linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
  42#define SCHED_RESET_ON_FORK     0x40000000
  43
  44#ifdef __KERNEL__
  45
  46struct sched_param {
  47        int sched_priority;
  48};
  49
  50#include <asm/param.h>  /* for HZ */
  51
  52#include <linux/capability.h>
  53#include <linux/threads.h>
  54#include <linux/kernel.h>
  55#include <linux/types.h>
  56#include <linux/timex.h>
  57#include <linux/jiffies.h>
  58#include <linux/rbtree.h>
  59#include <linux/thread_info.h>
  60#include <linux/cpumask.h>
  61#include <linux/errno.h>
  62#include <linux/nodemask.h>
  63#include <linux/mm_types.h>
  64
  65#include <asm/system.h>
  66#include <asm/page.h>
  67#include <asm/ptrace.h>
  68#include <asm/cputime.h>
  69
  70#include <linux/smp.h>
  71#include <linux/sem.h>
  72#include <linux/signal.h>
  73#include <linux/path.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rculist.h>
  83#include <linux/rtmutex.h>
  84
  85#include <linux/time.h>
  86#include <linux/param.h>
  87#include <linux/resource.h>
  88#include <linux/timer.h>
  89#include <linux/hrtimer.h>
  90#include <linux/task_io_accounting.h>
  91#include <linux/kobject.h>
  92#include <linux/latencytop.h>
  93#include <linux/cred.h>
  94
  95#include <asm/processor.h>
  96
  97struct exec_domain;
  98struct futex_pi_state;
  99struct robust_list_head;
 100struct bio_list;
 101struct fs_struct;
 102struct perf_event_context;
 103
 104/*
 105 * List of flags we want to share for kernel threads,
 106 * if only because they are not used by them anyway.
 107 */
 108#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 109
 110/*
 111 * These are the constant used to fake the fixed-point load-average
 112 * counting. Some notes:
 113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 114 *    a load-average precision of 10 bits integer + 11 bits fractional
 115 *  - if you want to count load-averages more often, you need more
 116 *    precision, or rounding will get you. With 2-second counting freq,
 117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 118 *    11 bit fractions.
 119 */
 120extern unsigned long avenrun[];         /* Load averages */
 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 122
 123#define FSHIFT          11              /* nr of bits of precision */
 124#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 125#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 126#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 127#define EXP_5           2014            /* 1/exp(5sec/5min) */
 128#define EXP_15          2037            /* 1/exp(5sec/15min) */
 129
 130#define CALC_LOAD(load,exp,n) \
 131        load *= exp; \
 132        load += n*(FIXED_1-exp); \
 133        load >>= FSHIFT;
 134
 135extern unsigned long total_forks;
 136extern int nr_threads;
 137DECLARE_PER_CPU(unsigned long, process_counts);
 138extern int nr_processes(void);
 139extern unsigned long nr_running(void);
 140extern unsigned long nr_uninterruptible(void);
 141extern unsigned long nr_iowait(void);
 142extern unsigned long nr_iowait_cpu(int cpu);
 143extern unsigned long this_cpu_load(void);
 144
 145
 146extern void calc_global_load(void);
 147
 148extern unsigned long get_parent_ip(unsigned long addr);
 149
 150struct seq_file;
 151struct cfs_rq;
 152struct task_group;
 153#ifdef CONFIG_SCHED_DEBUG
 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 155extern void proc_sched_set_task(struct task_struct *p);
 156extern void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 158#else
 159static inline void
 160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 161{
 162}
 163static inline void proc_sched_set_task(struct task_struct *p)
 164{
 165}
 166static inline void
 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 168{
 169}
 170#endif
 171
 172/*
 173 * Task state bitmask. NOTE! These bits are also
 174 * encoded in fs/proc/array.c: get_task_state().
 175 *
 176 * We have two separate sets of flags: task->state
 177 * is about runnability, while task->exit_state are
 178 * about the task exiting. Confusing, but this way
 179 * modifying one set can't modify the other one by
 180 * mistake.
 181 */
 182#define TASK_RUNNING            0
 183#define TASK_INTERRUPTIBLE      1
 184#define TASK_UNINTERRUPTIBLE    2
 185#define __TASK_STOPPED          4
 186#define __TASK_TRACED           8
 187/* in tsk->exit_state */
 188#define EXIT_ZOMBIE             16
 189#define EXIT_DEAD               32
 190/* in tsk->state again */
 191#define TASK_DEAD               64
 192#define TASK_WAKEKILL           128
 193#define TASK_WAKING             256
 194#define TASK_STATE_MAX          512
 195
 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 197
 198extern char ___assert_task_state[1 - 2*!!(
 199                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 200
 201/* Convenience macros for the sake of set_task_state */
 202#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 203#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 204#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 205
 206/* Convenience macros for the sake of wake_up */
 207#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 208#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 209
 210/* get_task_state() */
 211#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 212                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 213                                 __TASK_TRACED)
 214
 215#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 216#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 217#define task_is_dead(task)      ((task)->exit_state != 0)
 218#define task_is_stopped_or_traced(task) \
 219                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 220#define task_contributes_to_load(task)  \
 221                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 222                                 (task->flags & PF_FREEZING) == 0)
 223
 224#define __set_task_state(tsk, state_value)              \
 225        do { (tsk)->state = (state_value); } while (0)
 226#define set_task_state(tsk, state_value)                \
 227        set_mb((tsk)->state, (state_value))
 228
 229/*
 230 * set_current_state() includes a barrier so that the write of current->state
 231 * is correctly serialised wrt the caller's subsequent test of whether to
 232 * actually sleep:
 233 *
 234 *      set_current_state(TASK_UNINTERRUPTIBLE);
 235 *      if (do_i_need_to_sleep())
 236 *              schedule();
 237 *
 238 * If the caller does not need such serialisation then use __set_current_state()
 239 */
 240#define __set_current_state(state_value)                        \
 241        do { current->state = (state_value); } while (0)
 242#define set_current_state(state_value)          \
 243        set_mb(current->state, (state_value))
 244
 245/* Task command name length */
 246#define TASK_COMM_LEN 16
 247
 248#include <linux/spinlock.h>
 249
 250/*
 251 * This serializes "schedule()" and also protects
 252 * the run-queue from deletions/modifications (but
 253 * _adding_ to the beginning of the run-queue has
 254 * a separate lock).
 255 */
 256extern rwlock_t tasklist_lock;
 257extern spinlock_t mmlist_lock;
 258
 259struct task_struct;
 260
 261#ifdef CONFIG_PROVE_RCU
 262extern int lockdep_tasklist_lock_is_held(void);
 263#endif /* #ifdef CONFIG_PROVE_RCU */
 264
 265extern void sched_init(void);
 266extern void sched_init_smp(void);
 267extern asmlinkage void schedule_tail(struct task_struct *prev);
 268extern void init_idle(struct task_struct *idle, int cpu);
 269extern void init_idle_bootup_task(struct task_struct *idle);
 270
 271extern int runqueue_is_locked(int cpu);
 272
 273extern cpumask_var_t nohz_cpu_mask;
 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 275extern int select_nohz_load_balancer(int cpu);
 276extern int get_nohz_load_balancer(void);
 277#else
 278static inline int select_nohz_load_balancer(int cpu)
 279{
 280        return 0;
 281}
 282#endif
 283
 284/*
 285 * Only dump TASK_* tasks. (0 for all tasks)
 286 */
 287extern void show_state_filter(unsigned long state_filter);
 288
 289static inline void show_state(void)
 290{
 291        show_state_filter(0);
 292}
 293
 294extern void show_regs(struct pt_regs *);
 295
 296/*
 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 298 * task), SP is the stack pointer of the first frame that should be shown in the back
 299 * trace (or NULL if the entire call-chain of the task should be shown).
 300 */
 301extern void show_stack(struct task_struct *task, unsigned long *sp);
 302
 303void io_schedule(void);
 304long io_schedule_timeout(long timeout);
 305
 306extern void cpu_init (void);
 307extern void trap_init(void);
 308extern void update_process_times(int user);
 309extern void scheduler_tick(void);
 310
 311extern void sched_show_task(struct task_struct *p);
 312
 313#ifdef CONFIG_DETECT_SOFTLOCKUP
 314extern void softlockup_tick(void);
 315extern void touch_softlockup_watchdog(void);
 316extern void touch_softlockup_watchdog_sync(void);
 317extern void touch_all_softlockup_watchdogs(void);
 318extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
 319                                    void __user *buffer,
 320                                    size_t *lenp, loff_t *ppos);
 321extern unsigned int  softlockup_panic;
 322extern int softlockup_thresh;
 323#else
 324static inline void softlockup_tick(void)
 325{
 326}
 327static inline void touch_softlockup_watchdog(void)
 328{
 329}
 330static inline void touch_softlockup_watchdog_sync(void)
 331{
 332}
 333static inline void touch_all_softlockup_watchdogs(void)
 334{
 335}
 336#endif
 337
 338#ifdef CONFIG_DETECT_HUNG_TASK
 339extern unsigned int  sysctl_hung_task_panic;
 340extern unsigned long sysctl_hung_task_check_count;
 341extern unsigned long sysctl_hung_task_timeout_secs;
 342extern unsigned long sysctl_hung_task_warnings;
 343extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 344                                         void __user *buffer,
 345                                         size_t *lenp, loff_t *ppos);
 346#endif
 347
 348/* Attach to any functions which should be ignored in wchan output. */
 349#define __sched         __attribute__((__section__(".sched.text")))
 350
 351/* Linker adds these: start and end of __sched functions */
 352extern char __sched_text_start[], __sched_text_end[];
 353
 354/* Is this address in the __sched functions? */
 355extern int in_sched_functions(unsigned long addr);
 356
 357#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 358extern signed long schedule_timeout(signed long timeout);
 359extern signed long schedule_timeout_interruptible(signed long timeout);
 360extern signed long schedule_timeout_killable(signed long timeout);
 361extern signed long schedule_timeout_uninterruptible(signed long timeout);
 362asmlinkage void schedule(void);
 363extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
 364
 365struct nsproxy;
 366struct user_namespace;
 367
 368/*
 369 * Default maximum number of active map areas, this limits the number of vmas
 370 * per mm struct. Users can overwrite this number by sysctl but there is a
 371 * problem.
