linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97
  98#include <net/sock.h>
  99#include <linux/netfilter.h>
 100
 101#include <linux/if_tun.h>
 102#include <linux/ipv6_route.h>
 103#include <linux/route.h>
 104#include <linux/sockios.h>
 105#include <linux/atalk.h>
 106
 107static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 108static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 109                         unsigned long nr_segs, loff_t pos);
 110static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 111                          unsigned long nr_segs, loff_t pos);
 112static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 113
 114static int sock_close(struct inode *inode, struct file *file);
 115static unsigned int sock_poll(struct file *file,
 116                              struct poll_table_struct *wait);
 117static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 118#ifdef CONFIG_COMPAT
 119static long compat_sock_ioctl(struct file *file,
 120                              unsigned int cmd, unsigned long arg);
 121#endif
 122static int sock_fasync(int fd, struct file *filp, int on);
 123static ssize_t sock_sendpage(struct file *file, struct page *page,
 124                             int offset, size_t size, loff_t *ppos, int more);
 125static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 126                                struct pipe_inode_info *pipe, size_t len,
 127                                unsigned int flags);
 128
 129/*
 130 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 131 *      in the operation structures but are done directly via the socketcall() multiplexor.
 132 */
 133
 134static const struct file_operations socket_file_ops = {
 135        .owner =        THIS_MODULE,
 136        .llseek =       no_llseek,
 137        .aio_read =     sock_aio_read,
 138        .aio_write =    sock_aio_write,
 139        .poll =         sock_poll,
 140        .unlocked_ioctl = sock_ioctl,
 141#ifdef CONFIG_COMPAT
 142        .compat_ioctl = compat_sock_ioctl,
 143#endif
 144        .mmap =         sock_mmap,
 145        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 146        .release =      sock_close,
 147        .fasync =       sock_fasync,
 148        .sendpage =     sock_sendpage,
 149        .splice_write = generic_splice_sendpage,
 150        .splice_read =  sock_splice_read,
 151};
 152
 153/*
 154 *      The protocol list. Each protocol is registered in here.
 155 */
 156
 157static DEFINE_SPINLOCK(net_family_lock);
 158static const struct net_proto_family *net_families[NPROTO] __read_mostly;
 159
 160/*
 161 *      Statistics counters of the socket lists
 162 */
 163
 164static DEFINE_PER_CPU(int, sockets_in_use) = 0;
 165
 166/*
 167 * Support routines.
 168 * Move socket addresses back and forth across the kernel/user
 169 * divide and look after the messy bits.
 170 */
 171
 172#define MAX_SOCK_ADDR   128             /* 108 for Unix domain -
 173                                           16 for IP, 16 for IPX,
 174                                           24 for IPv6,
 175                                           about 80 for AX.25
 176                                           must be at least one bigger than
 177                                           the AF_UNIX size (see net/unix/af_unix.c
 178                                           :unix_mkname()).
 179                                         */
 180
 181/**
 182 *      move_addr_to_kernel     -       copy a socket address into kernel space
 183 *      @uaddr: Address in user space
 184 *      @kaddr: Address in kernel space
 185 *      @ulen: Length in user space
 186 *
 187 *      The address is copied into kernel space. If the provided address is
 188 *      too long an error code of -EINVAL is returned. If the copy gives
 189 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 190 */
 191
 192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
 193{
 194        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 195                return -EINVAL;
 196        if (ulen == 0)
 197                return 0;
 198        if (copy_from_user(kaddr, uaddr, ulen))
 199                return -EFAULT;
 200        return audit_sockaddr(ulen, kaddr);
 201}
 202
 203/**
 204 *      move_addr_to_user       -       copy an address to user space
 205 *      @kaddr: kernel space address
 206 *      @klen: length of address in kernel
 207 *      @uaddr: user space address
 208 *      @ulen: pointer to user length field
 209 *
 210 *      The value pointed to by ulen on entry is the buffer length available.
 211 *      This is overwritten with the buffer space used. -EINVAL is returned
 212 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 213 *      is returned if either the buffer or the length field are not
 214 *      accessible.
 215 *      After copying the data up to the limit the user specifies, the true
 216 *      length of the data is written over the length limit the user
 217 *      specified. Zero is returned for a success.
 218 */
 219
 220int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
 221                      int __user *ulen)
 222{
 223        int err;
 224        int len;
 225
 226        err = get_user(len, ulen);
 227        if (err)
 228                return err;
 229        if (len > klen)
 230                len = klen;
 231        if (len < 0 || len > sizeof(struct sockaddr_storage))
 232                return -EINVAL;
 233        if (len) {
 234                if (audit_sockaddr(klen, kaddr))
 235                        return -ENOMEM;
 236                if (copy_to_user(uaddr, kaddr, len))
 237                        return -EFAULT;
 238        }
 239        /*
 240         *      "fromlen shall refer to the value before truncation.."
 241         *                      1003.1g
 242         */
 243        return __put_user(klen, ulen);
 244}
 245
 246static struct kmem_cache *sock_inode_cachep __read_mostly;
 247
 248static struct inode *sock_alloc_inode(struct super_block *sb)
 249{
 250        struct socket_alloc *ei;
 251
 252        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 253        if (!ei)
 254                return NULL;
 255        init_waitqueue_head(&ei->socket.wait);
 256
 257        ei->socket.fasync_list = NULL;
 258        ei->socket.state = SS_UNCONNECTED;
 259        ei->socket.flags = 0;
 260        ei->socket.ops = NULL;
 261        ei->socket.sk = NULL;
 262        ei->socket.file = NULL;
 263
 264        return &ei->vfs_inode;
 265}
 266
 267static void sock_destroy_inode(struct inode *inode)
 268{
 269        kmem_cache_free(sock_inode_cachep,
 270                        container_of(inode, struct socket_alloc, vfs_inode));
 271}
 272
 273static void init_once(void *foo)
 274{
 275        struct socket_alloc *ei = (struct socket_alloc *)foo;
 276
 277        inode_init_once(&ei->vfs_inode);
 278}
 279
 280static int init_inodecache(void)
 281{
 282        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 283                                              sizeof(struct socket_alloc),
 284                                              0,
 285                                              (SLAB_HWCACHE_ALIGN |
 286                                               SLAB_RECLAIM_ACCOUNT |
 287                                               SLAB_MEM_SPREAD),
 288                                              init_once);
 289        if (sock_inode_cachep == NULL)
 290                return -ENOMEM;
 291        return 0;
 292}
 293
 294static const struct super_operations sockfs_ops = {
 295        .alloc_inode =  sock_alloc_inode,
 296        .destroy_inode =sock_destroy_inode,
 297        .statfs =       simple_statfs,
 298};
 299
 300static int sockfs_get_sb(struct file_system_type *fs_type,
 301                         int flags, const char *dev_name, void *data,
 302                         struct vfsmount *mnt)
 303{
 304        return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
 305                             mnt);
 306}
 307
 308static struct vfsmount *sock_mnt __read_mostly;
 309
 310static struct file_system_type sock_fs_type = {
 311        .name =         "sockfs",
 312        .get_sb =       sockfs_get_sb,
 313        .kill_sb =      kill_anon_super,
 314};
 315
 316/*
 317 * sockfs_dname() is called from d_path().
 318 */
 319static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 320{
 321        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 322                                dentry->d_inode->i_ino);
 323}
 324
 325static const struct dentry_operations sockfs_dentry_operations = {
 326        .d_dname  = sockfs_dname,
 327};
 328
 329/*
 330 *      Obtains the first available file descriptor and sets it up for use.
 331 *
 332 *      These functions create file structures and maps them to fd space
 333 *      of the current process. On success it returns file descriptor
 334 *      and file struct implicitly stored in sock->file.
 335 *      Note that another thread may close file descriptor before we return
 336 *      from this function. We use the fact that now we do not refer
 337 *      to socket after mapping. If one day we will need it, this
 338 *      function will increment ref. count on file by 1.
 339 *
 340 *      In any case returned fd MAY BE not valid!
 341 *      This race condition is unavoidable
 342 *      with shared fd spaces, we cannot solve it inside kernel,
 343 *      but we take care of internal coherence yet.
