671#ifdef CONFIG_POSIX_MQUEUE
 672        /* protected by mq_lock */
 673        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 674#endif
 675        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 676
 677#ifdef CONFIG_KEYS
 678        struct key *uid_keyring;        /* UID specific keyring */
 679        struct key *session_keyring;    /* UID's default session keyring */
 680#endif
 681
 682        /* Hash table maintenance information */
 683        struct hlist_node uidhash_node;
 684        uid_t uid;
 685        struct user_namespace *user_ns;
 686
 687#ifdef CONFIG_PERF_EVENTS
 688        atomic_long_t locked_vm;
 689#endif
 690};
 691
 692extern int uids_sysfs_init(void);
 693
 694extern struct user_struct *find_user(uid_t);
 695
 696extern struct user_struct root_user;
 697#define INIT_USER (&root_user)
 698
 699
 700struct backing_dev_info;
 701struct reclaim_state;
 702
 703#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 704struct sched_info {
 705        /* cumulative counters */
 706        unsigned long pcount;         /* # of times run on this cpu */
 707        unsigned long long run_delay; /* time spent waiting on a runqueue */
 708
 709        /* timestamps */
 710        unsigned long long last_arrival,/* when we last ran on a cpu */
 711                           last_queued; /* when we were last queued to run */
 712#ifdef CONFIG_SCHEDSTATS
 713        /* BKL stats */
 714        unsigned int bkl_count;
 715#endif
 716};
 717#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 718
 719#ifdef CONFIG_TASK_DELAY_ACCT
 720struct task_delay_info {
 721        spinlock_t      lock;
 722        unsigned int    flags;  /* Private per-task flags */
 723
 724        /* For each stat XXX, add following, aligned appropriately
 725         *
 726         * struct timespec XXX_start, XXX_end;
 727         * u64 XXX_delay;
 728         * u32 XXX_count;
 729         *
 730         * Atomicity of updates to XXX_delay, XXX_count protected by
 731         * single lock above (split into XXX_lock if contention is an issue).
 732         */
 733
 734        /*
 735         * XXX_count is incremented on every XXX operation, the delay
 736         * associated with the operation is added to XXX_delay.
 737         * XXX_delay contains the accumulated delay time in nanoseconds.
 738         */
 739        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 740        u64 blkio_delay;        /* wait for sync block io completion */
 741        u64 swapin_delay;       /* wait for swapin block io completion */
 742        u32 blkio_count;        /* total count of the number of sync block */
 743                                /* io operations performed */
 744        u32 swapin_count;       /* total count of the number of swapin block */
 745                                /* io operations performed */
 746
 747        struct timespec freepages_start, freepages_end;
 748        u64 freepages_delay;    /* wait for memory reclaim */
 749        u32 freepages_count;    /* total count of memory reclaim */
 750};
 751#endif  /* CONFIG_TASK_DELAY_ACCT */
 752
 753static inline int sched_info_on(void)
 754{
 755#ifdef CONFIG_SCHEDSTATS
 756        return 1;
 757#elif defined(CONFIG_TASK_DELAY_ACCT)
 758        extern int delayacct_on;
 759        return delayacct_on;
 760#else
 761        return 0;
 762#endif
 763}
 764
 765enum cpu_idle_type {
 766        CPU_IDLE,
 767        CPU_NOT_IDLE,
 768        CPU_NEWLY_IDLE,
 769        CPU_MAX_IDLE_TYPES
 770};
 771
 772/*
 773 * sched-domains (multiprocessor balancing) declarations:
 774 */
 775
 776/*
 777 * Increase resolution of nice-level calculations:
 778 */
 779#define SCHED_LOAD_SHIFT        10
 780#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 781
 782#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 783
 784#ifdef CONFIG_SMP
 785#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 786#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 787#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 788#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 789#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 790#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 791#define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
 792#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 793#define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
 794#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 795#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 796#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
 797#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 798
 799enum powersavings_balance_level {
 800        POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 801        POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
 802                                         * first for long running threads
 803                                         */
 804        POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
 805                                         * cpu package for power savings
 806                                         */
 807        MAX_POWERSAVINGS_BALANCE_LEVELS
 808};
 809
 810extern int sched_mc_power_savings, sched_smt_power_savings;
 811
 812static inline int sd_balance_for_mc_power(void)
 813{
 814        if (sched_smt_power_savings)
 815                return SD_POWERSAVINGS_BALANCE;
 816
 817        if (!sched_mc_power_savings)
 818                return SD_PREFER_SIBLING;
 819
 820        return 0;
 821}
 822
 823static inline int sd_balance_for_package_power(void)
 824{
 825        if (sched_mc_power_savings | sched_smt_power_savings)
 826                return SD_POWERSAVINGS_BALANCE;
 827
 828        return SD_PREFER_SIBLING;
 829}
 830
 831extern int __weak arch_sd_sibiling_asym_packing(void);
 832
 833/*
 834 * Optimise SD flags for power savings:
 835 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 836 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 837 */
 838
 839static inline int sd_power_saving_flags(void)
 840{
 841        if (sched_mc_power_savings | sched_smt_power_savings)
 842                return SD_BALANCE_NEWIDLE;
 843
 844        return 0;
 845}
 846
 847struct sched_group {
 848        struct sched_group *next;       /* Must be a circular list */
 849
 850        /*
 851         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 852         * single CPU.
 853         */
 854        unsigned int cpu_power, cpu_power_orig;
 855
 856        /*
 857         * The CPUs this group covers.
 858         *
 859         * NOTE: this field is variable length. (Allocated dynamically
 860         * by attaching extra space to the end of the structure,
 861         * depending on how many CPUs the kernel has booted up with)
 862         *
 863         * It is also be embedded into static data structures at build
 864         * time. (See 'struct static_sched_group' in kernel/sched.c)
 865         */
 866        unsigned long cpumask[0];
 867};
 868
 869static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 870{
 871        return to_cpumask(sg->cpumask);
 872}
 873
 874enum sched_domain_level {
 875        SD_LV_NONE = 0,
 876        SD_LV_SIBLING,
 877        SD_LV_MC,
 878        SD_LV_CPU,
 879        SD_LV_NODE,
 880        SD_LV_ALLNODES,
 881        SD_LV_MAX
 882};
 883
 884struct sched_domain_attr {
 885        int relax_domain_level;
 886};
 887
 888#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 889        .relax_domain_level = -1,                       \
 890}
 891
 892struct sched_domain {
 893        /* These fields must be setup */
 894        struct sched_domain *parent;    /* top domain must be null terminated */
 895        struct sched_domain *child;     /* bottom domain must be null terminated */
 896        struct sched_group *groups;     /* the balancing groups of the domain */
 897        unsigned long min_interval;     /* Minimum balance interval ms */
 898        unsigned long max_interval;     /* Maximum balance interval ms */
 899        unsigned int busy_factor;       /* less balancing by factor if busy */
 900        unsigned int imbalance_pct;     /* No balance until over watermark */
 901        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 902        unsigned int busy_idx;
 903        unsigned int idle_idx;
 904        unsigned int newidle_idx;
 905        unsigned int wake_idx;
 906        unsigned int forkexec_idx;
 907        unsigned int smt_gain;
 908        int flags;                      /* See SD_* */
 909        enum sched_domain_level level;
 910
 911        /* Runtime fields. */
 912        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 913        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 914        unsigned int nr_balance_failed; /* initialise to 0 */
 915
 916        u64 last_update;
 917
 918#ifdef CONFIG_SCHEDSTATS
 919        /* load_balance() stats */
 920        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 921        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 922        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 923        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 924        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 925        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 926        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 927        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 928
 929        /* Active load balancing */
 930        unsigned int alb_count;
 931        unsigned int alb_failed;
 932        unsigned int alb_pushed;
 933
 934        /* SD_BALANCE_EXEC stats */
 935        unsigned int sbe_count;
 936        unsigned int sbe_balanced;
 937        unsigned int sbe_pushed;
 938
 939        /* SD_BALANCE_FORK stats */
 940        unsigned int sbf_count;
 941        unsigned int sbf_balanced;
 942        unsigned int sbf_pushed;
 943
 944        /* try_to_wake_up() stats */
 945        unsigned int ttwu_wake_remote;
 946        unsigned int ttwu_move_affine;
 947        unsigned int ttwu_move_balance;
 948#endif
 949#ifdef CONFIG_SCHED_DEBUG
 950        char *name;
 951#endif
 952
 953        unsigned int span_weight;
 954        /*
 955         * Span of all CPUs in this domain.