 372 *
 373 * When a program's coredump is generated as ELF format, a section is created
 374 * per a vma. In ELF, the number of sections is represented in unsigned short.
 375 * This means the number of sections should be smaller than 65535 at coredump.
 376 * Because the kernel adds some informative sections to a image of program at
 377 * generating coredump, we need some margin. The number of extra sections is
 378 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 379 */
 380#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 381#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 382
 383extern int sysctl_max_map_count;
 384
 385#include <linux/aio.h>
 386
 387#ifdef CONFIG_MMU
 388extern void arch_pick_mmap_layout(struct mm_struct *mm);
 389extern unsigned long
 390arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 391                       unsigned long, unsigned long);
 392extern unsigned long
 393arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 394                          unsigned long len, unsigned long pgoff,
 395                          unsigned long flags);
 396extern void arch_unmap_area(struct mm_struct *, unsigned long);
 397extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 398#else
 399static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 400#endif
 401
 402
 403extern void set_dumpable(struct mm_struct *mm, int value);
 404extern int get_dumpable(struct mm_struct *mm);
 405
 406/* mm flags */
 407/* dumpable bits */
 408#define MMF_DUMPABLE      0  /* core dump is permitted */
 409#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 410
 411#define MMF_DUMPABLE_BITS 2
 412#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 413
 414/* coredump filter bits */
 415#define MMF_DUMP_ANON_PRIVATE   2
 416#define MMF_DUMP_ANON_SHARED    3
 417#define MMF_DUMP_MAPPED_PRIVATE 4
 418#define MMF_DUMP_MAPPED_SHARED  5
 419#define MMF_DUMP_ELF_HEADERS    6
 420#define MMF_DUMP_HUGETLB_PRIVATE 7
 421#define MMF_DUMP_HUGETLB_SHARED  8
 422
 423#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 424#define MMF_DUMP_FILTER_BITS    7
 425#define MMF_DUMP_FILTER_MASK \
 426        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 427#define MMF_DUMP_FILTER_DEFAULT \
 428        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 429         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 430
 431#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 432# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 433#else
 434# define MMF_DUMP_MASK_DEFAULT_ELF      0
 435#endif
 436                                        /* leave room for more dump flags */
 437#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 438
 439#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 440
 441struct sighand_struct {
 442        atomic_t                count;
 443        struct k_sigaction      action[_NSIG];
 444        spinlock_t              siglock;
 445        wait_queue_head_t       signalfd_wqh;
 446};
 447
 448struct pacct_struct {
 449        int                     ac_flag;
 450        long                    ac_exitcode;
 451        unsigned long           ac_mem;
 452        cputime_t               ac_utime, ac_stime;
 453        unsigned long           ac_minflt, ac_majflt;
 454};
 455
 456struct cpu_itimer {
 457        cputime_t expires;
 458        cputime_t incr;
 459        u32 error;
 460        u32 incr_error;
 461};
 462
 463/**
 464 * struct task_cputime - collected CPU time counts
 465 * @utime:              time spent in user mode, in &cputime_t units
 466 * @stime:              time spent in kernel mode, in &cputime_t units
 467 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 468 *
 469 * This structure groups together three kinds of CPU time that are
 470 * tracked for threads and thread groups.  Most things considering
 471 * CPU time want to group these counts together and treat all three
 472 * of them in parallel.
 473 */
 474struct task_cputime {
 475        cputime_t utime;
 476        cputime_t stime;
 477        unsigned long long sum_exec_runtime;
 478};
 479/* Alternate field names when used to cache expirations. */
 480#define prof_exp        stime
 481#define virt_exp        utime
 482#define sched_exp       sum_exec_runtime
 483
 484#define INIT_CPUTIME    \
 485        (struct task_cputime) {                                 \
 486                .utime = cputime_zero,                          \
 487                .stime = cputime_zero,                          \
 488                .sum_exec_runtime = 0,                          \
 489        }
 490
 491/*
 492 * Disable preemption until the scheduler is running.
 493 * Reset by start_kernel()->sched_init()->init_idle().
 494 *
 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 496 * before the scheduler is active -- see should_resched().
 497 */
 498#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 499
 500/**
 501 * struct thread_group_cputimer - thread group interval timer counts
 502 * @cputime:            thread group interval timers.
 503 * @running:            non-zero when there are timers running and
 504 *                      @cputime receives updates.
 505 * @lock:               lock for fields in this struct.
 506 *
 507 * This structure contains the version of task_cputime, above, that is
 508 * used for thread group CPU timer calculations.
 509 */
 510struct thread_group_cputimer {
 511        struct task_cputime cputime;
 512        int running;
 513        spinlock_t lock;
 514};
 515
 516/*
 517 * NOTE! "signal_struct" does not have it's own
 518 * locking, because a shared signal_struct always
 519 * implies a shared sighand_struct, so locking
 520 * sighand_struct is always a proper superset of
 521 * the locking of signal_struct.
 522 */
 523struct signal_struct {
 524        atomic_t                sigcnt;
 525        atomic_t                live;
 526        int                     nr_threads;
 527
 528        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 529
 530        /* current thread group signal load-balancing target: */
 531        struct task_struct      *curr_target;
 532
 533        /* shared signal handling: */
 534        struct sigpending       shared_pending;
 535
 536        /* thread group exit support */
 537        int                     group_exit_code;
 538        /* overloaded:
 539         * - notify group_exit_task when ->count is equal to notify_count
 540         * - everyone except group_exit_task is stopped during signal delivery
 541         *   of fatal signals, group_exit_task processes the signal.
 542         */
 543        int                     notify_count;
 544        struct task_struct      *group_exit_task;
 545
 546        /* thread group stop support, overloads group_exit_code too */
 547        int                     group_stop_count;
 548        unsigned int            flags; /* see SIGNAL_* flags below */
 549
 550        /* POSIX.1b Interval Timers */
 551        struct list_head posix_timers;
 552
 553        /* ITIMER_REAL timer for the process */
 554        struct hrtimer real_timer;
 555        struct pid *leader_pid;
 556        ktime_t it_real_incr;
 557
 558        /*
 559         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 560         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 561         * values are defined to 0 and 1 respectively
 562         */
 563        struct cpu_itimer it[2];
 564
 565        /*
 566         * Thread group totals for process CPU timers.
 567         * See thread_group_cputimer(), et al, for details.
 568         */
 569        struct thread_group_cputimer cputimer;
 570
 571        /* Earliest-expiration cache. */
 572        struct task_cputime cputime_expires;
 573
 574        struct list_head cpu_timers[3];
 575
 576        struct pid *tty_old_pgrp;
 577
 578        /* boolean value for session group leader */
 579        int leader;
 580
 581        struct tty_struct *tty; /* NULL if no tty */
 582
 583        /*
 584         * Cumulative resource counters for dead threads in the group,
 585         * and for reaped dead child processes forked by this group.
 586         * Live threads maintain their own counters and add to these
 587         * in __exit_signal, except for the group leader.
 588         */
 589        cputime_t utime, stime, cutime, cstime;
 590        cputime_t gtime;
 591        cputime_t cgtime;
 592#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 593        cputime_t prev_utime, prev_stime;
 594#endif
 595        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 596        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 597        unsigned long inblock, oublock, cinblock, coublock;
 598        unsigned long maxrss, cmaxrss;
 599        struct task_io_accounting ioac;
 600
 601        /*
 602         * Cumulative ns of schedule CPU time fo dead threads in the
 603         * group, not including a zombie group leader, (This only differs
 604         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 605         * other than jiffies.)
 606         */
 607        unsigned long long sum_sched_runtime;
 608
 609        /*
 610         * We don't bother to synchronize most readers of this at all,
 611         * because there is no reader checking a limit that actually needs
 612         * to get both rlim_cur and rlim_max atomically, and either one
 613         * alone is a single word that can safely be read normally.
 614         * getrlimit/setrlimit use task_lock(current->group_leader) to
 615         * protect this instead of the siglock, because they really
 616         * have no need to disable irqs.
 617         */
 618        struct rlimit rlim[RLIM_NLIMITS];
 619
 620#ifdef CONFIG_BSD_PROCESS_ACCT
 621        struct pacct_struct pacct;      /* per-process accounting information */
 622#endif
 623#ifdef CONFIG_TASKSTATS
 624        struct taskstats *stats;
 625#endif
 626#ifdef CONFIG_AUDIT
 627        unsigned audit_tty;
 628        struct tty_audit_buf *tty_audit_buf;
 629#endif
 630
 631        int oom_adj;    /* OOM kill score adjustment (bit shift) */
 632};
 633
 634/* Context switch must be unlocked if interrupts are to be enabled */
 635#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 636# define __ARCH_WANT_UNLOCKED_CTXSW
 637#endif
 638
 639/*
 640 * Bits in flags field of signal_struct.