 344 */
 345
 346static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 347{
 348        struct qstr name = { .name = "" };
 349        struct path path;
 350        struct file *file;
 351        int fd;
 352
 353        fd = get_unused_fd_flags(flags);
 354        if (unlikely(fd < 0))
 355                return fd;
 356
 357        path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
 358        if (unlikely(!path.dentry)) {
 359                put_unused_fd(fd);
 360                return -ENOMEM;
 361        }
 362        path.mnt = mntget(sock_mnt);
 363
 364        path.dentry->d_op = &sockfs_dentry_operations;
 365        d_instantiate(path.dentry, SOCK_INODE(sock));
 366        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 367
 368        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 369                  &socket_file_ops);
 370        if (unlikely(!file)) {
 371                /* drop dentry, keep inode */
 372                atomic_inc(&path.dentry->d_inode->i_count);
 373                path_put(&path);
 374                put_unused_fd(fd);
 375                return -ENFILE;
 376        }
 377
 378        sock->file = file;
 379        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 380        file->f_pos = 0;
 381        file->private_data = sock;
 382
 383        *f = file;
 384        return fd;
 385}
 386
 387int sock_map_fd(struct socket *sock, int flags)
 388{
 389        struct file *newfile;
 390        int fd = sock_alloc_file(sock, &newfile, flags);
 391
 392        if (likely(fd >= 0))
 393                fd_install(fd, newfile);
 394
 395        return fd;
 396}
 397
 398static struct socket *sock_from_file(struct file *file, int *err)
 399{
 400        if (file->f_op == &socket_file_ops)
 401                return file->private_data;      /* set in sock_map_fd */
 402
 403        *err = -ENOTSOCK;
 404        return NULL;
 405}
 406
 407/**
 408 *      sockfd_lookup   -       Go from a file number to its socket slot
 409 *      @fd: file handle
 410 *      @err: pointer to an error code return
 411 *
 412 *      The file handle passed in is locked and the socket it is bound
 413 *      too is returned. If an error occurs the err pointer is overwritten
 414 *      with a negative errno code and NULL is returned. The function checks
 415 *      for both invalid handles and passing a handle which is not a socket.
 416 *
 417 *      On a success the socket object pointer is returned.
 418 */
 419
 420struct socket *sockfd_lookup(int fd, int *err)
 421{
 422        struct file *file;
 423        struct socket *sock;
 424
 425        file = fget(fd);
 426        if (!file) {
 427                *err = -EBADF;
 428                return NULL;
 429        }
 430
 431        sock = sock_from_file(file, err);
 432        if (!sock)
 433                fput(file);
 434        return sock;
 435}
 436
 437static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 438{
 439        struct file *file;
 440        struct socket *sock;
 441
 442        *err = -EBADF;
 443        file = fget_light(fd, fput_needed);
 444        if (file) {
 445                sock = sock_from_file(file, err);
 446                if (sock)
 447                        return sock;
 448                fput_light(file, *fput_needed);
 449        }
 450        return NULL;
 451}
 452
 453/**
 454 *      sock_alloc      -       allocate a socket
 455 *
 456 *      Allocate a new inode and socket object. The two are bound together
 457 *      and initialised. The socket is then returned. If we are out of inodes
 458 *      NULL is returned.
 459 */
 460
 461static struct socket *sock_alloc(void)
 462{
 463        struct inode *inode;
 464        struct socket *sock;
 465
 466        inode = new_inode(sock_mnt->mnt_sb);
 467        if (!inode)
 468                return NULL;
 469
 470        sock = SOCKET_I(inode);
 471
 472        kmemcheck_annotate_bitfield(sock, type);
 473        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 474        inode->i_uid = current_fsuid();
 475        inode->i_gid = current_fsgid();
 476
 477        percpu_add(sockets_in_use, 1);
 478        return sock;
 479}
 480
 481/*
 482 *      In theory you can't get an open on this inode, but /proc provides
 483 *      a back door. Remember to keep it shut otherwise you'll let the
 484 *      creepy crawlies in.
 485 */
 486
 487static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 488{
 489        return -ENXIO;
 490}
 491
 492const struct file_operations bad_sock_fops = {
 493        .owner = THIS_MODULE,
 494        .open = sock_no_open,
 495};
 496
 497/**
 498 *      sock_release    -       close a socket
 499 *      @sock: socket to close
 500 *
 501 *      The socket is released from the protocol stack if it has a release
 502 *      callback, and the inode is then released if the socket is bound to
 503 *      an inode not a file.
 504 */
 505
 506void sock_release(struct socket *sock)
 507{
 508        if (sock->ops) {
 509                struct module *owner = sock->ops->owner;
 510
 511                sock->ops->release(sock);
 512                sock->ops = NULL;
 513                module_put(owner);
 514        }
 515
 516        if (sock->fasync_list)
 517                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 518
 519        percpu_sub(sockets_in_use, 1);
 520        if (!sock->file) {
 521                iput(SOCK_INODE(sock));
 522                return;
 523        }
 524        sock->file = NULL;
 525}
 526
 527int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
 528                      union skb_shared_tx *shtx)
 529{
 530        shtx->flags = 0;
 531        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 532                shtx->hardware = 1;
 533        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 534                shtx->software = 1;
 535        return 0;
 536}
 537EXPORT_SYMBOL(sock_tx_timestamp);
 538
 539static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 540                                 struct msghdr *msg, size_t size)
 541{
 542        struct sock_iocb *si = kiocb_to_siocb(iocb);
 543        int err;
 544
 545        si->sock = sock;
 546        si->scm = NULL;
 547        si->msg = msg;
 548        si->size = size;
 549
 550        err = security_socket_sendmsg(sock, msg, size);
 551        if (err)
 552                return err;
 553
 554        return sock->ops->sendmsg(iocb, sock, msg, size);
 555}
 556
 557int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 558{
 559        struct kiocb iocb;
 560        struct sock_iocb siocb;
 561        int ret;
 562
 563        init_sync_kiocb(&iocb, NULL);
 564        iocb.private = &siocb;
 565        ret = __sock_sendmsg(&iocb, sock, msg, size);
 566        if (-EIOCBQUEUED == ret)
 567                ret = wait_on_sync_kiocb(&iocb);
 568        return ret;
 569}
 570
 571int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 572                   struct kvec *vec, size_t num, size_t size)
 573{
 574        mm_segment_t oldfs = get_fs();
 575        int result;
 576
 577        set_fs(KERNEL_DS);
 578        /*
 579         * the following is safe, since for compiler definitions of kvec and
 580         * iovec are identical, yielding the same in-core layout and alignment
 581         */
 582        msg->msg_iov = (struct iovec *)vec;
 583        msg->msg_iovlen = num;
 584        result = sock_sendmsg(sock, msg, size);
 585        set_fs(oldfs);
 586        return result;
 587}
 588
 589static int ktime2ts(ktime_t kt, struct timespec *ts)
 590{
 591        if (kt.tv64) {
 592                *ts = ktime_to_timespec(kt);
 593                return 1;
 594        } else {
 595                return 0;
 596        }
 597}
 598
 599/*
 600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 601 */
 602void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 603        struct sk_buff *skb)
 604{
 605        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 606        struct timespec ts[3];
 607        int empty = 1;
 608        struct skb_shared_hwtstamps *shhwtstamps =
 609                skb_hwtstamps(skb);
 610
 611        /* Race occurred between timestamp enabling and packet
 612           receiving.  Fill in the current time for now. */
 613        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 614                __net_timestamp(skb);
 615
 616        if (need_software_tstamp) {
 617                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 618                        struct timeval tv;
 619                        skb_get_timestamp(skb, &tv);
 620                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 621                                 sizeof(tv), &tv);
 622                } else {
 623                        struct timespec ts;
 624                        skb_get_timestampns(skb, &ts);
 625                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 626                                 sizeof(ts), &ts);
 627                }
 628        }
 629
 630
 631        memset(ts, 0, sizeof(ts));
 632        if (skb->tstamp.tv64 &&
 633            sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 634                skb_get_timestampns(skb, ts + 0);
 635                empty = 0;
 636        }
 637        if (shhwtstamps) {