 956         *
 957         * NOTE: this field is variable length. (Allocated dynamically
 958         * by attaching extra space to the end of the structure,
 959         * depending on how many CPUs the kernel has booted up with)
 960         *
 961         * It is also be embedded into static data structures at build
 962         * time. (See 'struct static_sched_domain' in kernel/sched.c)
 963         */
 964        unsigned long span[0];
 965};
 966
 967static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 968{
 969        return to_cpumask(sd->span);
 970}
 971
 972extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 973                                    struct sched_domain_attr *dattr_new);
 974
 975/* Allocate an array of sched domains, for partition_sched_domains(). */
 976cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 977void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 978
 979/* Test a flag in parent sched domain */
 980static inline int test_sd_parent(struct sched_domain *sd, int flag)
 981{
 982        if (sd->parent && (sd->parent->flags & flag))
 983                return 1;
 984
 985        return 0;
 986}
 987
 988unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
 989unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
 990
 991#else /* CONFIG_SMP */
 992
 993struct sched_domain_attr;
 994
 995static inline void
 996partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 997                        struct sched_domain_attr *dattr_new)
 998{
 999}
1000#endif  /* !CONFIG_SMP */
1001
1002
1003struct io_context;                      /* See blkdev.h */
1004
1005
1006#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1007extern void prefetch_stack(struct task_struct *t);
1008#else
1009static inline void prefetch_stack(struct task_struct *t) { }
1010#endif
1011
1012struct audit_context;           /* See audit.c */
1013struct mempolicy;
1014struct pipe_inode_info;
1015struct uts_namespace;
1016
1017struct rq;
1018struct sched_domain;
1019
1020/*
1021 * wake flags
1022 */
1023#define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1024#define WF_FORK         0x02            /* child wakeup after fork */
1025
1026#define ENQUEUE_WAKEUP          1
1027#define ENQUEUE_WAKING          2
1028#define ENQUEUE_HEAD            4
1029
1030#define DEQUEUE_SLEEP           1
1031
1032struct sched_class {
1033        const struct sched_class *next;
1034
1035        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1036        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1037        void (*yield_task) (struct rq *rq);
1038
1039        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1040
1041        struct task_struct * (*pick_next_task) (struct rq *rq);
1042        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1043
1044#ifdef CONFIG_SMP
1045        int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1046                               int sd_flag, int flags);
1047
1048        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1049        void (*post_schedule) (struct rq *this_rq);
1050        void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1051        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1052
1053        void (*set_cpus_allowed)(struct task_struct *p,
1054                                 const struct cpumask *newmask);
1055
1056        void (*rq_online)(struct rq *rq);
1057        void (*rq_offline)(struct rq *rq);
1058#endif
1059
1060        void (*set_curr_task) (struct rq *rq);
1061        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1062        void (*task_fork) (struct task_struct *p);
1063
1064        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1065                               int running);
1066        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1067                             int running);
1068        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1069                             int oldprio, int running);
1070
1071        unsigned int (*get_rr_interval) (struct rq *rq,
1072                                         struct task_struct *task);
1073
1074#ifdef CONFIG_FAIR_GROUP_SCHED
1075        void (*moved_group) (struct task_struct *p, int on_rq);
1076#endif
1077};
1078
1079struct load_weight {
1080        unsigned long weight, inv_weight;
1081};
1082
1083#ifdef CONFIG_SCHEDSTATS
1084struct sched_statistics {
1085        u64                     wait_start;
1086        u64                     wait_max;
1087        u64                     wait_count;
1088        u64                     wait_sum;
1089        u64                     iowait_count;
1090        u64                     iowait_sum;
1091
1092        u64                     sleep_start;
1093        u64                     sleep_max;
1094        s64                     sum_sleep_runtime;
1095
1096        u64                     block_start;
1097        u64                     block_max;
1098        u64                     exec_max;
1099        u64                     slice_max;
1100
1101        u64                     nr_migrations_cold;
1102        u64                     nr_failed_migrations_affine;
1103        u64                     nr_failed_migrations_running;
1104        u64                     nr_failed_migrations_hot;
1105        u64                     nr_forced_migrations;
1106
1107        u64                     nr_wakeups;
1108        u64                     nr_wakeups_sync;
1109        u64                     nr_wakeups_migrate;
1110        u64                     nr_wakeups_local;
1111        u64                     nr_wakeups_remote;
1112        u64                     nr_wakeups_affine;
1113        u64                     nr_wakeups_affine_attempts;
1114        u64                     nr_wakeups_passive;
1115        u64                     nr_wakeups_idle;
1116};
1117#endif
1118
1119struct sched_entity {
1120        struct load_weight      load;           /* for load-balancing */
1121        struct rb_node          run_node;
1122        struct list_head        group_node;
1123        unsigned int            on_rq;
1124
1125        u64                     exec_start;
1126        u64                     sum_exec_runtime;
1127        u64                     vruntime;
1128        u64                     prev_sum_exec_runtime;
1129
1130        u64                     nr_migrations;
1131
1132#ifdef CONFIG_SCHEDSTATS
1133        struct sched_statistics statistics;
1134#endif
1135
1136#ifdef CONFIG_FAIR_GROUP_SCHED
1137        struct sched_entity     *parent;
1138        /* rq on which this entity is (to be) queued: */
1139        struct cfs_rq           *cfs_rq;
1140        /* rq "owned" by this entity/group: */
1141        struct cfs_rq           *my_q;
1142#endif
1143};
1144
1145struct sched_rt_entity {
1146        struct list_head run_list;
1147        unsigned long timeout;
1148        unsigned int time_slice;
1149        int nr_cpus_allowed;
1150
1151        struct sched_rt_entity *back;
1152#ifdef CONFIG_RT_GROUP_SCHED
1153        struct sched_rt_entity  *parent;
1154        /* rq on which this entity is (to be) queued: */
1155        struct rt_rq            *rt_rq;
1156        /* rq "owned" by this entity/group: */
1157        struct rt_rq            *my_q;
1158#endif
1159};
1160
1161struct rcu_node;
1162
1163struct task_struct {
1164        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1165        void *stack;