 641 */
 642#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 643#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 644#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 645#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 646/*
 647 * Pending notifications to parent.
 648 */
 649#define SIGNAL_CLD_STOPPED      0x00000010
 650#define SIGNAL_CLD_CONTINUED    0x00000020
 651#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 652
 653#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 654
 655/* If true, all threads except ->group_exit_task have pending SIGKILL */
 656static inline int signal_group_exit(const struct signal_struct *sig)
 657{
 658        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 659                (sig->group_exit_task != NULL);
 660}
 661
 662/*
 663 * Some day this will be a full-fledged user tracking system..
 664 */
 665struct user_struct {
 666        atomic_t __count;       /* reference count */
 667        atomic_t processes;     /* How many processes does this user have? */
 668        atomic_t files;         /* How many open files does this user have? */
 669        atomic_t sigpending;    /* How many pending signals does this user have? */
 670#ifdef CONFIG_INOTIFY_USER
 671        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 672        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 673#endif
 674#ifdef CONFIG_EPOLL
 675        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 676#endif
 677#ifdef CONFIG_POSIX_MQUEUE
 678        /* protected by mq_lock */
 679        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 680#endif
 681        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 682
 683#ifdef CONFIG_KEYS
 684        struct key *uid_keyring;        /* UID specific keyring */
 685        struct key *session_keyring;    /* UID's default session keyring */
 686#endif
 687
 688        /* Hash table maintenance information */
 689        struct hlist_node uidhash_node;
 690        uid_t uid;
 691        struct user_namespace *user_ns;
 692
 693#ifdef CONFIG_PERF_EVENTS
 694        atomic_long_t locked_vm;
 695#endif
 696};
 697
 698extern int uids_sysfs_init(void);
 699
 700extern struct user_struct *find_user(uid_t);
 701
 702extern struct user_struct root_user;
 703#define INIT_USER (&root_user)
 704
 705
 706struct backing_dev_info;
 707struct reclaim_state;
 708
 709#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 710struct sched_info {
 711        /* cumulative counters */
 712        unsigned long pcount;         /* # of times run on this cpu */
 713        unsigned long long run_delay; /* time spent waiting on a runqueue */
 714
 715        /* timestamps */
 716        unsigned long long last_arrival,/* when we last ran on a cpu */
 717                           last_queued; /* when we were last queued to run */
 718#ifdef CONFIG_SCHEDSTATS
 719        /* BKL stats */
 720        unsigned int bkl_count;
 721#endif
 722};
 723#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 724
 725#ifdef CONFIG_TASK_DELAY_ACCT
 726struct task_delay_info {
 727        spinlock_t      lock;
 728        unsigned int    flags;  /* Private per-task flags */
 729
 730        /* For each stat XXX, add following, aligned appropriately
 731         *
 732         * struct timespec XXX_start, XXX_end;
 733         * u64 XXX_delay;
 734         * u32 XXX_count;
 735         *
 736         * Atomicity of updates to XXX_delay, XXX_count protected by
 737         * single lock above (split into XXX_lock if contention is an issue).
 738         */
 739
 740        /*
 741         * XXX_count is incremented on every XXX operation, the delay
 742         * associated with the operation is added to XXX_delay.
 743         * XXX_delay contains the accumulated delay time in nanoseconds.
 744         */
 745        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 746        u64 blkio_delay;        /* wait for sync block io completion */
 747        u64 swapin_delay;       /* wait for swapin block io completion */
 748        u32 blkio_count;        /* total count of the number of sync block */
 749                                /* io operations performed */
 750        u32 swapin_count;       /* total count of the number of swapin block */
 751                                /* io operations performed */
 752
 753        struct timespec freepages_start, freepages_end;
 754        u64 freepages_delay;    /* wait for memory reclaim */
 755        u32 freepages_count;    /* total count of memory reclaim */
 756};
 757#endif  /* CONFIG_TASK_DELAY_ACCT */
 758
 759static inline int sched_info_on(void)
 760{
 761#ifdef CONFIG_SCHEDSTATS
 762        return 1;
 763#elif defined(CONFIG_TASK_DELAY_ACCT)
 764        extern int delayacct_on;
 765        return delayacct_on;
 766#else
 767        return 0;
 768#endif
 769}
 770
 771enum cpu_idle_type {
 772        CPU_IDLE,
 773        CPU_NOT_IDLE,
 774        CPU_NEWLY_IDLE,
 775        CPU_MAX_IDLE_TYPES
 776};
 777
 778/*
 779 * sched-domains (multiprocessor balancing) declarations:
 780 */
 781
 782/*
 783 * Increase resolution of nice-level calculations:
 784 */
 785#define SCHED_LOAD_SHIFT        10
 786#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 787
 788#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 789
 790#ifdef CONFIG_SMP
 791#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 792#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 793#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 794#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 795#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 796#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 797#define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
 798#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 799#define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
 800#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 801#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 802
 803#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 804
 805enum powersavings_balance_level {
 806        POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 807        POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
 808                                         * first for long running threads
 809                                         */
 810        POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
 811                                         * cpu package for power savings
 812                                         */
 813        MAX_POWERSAVINGS_BALANCE_LEVELS
 814};
 815
 816extern int sched_mc_power_savings, sched_smt_power_savings;
 817
 818static inline int sd_balance_for_mc_power(void)
 819{
 820        if (sched_smt_power_savings)
 821                return SD_POWERSAVINGS_BALANCE;
 822
 823        if (!sched_mc_power_savings)
 824                return SD_PREFER_SIBLING;
 825
 826        return 0;
 827}
 828
 829static inline int sd_balance_for_package_power(void)
 830{
 831        if (sched_mc_power_savings | sched_smt_power_savings)
 832                return SD_POWERSAVINGS_BALANCE;
 833
 834        return SD_PREFER_SIBLING;
 835}
 836
 837/*
 838 * Optimise SD flags for power savings:
 839 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 840 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 841 */
 842
 843static inline int sd_power_saving_flags(void)
 844{
 845        if (sched_mc_power_savings | sched_smt_power_savings)
 846                return SD_BALANCE_NEWIDLE;
 847
 848        return 0;
 849}
 850
 851struct sched_group {
 852        struct sched_group *next;       /* Must be a circular list */
 853
 854        /*
 855         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 856         * single CPU.
 857         */
 858        unsigned int cpu_power;
 859
 860        /*
 861         * The CPUs this group covers.
 862         *
 863         * NOTE: this field is variable length. (Allocated dynamically
 864         * by attaching extra space to the end of the structure,
 865         * depending on how many CPUs the kernel has booted up with)
 866         *
 867         * It is also be embedded into static data structures at build
 868         * time. (See 'struct static_sched_group' in kernel/sched.c)
 869         */
 870        unsigned long cpumask[0];
 871};
 872
 873static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 874{
 875        return to_cpumask(sg->cpumask);
 876}
 877
 878enum sched_domain_level {
 879        SD_LV_NONE = 0,
 880        SD_LV_SIBLING,
 881        SD_LV_MC,
 882        SD_LV_CPU,
 883        SD_LV_NODE,
 884        SD_LV_ALLNODES,
 885        SD_LV_MAX
 886};
 887
 888struct sched_domain_attr {
 889        int relax_domain_level;
 890};
 891
 892#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 893        .relax_domain_level = -1,                       \
 894}
 895
 896struct sched_domain {
 897        /* These fields must be setup */
 898        struct sched_domain *parent;    /* top domain must be null terminated */
 899        struct sched_domain *child;     /* bottom domain must be null terminated */
 900        struct sched_group *groups;     /* the balancing groups of the domain */
 901        unsigned long min_interval;     /* Minimum balance interval ms */
 902        unsigned long max_interval;     /* Maximum balance interval ms */
 903        unsigned int busy_factor;       /* less balancing by factor if busy */
 904        unsigned int imbalance_pct;     /* No balance until over watermark */
 905        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 906        unsigned int busy_idx;
 907        unsigned int idle_idx;
 908        unsigned int newidle_idx;
 909        unsigned int wake_idx;
 910        unsigned int forkexec_idx;
 911        unsigned int smt_gain;
 912        int flags;                      /* See SD_* */
 913        enum sched_domain_level level;
 914
 915        /* Runtime fields. */
 916        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 917        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 918        unsigned int nr_balance_failed; /* initialise to 0 */
 919
 920        u64 last_update;
 921
 922#ifdef CONFIG_SCHEDSTATS
 923        /* load_balance() stats */
 924        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 925        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 926        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 927        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 928        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 929        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 930        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 931        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 932
 933        /* Active load balancing */
 934        unsigned int alb_count;
 935        unsigned int alb_failed;
 936        unsigned int alb_pushed;
 937
 938        /* SD_BALANCE_EXEC stats */
 939        unsigned int sbe_count;
 940        unsigned int sbe_balanced;
 941        unsigned int sbe_pushed;
 942
 943        /* SD_BALANCE_FORK stats */
 944        unsigned int sbf_count;
 945        unsigned int sbf_balanced;
 946        unsigned int sbf_pushed;
 947
 948        /* try_to_wake_up() stats */
 949        unsigned int ttwu_wake_remote;
 950        unsigned int ttwu_move_affine;
 951        unsigned int ttwu_move_balance;
 952#endif
 953#ifdef CONFIG_SCHED_DEBUG
 954        char *name;
 955#endif
 956
 957        unsigned int span_weight;
 958        /*
 959         * Span of all CPUs in this domain.