 638                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 639                    ktime2ts(shhwtstamps->syststamp, ts + 1))
 640                        empty = 0;
 641                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 642                    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 643                        empty = 0;
 644        }
 645        if (!empty)
 646                put_cmsg(msg, SOL_SOCKET,
 647                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 648}
 649
 650EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 651
 652inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
 653{
 654        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 655                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 656                        sizeof(__u32), &skb->dropcount);
 657}
 658
 659void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 660        struct sk_buff *skb)
 661{
 662        sock_recv_timestamp(msg, sk, skb);
 663        sock_recv_drops(msg, sk, skb);
 664}
 665EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
 666
 667static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 668                                       struct msghdr *msg, size_t size, int flags)
 669{
 670        struct sock_iocb *si = kiocb_to_siocb(iocb);
 671
 672        si->sock = sock;
 673        si->scm = NULL;
 674        si->msg = msg;
 675        si->size = size;
 676        si->flags = flags;
 677
 678        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 679}
 680
 681static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 682                                 struct msghdr *msg, size_t size, int flags)
 683{
 684        int err = security_socket_recvmsg(sock, msg, size, flags);
 685
 686        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 687}
 688
 689int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 690                 size_t size, int flags)
 691{
 692        struct kiocb iocb;
 693        struct sock_iocb siocb;
 694        int ret;
 695
 696        init_sync_kiocb(&iocb, NULL);
 697        iocb.private = &siocb;
 698        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 699        if (-EIOCBQUEUED == ret)
 700                ret = wait_on_sync_kiocb(&iocb);
 701        return ret;
 702}
 703
 704static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 705                              size_t size, int flags)
 706{
 707        struct kiocb iocb;
 708        struct sock_iocb siocb;
 709        int ret;
 710
 711        init_sync_kiocb(&iocb, NULL);
 712        iocb.private = &siocb;
 713        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 714        if (-EIOCBQUEUED == ret)
 715                ret = wait_on_sync_kiocb(&iocb);
 716        return ret;
 717}
 718
 719int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 720                   struct kvec *vec, size_t num, size_t size, int flags)
 721{
 722        mm_segment_t oldfs = get_fs();
 723        int result;
 724
 725        set_fs(KERNEL_DS);
 726        /*
 727         * the following is safe, since for compiler definitions of kvec and
 728         * iovec are identical, yielding the same in-core layout and alignment
 729         */
 730        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 731        result = sock_recvmsg(sock, msg, size, flags);
 732        set_fs(oldfs);
 733        return result;
 734}
 735
 736static void sock_aio_dtor(struct kiocb *iocb)
 737{
 738        kfree(iocb->private);
 739}
 740
 741static ssize_t sock_sendpage(struct file *file, struct page *page,
 742                             int offset, size_t size, loff_t *ppos, int more)
 743{
 744        struct socket *sock;
 745        int flags;
 746
 747        sock = file->private_data;
 748
 749        flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
 750        if (more)
 751                flags |= MSG_MORE;
 752
 753        return kernel_sendpage(sock, page, offset, size, flags);
 754}
 755
 756static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 757                                struct pipe_inode_info *pipe, size_t len,
 758                                unsigned int flags)
 759{
 760        struct socket *sock = file->private_data;
 761
 762        if (unlikely(!sock->ops->splice_read))
 763                return -EINVAL;
 764
 765        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 766}
 767
 768static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 769                                         struct sock_iocb *siocb)
 770{
 771        if (!is_sync_kiocb(iocb)) {
 772                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 773                if (!siocb)
 774                        return NULL;
 775                iocb->ki_dtor = sock_aio_dtor;
 776        }
 777
 778        siocb->kiocb = iocb;
 779        iocb->private = siocb;
 780        return siocb;
 781}
 782
 783static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 784                struct file *file, const struct iovec *iov,
 785                unsigned long nr_segs)
 786{
 787        struct socket *sock = file->private_data;
 788        size_t size = 0;
 789        int i;
 790
 791        for (i = 0; i < nr_segs; i++)
 792                size += iov[i].iov_len;
 793
 794        msg->msg_name = NULL;
 795        msg->msg_namelen = 0;
 796        msg->msg_control = NULL;
 797        msg->msg_controllen = 0;
 798        msg->msg_iov = (struct iovec *)iov;
 799        msg->msg_iovlen = nr_segs;
 800        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 801
 802        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 803}
 804
 805static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 806                                unsigned long nr_segs, loff_t pos)
 807{
 808        struct sock_iocb siocb, *x;
 809
 810        if (pos != 0)
 811                return -ESPIPE;
 812
 813        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 814                return 0;
 815
 816
 817        x = alloc_sock_iocb(iocb, &siocb);
 818        if (!x)
 819                return -ENOMEM;
 820        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 821}
 822
 823static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 824                        struct file *file, const struct iovec *iov,
 825                        unsigned long nr_segs)
 826{
 827        struct socket *sock = file->private_data;
 828        size_t size = 0;
 829        int i;
 830
 831        for (i = 0; i < nr_segs; i++)
 832                size += iov[i].iov_len;
 833
 834        msg->msg_name = NULL;
 835        msg->msg_namelen = 0;
 836        msg->msg_control = NULL;
 837        msg->msg_controllen = 0;
 838        msg->msg_iov = (struct iovec *)iov;
 839        msg->msg_iovlen = nr_segs;
 840        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 841        if (sock->type == SOCK_SEQPACKET)
 842                msg->msg_flags |= MSG_EOR;
 843
 844        return __sock_sendmsg(iocb, sock, msg, size);
 845}
 846
 847static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 848                          unsigned long nr_segs, loff_t pos)
 849{
 850        struct sock_iocb siocb, *x;
 851
 852        if (pos != 0)
 853                return -ESPIPE;
 854
 855        x = alloc_sock_iocb(iocb, &siocb);
 856        if (!x)
 857                return -ENOMEM;
 858
 859        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 860}
 861
 862/*
 863 * Atomic setting of ioctl hooks to avoid race
 864 * with module unload.
 865 */
 866
 867static DEFINE_MUTEX(br_ioctl_mutex);
 868static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
 869
 870void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 871{
 872        mutex_lock(&br_ioctl_mutex);
 873        br_ioctl_hook = hook;
 874        mutex_unlock(&br_ioctl_mutex);
 875}
 876
 877EXPORT_SYMBOL(brioctl_set);
 878
 879static DEFINE_MUTEX(vlan_ioctl_mutex);
 880static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 881
 882void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 883{
 884        mutex_lock(&vlan_ioctl_mutex);
 885        vlan_ioctl_hook = hook;
 886        mutex_unlock(&vlan_ioctl_mutex);
 887}
 888
 889EXPORT_SYMBOL(vlan_ioctl_set);
 890
 891static DEFINE_MUTEX(dlci_ioctl_mutex);
 892static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 893
 894void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 895{
 896        mutex_lock(&dlci_ioctl_mutex);
 897        dlci_ioctl_hook = hook;
 898        mutex_unlock(&dlci_ioctl_mutex);
 899}
 900
 901EXPORT_SYMBOL(dlci_ioctl_set);
 902
 903static long sock_do_ioctl(struct net *net, struct socket *sock,
 904                                 unsigned int cmd, unsigned long arg)
 905{
 906        int err;
 907        void __user *argp = (void __user *)arg;
 908
 909        err = sock->ops->ioctl(sock, cmd, arg);
 910
 911        /*
 912         * If this ioctl is unknown try to hand it down
 913         * to the NIC driver.
 914         */
 915        if (err == -ENOIOCTLCMD)
 916                err = dev_ioctl(net, cmd, argp);
 917
 918        return err;
 919}
 920
 921/*
 922 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 923 *      what to do with it - that's up to the protocol still.