1166        atomic_t usage;
1167        unsigned int flags;     /* per process flags, defined below */
1168        unsigned int ptrace;
1169
1170        int lock_depth;         /* BKL lock depth */
1171
1172#ifdef CONFIG_SMP
1173#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1174        int oncpu;
1175#endif
1176#endif
1177
1178        int prio, static_prio, normal_prio;
1179        unsigned int rt_priority;
1180        const struct sched_class *sched_class;
1181        struct sched_entity se;
1182        struct sched_rt_entity rt;
1183
1184#ifdef CONFIG_PREEMPT_NOTIFIERS
1185        /* list of struct preempt_notifier: */
1186        struct hlist_head preempt_notifiers;
1187#endif
1188
1189        /*
1190         * fpu_counter contains the number of consecutive context switches
1191         * that the FPU is used. If this is over a threshold, the lazy fpu
1192         * saving becomes unlazy to save the trap. This is an unsigned char
1193         * so that after 256 times the counter wraps and the behavior turns
1194         * lazy again; this to deal with bursty apps that only use FPU for
1195         * a short time
1196         */
1197        unsigned char fpu_counter;
1198#ifdef CONFIG_BLK_DEV_IO_TRACE
1199        unsigned int btrace_seq;
1200#endif
1201
1202        unsigned int policy;
1203        cpumask_t cpus_allowed;
1204
1205#ifdef CONFIG_TREE_PREEMPT_RCU
1206        int rcu_read_lock_nesting;
1207        char rcu_read_unlock_special;
1208        struct rcu_node *rcu_blocked_node;
1209        struct list_head rcu_node_entry;
1210#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1211
1212#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1213        struct sched_info sched_info;
1214#endif
1215
1216        struct list_head tasks;
1217        struct plist_node pushable_tasks;
1218
1219        struct mm_struct *mm, *active_mm;
1220#if defined(SPLIT_RSS_COUNTING)
1221        struct task_rss_stat    rss_stat;
1222#endif
1223/* task state */
1224        int exit_state;
1225        int exit_code, exit_signal;
1226        int pdeath_signal;  /*  The signal sent when the parent dies  */
1227        /* ??? */
1228        unsigned int personality;
1229        unsigned did_exec:1;
1230        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1231                                 * execve */
1232        unsigned in_iowait:1;
1233
1234
1235        /* Revert to default priority/policy when forking */
1236        unsigned sched_reset_on_fork:1;
1237
1238        pid_t pid;
1239        pid_t tgid;
1240
1241#ifdef CONFIG_CC_STACKPROTECTOR
1242        /* Canary value for the -fstack-protector gcc feature */
1243        unsigned long stack_canary;
1244#endif
1245
1246        /* 
1247         * pointers to (original) parent process, youngest child, younger sibling,
1248         * older sibling, respectively.  (p->father can be replaced with 
1249         * p->real_parent->pid)
1250         */
1251        struct task_struct *real_parent; /* real parent process */
1252        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1253        /*
1254         * children/sibling forms the list of my natural children
1255         */
1256        struct list_head children;      /* list of my children */
1257        struct list_head sibling;       /* linkage in my parent's children list */
1258        struct task_struct *group_leader;       /* threadgroup leader */
1259
1260        /*
1261         * ptraced is the list of tasks this task is using ptrace on.
1262         * This includes both natural children and PTRACE_ATTACH targets.
1263         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1264         */
1265        struct list_head ptraced;
1266        struct list_head ptrace_entry;
1267
1268        /* PID/PID hash table linkage. */
1269        struct pid_link pids[PIDTYPE_MAX];
1270        struct list_head thread_group;
1271
1272        struct completion *vfork_done;          /* for vfork() */
1273        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1274        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1275
1276        cputime_t utime, stime, utimescaled, stimescaled;
1277        cputime_t gtime;
1278#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1279        cputime_t prev_utime, prev_stime;
1280#endif
1281        unsigned long nvcsw, nivcsw; /* context switch counts */
1282        struct timespec start_time;             /* monotonic time */
1283        struct timespec real_start_time;        /* boot based time */
1284/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1285        unsigned long min_flt, maj_flt;
1286
1287        struct task_cputime cputime_expires;
1288        struct list_head cpu_timers[3];
1289
1290/* process credentials */
1291        const struct cred *real_cred;   /* objective and real subjective task
1292                                         * credentials (COW) */
1293        const struct cred *cred;        /* effective (overridable) subjective task
1294                                         * credentials (COW) */
1295        struct mutex cred_guard_mutex;  /* guard against foreign influences on
1296                                         * credential calculations
1297                                         * (notably. ptrace) */
1298        struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1299
1300        char comm[TASK_COMM_LEN]; /* executable name excluding path
1301                                     - access with [gs]et_task_comm (which lock
1302                                       it with task_lock())
1303                                     - initialized normally by setup_new_exec */
1304/* file system info */
1305        int link_count, total_link_count;
1306#ifdef CONFIG_SYSVIPC
1307/* ipc stuff */
1308        struct sysv_sem sysvsem;
1309#endif
1310#ifdef CONFIG_DETECT_HUNG_TASK
1311/* hung task detection */
1312        unsigned long last_switch_count;
1313#endif
1314/* CPU-specific state of this task */
1315        struct thread_struct thread;
1316/* filesystem information */
1317        struct fs_struct *fs;
1318/* open file information */
1319        struct files_struct *files;
1320/* namespaces */
1321        struct nsproxy *nsproxy;
1322/* signal handlers */
1323        struct signal_struct *signal;
1324        struct sighand_struct *sighand;
1325
1326        sigset_t blocked, real_blocked;
1327        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1328        struct sigpending pending;
1329
1330        unsigned long sas_ss_sp;
1331        size_t sas_ss_size;
1332        int (*notifier)(void *priv);
1333        void *notifier_data;
1334        sigset_t *notifier_mask;
1335        struct audit_context *audit_context;
1336#ifdef CONFIG_AUDITSYSCALL
1337        uid_t loginuid;
1338        unsigned int sessionid;
1339#endif
1340        seccomp_t seccomp;
1341
1342/* Thread group tracking */
1343        u32 parent_exec_id;
1344        u32 self_exec_id;
1345/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1346 * mempolicy */
1347        spinlock_t alloc_lock;
1348
1349#ifdef CONFIG_GENERIC_HARDIRQS
1350        /* IRQ handler threads */
1351        struct irqaction *irqaction;
1352#endif
1353
1354        /* Protection of the PI data structures: */
1355        raw_spinlock_t pi_lock;
1356
1357#ifdef CONFIG_RT_MUTEXES
1358        /* PI waiters blocked on a rt_mutex held by this task */
1359        struct plist_head pi_waiters;