 960         *
 961         * NOTE: this field is variable length. (Allocated dynamically
 962         * by attaching extra space to the end of the structure,
 963         * depending on how many CPUs the kernel has booted up with)
 964         *
 965         * It is also be embedded into static data structures at build
 966         * time. (See 'struct static_sched_domain' in kernel/sched.c)
 967         */
 968        unsigned long span[0];
 969};
 970
 971static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 972{
 973        return to_cpumask(sd->span);
 974}
 975
 976extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 977                                    struct sched_domain_attr *dattr_new);
 978
 979/* Allocate an array of sched domains, for partition_sched_domains(). */
 980cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 981void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 982
 983/* Test a flag in parent sched domain */
 984static inline int test_sd_parent(struct sched_domain *sd, int flag)
 985{
 986        if (sd->parent && (sd->parent->flags & flag))
 987                return 1;
 988
 989        return 0;
 990}
 991
 992unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
 993unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
 994
 995#else /* CONFIG_SMP */
 996
 997struct sched_domain_attr;
 998
 999static inline void
1000partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1001                        struct sched_domain_attr *dattr_new)
1002{
1003}
1004#endif  /* !CONFIG_SMP */
1005
1006
1007struct io_context;                      /* See blkdev.h */
1008
1009
1010#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011extern void prefetch_stack(struct task_struct *t);
1012#else
1013static inline void prefetch_stack(struct task_struct *t) { }
1014#endif
1015
1016struct audit_context;           /* See audit.c */
1017struct mempolicy;
1018struct pipe_inode_info;
1019struct uts_namespace;
1020
1021struct rq;
1022struct sched_domain;
1023
1024/*
1025 * wake flags
1026 */
1027#define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1028#define WF_FORK         0x02            /* child wakeup after fork */
1029
1030#define ENQUEUE_WAKEUP          1
1031#define ENQUEUE_WAKING          2
1032#define ENQUEUE_HEAD            4
1033
1034#define DEQUEUE_SLEEP           1
1035
1036struct sched_class {
1037        const struct sched_class *next;
1038
1039        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1040        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1041        void (*yield_task) (struct rq *rq);
1042
1043        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1044
1045        struct task_struct * (*pick_next_task) (struct rq *rq);
1046        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1047
1048#ifdef CONFIG_SMP
1049        int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1050                               int sd_flag, int flags);
1051
1052        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1053        void (*post_schedule) (struct rq *this_rq);
1054        void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1055        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1056
1057        void (*set_cpus_allowed)(struct task_struct *p,
1058                                 const struct cpumask *newmask);
1059
1060        void (*rq_online)(struct rq *rq);
1061        void (*rq_offline)(struct rq *rq);
1062#endif
1063
1064        void (*set_curr_task) (struct rq *rq);
1065        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1066        void (*task_fork) (struct task_struct *p);
1067
1068        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1069                               int running);
1070        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1071                             int running);
1072        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1073                             int oldprio, int running);
1074
1075        unsigned int (*get_rr_interval) (struct rq *rq,
1076                                         struct task_struct *task);
1077
1078#ifdef CONFIG_FAIR_GROUP_SCHED
1079        void (*moved_group) (struct task_struct *p, int on_rq);
1080#endif
1081};
1082
1083struct load_weight {
1084        unsigned long weight, inv_weight;
1085};
1086
1087#ifdef CONFIG_SCHEDSTATS
1088struct sched_statistics {
1089        u64                     wait_start;
1090        u64                     wait_max;
1091        u64                     wait_count;
1092        u64                     wait_sum;
1093        u64                     iowait_count;
1094        u64                     iowait_sum;
1095
1096        u64                     sleep_start;
1097        u64                     sleep_max;
1098        s64                     sum_sleep_runtime;
1099
1100        u64                     block_start;
1101        u64                     block_max;
1102        u64                     exec_max;
1103        u64                     slice_max;
1104
1105        u64                     nr_migrations_cold;
1106        u64                     nr_failed_migrations_affine;
1107        u64                     nr_failed_migrations_running;
1108        u64                     nr_failed_migrations_hot;
1109        u64                     nr_forced_migrations;
1110
1111        u64                     nr_wakeups;
1112        u64                     nr_wakeups_sync;
1113        u64                     nr_wakeups_migrate;
1114        u64                     nr_wakeups_local;
1115        u64                     nr_wakeups_remote;
1116        u64                     nr_wakeups_affine;
1117        u64                     nr_wakeups_affine_attempts;
1118        u64                     nr_wakeups_passive;
1119        u64                     nr_wakeups_idle;
1120};
1121#endif
1122
1123struct sched_entity {
1124        struct load_weight      load;           /* for load-balancing */
1125        struct rb_node          run_node;
1126        struct list_head        group_node;
1127        unsigned int            on_rq;
1128
1129        u64                     exec_start;
1130        u64                     sum_exec_runtime;
1131        u64                     vruntime;
1132        u64                     prev_sum_exec_runtime;
1133
1134        u64                     nr_migrations;
1135
1136#ifdef CONFIG_SCHEDSTATS
1137        struct sched_statistics statistics;
1138#endif
1139
1140#ifdef CONFIG_FAIR_GROUP_SCHED
1141        struct sched_entity     *parent;
1142        /* rq on which this entity is (to be) queued: */
1143        struct cfs_rq           *cfs_rq;
1144        /* rq "owned" by this entity/group: */
1145        struct cfs_rq           *my_q;
1146#endif
1147};
1148
1149struct sched_rt_entity {
1150        struct list_head run_list;
1151        unsigned long timeout;
1152        unsigned int time_slice;
1153        int nr_cpus_allowed;
1154
1155        struct sched_rt_entity *back;
1156#ifdef CONFIG_RT_GROUP_SCHED
1157        struct sched_rt_entity  *parent;
1158        /* rq on which this entity is (to be) queued: */
1159        struct rt_rq            *rt_rq;
1160        /* rq "owned" by this entity/group: */
1161        struct rt_rq            *my_q;
1162#endif
1163};
1164
1165struct rcu_node;
1166
1167struct task_struct {
1168        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1169        void *stack;
1170        atomic_t usage;
1171        unsigned int flags;     /* per process flags, defined below */
1172        unsigned int ptrace;
1173
1174        int lock_depth;         /* BKL lock depth */
1175
1176#ifdef CONFIG_SMP
1177#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1178        int oncpu;
1179#endif
1180#endif
1181
1182        int prio, static_prio, normal_prio;
1183        unsigned int rt_priority;
1184        const struct sched_class *sched_class;
1185        struct sched_entity se;
1186        struct sched_rt_entity rt;
1187
1188#ifdef CONFIG_PREEMPT_NOTIFIERS
1189        /* list of struct preempt_notifier: */
1190        struct hlist_head preempt_notifiers;
1191#endif
1192
1193        /*
1194         * fpu_counter contains the number of consecutive context switches
1195         * that the FPU is used. If this is over a threshold, the lazy fpu
1196         * saving becomes unlazy to save the trap. This is an unsigned char
1197         * so that after 256 times the counter wraps and the behavior turns
1198         * lazy again; this to deal with bursty apps that only use FPU for
1199         * a short time
1200         */
1201        unsigned char fpu_counter;
1202#ifdef CONFIG_BLK_DEV_IO_TRACE
1203        unsigned int btrace_seq;
1204#endif
1205
1206        unsigned int policy;
1207        cpumask_t cpus_allowed;
1208
1209#ifdef CONFIG_TREE_PREEMPT_RCU
1210        int rcu_read_lock_nesting;
1211        char rcu_read_unlock_special;
1212        struct rcu_node *rcu_blocked_node;
1213        struct list_head rcu_node_entry;
1214#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1215
1216#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1217        struct sched_info sched_info;
1218#endif
1219
1220        struct list_head tasks;
1221        struct plist_node pushable_tasks;
1222
1223        struct mm_struct *mm, *active_mm;
1224#if defined(SPLIT_RSS_COUNTING)
1225        struct task_rss_stat    rss_stat;
1226#endif
1227/* task state */
1228        int exit_state;
1229        int exit_code, exit_signal;
1230        int pdeath_signal;  /*  The signal sent when the parent dies  */
1231        /* ??? */
1232        unsigned int personality;
1233        unsigned did_exec:1;
1234        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1235                                 * execve */
1236        unsigned in_iowait:1;
1237
1238
1239        /* Revert to default priority/policy when forking */
1240        unsigned sched_reset_on_fork:1;
1241
1242        pid_t pid;
1243        pid_t tgid;
1244
1245#ifdef CONFIG_CC_STACKPROTECTOR
1246        /* Canary value for the -fstack-protector gcc feature */
1247        unsigned long stack_canary;
1248#endif
1249
1250        /* 
1251         * pointers to (original) parent process, youngest child, younger sibling,
1252         * older sibling, respectively.  (p->father can be replaced with 
1253         * p->real_parent->pid)
1254         */
1255        struct task_struct *real_parent; /* real parent process */
1256        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1257        /*
1258         * children/sibling forms the list of my natural children
1259         */
1260        struct list_head children;      /* list of my children */
1261        struct list_head sibling;       /* linkage in my parent's children list */
1262        struct task_struct *group_leader;       /* threadgroup leader */
1263
1264        /*
1265         * ptraced is the list of tasks this task is using ptrace on.
1266         * This includes both natural children and PTRACE_ATTACH targets.