 924 */
 925
 926static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 927{
 928        struct socket *sock;
 929        struct sock *sk;
 930        void __user *argp = (void __user *)arg;
 931        int pid, err;
 932        struct net *net;
 933
 934        sock = file->private_data;
 935        sk = sock->sk;
 936        net = sock_net(sk);
 937        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 938                err = dev_ioctl(net, cmd, argp);
 939        } else
 940#ifdef CONFIG_WEXT_CORE
 941        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 942                err = dev_ioctl(net, cmd, argp);
 943        } else
 944#endif
 945                switch (cmd) {
 946                case FIOSETOWN:
 947                case SIOCSPGRP:
 948                        err = -EFAULT;
 949                        if (get_user(pid, (int __user *)argp))
 950                                break;
 951                        err = f_setown(sock->file, pid, 1);
 952                        break;
 953                case FIOGETOWN:
 954                case SIOCGPGRP:
 955                        err = put_user(f_getown(sock->file),
 956                                       (int __user *)argp);
 957                        break;
 958                case SIOCGIFBR:
 959                case SIOCSIFBR:
 960                case SIOCBRADDBR:
 961                case SIOCBRDELBR:
 962                        err = -ENOPKG;
 963                        if (!br_ioctl_hook)
 964                                request_module("bridge");
 965
 966                        mutex_lock(&br_ioctl_mutex);
 967                        if (br_ioctl_hook)
 968                                err = br_ioctl_hook(net, cmd, argp);
 969                        mutex_unlock(&br_ioctl_mutex);
 970                        break;
 971                case SIOCGIFVLAN:
 972                case SIOCSIFVLAN:
 973                        err = -ENOPKG;
 974                        if (!vlan_ioctl_hook)
 975                                request_module("8021q");
 976
 977                        mutex_lock(&vlan_ioctl_mutex);
 978                        if (vlan_ioctl_hook)
 979                                err = vlan_ioctl_hook(net, argp);
 980                        mutex_unlock(&vlan_ioctl_mutex);
 981                        break;
 982                case SIOCADDDLCI:
 983                case SIOCDELDLCI:
 984                        err = -ENOPKG;
 985                        if (!dlci_ioctl_hook)
 986                                request_module("dlci");
 987
 988                        mutex_lock(&dlci_ioctl_mutex);
 989                        if (dlci_ioctl_hook)
 990                                err = dlci_ioctl_hook(cmd, argp);
 991                        mutex_unlock(&dlci_ioctl_mutex);
 992                        break;
 993                default:
 994                        err = sock_do_ioctl(net, sock, cmd, arg);
 995                        break;
 996                }
 997        return err;
 998}
 999
1000int sock_create_lite(int family, int type, int protocol, struct socket **res)
1001{
1002        int err;
1003        struct socket *sock = NULL;
1004
1005        err = security_socket_create(family, type, protocol, 1);
1006        if (err)
1007                goto out;
1008
1009        sock = sock_alloc();
1010        if (!sock) {
1011                err = -ENOMEM;
1012                goto out;
1013        }
1014
1015        sock->type = type;
1016        err = security_socket_post_create(sock, family, type, protocol, 1);
1017        if (err)
1018                goto out_release;
1019
1020out:
1021        *res = sock;
1022        return err;
1023out_release:
1024        sock_release(sock);
1025        sock = NULL;
1026        goto out;
1027}
1028
1029/* No kernel lock held - perfect */
1030static unsigned int sock_poll(struct file *file, poll_table *wait)
1031{
1032        struct socket *sock;
1033
1034        /*
1035         *      We can't return errors to poll, so it's either yes or no.
1036         */
1037        sock = file->private_data;
1038        return sock->ops->poll(file, sock, wait);
1039}
1040
1041static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1042{
1043        struct socket *sock = file->private_data;
1044
1045        return sock->ops->mmap(file, sock, vma);
1046}
1047
1048static int sock_close(struct inode *inode, struct file *filp)
1049{
1050        /*
1051         *      It was possible the inode is NULL we were
1052         *      closing an unfinished socket.
1053         */
1054
1055        if (!inode) {
1056                printk(KERN_DEBUG "sock_close: NULL inode\n");
1057                return 0;
1058        }
1059        sock_release(SOCKET_I(inode));
1060        return 0;
1061}
1062
1063/*
1064 *      Update the socket async list
1065 *
1066 *      Fasync_list locking strategy.
1067 *
1068 *      1. fasync_list is modified only under process context socket lock
1069 *         i.e. under semaphore.
1070 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1071 *         or under socket lock.
1072 *      3. fasync_list can be used from softirq context, so that
1073 *         modification under socket lock have to be enhanced with
1074 *         write_lock_bh(&sk->sk_callback_lock).
1075 *                                                      --ANK (990710)
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080        struct fasync_struct *fa, *fna = NULL, **prev;
1081        struct socket *sock;
1082        struct sock *sk;
1083
1084        if (on) {
1085                fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1086                if (fna == NULL)
1087                        return -ENOMEM;
1088        }
1089
1090        sock = filp->private_data;
1091
1092        sk = sock->sk;
1093        if (sk == NULL) {
1094                kfree(fna);
1095                return -EINVAL;
1096        }
1097
1098        lock_sock(sk);
1099
1100        spin_lock(&filp->f_lock);
1101        if (on)
1102                filp->f_flags |= FASYNC;
1103        else
1104                filp->f_flags &= ~FASYNC;
1105        spin_unlock(&filp->f_lock);
1106
1107        prev = &(sock->fasync_list);
1108
1109        for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1110                if (fa->fa_file == filp)
1111                        break;
1112
1113        if (on) {
1114                if (fa != NULL) {
1115                        write_lock_bh(&sk->sk_callback_lock);
1116                        fa->fa_fd = fd;
1117                        write_unlock_bh(&sk->sk_callback_lock);
1118
1119                        kfree(fna);
1120                        goto out;
1121                }
1122                fna->fa_file = filp;
1123                fna->fa_fd = fd;
1124                fna->magic = FASYNC_MAGIC;
1125                fna->fa_next = sock->fasync_list;
1126                write_lock_bh(&sk->sk_callback_lock);
1127                sock->fasync_list = fna;
1128                sock_set_flag(sk, SOCK_FASYNC);
1129                write_unlock_bh(&sk->sk_callback_lock);
1130        } else {
1131                if (fa != NULL) {
1132                        write_lock_bh(&sk->sk_callback_lock);
1133                        *prev = fa->fa_next;
1134                        if (!sock->fasync_list)
1135                                sock_reset_flag(sk, SOCK_FASYNC);
1136                        write_unlock_bh(&sk->sk_callback_lock);
1137                        kfree(fa);
1138                }
1139        }
1140
1141out:
1142        release_sock(sock->sk);
1143        return 0;
1144}
1145
1146/* This function may be called only under socket lock or callback_lock */
1147
1148int sock_wake_async(struct socket *sock, int how, int band)
1149{
1150        if (!sock || !sock->fasync_list)
1151                return -1;
1152        switch (how) {
1153        case SOCK_WAKE_WAITD:
1154                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1155                        break;
1156                goto call_kill;
1157        case SOCK_WAKE_SPACE:
1158                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1159                        break;
1160                /* fall through */
1161        case SOCK_WAKE_IO:
1162call_kill:
1163                __kill_fasync(sock->fasync_list, SIGIO, band);
1164                break;
1165        case SOCK_WAKE_URG:
1166                __kill_fasync(sock->fasync_list, SIGURG, band);
1167        }
1168        return 0;
1169}
1170
1171static int __sock_create(struct net *net, int family, int type, int protocol,
1172                         struct socket **res, int kern)
1173{
1174        int err;
1175        struct socket *sock;
1176        const struct net_proto_family *pf;
1177
1178        /*
1179         *      Check protocol is in range
1180         */
1181        if (family < 0 || family >= NPROTO)
1182                return -EAFNOSUPPORT;
1183        if (type < 0 || type >= SOCK_MAX)
1184                return -EINVAL;
1185
1186        /* Compatibility.
1187
1188           This uglymoron is moved from INET layer to here to avoid
1189           deadlock in module load.
1190         */
1191        if (family == PF_INET && type == SOCK_PACKET) {
1192                static int warned;
1193                if (!warned) {
1194                        warned = 1;
1195                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1196                               current->comm);
1197                }
1198                family = PF_PACKET;
1199        }
1200
1201        err = security_socket_create(family, type, protocol, kern);
1202        if (err)
1203                return err;
1204
1205        /*
1206         *      Allocate the socket and allow the family to set things up. if
1207         *      the protocol is 0, the family is instructed to select an appropriate
1208         *      default.
1209         */
1210        sock = sock_alloc();
1211        if (!sock) {
1212                if (net_ratelimit())
1213                        printk(KERN_WARNING "socket: no more sockets\n");
1214                return -ENFILE; /* Not exactly a match, but its the
1215                                   closest posix thing */
1216        }
1217
1218        sock->type = type;
1219
1220#ifdef CONFIG_MODULES
1221        /* Attempt to load a protocol module if the find failed.
1222         *
1223         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1224         * requested real, full-featured networking support upon configuration.
1225         * Otherwise module support will break!