1360        /* Deadlock detection and priority inheritance handling */
1361        struct rt_mutex_waiter *pi_blocked_on;
1362#endif
1363
1364#ifdef CONFIG_DEBUG_MUTEXES
1365        /* mutex deadlock detection */
1366        struct mutex_waiter *blocked_on;
1367#endif
1368#ifdef CONFIG_TRACE_IRQFLAGS
1369        unsigned int irq_events;
1370        unsigned long hardirq_enable_ip;
1371        unsigned long hardirq_disable_ip;
1372        unsigned int hardirq_enable_event;
1373        unsigned int hardirq_disable_event;
1374        int hardirqs_enabled;
1375        int hardirq_context;
1376        unsigned long softirq_disable_ip;
1377        unsigned long softirq_enable_ip;
1378        unsigned int softirq_disable_event;
1379        unsigned int softirq_enable_event;
1380        int softirqs_enabled;
1381        int softirq_context;
1382#endif
1383#ifdef CONFIG_LOCKDEP
1384# define MAX_LOCK_DEPTH 48UL
1385        u64 curr_chain_key;
1386        int lockdep_depth;
1387        unsigned int lockdep_recursion;
1388        struct held_lock held_locks[MAX_LOCK_DEPTH];
1389        gfp_t lockdep_reclaim_gfp;
1390#endif
1391
1392/* journalling filesystem info */
1393        void *journal_info;
1394
1395/* stacked block device info */
1396        struct bio_list *bio_list;
1397
1398/* VM state */
1399        struct reclaim_state *reclaim_state;
1400
1401        struct backing_dev_info *backing_dev_info;
1402
1403        struct io_context *io_context;
1404
1405        unsigned long ptrace_message;
1406        siginfo_t *last_siginfo; /* For ptrace use.  */
1407        struct task_io_accounting ioac;
1408#if defined(CONFIG_TASK_XACCT)
1409        u64 acct_rss_mem1;      /* accumulated rss usage */
1410        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1411        cputime_t acct_timexpd; /* stime + utime since last update */
1412#endif
1413#ifdef CONFIG_CPUSETS
1414        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1415        int mems_allowed_change_disable;
1416        int cpuset_mem_spread_rotor;
1417        int cpuset_slab_spread_rotor;
1418#endif
1419#ifdef CONFIG_CGROUPS
1420        /* Control Group info protected by css_set_lock */
1421        struct css_set *cgroups;
1422        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1423        struct list_head cg_list;
1424#endif
1425#ifdef CONFIG_FUTEX
1426        struct robust_list_head __user *robust_list;
1427#ifdef CONFIG_COMPAT
1428        struct compat_robust_list_head __user *compat_robust_list;
1429#endif
1430        struct list_head pi_state_list;
1431        struct futex_pi_state *pi_state_cache;
1432#endif
1433#ifdef CONFIG_PERF_EVENTS
1434        struct perf_event_context *perf_event_ctxp;
1435        struct mutex perf_event_mutex;
1436        struct list_head perf_event_list;
1437#endif
1438#ifdef CONFIG_NUMA
1439        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1440        short il_next;
1441#endif
1442        atomic_t fs_excl;       /* holding fs exclusive resources */
1443        struct rcu_head rcu;
1444
1445        /*
1446         * cache last used pipe for splice
1447         */
1448        struct pipe_inode_info *splice_pipe;
1449#ifdef  CONFIG_TASK_DELAY_ACCT
1450        struct task_delay_info *delays;
1451#endif
1452#ifdef CONFIG_FAULT_INJECTION
1453        int make_it_fail;
1454#endif
1455        struct prop_local_single dirties;
1456#ifdef CONFIG_LATENCYTOP
1457        int latency_record_count;
1458        struct latency_record latency_record[LT_SAVECOUNT];
1459#endif
1460        /*
1461         * time slack values; these are used to round up poll() and
1462         * select() etc timeout values. These are in nanoseconds.
1463         */
1464        unsigned long timer_slack_ns;
1465        unsigned long default_timer_slack_ns;
1466
1467        struct list_head        *scm_work_list;
1468#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1469        /* Index of current stored address in ret_stack */
1470        int curr_ret_stack;
1471        /* Stack of return addresses for return function tracing */
1472        struct ftrace_ret_stack *ret_stack;
1473        /* time stamp for last schedule */
1474        unsigned long long ftrace_timestamp;
1475        /*
1476         * Number of functions that haven't been traced
1477         * because of depth overrun.
1478         */
1479        atomic_t trace_overrun;
1480        /* Pause for the tracing */
1481        atomic_t tracing_graph_pause;
1482#endif
1483#ifdef CONFIG_TRACING
1484        /* state flags for use by tracers */
1485        unsigned long trace;
1486        /* bitmask of trace recursion */
1487        unsigned long trace_recursion;
1488#endif /* CONFIG_TRACING */
1489#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1490        struct memcg_batch_info {
1491                int do_batch;   /* incremented when batch uncharge started */
1492                struct mem_cgroup *memcg; /* target memcg of uncharge */
1493                unsigned long bytes;            /* uncharged usage */
1494                unsigned long memsw_bytes; /* uncharged mem+swap usage */
1495        } memcg_batch;
1496#endif
1497};
1498
1499/* Future-safe accessor for struct task_struct's cpus_allowed. */
1500#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1501
1502/*
1503 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1504 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1505 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1506 * values are inverted: lower p->prio value means higher priority.
1507 *
1508 * The MAX_USER_RT_PRIO value allows the actual maximum
1509 * RT priority to be separate from the value exported to
1510 * user-space.  This allows kernel threads to set their
1511 * priority to a value higher than any user task. Note:
1512 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1513 */
1514
1515#define MAX_USER_RT_PRIO        100
1516#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1517
1518#define MAX_PRIO                (MAX_RT_PRIO + 40)
1519#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1520
1521static inline int rt_prio(int prio)
1522{
1523        if (unlikely(prio < MAX_RT_PRIO))
1524                return 1;
1525        return 0;
1526}
1527
1528static inline int rt_task(struct task_struct *p)
1529{
1530        return rt_prio(p->prio);
1531}
1532
1533static inline struct pid *task_pid(struct task_struct *task)
1534{
1535        return task->pids[PIDTYPE_PID].pid;
1536}
1537
1538static inline struct pid *task_tgid(struct task_struct *task)
1539{
1540        return task->group_leader->pids[PIDTYPE_PID].pid;
1541}
1542
1543/*
1544 * Without tasklist or rcu lock it is not safe to dereference
1545 * the result of task_pgrp/task_session even if task == current,
1546 * we can race with another thread doing sys_setsid/sys_setpgid.
1547 */
1548static inline struct pid *task_pgrp(struct task_struct *task)
1549{
1550        return task->group_leader->pids[PIDTYPE_PGID].pid;
1551}
1552
1553static inline struct pid *task_session(struct task_struct *task)
1554{
1555        return task->group_leader->pids[PIDTYPE_SID].pid;
1556}
1557
1558struct pid_namespace;
1559
1560/*
1561 * the helpers to get the task's different pids as they are seen
1562 * from various namespaces
1563 *
1564 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1565 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1566 *                     current.