1267         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1268         */
1269        struct list_head ptraced;
1270        struct list_head ptrace_entry;
1271
1272        /* PID/PID hash table linkage. */
1273        struct pid_link pids[PIDTYPE_MAX];
1274        struct list_head thread_group;
1275
1276        struct completion *vfork_done;          /* for vfork() */
1277        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1278        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1279
1280        cputime_t utime, stime, utimescaled, stimescaled;
1281        cputime_t gtime;
1282#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1283        cputime_t prev_utime, prev_stime;
1284#endif
1285        unsigned long nvcsw, nivcsw; /* context switch counts */
1286        struct timespec start_time;             /* monotonic time */
1287        struct timespec real_start_time;        /* boot based time */
1288/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1289        unsigned long min_flt, maj_flt;
1290
1291        struct task_cputime cputime_expires;
1292        struct list_head cpu_timers[3];
1293
1294/* process credentials */
1295        const struct cred *real_cred;   /* objective and real subjective task
1296                                         * credentials (COW) */
1297        const struct cred *cred;        /* effective (overridable) subjective task
1298                                         * credentials (COW) */
1299        struct mutex cred_guard_mutex;  /* guard against foreign influences on
1300                                         * credential calculations
1301                                         * (notably. ptrace) */
1302        struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1303
1304        char comm[TASK_COMM_LEN]; /* executable name excluding path
1305                                     - access with [gs]et_task_comm (which lock
1306                                       it with task_lock())
1307                                     - initialized normally by setup_new_exec */
1308/* file system info */
1309        int link_count, total_link_count;
1310#ifdef CONFIG_SYSVIPC
1311/* ipc stuff */
1312        struct sysv_sem sysvsem;
1313#endif
1314#ifdef CONFIG_DETECT_HUNG_TASK
1315/* hung task detection */
1316        unsigned long last_switch_count;
1317#endif
1318/* CPU-specific state of this task */
1319        struct thread_struct thread;
1320/* filesystem information */
1321        struct fs_struct *fs;
1322/* open file information */
1323        struct files_struct *files;
1324/* namespaces */
1325        struct nsproxy *nsproxy;
1326/* signal handlers */
1327        struct signal_struct *signal;
1328        struct sighand_struct *sighand;
1329
1330        sigset_t blocked, real_blocked;
1331        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1332        struct sigpending pending;
1333
1334        unsigned long sas_ss_sp;
1335        size_t sas_ss_size;
1336        int (*notifier)(void *priv);
1337        void *notifier_data;
1338        sigset_t *notifier_mask;
1339        struct audit_context *audit_context;
1340#ifdef CONFIG_AUDITSYSCALL
1341        uid_t loginuid;
1342        unsigned int sessionid;
1343#endif
1344        seccomp_t seccomp;
1345
1346/* Thread group tracking */
1347        u32 parent_exec_id;
1348        u32 self_exec_id;
1349/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1350 * mempolicy */
1351        spinlock_t alloc_lock;
1352
1353#ifdef CONFIG_GENERIC_HARDIRQS
1354        /* IRQ handler threads */
1355        struct irqaction *irqaction;
1356#endif
1357
1358        /* Protection of the PI data structures: */
1359        raw_spinlock_t pi_lock;
1360
1361#ifdef CONFIG_RT_MUTEXES
1362        /* PI waiters blocked on a rt_mutex held by this task */
1363        struct plist_head pi_waiters;
1364        /* Deadlock detection and priority inheritance handling */
1365        struct rt_mutex_waiter *pi_blocked_on;
1366#endif
1367
1368#ifdef CONFIG_DEBUG_MUTEXES
1369        /* mutex deadlock detection */
1370        struct mutex_waiter *blocked_on;
1371#endif
1372#ifdef CONFIG_TRACE_IRQFLAGS
1373        unsigned int irq_events;
1374        unsigned long hardirq_enable_ip;
1375        unsigned long hardirq_disable_ip;
1376        unsigned int hardirq_enable_event;
1377        unsigned int hardirq_disable_event;
1378        int hardirqs_enabled;
1379        int hardirq_context;
1380        unsigned long softirq_disable_ip;
1381        unsigned long softirq_enable_ip;
1382        unsigned int softirq_disable_event;
1383        unsigned int softirq_enable_event;
1384        int softirqs_enabled;
1385        int softirq_context;
1386#endif
1387#ifdef CONFIG_LOCKDEP
1388# define MAX_LOCK_DEPTH 48UL
1389        u64 curr_chain_key;
1390        int lockdep_depth;
1391        unsigned int lockdep_recursion;
1392        struct held_lock held_locks[MAX_LOCK_DEPTH];
1393        gfp_t lockdep_reclaim_gfp;
1394#endif
1395
1396/* journalling filesystem info */
1397        void *journal_info;
1398
1399/* stacked block device info */
1400        struct bio_list *bio_list;
1401
1402/* VM state */
1403        struct reclaim_state *reclaim_state;
1404
1405        struct backing_dev_info *backing_dev_info;
1406
1407        struct io_context *io_context;
1408
1409        unsigned long ptrace_message;
1410        siginfo_t *last_siginfo; /* For ptrace use.  */
1411        struct task_io_accounting ioac;
1412#if defined(CONFIG_TASK_XACCT)
1413        u64 acct_rss_mem1;      /* accumulated rss usage */
1414        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1415        cputime_t acct_timexpd; /* stime + utime since last update */
1416#endif
1417#ifdef CONFIG_CPUSETS
1418        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1419        int mems_allowed_change_disable;
1420        int cpuset_mem_spread_rotor;
1421        int cpuset_slab_spread_rotor;
1422#endif
1423#ifdef CONFIG_CGROUPS
1424        /* Control Group info protected by css_set_lock */
1425        struct css_set *cgroups;
1426        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1427        struct list_head cg_list;
1428#endif
1429#ifdef CONFIG_FUTEX
1430        struct robust_list_head __user *robust_list;
1431#ifdef CONFIG_COMPAT
1432        struct compat_robust_list_head __user *compat_robust_list;
1433#endif
1434        struct list_head pi_state_list;
1435        struct futex_pi_state *pi_state_cache;
1436#endif
1437#ifdef CONFIG_PERF_EVENTS
1438        struct perf_event_context *perf_event_ctxp;
1439        struct mutex perf_event_mutex;
1440        struct list_head perf_event_list;
1441#endif
1442#ifdef CONFIG_NUMA
1443        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1444        short il_next;
1445#endif
1446        atomic_t fs_excl;       /* holding fs exclusive resources */
1447        struct rcu_head rcu;
1448
1449        /*
1450         * cache last used pipe for splice
1451         */
1452        struct pipe_inode_info *splice_pipe;
1453#ifdef  CONFIG_TASK_DELAY_ACCT
1454        struct task_delay_info *delays;
1455#endif
1456#ifdef CONFIG_FAULT_INJECTION
1457        int make_it_fail;
1458#endif
1459        struct prop_local_single dirties;
1460#ifdef CONFIG_LATENCYTOP
1461        int latency_record_count;
1462        struct latency_record latency_record[LT_SAVECOUNT];
1463#endif
1464        /*
1465         * time slack values; these are used to round up poll() and
1466         * select() etc timeout values. These are in nanoseconds.
1467         */
1468        unsigned long timer_slack_ns;
1469        unsigned long default_timer_slack_ns;
1470
1471        struct list_head        *scm_work_list;
1472#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1473        /* Index of current stored address in ret_stack */
1474        int curr_ret_stack;
1475        /* Stack of return addresses for return function tracing */
1476        struct ftrace_ret_stack *ret_stack;
1477        /* time stamp for last schedule */
1478        unsigned long long ftrace_timestamp;
1479        /*
1480         * Number of functions that haven't been traced
1481         * because of depth overrun.
1482         */
1483        atomic_t trace_overrun;
1484        /* Pause for the tracing */
1485        atomic_t tracing_graph_pause;
1486#endif
1487#ifdef CONFIG_TRACING
1488        /* state flags for use by tracers */
1489        unsigned long trace;
1490        /* bitmask of trace recursion */
1491        unsigned long trace_recursion;
1492#endif /* CONFIG_TRACING */
1493#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1494        struct memcg_batch_info {
1495                int do_batch;   /* incremented when batch uncharge started */
1496                struct mem_cgroup *memcg; /* target memcg of uncharge */
1497                unsigned long bytes;            /* uncharged usage */
1498                unsigned long memsw_bytes; /* uncharged mem+swap usage */
1499        } memcg_batch;
1500#endif
1501};
1502
1503/* Future-safe accessor for struct task_struct's cpus_allowed. */
1504#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1505
1506/*
1507 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1508 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1509 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1510 * values are inverted: lower p->prio value means higher priority.
1511 *
1512 * The MAX_USER_RT_PRIO value allows the actual maximum
1513 * RT priority to be separate from the value exported to
1514 * user-space.  This allows kernel threads to set their
1515 * priority to a value higher than any user task. Note:
1516 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1517 */
1518
1519#define MAX_USER_RT_PRIO        100
1520#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1521
1522#define MAX_PRIO                (MAX_RT_PRIO + 40)
1523#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1524
1525static inline int rt_prio(int prio)
1526{
1527        if (unlikely(prio < MAX_RT_PRIO))
1528                return 1;
1529        return 0;
1530}
1531
1532static inline int rt_task(struct task_struct *p)
1533{
1534        return rt_prio(p->prio);
1535}
1536
1537static inline struct pid *task_pid(struct task_struct *task)
1538{
1539        return task->pids[PIDTYPE_PID].pid;
1540}
1541
1542static inline struct pid *task_tgid(struct task_struct *task)
1543{
1544        return task->group_leader->pids[PIDTYPE_PID].pid;
1545}
1546
1547/*
1548 * Without tasklist or rcu lock it is not safe to dereference
1549 * the result of task_pgrp/task_session even if task == current,
1550 * we can race with another thread doing sys_setsid/sys_setpgid.