1226         */
1227        if (net_families[family] == NULL)
1228                request_module("net-pf-%d", family);
1229#endif
1230
1231        rcu_read_lock();
1232        pf = rcu_dereference(net_families[family]);
1233        err = -EAFNOSUPPORT;
1234        if (!pf)
1235                goto out_release;
1236
1237        /*
1238         * We will call the ->create function, that possibly is in a loadable
1239         * module, so we have to bump that loadable module refcnt first.
1240         */
1241        if (!try_module_get(pf->owner))
1242                goto out_release;
1243
1244        /* Now protected by module ref count */
1245        rcu_read_unlock();
1246
1247        err = pf->create(net, sock, protocol, kern);
1248        if (err < 0)
1249                goto out_module_put;
1250
1251        /*
1252         * Now to bump the refcnt of the [loadable] module that owns this
1253         * socket at sock_release time we decrement its refcnt.
1254         */
1255        if (!try_module_get(sock->ops->owner))
1256                goto out_module_busy;
1257
1258        /*
1259         * Now that we're done with the ->create function, the [loadable]
1260         * module can have its refcnt decremented
1261         */
1262        module_put(pf->owner);
1263        err = security_socket_post_create(sock, family, type, protocol, kern);
1264        if (err)
1265                goto out_sock_release;
1266        *res = sock;
1267
1268        return 0;
1269
1270out_module_busy:
1271        err = -EAFNOSUPPORT;
1272out_module_put:
1273        sock->ops = NULL;
1274        module_put(pf->owner);
1275out_sock_release:
1276        sock_release(sock);
1277        return err;
1278
1279out_release:
1280        rcu_read_unlock();
1281        goto out_sock_release;
1282}
1283
1284int sock_create(int family, int type, int protocol, struct socket **res)
1285{
1286        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1287}
1288
1289int sock_create_kern(int family, int type, int protocol, struct socket **res)
1290{
1291        return __sock_create(&init_net, family, type, protocol, res, 1);
1292}
1293
1294SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1295{
1296        int retval;
1297        struct socket *sock;
1298        int flags;
1299
1300        /* Check the SOCK_* constants for consistency.  */
1301        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1302        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1303        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1304        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1305
1306        flags = type & ~SOCK_TYPE_MASK;
1307        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1308                return -EINVAL;
1309        type &= SOCK_TYPE_MASK;
1310
1311        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1312                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1313
1314        retval = sock_create(family, type, protocol, &sock);
1315        if (retval < 0)
1316                goto out;
1317
1318        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1319        if (retval < 0)
1320                goto out_release;
1321
1322out:
1323        /* It may be already another descriptor 8) Not kernel problem. */
1324        return retval;
1325
1326out_release:
1327        sock_release(sock);
1328        return retval;
1329}
1330
1331/*
1332 *      Create a pair of connected sockets.
1333 */
1334
1335SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1336                int __user *, usockvec)
1337{
1338        struct socket *sock1, *sock2;
1339        int fd1, fd2, err;
1340        struct file *newfile1, *newfile2;
1341        int flags;
1342
1343        flags = type & ~SOCK_TYPE_MASK;
1344        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1345                return -EINVAL;
1346        type &= SOCK_TYPE_MASK;
1347
1348        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1349                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1350
1351        /*
1352         * Obtain the first socket and check if the underlying protocol
1353         * supports the socketpair call.
1354         */
1355
1356        err = sock_create(family, type, protocol, &sock1);
1357        if (err < 0)
1358                goto out;
1359
1360        err = sock_create(family, type, protocol, &sock2);
1361        if (err < 0)
1362                goto out_release_1;
1363
1364        err = sock1->ops->socketpair(sock1, sock2);
1365        if (err < 0)
1366                goto out_release_both;
1367
1368        fd1 = sock_alloc_file(sock1, &newfile1, flags);
1369        if (unlikely(fd1 < 0)) {
1370                err = fd1;
1371                goto out_release_both;
1372        }
1373
1374        fd2 = sock_alloc_file(sock2, &newfile2, flags);
1375        if (unlikely(fd2 < 0)) {
1376                err = fd2;
1377                fput(newfile1);
1378                put_unused_fd(fd1);
1379                sock_release(sock2);
1380                goto out;
1381        }
1382
1383        audit_fd_pair(fd1, fd2);
1384        fd_install(fd1, newfile1);
1385        fd_install(fd2, newfile2);
1386        /* fd1 and fd2 may be already another descriptors.
1387         * Not kernel problem.
1388         */
1389
1390        err = put_user(fd1, &usockvec[0]);
1391        if (!err)
1392                err = put_user(fd2, &usockvec[1]);
1393        if (!err)
1394                return 0;
1395
1396        sys_close(fd2);
1397        sys_close(fd1);
1398        return err;
1399
1400out_release_both:
1401        sock_release(sock2);
1402out_release_1:
1403        sock_release(sock1);
1404out:
1405        return err;
1406}
1407
1408/*
1409 *      Bind a name to a socket. Nothing much to do here since it's
1410 *      the protocol's responsibility to handle the local address.
1411 *
1412 *      We move the socket address to kernel space before we call
1413 *      the protocol layer (having also checked the address is ok).
1414 */
1415
1416SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1417{
1418        struct socket *sock;
1419        struct sockaddr_storage address;
1420        int err, fput_needed;
1421
1422        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1423        if (sock) {
1424                err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1425                if (err >= 0) {
1426                        err = security_socket_bind(sock,
1427                                                   (struct sockaddr *)&address,
1428                                                   addrlen);
1429                        if (!err)
1430                                err = sock->ops->bind(sock,
1431                                                      (struct sockaddr *)
1432                                                      &address, addrlen);
1433                }
1434                fput_light(sock->file, fput_needed);
1435        }
1436        return err;
1437}
1438
1439/*
1440 *      Perform a listen. Basically, we allow the protocol to do anything
1441 *      necessary for a listen, and if that works, we mark the socket as
1442 *      ready for listening.
1443 */
1444
1445SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1446{
1447        struct socket *sock;
1448        int err, fput_needed;
1449        int somaxconn;
1450
1451        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452        if (sock) {
1453                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1454                if ((unsigned)backlog > somaxconn)
1455                        backlog = somaxconn;
1456
1457                err = security_socket_listen(sock, backlog);
1458                if (!err)
1459                        err = sock->ops->listen(sock, backlog);
1460
1461                fput_light(sock->file, fput_needed);
1462        }
1463        return err;
1464}
1465
1466/*
1467 *      For accept, we attempt to create a new socket, set up the link
1468 *      with the client, wake up the client, then return the new
1469 *      connected fd. We collect the address of the connector in kernel
1470 *      space and move it to user at the very end. This is unclean because
1471 *      we open the socket then return an error.
1472 *
1473 *      1003.1g adds the ability to recvmsg() to query connection pending
1474 *      status to recvmsg. We need to add that support in a way thats
1475 *      clean when we restucture accept also.
1476 */
1477
1478SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1479                int __user *, upeer_addrlen, int, flags)
1480{
1481        struct socket *sock, *newsock;
1482        struct file *newfile;
1483        int err, len, newfd, fput_needed;
1484        struct sockaddr_storage address;
1485
1486        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1487                return -EINVAL;
1488
1489        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1490                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1491
1492        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493        if (!sock)
1494                goto out;
1495
1496        err = -ENFILE;
1497        if (!(newsock = sock_alloc()))
1498                goto out_put;
1499
1500        newsock->type = sock->type;
1501        newsock->ops = sock->ops;
1502
1503        /*
1504         * We don't need try_module_get here, as the listening socket (sock)
1505         * has the protocol module (sock->ops->owner) held.