1567 * task_xid_nr_ns()  : id seen from the ns specified;
1568 *
1569 * set_task_vxid()   : assigns a virtual id to a task;
1570 *
1571 * see also pid_nr() etc in include/linux/pid.h
1572 */
1573pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1574                        struct pid_namespace *ns);
1575
1576static inline pid_t task_pid_nr(struct task_struct *tsk)
1577{
1578        return tsk->pid;
1579}
1580
1581static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1582                                        struct pid_namespace *ns)
1583{
1584        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1585}
1586
1587static inline pid_t task_pid_vnr(struct task_struct *tsk)
1588{
1589        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1590}
1591
1592
1593static inline pid_t task_tgid_nr(struct task_struct *tsk)
1594{
1595        return tsk->tgid;
1596}
1597
1598pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1599
1600static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601{
1602        return pid_vnr(task_tgid(tsk));
1603}
1604
1605
1606static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1607                                        struct pid_namespace *ns)
1608{
1609        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1610}
1611
1612static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1613{
1614        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1615}
1616
1617
1618static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1619                                        struct pid_namespace *ns)
1620{
1621        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1622}
1623
1624static inline pid_t task_session_vnr(struct task_struct *tsk)
1625{
1626        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1627}
1628
1629/* obsolete, do not use */
1630static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1631{
1632        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1633}
1634
1635/**
1636 * pid_alive - check that a task structure is not stale
1637 * @p: Task structure to be checked.
1638 *
1639 * Test if a process is not yet dead (at most zombie state)
1640 * If pid_alive fails, then pointers within the task structure
1641 * can be stale and must not be dereferenced.
1642 */
1643static inline int pid_alive(struct task_struct *p)
1644{
1645        return p->pids[PIDTYPE_PID].pid != NULL;
1646}
1647
1648/**
1649 * is_global_init - check if a task structure is init
1650 * @tsk: Task structure to be checked.
1651 *
1652 * Check if a task structure is the first user space task the kernel created.
1653 */
1654static inline int is_global_init(struct task_struct *tsk)
1655{
1656        return tsk->pid == 1;
1657}
1658
1659/*
1660 * is_container_init:
1661 * check whether in the task is init in its own pid namespace.
1662 */
1663extern int is_container_init(struct task_struct *tsk);
1664
1665extern struct pid *cad_pid;
1666
1667extern void free_task(struct task_struct *tsk);
1668#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1669
1670extern void __put_task_struct(struct task_struct *t);
1671
1672static inline void put_task_struct(struct task_struct *t)
1673{
1674        if (atomic_dec_and_test(&t->usage))
1675                __put_task_struct(t);
1676}
1677
1678extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1679extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1680
1681/*
1682 * Per process flags
1683 */
1684#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1685                                        /* Not implemented yet, only for 486*/
1686#define PF_STARTING     0x00000002      /* being created */
1687#define PF_EXITING      0x00000004      /* getting shut down */
1688#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1689#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1690#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1691#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1692#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1693#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1694#define PF_DUMPCORE     0x00000200      /* dumped core */
1695#define PF_SIGNALED     0x00000400      /* killed by a signal */
1696#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1697#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1698#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1699#define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1700#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1701#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1702#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1703#define PF_KSWAPD       0x00040000      /* I am kswapd */
1704#define PF_OOM_ORIGIN   0x00080000      /* Allocating much memory to others */
1705#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1706#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1707#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1708#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1709#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1710#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1711#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1712#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1713#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1714#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1715#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1716#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1717
1718/*
1719 * Only the _current_ task can read/write to tsk->flags, but other
1720 * tasks can access tsk->flags in readonly mode for example
1721 * with tsk_used_math (like during threaded core dumping).
1722 * There is however an exception to this rule during ptrace
1723 * or during fork: the ptracer task is allowed to write to the
1724 * child->flags of its traced child (same goes for fork, the parent
1725 * can write to the child->flags), because we're guaranteed the
1726 * child is not running and in turn not changing child->flags
1727 * at the same time the parent does it.
1728 */
1729#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1730#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1731#define clear_used_math() clear_stopped_child_used_math(current)
1732#define set_used_math() set_stopped_child_used_math(current)
1733#define conditional_stopped_child_used_math(condition, child) \
1734        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1735#define conditional_used_math(condition) \
1736        conditional_stopped_child_used_math(condition, current)
1737#define copy_to_stopped_child_used_math(child) \
1738        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1739/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1740#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1741#define used_math() tsk_used_math(current)
1742
1743#ifdef CONFIG_TREE_PREEMPT_RCU
1744
1745#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1746#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1747
1748static inline void rcu_copy_process(struct task_struct *p)
1749{
1750        p->rcu_read_lock_nesting = 0;
1751        p->rcu_read_unlock_special = 0;
1752        p->rcu_blocked_node = NULL;
1753        INIT_LIST_HEAD(&p->rcu_node_entry);
1754}
1755
1756#else
1757
1758static inline void rcu_copy_process(struct task_struct *p)
1759{
1760}
1761
1762#endif
1763
1764#ifdef CONFIG_SMP
1765extern int set_cpus_allowed_ptr(struct task_struct *p,
1766                                const struct cpumask *new_mask);
1767#else
1768static inline int set_cpus_allowed_ptr(struct task_struct *p,
1769                                       const struct cpumask *new_mask)
1770{
1771        if (!cpumask_test_cpu(0, new_mask))
1772                return -EINVAL;
1773        return 0;
1774}
1775#endif
1776
1777#ifndef CONFIG_CPUMASK_OFFSTACK
1778static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1779{
1780        return set_cpus_allowed_ptr(p, &new_mask);
1781}
1782#endif
1783
1784/*
1785 * Do not use outside of architecture code which knows its limitations.
1786 *
1787 * sched_clock() has no promise of monotonicity or bounded drift between
1788 * CPUs, use (which you should not) requires disabling IRQs.
1789 *
1790 * Please use one of the three interfaces below.