1551 */
1552static inline struct pid *task_pgrp(struct task_struct *task)
1553{
1554        return task->group_leader->pids[PIDTYPE_PGID].pid;
1555}
1556
1557static inline struct pid *task_session(struct task_struct *task)
1558{
1559        return task->group_leader->pids[PIDTYPE_SID].pid;
1560}
1561
1562struct pid_namespace;
1563
1564/*
1565 * the helpers to get the task's different pids as they are seen
1566 * from various namespaces
1567 *
1568 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1569 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1570 *                     current.
1571 * task_xid_nr_ns()  : id seen from the ns specified;
1572 *
1573 * set_task_vxid()   : assigns a virtual id to a task;
1574 *
1575 * see also pid_nr() etc in include/linux/pid.h
1576 */
1577pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1578                        struct pid_namespace *ns);
1579
1580static inline pid_t task_pid_nr(struct task_struct *tsk)
1581{
1582        return tsk->pid;
1583}
1584
1585static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1586                                        struct pid_namespace *ns)
1587{
1588        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1589}
1590
1591static inline pid_t task_pid_vnr(struct task_struct *tsk)
1592{
1593        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1594}
1595
1596
1597static inline pid_t task_tgid_nr(struct task_struct *tsk)
1598{
1599        return tsk->tgid;
1600}
1601
1602pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1603
1604static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1605{
1606        return pid_vnr(task_tgid(tsk));
1607}
1608
1609
1610static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1611                                        struct pid_namespace *ns)
1612{
1613        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1614}
1615
1616static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1617{
1618        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1619}
1620
1621
1622static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1623                                        struct pid_namespace *ns)
1624{
1625        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1626}
1627
1628static inline pid_t task_session_vnr(struct task_struct *tsk)
1629{
1630        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1631}
1632
1633/* obsolete, do not use */
1634static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1635{
1636        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1637}
1638
1639/**
1640 * pid_alive - check that a task structure is not stale
1641 * @p: Task structure to be checked.
1642 *
1643 * Test if a process is not yet dead (at most zombie state)
1644 * If pid_alive fails, then pointers within the task structure
1645 * can be stale and must not be dereferenced.
1646 */
1647static inline int pid_alive(struct task_struct *p)
1648{
1649        return p->pids[PIDTYPE_PID].pid != NULL;
1650}
1651
1652/**
1653 * is_global_init - check if a task structure is init
1654 * @tsk: Task structure to be checked.
1655 *
1656 * Check if a task structure is the first user space task the kernel created.
1657 */
1658static inline int is_global_init(struct task_struct *tsk)
1659{
1660        return tsk->pid == 1;
1661}
1662
1663/*
1664 * is_container_init:
1665 * check whether in the task is init in its own pid namespace.
1666 */
1667extern int is_container_init(struct task_struct *tsk);
1668
1669extern struct pid *cad_pid;
1670
1671extern void free_task(struct task_struct *tsk);
1672#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1673
1674extern void __put_task_struct(struct task_struct *t);
1675
1676static inline void put_task_struct(struct task_struct *t)
1677{
1678        if (atomic_dec_and_test(&t->usage))
1679                __put_task_struct(t);
1680}
1681
1682extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1683extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1684
1685/*
1686 * Per process flags
1687 */
1688#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1689                                        /* Not implemented yet, only for 486*/
1690#define PF_STARTING     0x00000002      /* being created */
1691#define PF_EXITING      0x00000004      /* getting shut down */
1692#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1693#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1694#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1695#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1696#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1697#define PF_DUMPCORE     0x00000200      /* dumped core */
1698#define PF_SIGNALED     0x00000400      /* killed by a signal */
1699#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1700#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1701#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1702#define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1703#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1704#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1705#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1706#define PF_KSWAPD       0x00040000      /* I am kswapd */
1707#define PF_OOM_ORIGIN   0x00080000      /* Allocating much memory to others */
1708#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1709#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1710#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1711#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1712#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1713#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1714#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1715#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1716#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1717#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1718#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1719#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1720
1721/*
1722 * Only the _current_ task can read/write to tsk->flags, but other
1723 * tasks can access tsk->flags in readonly mode for example
1724 * with tsk_used_math (like during threaded core dumping).
1725 * There is however an exception to this rule during ptrace
1726 * or during fork: the ptracer task is allowed to write to the
1727 * child->flags of its traced child (same goes for fork, the parent
1728 * can write to the child->flags), because we're guaranteed the
1729 * child is not running and in turn not changing child->flags
1730 * at the same time the parent does it.
1731 */
1732#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1733#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1734#define clear_used_math() clear_stopped_child_used_math(current)
1735#define set_used_math() set_stopped_child_used_math(current)
1736#define conditional_stopped_child_used_math(condition, child) \
1737        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1738#define conditional_used_math(condition) \
1739        conditional_stopped_child_used_math(condition, current)
1740#define copy_to_stopped_child_used_math(child) \
1741        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1742/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1743#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1744#define used_math() tsk_used_math(current)
1745
1746#ifdef CONFIG_TREE_PREEMPT_RCU
1747
1748#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1749#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1750
1751static inline void rcu_copy_process(struct task_struct *p)
1752{
1753        p->rcu_read_lock_nesting = 0;
1754        p->rcu_read_unlock_special = 0;
1755        p->rcu_blocked_node = NULL;
1756        INIT_LIST_HEAD(&p->rcu_node_entry);
1757}
1758
1759#else
1760
1761static inline void rcu_copy_process(struct task_struct *p)
1762{
1763}
1764
1765#endif
1766
1767#ifdef CONFIG_SMP
1768extern int set_cpus_allowed_ptr(struct task_struct *p,
1769                                const struct cpumask *new_mask);
1770#else
1771static inline int set_cpus_allowed_ptr(struct task_struct *p,
1772                                       const struct cpumask *new_mask)
1773{
1774        if (!cpumask_test_cpu(0, new_mask))
1775                return -EINVAL;
1776        return 0;
1777}
1778#endif
1779
1780#ifndef CONFIG_CPUMASK_OFFSTACK
1781static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1782{
1783        return set_cpus_allowed_ptr(p, &new_mask);
1784}
1785#endif
1786
1787/*
1788 * Architectures can set this to 1 if they have specified
1789 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1790 * but then during bootup it turns out that sched_clock()
1791 * is reliable after all:
1792 */
1793#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1794extern int sched_clock_stable;
1795#endif
1796
1797/* ftrace calls sched_clock() directly */
1798extern unsigned long long notrace sched_clock(void);
1799
1800extern void sched_clock_init(void);
1801extern u64 sched_clock_cpu(int cpu);
1802
1803#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804static inline void sched_clock_tick(void)
1805{
1806}
1807
1808static inline void sched_clock_idle_sleep_event(void)
1809{
1810}
1811
1812static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813{
1814}
1815#else
1816extern void sched_clock_tick(void);
1817extern void sched_clock_idle_sleep_event(void);
1818extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1819#endif
1820
1821/*
1822 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1823 * clock constructed from sched_clock():
1824 */
1825extern unsigned long long cpu_clock(int cpu);
1826
1827extern unsigned long long
1828task_sched_runtime(struct task_struct *task);
1829extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1830
1831/* sched_exec is called by processes performing an exec */
1832#ifdef CONFIG_SMP
1833extern void sched_exec(void);
1834#else
1835#define sched_exec()   {}
1836#endif
1837
1838extern void sched_clock_idle_sleep_event(void);
1839extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1840
1841#ifdef CONFIG_HOTPLUG_CPU
1842extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1843extern void idle_task_exit(void);
1844#else
1845static inline void idle_task_exit(void) {}
1846#endif
1847
1848extern void sched_idle_next(void);
1849
1850#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1851extern void wake_up_idle_cpu(int cpu);
1852#else
1853static inline void wake_up_idle_cpu(int cpu) { }
1854#endif
1855
1856extern unsigned int sysctl_sched_latency;
1857extern unsigned int sysctl_sched_min_granularity;
1858extern unsigned int sysctl_sched_wakeup_granularity;
1859extern unsigned int sysctl_sched_shares_ratelimit;
1860extern unsigned int sysctl_sched_shares_thresh;
1861extern unsigned int sysctl_sched_child_runs_first;
1862
1863enum sched_tunable_scaling {
1864        SCHED_TUNABLESCALING_NONE,
1865        SCHED_TUNABLESCALING_LOG,
1866        SCHED_TUNABLESCALING_LINEAR,
1867        SCHED_TUNABLESCALING_END,
1868};
1869extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1870
1871#ifdef CONFIG_SCHED_DEBUG
1872extern unsigned int sysctl_sched_migration_cost;
1873extern unsigned int sysctl_sched_nr_migrate;
1874extern unsigned int sysctl_sched_time_avg;
1875extern unsigned int sysctl_timer_migration;
1876
1877int sched_proc_update_handler(struct ctl_table *table, int write,
1878                void __user *buffer, size_t *length,
1879                loff_t *ppos);
1880#endif
1881#ifdef CONFIG_SCHED_DEBUG
1882static inline unsigned int get_sysctl_timer_migration(void)
1883{
1884        return sysctl_timer_migration;
1885}
1886#else
1887static inline unsigned int get_sysctl_timer_migration(void)
1888{
1889        return 1;
1890}
1891#endif
1892extern unsigned int sysctl_sched_rt_period;
1893extern int sysctl_sched_rt_runtime;
1894
1895int sched_rt_handler(struct ctl_table *table, int write,
1896                void __user *buffer, size_t *lenp,
1897                loff_t *ppos);
1898
1899extern unsigned int sysctl_sched_compat_yield;
1900
1901#ifdef CONFIG_RT_MUTEXES
1902extern int rt_mutex_getprio(struct task_struct *p);
1903extern void rt_mutex_setprio(struct task_struct *p, int prio);
1904extern void rt_mutex_adjust_pi(struct task_struct *p);
1905#else
1906static inline int rt_mutex_getprio(struct task_struct *p)
1907{
1908        return p->normal_prio;
1909}
1910# define rt_mutex_adjust_pi(p)          do { } while (0)
1911#endif
1912
1913extern void set_user_nice(struct task_struct *p, long nice);
1914extern int task_prio(const struct task_struct *p);
1915extern int task_nice(const struct task_struct *p);
1916extern int can_nice(const struct task_struct *p, const int nice);
1917extern int task_curr(const struct task_struct *p);
1918extern int idle_cpu(int cpu);
1919extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1920extern int sched_setscheduler_nocheck(struct task_struct *, int,
1921                                      struct sched_param *);
1922extern struct task_struct *idle_task(int cpu);
1923extern struct task_struct *curr_task(int cpu);
1924extern void set_curr_task(int cpu, struct task_struct *p);
1925
1926void yield(void);
1927
1928/*
1929 * The default (Linux) execution domain.