1506         */
1507        __module_get(newsock->ops->owner);
1508
1509        newfd = sock_alloc_file(newsock, &newfile, flags);
1510        if (unlikely(newfd < 0)) {
1511                err = newfd;
1512                sock_release(newsock);
1513                goto out_put;
1514        }
1515
1516        err = security_socket_accept(sock, newsock);
1517        if (err)
1518                goto out_fd;
1519
1520        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1521        if (err < 0)
1522                goto out_fd;
1523
1524        if (upeer_sockaddr) {
1525                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1526                                          &len, 2) < 0) {
1527                        err = -ECONNABORTED;
1528                        goto out_fd;
1529                }
1530                err = move_addr_to_user((struct sockaddr *)&address,
1531                                        len, upeer_sockaddr, upeer_addrlen);
1532                if (err < 0)
1533                        goto out_fd;
1534        }
1535
1536        /* File flags are not inherited via accept() unlike another OSes. */
1537
1538        fd_install(newfd, newfile);
1539        err = newfd;
1540
1541out_put:
1542        fput_light(sock->file, fput_needed);
1543out:
1544        return err;
1545out_fd:
1546        fput(newfile);
1547        put_unused_fd(newfd);
1548        goto out_put;
1549}
1550
1551SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1552                int __user *, upeer_addrlen)
1553{
1554        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1555}
1556
1557/*
1558 *      Attempt to connect to a socket with the server address.  The address
1559 *      is in user space so we verify it is OK and move it to kernel space.
1560 *
1561 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1562 *      break bindings
1563 *
1564 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1565 *      other SEQPACKET protocols that take time to connect() as it doesn't
1566 *      include the -EINPROGRESS status for such sockets.
1567 */
1568
1569SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1570                int, addrlen)
1571{
1572        struct socket *sock;
1573        struct sockaddr_storage address;
1574        int err, fput_needed;
1575
1576        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577        if (!sock)
1578                goto out;
1579        err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1580        if (err < 0)
1581                goto out_put;
1582
1583        err =
1584            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1585        if (err)
1586                goto out_put;
1587
1588        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1589                                 sock->file->f_flags);
1590out_put:
1591        fput_light(sock->file, fput_needed);
1592out:
1593        return err;
1594}
1595
1596/*
1597 *      Get the local address ('name') of a socket object. Move the obtained
1598 *      name to user space.
1599 */
1600
1601SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1602                int __user *, usockaddr_len)
1603{
1604        struct socket *sock;
1605        struct sockaddr_storage address;
1606        int len, err, fput_needed;
1607
1608        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1609        if (!sock)
1610                goto out;
1611
1612        err = security_socket_getsockname(sock);
1613        if (err)
1614                goto out_put;
1615
1616        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1617        if (err)
1618                goto out_put;
1619        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1620
1621out_put:
1622        fput_light(sock->file, fput_needed);
1623out:
1624        return err;
1625}
1626
1627/*
1628 *      Get the remote address ('name') of a socket object. Move the obtained
1629 *      name to user space.
1630 */
1631
1632SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1633                int __user *, usockaddr_len)
1634{
1635        struct socket *sock;
1636        struct sockaddr_storage address;
1637        int len, err, fput_needed;
1638
1639        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640        if (sock != NULL) {
1641                err = security_socket_getpeername(sock);
1642                if (err) {
1643                        fput_light(sock->file, fput_needed);
1644                        return err;
1645                }
1646
1647                err =
1648                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1649                                       1);
1650                if (!err)
1651                        err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1652                                                usockaddr_len);
1653                fput_light(sock->file, fput_needed);
1654        }
1655        return err;
1656}
1657
1658/*
1659 *      Send a datagram to a given address. We move the address into kernel
1660 *      space and check the user space data area is readable before invoking
1661 *      the protocol.
1662 */
1663
1664SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1665                unsigned, flags, struct sockaddr __user *, addr,
1666                int, addr_len)
1667{
1668        struct socket *sock;
1669        struct sockaddr_storage address;
1670        int err;
1671        struct msghdr msg;
1672        struct iovec iov;
1673        int fput_needed;
1674
1675        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1676        if (!sock)
1677                goto out;
1678
1679        iov.iov_base = buff;
1680        iov.iov_len = len;
1681        msg.msg_name = NULL;
1682        msg.msg_iov = &iov;
1683        msg.msg_iovlen = 1;
1684        msg.msg_control = NULL;
1685        msg.msg_controllen = 0;
1686        msg.msg_namelen = 0;
1687        if (addr) {
1688                err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1689                if (err < 0)
1690                        goto out_put;
1691                msg.msg_name = (struct sockaddr *)&address;
1692                msg.msg_namelen = addr_len;
1693        }
1694        if (sock->file->f_flags & O_NONBLOCK)
1695                flags |= MSG_DONTWAIT;
1696        msg.msg_flags = flags;
1697        err = sock_sendmsg(sock, &msg, len);
1698
1699out_put:
1700        fput_light(sock->file, fput_needed);
1701out:
1702        return err;
1703}
1704
1705/*
1706 *      Send a datagram down a socket.
1707 */
1708
1709SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1710                unsigned, flags)
1711{
1712        return sys_sendto(fd, buff, len, flags, NULL, 0);
1713}
1714
1715/*
1716 *      Receive a frame from the socket and optionally record the address of the
1717 *      sender. We verify the buffers are writable and if needed move the
1718 *      sender address from kernel to user space.
1719 */
1720
1721SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1722                unsigned, flags, struct sockaddr __user *, addr,
1723                int __user *, addr_len)
1724{
1725        struct socket *sock;
1726        struct iovec iov;
1727        struct msghdr msg;
1728        struct sockaddr_storage address;
1729        int err, err2;
1730        int fput_needed;
1731
1732        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733        if (!sock)
1734                goto out;
1735
1736        msg.msg_control = NULL;
1737        msg.msg_controllen = 0;
1738        msg.msg_iovlen = 1;
1739        msg.msg_iov = &iov;
1740        iov.iov_len = size;
1741        iov.iov_base = ubuf;
1742        msg.msg_name = (struct sockaddr *)&address;
1743        msg.msg_namelen = sizeof(address);
1744        if (sock->file->f_flags & O_NONBLOCK)
1745                flags |= MSG_DONTWAIT;
1746        err = sock_recvmsg(sock, &msg, size, flags);
1747
1748        if (err >= 0 && addr != NULL) {
1749                err2 = move_addr_to_user((struct sockaddr *)&address,
1750                                         msg.msg_namelen, addr, addr_len);
1751                if (err2 < 0)
1752                        err = err2;
1753        }
1754
1755        fput_light(sock->file, fput_needed);
1756out:
1757        return err;
1758}
1759
1760/*
1761 *      Receive a datagram from a socket.
1762 */
1763
1764asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1765                         unsigned flags)
1766{
1767        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1768}
1769
1770/*
1771 *      Set a socket option. Because we don't know the option lengths we have
1772 *      to pass the user mode parameter for the protocols to sort out.
1773 */
1774
1775SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1776                char __user *, optval, int, optlen)
1777{
1778        int err, fput_needed;
1779        struct socket *sock;
1780
1781        if (optlen < 0)
1782                return -EINVAL;
1783
1784        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1785        if (sock != NULL) {
1786                err = security_socket_setsockopt(sock, level, optname);
1787                if (err)
1788                        goto out_put;
1789
1790                if (level == SOL_SOCKET)
1791                        err =
1792                            sock_setsockopt(sock, level, optname, optval,
1793                                            optlen);
1794                else
1795                        err =
1796                            sock->ops->setsockopt(sock, level, optname, optval,
1797                                                  optlen);
1798out_put:
1799                fput_light(sock->file, fput_needed);
1800        }
1801        return err;
1802}
1803
1804/*
1805 *      Get a socket option. Because we don't know the option lengths we have
1806 *      to pass a user mode parameter for the protocols to sort out.
1807 */
1808
1809SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1810                char __user *, optval, int __user *, optlen)
1811{
1812        int err, fput_needed;
1813        struct socket *sock;
1814
1815        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816        if (sock != NULL) {
1817                err = security_socket_getsockopt(sock, level, optname);
1818                if (err)
1819                        goto out_put;
1820
1821                if (level == SOL_SOCKET)
1822                        err =
1823                            sock_getsockopt(sock, level, optname, optval,
1824                                            optlen);
1825                else
1826                        err =
1827                            sock->ops->getsockopt(sock, level, optname, optval,
1828                                                  optlen);
1829out_put:
1830                fput_light(sock->file, fput_needed);
1831        }
1832        return err;
1833}
1834
1835/*
1836 *      Shutdown a socket.
1837 */
1838
1839SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1840{
1841        int err, fput_needed;
1842        struct socket *sock;
1843
1844        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1845        if (sock != NULL) {
1846                err = security_socket_shutdown(sock, how);
1847                if (!err)
1848                        err = sock->ops->shutdown(sock, how);
1849                fput_light(sock->file, fput_needed);
1850        }
1851        return err;
1852}
1853
1854/* A couple of helpful macros for getting the address of the 32/64 bit
1855 * fields which are the same type (int / unsigned) on our platforms.