1791 */
1792extern unsigned long long notrace sched_clock(void);
1793/*
1794 * See the comment in kernel/sched_clock.c
1795 */
1796extern u64 cpu_clock(int cpu);
1797extern u64 local_clock(void);
1798extern u64 sched_clock_cpu(int cpu);
1799
1800
1801extern void sched_clock_init(void);
1802
1803#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804static inline void sched_clock_tick(void)
1805{
1806}
1807
1808static inline void sched_clock_idle_sleep_event(void)
1809{
1810}
1811
1812static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813{
1814}
1815#else
1816/*
1817 * Architectures can set this to 1 if they have specified
1818 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1819 * but then during bootup it turns out that sched_clock()
1820 * is reliable after all:
1821 */
1822extern int sched_clock_stable;
1823
1824extern void sched_clock_tick(void);
1825extern void sched_clock_idle_sleep_event(void);
1826extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1827#endif
1828
1829extern unsigned long long
1830task_sched_runtime(struct task_struct *task);
1831extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1832
1833/* sched_exec is called by processes performing an exec */
1834#ifdef CONFIG_SMP
1835extern void sched_exec(void);
1836#else
1837#define sched_exec()   {}
1838#endif
1839
1840extern void sched_clock_idle_sleep_event(void);
1841extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1842
1843#ifdef CONFIG_HOTPLUG_CPU
1844extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1845extern void idle_task_exit(void);
1846#else
1847static inline void idle_task_exit(void) {}
1848#endif
1849
1850extern void sched_idle_next(void);
1851
1852#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1853extern void wake_up_idle_cpu(int cpu);
1854#else
1855static inline void wake_up_idle_cpu(int cpu) { }
1856#endif
1857
1858extern unsigned int sysctl_sched_latency;
1859extern unsigned int sysctl_sched_min_granularity;
1860extern unsigned int sysctl_sched_wakeup_granularity;
1861extern unsigned int sysctl_sched_shares_ratelimit;
1862extern unsigned int sysctl_sched_shares_thresh;
1863extern unsigned int sysctl_sched_child_runs_first;
1864
1865enum sched_tunable_scaling {
1866        SCHED_TUNABLESCALING_NONE,
1867        SCHED_TUNABLESCALING_LOG,
1868        SCHED_TUNABLESCALING_LINEAR,
1869        SCHED_TUNABLESCALING_END,
1870};
1871extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1872
1873#ifdef CONFIG_SCHED_DEBUG
1874extern unsigned int sysctl_sched_migration_cost;
1875extern unsigned int sysctl_sched_nr_migrate;
1876extern unsigned int sysctl_sched_time_avg;
1877extern unsigned int sysctl_timer_migration;
1878
1879int sched_proc_update_handler(struct ctl_table *table, int write,
1880                void __user *buffer, size_t *length,
1881                loff_t *ppos);
1882#endif
1883#ifdef CONFIG_SCHED_DEBUG
1884static inline unsigned int get_sysctl_timer_migration(void)
1885{
1886        return sysctl_timer_migration;
1887}
1888#else
1889static inline unsigned int get_sysctl_timer_migration(void)
1890{
1891        return 1;
1892}
1893#endif
1894extern unsigned int sysctl_sched_rt_period;
1895extern int sysctl_sched_rt_runtime;
1896
1897int sched_rt_handler(struct ctl_table *table, int write,
1898                void __user *buffer, size_t *lenp,
1899                loff_t *ppos);
1900
1901extern unsigned int sysctl_sched_compat_yield;
1902
1903#ifdef CONFIG_RT_MUTEXES
1904extern int rt_mutex_getprio(struct task_struct *p);
1905extern void rt_mutex_setprio(struct task_struct *p, int prio);
1906extern void rt_mutex_adjust_pi(struct task_struct *p);
1907#else
1908static inline int rt_mutex_getprio(struct task_struct *p)
1909{
1910        return p->normal_prio;
1911}
1912# define rt_mutex_adjust_pi(p)          do { } while (0)
1913#endif
1914
1915extern void set_user_nice(struct task_struct *p, long nice);
1916extern int task_prio(const struct task_struct *p);
1917extern int task_nice(const struct task_struct *p);
1918extern int can_nice(const struct task_struct *p, const int nice);
1919extern int task_curr(const struct task_struct *p);
1920extern int idle_cpu(int cpu);
1921extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1922extern int sched_setscheduler_nocheck(struct task_struct *, int,
1923                                      struct sched_param *);
1924extern struct task_struct *idle_task(int cpu);
1925extern struct task_struct *curr_task(int cpu);
1926extern void set_curr_task(int cpu, struct task_struct *p);
1927
1928void yield(void);
1929
1930/*
1931 * The default (Linux) execution domain.
1932 */
1933extern struct exec_domain       default_exec_domain;
1934
1935union thread_union {
1936        struct thread_info thread_info;
1937        unsigned long stack[THREAD_SIZE/sizeof(long)];
1938};
1939
1940#ifndef __HAVE_ARCH_KSTACK_END
1941static inline int kstack_end(void *addr)
1942{
1943        /* Reliable end of stack detection:
1944         * Some APM bios versions misalign the stack
1945         */
1946        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1947}
1948#endif
1949
1950extern union thread_union init_thread_union;
1951extern struct task_struct init_task;
1952
1953extern struct   mm_struct init_mm;
1954
1955extern struct pid_namespace init_pid_ns;
1956
1957/*
1958 * find a task by one of its numerical ids
1959 *
1960 * find_task_by_pid_ns():
1961 *      finds a task by its pid in the specified namespace
1962 * find_task_by_vpid():
1963 *      finds a task by its virtual pid
1964 *
1965 * see also find_vpid() etc in include/linux/pid.h
1966 */
1967
1968extern struct task_struct *find_task_by_vpid(pid_t nr);
1969extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1970                struct pid_namespace *ns);
1971
1972extern void __set_special_pids(struct pid *pid);
1973
1974/* per-UID process charging. */
1975extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1976static inline struct user_struct *get_uid(struct user_struct *u)
1977{
1978        atomic_inc(&u->__count);
1979        return u;
1980}
1981extern void free_uid(struct user_struct *);
1982extern void release_uids(struct user_namespace *ns);
1983
1984#include <asm/current.h>
1985
1986extern void do_timer(unsigned long ticks);
1987
1988extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1989extern int wake_up_process(struct task_struct *tsk);
1990extern void wake_up_new_task(struct task_struct *tsk,
1991                                unsigned long clone_flags);
1992#ifdef CONFIG_SMP
1993 extern void kick_process(struct task_struct *tsk);
1994#else
1995 static inline void kick_process(struct task_struct *tsk) { }
1996#endif
1997extern void sched_fork(struct task_struct *p, int clone_flags);
1998extern void sched_dead(struct task_struct *p);
1999
2000extern void proc_caches_init(void);
2001extern void flush_signals(struct task_struct *);
2002extern void __flush_signals(struct task_struct *);
2003extern void ignore_signals(struct task_struct *);
2004extern void flush_signal_handlers(struct task_struct *, int force_default);
2005extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2006
2007static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2008{
2009        unsigned long flags;
2010        int ret;
2011
2012        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2013        ret = dequeue_signal(tsk, mask, info);
2014        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2015
2016        return ret;
2017}       
2018
2019extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2020                              sigset_t *mask);
2021extern void unblock_all_signals(void);
2022extern void release_task(struct task_struct * p);
2023extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2024extern int force_sigsegv(int, struct task_struct *);
2025extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2026extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2027extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2028extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2029extern int kill_pgrp(struct pid *pid, int sig, int priv);
2030extern int kill_pid(struct pid *pid, int sig, int priv);
2031extern int kill_proc_info(int, struct siginfo *, pid_t);
2032extern int do_notify_parent(struct task_struct *, int);
2033extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2034extern void force_sig(int, struct task_struct *);
2035extern int send_sig(int, struct task_struct *, int);
2036extern int zap_other_threads(struct task_struct *p);
2037extern struct sigqueue *sigqueue_alloc(void);
2038extern void sigqueue_free(struct sigqueue *);
2039extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2040extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2041extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2042
2043static inline int kill_cad_pid(int sig, int priv)
2044{
2045        return kill_pid(cad_pid, sig, priv);
2046}
2047
2048/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2049#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2050#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2051#define SEND_SIG_FORCED ((struct siginfo *) 2)
2052
2053/*
2054 * True if we are on the alternate signal stack.