1930 */
1931extern struct exec_domain       default_exec_domain;
1932
1933union thread_union {
1934        struct thread_info thread_info;
1935        unsigned long stack[THREAD_SIZE/sizeof(long)];
1936};
1937
1938#ifndef __HAVE_ARCH_KSTACK_END
1939static inline int kstack_end(void *addr)
1940{
1941        /* Reliable end of stack detection:
1942         * Some APM bios versions misalign the stack
1943         */
1944        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1945}
1946#endif
1947
1948extern union thread_union init_thread_union;
1949extern struct task_struct init_task;
1950
1951extern struct   mm_struct init_mm;
1952
1953extern struct pid_namespace init_pid_ns;
1954
1955/*
1956 * find a task by one of its numerical ids
1957 *
1958 * find_task_by_pid_ns():
1959 *      finds a task by its pid in the specified namespace
1960 * find_task_by_vpid():
1961 *      finds a task by its virtual pid
1962 *
1963 * see also find_vpid() etc in include/linux/pid.h
1964 */
1965
1966extern struct task_struct *find_task_by_vpid(pid_t nr);
1967extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1968                struct pid_namespace *ns);
1969
1970extern void __set_special_pids(struct pid *pid);
1971
1972/* per-UID process charging. */
1973extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1974static inline struct user_struct *get_uid(struct user_struct *u)
1975{
1976        atomic_inc(&u->__count);
1977        return u;
1978}
1979extern void free_uid(struct user_struct *);
1980extern void release_uids(struct user_namespace *ns);
1981
1982#include <asm/current.h>
1983
1984extern void do_timer(unsigned long ticks);
1985
1986extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1987extern int wake_up_process(struct task_struct *tsk);
1988extern void wake_up_new_task(struct task_struct *tsk,
1989                                unsigned long clone_flags);
1990#ifdef CONFIG_SMP
1991 extern void kick_process(struct task_struct *tsk);
1992#else
1993 static inline void kick_process(struct task_struct *tsk) { }
1994#endif
1995extern void sched_fork(struct task_struct *p, int clone_flags);
1996extern void sched_dead(struct task_struct *p);
1997
1998extern void proc_caches_init(void);
1999extern void flush_signals(struct task_struct *);
2000extern void __flush_signals(struct task_struct *);
2001extern void ignore_signals(struct task_struct *);
2002extern void flush_signal_handlers(struct task_struct *, int force_default);
2003extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2004
2005static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2006{
2007        unsigned long flags;
2008        int ret;
2009
2010        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2011        ret = dequeue_signal(tsk, mask, info);
2012        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2013
2014        return ret;
2015}       
2016
2017extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2018                              sigset_t *mask);
2019extern void unblock_all_signals(void);
2020extern void release_task(struct task_struct * p);
2021extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2022extern int force_sigsegv(int, struct task_struct *);
2023extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2024extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2025extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2026extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2027extern int kill_pgrp(struct pid *pid, int sig, int priv);
2028extern int kill_pid(struct pid *pid, int sig, int priv);
2029extern int kill_proc_info(int, struct siginfo *, pid_t);
2030extern int do_notify_parent(struct task_struct *, int);
2031extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2032extern void force_sig(int, struct task_struct *);
2033extern int send_sig(int, struct task_struct *, int);
2034extern int zap_other_threads(struct task_struct *p);
2035extern struct sigqueue *sigqueue_alloc(void);
2036extern void sigqueue_free(struct sigqueue *);
2037extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2038extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2039extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2040
2041static inline int kill_cad_pid(int sig, int priv)
2042{
2043        return kill_pid(cad_pid, sig, priv);
2044}
2045
2046/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2047#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2048#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2049#define SEND_SIG_FORCED ((struct siginfo *) 2)
2050
2051/*
2052 * True if we are on the alternate signal stack.
2053 */
2054static inline int on_sig_stack(unsigned long sp)
2055{
2056#ifdef CONFIG_STACK_GROWSUP
2057        return sp >= current->sas_ss_sp &&
2058                sp - current->sas_ss_sp < current->sas_ss_size;
2059#else
2060        return sp > current->sas_ss_sp &&
2061                sp - current->sas_ss_sp <= current->sas_ss_size;
2062#endif
2063}
2064
2065static inline int sas_ss_flags(unsigned long sp)
2066{
2067        return (current->sas_ss_size == 0 ? SS_DISABLE
2068                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2069}
2070
2071/*
2072 * Routines for handling mm_structs
2073 */
2074extern struct mm_struct * mm_alloc(void);
2075
2076/* mmdrop drops the mm and the page tables */
2077extern void __mmdrop(struct mm_struct *);
2078static inline void mmdrop(struct mm_struct * mm)
2079{
2080        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2081                __mmdrop(mm);
2082}
2083
2084/* mmput gets rid of the mappings and all user-space */
2085extern void mmput(struct mm_struct *);
2086/* Grab a reference to a task's mm, if it is not already going away */
2087extern struct mm_struct *get_task_mm(struct task_struct *task);
2088/* Remove the current tasks stale references to the old mm_struct */
2089extern void mm_release(struct task_struct *, struct mm_struct *);
2090/* Allocate a new mm structure and copy contents from tsk->mm */
2091extern struct mm_struct *dup_mm(struct task_struct *tsk);
2092
2093extern int copy_thread(unsigned long, unsigned long, unsigned long,
2094                        struct task_struct *, struct pt_regs *);
2095extern void flush_thread(void);
2096extern void exit_thread(void);
2097
2098extern void exit_files(struct task_struct *);
2099extern void __cleanup_sighand(struct sighand_struct *);
2100
2101extern void exit_itimers(struct signal_struct *);
2102extern void flush_itimer_signals(void);
2103
2104extern NORET_TYPE void do_group_exit(int);
2105
2106extern void daemonize(const char *, ...);
2107extern int allow_signal(int);
2108extern int disallow_signal(int);
2109
2110extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2111extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2112struct task_struct *fork_idle(int);
2113
2114extern void set_task_comm(struct task_struct *tsk, char *from);
2115extern char *get_task_comm(char *to, struct task_struct *tsk);
2116
2117#ifdef CONFIG_SMP
2118extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2119#else
2120static inline unsigned long wait_task_inactive(struct task_struct *p,
2121                                               long match_state)
2122{
2123        return 1;
2124}
2125#endif
2126
2127#define next_task(p) \
2128        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2129
2130#define for_each_process(p) \
2131        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2132
2133extern bool current_is_single_threaded(void);
2134
2135/*
2136 * Careful: do_each_thread/while_each_thread is a double loop so
2137 *          'break' will not work as expected - use goto instead.
2138 */
2139#define do_each_thread(g, t) \
2140        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2141
2142#define while_each_thread(g, t) \
2143        while ((t = next_thread(t)) != g)
2144
2145static inline int get_nr_threads(struct task_struct *tsk)
2146{
2147        return tsk->signal->nr_threads;
2148}
2149
2150/* de_thread depends on thread_group_leader not being a pid based check */
2151#define thread_group_leader(p)  (p == p->group_leader)
2152
2153/* Do to the insanities of de_thread it is possible for a process
2154 * to have the pid of the thread group leader without actually being
2155 * the thread group leader.  For iteration through the pids in proc
2156 * all we care about is that we have a task with the appropriate
2157 * pid, we don't actually care if we have the right task.
2158 */
2159static inline int has_group_leader_pid(struct task_struct *p)
2160{
2161        return p->pid == p->tgid;
2162}
2163
2164static inline
2165int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2166{
2167        return p1->tgid == p2->tgid;
2168}
2169
2170static inline struct task_struct *next_thread(const struct task_struct *p)
2171{
2172        return list_entry_rcu(p->thread_group.next,
2173                              struct task_struct, thread_group);
2174}
2175
2176static inline int thread_group_empty(struct task_struct *p)
2177{
2178        return list_empty(&p->thread_group);
2179}
2180
2181#define delay_group_leader(p) \
2182                (thread_group_leader(p) && !thread_group_empty(p))
2183
2184static inline int task_detached(struct task_struct *p)
2185{
2186        return p->exit_signal == -1;
2187}
2188
2189/*
2190 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2191 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2192 * pins the final release of task.io_context.  Also protects ->cpuset and
2193 * ->cgroup.subsys[].