1856 */
1857#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1858#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1859#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1860
1861/*
1862 *      BSD sendmsg interface
1863 */
1864
1865SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1866{
1867        struct compat_msghdr __user *msg_compat =
1868            (struct compat_msghdr __user *)msg;
1869        struct socket *sock;
1870        struct sockaddr_storage address;
1871        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1872        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1873            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1874        /* 20 is size of ipv6_pktinfo */
1875        unsigned char *ctl_buf = ctl;
1876        struct msghdr msg_sys;
1877        int err, ctl_len, iov_size, total_len;
1878        int fput_needed;
1879
1880        err = -EFAULT;
1881        if (MSG_CMSG_COMPAT & flags) {
1882                if (get_compat_msghdr(&msg_sys, msg_compat))
1883                        return -EFAULT;
1884        }
1885        else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1886                return -EFAULT;
1887
1888        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889        if (!sock)
1890                goto out;
1891
1892        /* do not move before msg_sys is valid */
1893        err = -EMSGSIZE;
1894        if (msg_sys.msg_iovlen > UIO_MAXIOV)
1895                goto out_put;
1896
1897        /* Check whether to allocate the iovec area */
1898        err = -ENOMEM;
1899        iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1900        if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1901                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1902                if (!iov)
1903                        goto out_put;
1904        }
1905
1906        /* This will also move the address data into kernel space */
1907        if (MSG_CMSG_COMPAT & flags) {
1908                err = verify_compat_iovec(&msg_sys, iov,
1909                                          (struct sockaddr *)&address,
1910                                          VERIFY_READ);
1911        } else
1912                err = verify_iovec(&msg_sys, iov,
1913                                   (struct sockaddr *)&address,
1914                                   VERIFY_READ);
1915        if (err < 0)
1916                goto out_freeiov;
1917        total_len = err;
1918
1919        err = -ENOBUFS;
1920
1921        if (msg_sys.msg_controllen > INT_MAX)
1922                goto out_freeiov;
1923        ctl_len = msg_sys.msg_controllen;
1924        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1925                err =
1926                    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1927                                                     sizeof(ctl));
1928                if (err)
1929                        goto out_freeiov;
1930                ctl_buf = msg_sys.msg_control;
1931                ctl_len = msg_sys.msg_controllen;
1932        } else if (ctl_len) {
1933                if (ctl_len > sizeof(ctl)) {
1934                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1935                        if (ctl_buf == NULL)
1936                                goto out_freeiov;
1937                }
1938                err = -EFAULT;
1939                /*
1940                 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1941                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1942                 * checking falls down on this.
1943                 */
1944                if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1945                                   ctl_len))
1946                        goto out_freectl;
1947                msg_sys.msg_control = ctl_buf;
1948        }
1949        msg_sys.msg_flags = flags;
1950
1951        if (sock->file->f_flags & O_NONBLOCK)
1952                msg_sys.msg_flags |= MSG_DONTWAIT;
1953        err = sock_sendmsg(sock, &msg_sys, total_len);
1954
1955out_freectl:
1956        if (ctl_buf != ctl)
1957                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1958out_freeiov:
1959        if (iov != iovstack)
1960                sock_kfree_s(sock->sk, iov, iov_size);
1961out_put:
1962        fput_light(sock->file, fput_needed);
1963out:
1964        return err;
1965}
1966
1967static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1968                         struct msghdr *msg_sys, unsigned flags, int nosec)
1969{
1970        struct compat_msghdr __user *msg_compat =
1971            (struct compat_msghdr __user *)msg;
1972        struct iovec iovstack[UIO_FASTIOV];
1973        struct iovec *iov = iovstack;
1974        unsigned long cmsg_ptr;
1975        int err, iov_size, total_len, len;
1976
1977        /* kernel mode address */
1978        struct sockaddr_storage addr;
1979
1980        /* user mode address pointers */
1981        struct sockaddr __user *uaddr;
1982        int __user *uaddr_len;
1983
1984        if (MSG_CMSG_COMPAT & flags) {
1985                if (get_compat_msghdr(msg_sys, msg_compat))
1986                        return -EFAULT;
1987        }
1988        else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1989                return -EFAULT;
1990
1991        err = -EMSGSIZE;
1992        if (msg_sys->msg_iovlen > UIO_MAXIOV)
1993                goto out;
1994
1995        /* Check whether to allocate the iovec area */
1996        err = -ENOMEM;
1997        iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1998        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1999                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2000                if (!iov)
2001                        goto out;
2002        }
2003
2004        /*
2005         *      Save the user-mode address (verify_iovec will change the
2006         *      kernel msghdr to use the kernel address space)
2007         */
2008
2009        uaddr = (__force void __user *)msg_sys->msg_name;
2010        uaddr_len = COMPAT_NAMELEN(msg);
2011        if (MSG_CMSG_COMPAT & flags) {
2012                err = verify_compat_iovec(msg_sys, iov,
2013                                          (struct sockaddr *)&addr,
2014                                          VERIFY_WRITE);
2015        } else
2016                err = verify_iovec(msg_sys, iov,
2017                                   (struct sockaddr *)&addr,
2018                                   VERIFY_WRITE);
2019        if (err < 0)
2020                goto out_freeiov;
2021        total_len = err;
2022
2023        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2024        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2025
2026        if (sock->file->f_flags & O_NONBLOCK)
2027                flags |= MSG_DONTWAIT;
2028        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2029                                                          total_len, flags);
2030        if (err < 0)
2031                goto out_freeiov;
2032        len = err;
2033
2034        if (uaddr != NULL) {
2035                err = move_addr_to_user((struct sockaddr *)&addr,
2036                                        msg_sys->msg_namelen, uaddr,
2037                                        uaddr_len);
2038                if (err < 0)
2039                        goto out_freeiov;
2040        }
2041        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2042                         COMPAT_FLAGS(msg));
2043        if (err)
2044                goto out_freeiov;
2045        if (MSG_CMSG_COMPAT & flags)
2046                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2047                                 &msg_compat->msg_controllen);
2048        else
2049                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2050                                 &msg->msg_controllen);
2051        if (err)
2052                goto out_freeiov;
2053        err = len;
2054
2055out_freeiov:
2056        if (iov != iovstack)
2057                sock_kfree_s(sock->sk, iov, iov_size);
2058out:
2059        return err;
2060}
2061
2062/*
2063 *      BSD recvmsg interface
2064 */
2065
2066SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2067                unsigned int, flags)
2068{
2069        int fput_needed, err;
2070        struct msghdr msg_sys;
2071        struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072
2073        if (!sock)
2074                goto out;
2075
2076        err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2077
2078        fput_light(sock->file, fput_needed);
2079out:
2080        return err;
2081}
2082
2083/*
2084 *     Linux recvmmsg interface
2085 */
2086
2087int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2088                   unsigned int flags, struct timespec *timeout)
2089{
2090        int fput_needed, err, datagrams;
2091        struct socket *sock;
2092        struct mmsghdr __user *entry;
2093        struct compat_mmsghdr __user *compat_entry;
2094        struct msghdr msg_sys;
2095        struct timespec end_time;
2096
2097        if (timeout &&
2098            poll_select_set_timeout(&end_time, timeout->tv_sec,
2099                                    timeout->tv_nsec))
2100                return -EINVAL;
2101
2102        datagrams = 0;
2103
2104        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2105        if (!sock)
2106                return err;
2107
2108        err = sock_error(sock->sk);
2109        if (err)
2110                goto out_put;
2111
2112        entry = mmsg;
2113        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2114
2115        while (datagrams < vlen) {
2116                /*
2117                 * No need to ask LSM for more than the first datagram.