2055 */
2056static inline int on_sig_stack(unsigned long sp)
2057{
2058#ifdef CONFIG_STACK_GROWSUP
2059        return sp >= current->sas_ss_sp &&
2060                sp - current->sas_ss_sp < current->sas_ss_size;
2061#else
2062        return sp > current->sas_ss_sp &&
2063                sp - current->sas_ss_sp <= current->sas_ss_size;
2064#endif
2065}
2066
2067static inline int sas_ss_flags(unsigned long sp)
2068{
2069        return (current->sas_ss_size == 0 ? SS_DISABLE
2070                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2071}
2072
2073/*
2074 * Routines for handling mm_structs
2075 */
2076extern struct mm_struct * mm_alloc(void);
2077
2078/* mmdrop drops the mm and the page tables */
2079extern void __mmdrop(struct mm_struct *);
2080static inline void mmdrop(struct mm_struct * mm)
2081{
2082        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2083                __mmdrop(mm);
2084}
2085
2086/* mmput gets rid of the mappings and all user-space */
2087extern void mmput(struct mm_struct *);
2088/* Grab a reference to a task's mm, if it is not already going away */
2089extern struct mm_struct *get_task_mm(struct task_struct *task);
2090/* Remove the current tasks stale references to the old mm_struct */
2091extern void mm_release(struct task_struct *, struct mm_struct *);
2092/* Allocate a new mm structure and copy contents from tsk->mm */
2093extern struct mm_struct *dup_mm(struct task_struct *tsk);
2094
2095extern int copy_thread(unsigned long, unsigned long, unsigned long,
2096                        struct task_struct *, struct pt_regs *);
2097extern void flush_thread(void);
2098extern void exit_thread(void);
2099
2100extern void exit_files(struct task_struct *);
2101extern void __cleanup_sighand(struct sighand_struct *);
2102
2103extern void exit_itimers(struct signal_struct *);
2104extern void flush_itimer_signals(void);
2105
2106extern NORET_TYPE void do_group_exit(int);
2107
2108extern void daemonize(const char *, ...);
2109extern int allow_signal(int);
2110extern int disallow_signal(int);
2111
2112extern int do_execve(const char *,
2113                     const char __user * const __user *,
2114                     const char __user * const __user *, struct pt_regs *);
2115extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2116struct task_struct *fork_idle(int);
2117
2118extern void set_task_comm(struct task_struct *tsk, char *from);
2119extern char *get_task_comm(char *to, struct task_struct *tsk);
2120
2121#ifdef CONFIG_SMP
2122extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2123#else
2124static inline unsigned long wait_task_inactive(struct task_struct *p,
2125                                               long match_state)
2126{
2127        return 1;
2128}
2129#endif
2130
2131#define next_task(p) \
2132        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133
2134#define for_each_process(p) \
2135        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136
2137extern bool current_is_single_threaded(void);
2138
2139/*
2140 * Careful: do_each_thread/while_each_thread is a double loop so
2141 *          'break' will not work as expected - use goto instead.
2142 */
2143#define do_each_thread(g, t) \
2144        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145
2146#define while_each_thread(g, t) \
2147        while ((t = next_thread(t)) != g)
2148
2149static inline int get_nr_threads(struct task_struct *tsk)
2150{
2151        return tsk->signal->nr_threads;
2152}
2153
2154/* de_thread depends on thread_group_leader not being a pid based check */
2155#define thread_group_leader(p)  (p == p->group_leader)
2156
2157/* Do to the insanities of de_thread it is possible for a process
2158 * to have the pid of the thread group leader without actually being
2159 * the thread group leader.  For iteration through the pids in proc
2160 * all we care about is that we have a task with the appropriate
2161 * pid, we don't actually care if we have the right task.
2162 */
2163static inline int has_group_leader_pid(struct task_struct *p)
2164{
2165        return p->pid == p->tgid;
2166}
2167
2168static inline
2169int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2170{
2171        return p1->tgid == p2->tgid;
2172}
2173
2174static inline struct task_struct *next_thread(const struct task_struct *p)
2175{
2176        return list_entry_rcu(p->thread_group.next,
2177                              struct task_struct, thread_group);
2178}
2179
2180static inline int thread_group_empty(struct task_struct *p)
2181{
2182        return list_empty(&p->thread_group);
2183}
2184
2185#define delay_group_leader(p) \
2186                (thread_group_leader(p) && !thread_group_empty(p))
2187
2188static inline int task_detached(struct task_struct *p)
2189{
2190        return p->exit_signal == -1;
2191}
2192
2193/*
2194 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2195 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2196 * pins the final release of task.io_context.  Also protects ->cpuset and
2197 * ->cgroup.subsys[].
2198 *
2199 * Nests both inside and outside of read_lock(&tasklist_lock).
2200 * It must not be nested with write_lock_irq(&tasklist_lock),
2201 * neither inside nor outside.
2202 */
2203static inline void task_lock(struct task_struct *p)
2204{
2205        spin_lock(&p->alloc_lock);
2206}
2207
2208static inline void task_unlock(struct task_struct *p)
2209{
2210        spin_unlock(&p->alloc_lock);
2211}
2212
2213extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2214                                                        unsigned long *flags);
2215
2216static inline void unlock_task_sighand(struct task_struct *tsk,
2217                                                unsigned long *flags)
2218{
2219        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2220}
2221
2222#ifndef __HAVE_THREAD_FUNCTIONS
2223
2224#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2225#define task_stack_page(task)   ((task)->stack)
2226
2227static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2228{
2229        *task_thread_info(p) = *task_thread_info(org);
2230        task_thread_info(p)->task = p;
2231}
2232
2233static inline unsigned long *end_of_stack(struct task_struct *p)
2234{
2235        return (unsigned long *)(task_thread_info(p) + 1);
2236}
2237
2238#endif
2239
2240static inline int object_is_on_stack(void *obj)
2241{
2242        void *stack = task_stack_page(current);
2243
2244        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2245}
2246
2247extern void thread_info_cache_init(void);
2248
2249#ifdef CONFIG_DEBUG_STACK_USAGE
2250static inline unsigned long stack_not_used(struct task_struct *p)
2251{
2252        unsigned long *n = end_of_stack(p);
2253
2254        do {    /* Skip over canary */
2255                n++;
2256        } while (!*n);
2257
2258        return (unsigned long)n - (unsigned long)end_of_stack(p);
2259}
2260#endif
2261
2262/* set thread flags in other task's structures
2263 * - see asm/thread_info.h for TIF_xxxx flags available
2264 */
2265static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2266{
2267        set_ti_thread_flag(task_thread_info(tsk), flag);
2268}
2269
2270static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2271{
2272        clear_ti_thread_flag(task_thread_info(tsk), flag);
2273}
2274
2275static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2276{
2277        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2278}
2279
2280static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2281{
2282        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2283}
2284
2285static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2286{
2287        return test_ti_thread_flag(task_thread_info(tsk), flag);
2288}
2289
2290static inline void set_tsk_need_resched(struct task_struct *tsk)
2291{
2292        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293}
2294
2295static inline void clear_tsk_need_resched(struct task_struct *tsk)
2296{
2297        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2298}
2299
2300static inline int test_tsk_need_resched(struct task_struct *tsk)
2301{
2302        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2303}
2304
2305static inline int restart_syscall(void)
2306{
2307        set_tsk_thread_flag(current, TIF_SIGPENDING);
2308        return -ERESTARTNOINTR;
2309}
2310
2311static inline int signal_pending(struct task_struct *p)
2312{
2313        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2314}
2315
2316static inline int __fatal_signal_pending(struct task_struct *p)
2317{
2318        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2319}
2320
2321static inline int fatal_signal_pending(struct task_struct *p)
2322{
2323        return signal_pending(p) && __fatal_signal_pending(p);
2324}
2325
2326static inline int signal_pending_state(long state, struct task_struct *p)
2327{
2328        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2329                return 0;
2330        if (!signal_pending(p))
2331                return 0;
2332
2333        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2334}
2335
2336static inline int need_resched(void)
2337{
2338        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2339}
2340
2341/*
2342 * cond_resched() and cond_resched_lock(): latency reduction via
2343 * explicit rescheduling in places that are safe. The return
2344 * value indicates whether a reschedule was done in fact.