2194 *
2195 * Nests both inside and outside of read_lock(&tasklist_lock).
2196 * It must not be nested with write_lock_irq(&tasklist_lock),
2197 * neither inside nor outside.
2198 */
2199static inline void task_lock(struct task_struct *p)
2200{
2201        spin_lock(&p->alloc_lock);
2202}
2203
2204static inline void task_unlock(struct task_struct *p)
2205{
2206        spin_unlock(&p->alloc_lock);
2207}
2208
2209extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2210                                                        unsigned long *flags);
2211
2212static inline void unlock_task_sighand(struct task_struct *tsk,
2213                                                unsigned long *flags)
2214{
2215        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2216}
2217
2218#ifndef __HAVE_THREAD_FUNCTIONS
2219
2220#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2221#define task_stack_page(task)   ((task)->stack)
2222
2223static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2224{
2225        *task_thread_info(p) = *task_thread_info(org);
2226        task_thread_info(p)->task = p;
2227}
2228
2229static inline unsigned long *end_of_stack(struct task_struct *p)
2230{
2231        return (unsigned long *)(task_thread_info(p) + 1);
2232}
2233
2234#endif
2235
2236static inline int object_is_on_stack(void *obj)
2237{
2238        void *stack = task_stack_page(current);
2239
2240        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2241}
2242
2243extern void thread_info_cache_init(void);
2244
2245#ifdef CONFIG_DEBUG_STACK_USAGE
2246static inline unsigned long stack_not_used(struct task_struct *p)
2247{
2248        unsigned long *n = end_of_stack(p);
2249
2250        do {    /* Skip over canary */
2251                n++;
2252        } while (!*n);
2253
2254        return (unsigned long)n - (unsigned long)end_of_stack(p);
2255}
2256#endif
2257
2258/* set thread flags in other task's structures
2259 * - see asm/thread_info.h for TIF_xxxx flags available
2260 */
2261static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2262{
2263        set_ti_thread_flag(task_thread_info(tsk), flag);
2264}
2265
2266static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2267{
2268        clear_ti_thread_flag(task_thread_info(tsk), flag);
2269}
2270
2271static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2272{
2273        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2274}
2275
2276static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2277{
2278        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2279}
2280
2281static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2282{
2283        return test_ti_thread_flag(task_thread_info(tsk), flag);
2284}
2285
2286static inline void set_tsk_need_resched(struct task_struct *tsk)
2287{
2288        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2289}
2290
2291static inline void clear_tsk_need_resched(struct task_struct *tsk)
2292{
2293        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2294}
2295
2296static inline int test_tsk_need_resched(struct task_struct *tsk)
2297{
2298        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2299}
2300
2301static inline int restart_syscall(void)
2302{
2303        set_tsk_thread_flag(current, TIF_SIGPENDING);
2304        return -ERESTARTNOINTR;
2305}
2306
2307static inline int signal_pending(struct task_struct *p)
2308{
2309        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2310}
2311
2312static inline int __fatal_signal_pending(struct task_struct *p)
2313{
2314        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2315}
2316
2317static inline int fatal_signal_pending(struct task_struct *p)
2318{
2319        return signal_pending(p) && __fatal_signal_pending(p);
2320}
2321
2322static inline int signal_pending_state(long state, struct task_struct *p)
2323{
2324        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2325                return 0;
2326        if (!signal_pending(p))
2327                return 0;
2328
2329        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2330}
2331
2332static inline int need_resched(void)
2333{
2334        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2335}
2336
2337/*
2338 * cond_resched() and cond_resched_lock(): latency reduction via
2339 * explicit rescheduling in places that are safe. The return
2340 * value indicates whether a reschedule was done in fact.
2341 * cond_resched_lock() will drop the spinlock before scheduling,
2342 * cond_resched_softirq() will enable bhs before scheduling.
2343 */
2344extern int _cond_resched(void);
2345
2346#define cond_resched() ({                       \
2347        __might_sleep(__FILE__, __LINE__, 0);   \
2348        _cond_resched();                        \
2349})
2350
2351extern int __cond_resched_lock(spinlock_t *lock);
2352
2353#ifdef CONFIG_PREEMPT
2354#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2355#else
2356#define PREEMPT_LOCK_OFFSET     0
2357#endif
2358
2359#define cond_resched_lock(lock) ({                              \
2360        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2361        __cond_resched_lock(lock);                              \
2362})
2363
2364extern int __cond_resched_softirq(void);
2365
2366#define cond_resched_softirq() ({                               \
2367        __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);      \
2368        __cond_resched_softirq();                               \
2369})
2370
2371/*
2372 * Does a critical section need to be broken due to another
2373 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2374 * but a general need for low latency)
2375 */
2376static inline int spin_needbreak(spinlock_t *lock)
2377{
2378#ifdef CONFIG_PREEMPT
2379        return spin_is_contended(lock);
2380#else
2381        return 0;
2382#endif
2383}
2384
2385/*
2386 * Thread group CPU time accounting.
2387 */
2388void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2389void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2390
2391static inline void thread_group_cputime_init(struct signal_struct *sig)
2392{
2393        spin_lock_init(&sig->cputimer.lock);
2394}
2395
2396/*
2397 * Reevaluate whether the task has signals pending delivery.
2398 * Wake the task if so.
2399 * This is required every time the blocked sigset_t changes.
2400 * callers must hold sighand->siglock.
2401 */
2402extern void recalc_sigpending_and_wake(struct task_struct *t);
2403extern void recalc_sigpending(void);
2404
2405extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2406
2407/*
2408 * Wrappers for p->thread_info->cpu access. No-op on UP.
2409 */
2410#ifdef CONFIG_SMP
2411
2412static inline unsigned int task_cpu(const struct task_struct *p)
2413{
2414        return task_thread_info(p)->cpu;
2415}
2416
2417extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2418
2419#else
2420
2421static inline unsigned int task_cpu(const struct task_struct *p)
2422{
2423        return 0;
2424}
2425
2426static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2427{
2428}
2429
2430#endif /* CONFIG_SMP */
2431
2432#ifdef CONFIG_TRACING
2433extern void
2434__trace_special(void *__tr, void *__data,
2435                unsigned long arg1, unsigned long arg2, unsigned long arg3);
2436#else
2437static inline void
2438__trace_special(void *__tr, void *__data,
2439                unsigned long arg1, unsigned long arg2, unsigned long arg3)
2440{
2441}
2442#endif
2443
2444extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2445extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2446
2447extern void normalize_rt_tasks(void);
2448
2449#ifdef CONFIG_CGROUP_SCHED
2450
2451extern struct task_group init_task_group;
2452
2453extern struct task_group *sched_create_group(struct task_group *parent);
2454extern void sched_destroy_group(struct task_group *tg);
2455extern void sched_move_task(struct task_struct *tsk);
2456#ifdef CONFIG_FAIR_GROUP_SCHED
2457extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2458extern unsigned long sched_group_shares(struct task_group *tg);
2459#endif
2460#ifdef CONFIG_RT_GROUP_SCHED
2461extern int sched_group_set_rt_runtime(struct task_group *tg,
2462                                      long rt_runtime_us);
2463extern long sched_group_rt_runtime(struct task_group *tg);
2464extern int sched_group_set_rt_period(struct task_group *tg,
2465                                      long rt_period_us);
2466extern long sched_group_rt_period(struct task_group *tg);
2467extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2468#endif
2469#endif
2470
2471extern int task_can_switch_user(struct user_struct *up,
2472                                        struct task_struct *tsk);
2473
2474#ifdef CONFIG_TASK_XACCT
2475static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2476{
2477        tsk->ioac.rchar += amt;
2478}
2479
2480static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2481{
2482        tsk->ioac.wchar += amt;
2483}
2484
2485static inline void inc_syscr(struct task_struct *tsk)
2486{
2487        tsk->ioac.syscr++;
2488}
2489
2490static inline void inc_syscw(struct task_struct *tsk)
2491{
2492        tsk->ioac.syscw++;
2493}
2494#else
2495static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2496{
2497}
2498
2499static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2500{
2501}
2502
2503static inline void inc_syscr(struct task_struct *tsk)
2504{
2505}
2506
2507static inline void inc_syscw(struct task_struct *tsk)
2508{
2509}
2510#endif
2511
2512#ifndef TASK_SIZE_OF
2513#define TASK_SIZE_OF(tsk)       TASK_SIZE
2514#endif
2515
2516/*
2517 * Call the function if the target task is executing on a CPU right now:
2518 */
2519extern void task_oncpu_function_call(struct task_struct *p,
2520                                     void (*func) (void *info), void *info);
2521
2522
2523#ifdef CONFIG_MM_OWNER
2524extern void mm_update_next_owner(struct mm_struct *mm);
2525extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2526#else
2527static inline void mm_update_next_owner(struct mm_struct *mm)
2528{
2529}
2530
2531static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2532{
2533}
2534#endif /* CONFIG_MM_OWNER */
2535
2536static inline unsigned long task_rlimit(const struct task_struct *tsk,
2537                unsigned int limit)
2538{
2539        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2540}
2541
2542static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2543                unsigned int limit)
2544{
2545        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2546}
2547
2548static inline unsigned long rlimit(unsigned int limit)
2549{
2550        return task_rlimit(current, limit);
2551}
2552
2553static inline unsigned long rlimit_max(unsigned int limit)
2554{
2555        return task_rlimit_max(current, limit);
2556}
2557
2558#endif /* __KERNEL__ */
2559
2560#endif
2561
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.