2345 * cond_resched_lock() will drop the spinlock before scheduling,
2346 * cond_resched_softirq() will enable bhs before scheduling.
2347 */
2348extern int _cond_resched(void);
2349
2350#define cond_resched() ({                       \
2351        __might_sleep(__FILE__, __LINE__, 0);   \
2352        _cond_resched();                        \
2353})
2354
2355extern int __cond_resched_lock(spinlock_t *lock);
2356
2357#ifdef CONFIG_PREEMPT
2358#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2359#else
2360#define PREEMPT_LOCK_OFFSET     0
2361#endif
2362
2363#define cond_resched_lock(lock) ({                              \
2364        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2365        __cond_resched_lock(lock);                              \
2366})
2367
2368extern int __cond_resched_softirq(void);
2369
2370#define cond_resched_softirq() ({                               \
2371        __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);      \
2372        __cond_resched_softirq();                               \
2373})
2374
2375/*
2376 * Does a critical section need to be broken due to another
2377 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2378 * but a general need for low latency)
2379 */
2380static inline int spin_needbreak(spinlock_t *lock)
2381{
2382#ifdef CONFIG_PREEMPT
2383        return spin_is_contended(lock);
2384#else
2385        return 0;
2386#endif
2387}
2388
2389/*
2390 * Thread group CPU time accounting.
2391 */
2392void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2393void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2394
2395static inline void thread_group_cputime_init(struct signal_struct *sig)
2396{
2397        spin_lock_init(&sig->cputimer.lock);
2398}
2399
2400/*
2401 * Reevaluate whether the task has signals pending delivery.
2402 * Wake the task if so.
2403 * This is required every time the blocked sigset_t changes.
2404 * callers must hold sighand->siglock.
2405 */
2406extern void recalc_sigpending_and_wake(struct task_struct *t);
2407extern void recalc_sigpending(void);
2408
2409extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2410
2411/*
2412 * Wrappers for p->thread_info->cpu access. No-op on UP.
2413 */
2414#ifdef CONFIG_SMP
2415
2416static inline unsigned int task_cpu(const struct task_struct *p)
2417{
2418        return task_thread_info(p)->cpu;
2419}
2420
2421extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2422
2423#else
2424
2425static inline unsigned int task_cpu(const struct task_struct *p)
2426{
2427        return 0;
2428}
2429
2430static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2431{
2432}
2433
2434#endif /* CONFIG_SMP */
2435
2436extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2437extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2438
2439extern void normalize_rt_tasks(void);
2440
2441#ifdef CONFIG_CGROUP_SCHED
2442
2443extern struct task_group init_task_group;
2444
2445extern struct task_group *sched_create_group(struct task_group *parent);
2446extern void sched_destroy_group(struct task_group *tg);
2447extern void sched_move_task(struct task_struct *tsk);
2448#ifdef CONFIG_FAIR_GROUP_SCHED
2449extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2450extern unsigned long sched_group_shares(struct task_group *tg);
2451#endif
2452#ifdef CONFIG_RT_GROUP_SCHED
2453extern int sched_group_set_rt_runtime(struct task_group *tg,
2454                                      long rt_runtime_us);
2455extern long sched_group_rt_runtime(struct task_group *tg);
2456extern int sched_group_set_rt_period(struct task_group *tg,
2457                                      long rt_period_us);
2458extern long sched_group_rt_period(struct task_group *tg);
2459extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2460#endif
2461#endif
2462
2463extern int task_can_switch_user(struct user_struct *up,
2464                                        struct task_struct *tsk);
2465
2466#ifdef CONFIG_TASK_XACCT
2467static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2468{
2469        tsk->ioac.rchar += amt;
2470}
2471
2472static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2473{
2474        tsk->ioac.wchar += amt;
2475}
2476
2477static inline void inc_syscr(struct task_struct *tsk)
2478{
2479        tsk->ioac.syscr++;
2480}
2481
2482static inline void inc_syscw(struct task_struct *tsk)
2483{
2484        tsk->ioac.syscw++;
2485}
2486#else
2487static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2488{
2489}
2490
2491static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2492{
2493}
2494
2495static inline void inc_syscr(struct task_struct *tsk)
2496{
2497}
2498
2499static inline void inc_syscw(struct task_struct *tsk)
2500{
2501}
2502#endif
2503
2504#ifndef TASK_SIZE_OF
2505#define TASK_SIZE_OF(tsk)       TASK_SIZE
2506#endif
2507
2508/*
2509 * Call the function if the target task is executing on a CPU right now:
2510 */
2511extern void task_oncpu_function_call(struct task_struct *p,
2512                                     void (*func) (void *info), void *info);
2513
2514
2515#ifdef CONFIG_MM_OWNER
2516extern void mm_update_next_owner(struct mm_struct *mm);
2517extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2518#else
2519static inline void mm_update_next_owner(struct mm_struct *mm)
2520{
2521}
2522
2523static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2524{
2525}
2526#endif /* CONFIG_MM_OWNER */
2527
2528static inline unsigned long task_rlimit(const struct task_struct *tsk,
2529                unsigned int limit)
2530{
2531        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2532}
2533
2534static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2535                unsigned int limit)
2536{
2537        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2538}
2539
2540static inline unsigned long rlimit(unsigned int limit)
2541{
2542        return task_rlimit(current, limit);
2543}
2544
2545static inline unsigned long rlimit_max(unsigned int limit)
2546{
2547        return task_rlimit_max(current, limit);
2548}
2549
2550#endif /* __KERNEL__ */
2551
2552#endif
2553
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.