2118                 */
2119                if (MSG_CMSG_COMPAT & flags) {
2120                        err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2121                                            &msg_sys, flags, datagrams);
2122                        if (err < 0)
2123                                break;
2124                        err = __put_user(err, &compat_entry->msg_len);
2125                        ++compat_entry;
2126                } else {
2127                        err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2128                                            &msg_sys, flags, datagrams);
2129                        if (err < 0)
2130                                break;
2131                        err = put_user(err, &entry->msg_len);
2132                        ++entry;
2133                }
2134
2135                if (err)
2136                        break;
2137                ++datagrams;
2138
2139                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2140                if (flags & MSG_WAITFORONE)
2141                        flags |= MSG_DONTWAIT;
2142
2143                if (timeout) {
2144                        ktime_get_ts(timeout);
2145                        *timeout = timespec_sub(end_time, *timeout);
2146                        if (timeout->tv_sec < 0) {
2147                                timeout->tv_sec = timeout->tv_nsec = 0;
2148                                break;
2149                        }
2150
2151                        /* Timeout, return less than vlen datagrams */
2152                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2153                                break;
2154                }
2155
2156                /* Out of band data, return right away */
2157                if (msg_sys.msg_flags & MSG_OOB)
2158                        break;
2159        }
2160
2161out_put:
2162        fput_light(sock->file, fput_needed);
2163
2164        if (err == 0)
2165                return datagrams;
2166
2167        if (datagrams != 0) {
2168                /*
2169                 * We may return less entries than requested (vlen) if the
2170                 * sock is non block and there aren't enough datagrams...
2171                 */
2172                if (err != -EAGAIN) {
2173                        /*
2174                         * ... or  if recvmsg returns an error after we
2175                         * received some datagrams, where we record the
2176                         * error to return on the next call or if the
2177                         * app asks about it using getsockopt(SO_ERROR).
2178                         */
2179                        sock->sk->sk_err = -err;
2180                }
2181
2182                return datagrams;
2183        }
2184
2185        return err;
2186}
2187
2188SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2189                unsigned int, vlen, unsigned int, flags,
2190                struct timespec __user *, timeout)
2191{
2192        int datagrams;
2193        struct timespec timeout_sys;
2194
2195        if (!timeout)
2196                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2197
2198        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2199                return -EFAULT;
2200
2201        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2202
2203        if (datagrams > 0 &&
2204            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2205                datagrams = -EFAULT;
2206
2207        return datagrams;
2208}
2209
2210#ifdef __ARCH_WANT_SYS_SOCKETCALL
2211/* Argument list sizes for sys_socketcall */
2212#define AL(x) ((x) * sizeof(unsigned long))
2213static const unsigned char nargs[20] = {
2214        AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2215        AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2216        AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2217        AL(4),AL(5)
2218};
2219
2220#undef AL
2221
2222/*
2223 *      System call vectors.
2224 *
2225 *      Argument checking cleaned up. Saved 20% in size.
2226 *  This function doesn't need to set the kernel lock because
2227 *  it is set by the callees.
2228 */
2229
2230SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2231{
2232        unsigned long a[6];
2233        unsigned long a0, a1;
2234        int err;
2235        unsigned int len;
2236
2237        if (call < 1 || call > SYS_RECVMMSG)
2238                return -EINVAL;
2239
2240        len = nargs[call];
2241        if (len > sizeof(a))
2242                return -EINVAL;
2243
2244        /* copy_from_user should be SMP safe. */
2245        if (copy_from_user(a, args, len))
2246                return -EFAULT;
2247
2248        audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2249
2250        a0 = a[0];
2251        a1 = a[1];
2252
2253        switch (call) {
2254        case SYS_SOCKET:
2255                err = sys_socket(a0, a1, a[2]);
2256                break;
2257        case SYS_BIND:
2258                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2259                break;
2260        case SYS_CONNECT:
2261                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2262                break;
2263        case SYS_LISTEN:
2264                err = sys_listen(a0, a1);
2265                break;
2266        case SYS_ACCEPT:
2267                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2268                                  (int __user *)a[2], 0);
2269                break;
2270        case SYS_GETSOCKNAME:
2271                err =
2272                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2273                                    (int __user *)a[2]);
2274                break;
2275        case SYS_GETPEERNAME:
2276                err =
2277                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2278                                    (int __user *)a[2]);
2279                break;
2280        case SYS_SOCKETPAIR:
2281                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2282                break;
2283        case SYS_SEND:
2284                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2285                break;
2286        case SYS_SENDTO:
2287                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2288                                 (struct sockaddr __user *)a[4], a[5]);
2289                break;
2290        case SYS_RECV:
2291                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2292                break;
2293        case SYS_RECVFROM:
2294                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2295                                   (struct sockaddr __user *)a[4],
2296                                   (int __user *)a[5]);
2297                break;
2298        case SYS_SHUTDOWN:
2299                err = sys_shutdown(a0, a1);
2300                break;
2301        case SYS_SETSOCKOPT:
2302                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2303                break;
2304        case SYS_GETSOCKOPT:
2305                err =
2306                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2307                                   (int __user *)a[4]);
2308                break;
2309        case SYS_SENDMSG:
2310                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2311                break;
2312        case SYS_RECVMSG:
2313                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2314                break;
2315        case SYS_RECVMMSG:
2316                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2317                                   (struct timespec __user *)a[4]);
2318                break;
2319        case SYS_ACCEPT4:
2320                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2321                                  (int __user *)a[2], a[3]);
2322                break;
2323        default:
2324                err = -EINVAL;
2325                break;
2326        }
2327        return err;
2328}
2329
2330#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2331
2332/**
2333 *      sock_register - add a socket protocol handler
2334 *      @ops: description of protocol
2335 *
2336 *      This function is called by a protocol handler that wants to
2337 *      advertise its address family, and have it linked into the
2338 *      socket interface. The value ops->family coresponds to the
2339 *      socket system call protocol family.
2340 */
2341int sock_register(const struct net_proto_family *ops)
2342{
2343        int err;
2344
2345        if (ops->family >= NPROTO) {
2346                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2347                       NPROTO);
2348                return -ENOBUFS;
2349        }
2350
2351        spin_lock(&net_family_lock);
2352        if (net_families[ops->family])
2353                err = -EEXIST;
2354        else {
2355                net_families[ops->family] = ops;
2356                err = 0;
2357        }
2358        spin_unlock(&net_family_lock);
2359
2360        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2361        return err;
2362}
2363
2364/**
2365 *      sock_unregister - remove a protocol handler
2366 *      @family: protocol family to remove
2367 *
2368 *      This function is called by a protocol handler that wants to
2369 *      remove its address family, and have it unlinked from the
2370 *      new socket creation.
2371 *
2372 *      If protocol handler is a module, then it can use module reference
2373 *      counts to protect against new references. If protocol handler is not
2374 *      a module then it needs to provide its own protection in
2375 *      the ops->create routine.
2376 */
2377void sock_unregister(int family)
2378{
2379        BUG_ON(family < 0 || family >= NPROTO);
2380
2381        spin_lock(&net_family_lock);
2382        net_families[family] = NULL;
2383        spin_unlock(&net_family_lock);
2384
2385        synchronize_rcu();
2386
2387        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2388}
2389
2390static int __init sock_init(void)
2391{
2392        /*
2393         *      Initialize sock SLAB cache.
2394         */
2395
2396        sk_init();
2397
2398        /*
2399         *      Initialize skbuff SLAB cache
2400         */
2401        skb_init();
2402
2403        /*
2404         *      Initialize the protocols module.
2405         */
2406
2407        init_inodecache();
2408        register_filesystem(&sock_fs_type);
2409        sock_mnt = kern_mount(&sock_fs_type);
2410
2411        /* The real protocol initialization is performed in later initcalls.
2412         */
2413
2414#ifdef CONFIG_NETFILTER
2415        netfilter_init();
2416#endif
2417
2418        return 0;
2419}
2420
2421core_initcall(sock_init);       /* early initcall */
2422
2423#ifdef CONFIG_PROC_FS
2424void socket_seq_show(struct seq_file *seq)
2425{
2426        int cpu;
2427        int counter = 0;
2428
2429        for_each_possible_cpu(cpu)
2430            counter += per_cpu(sockets_in_use, cpu);
2431
2432        /* It can be negative, by the way. 8) */
2433        if (counter < 0)
2434                counter = 0;
2435
2436        seq_printf(seq, "sockets: used %d\n", counter);
2437}
2438#endif                          /* CONFIG_PROC_FS */
2439
2440#ifdef CONFIG_COMPAT
2441static int do_siocgstamp(struct net *net, struct socket *sock,
2442                         unsigned int cmd, struct compat_timeval __user *up)
2443{
2444        mm_segment_t old_fs = get_fs();
2445        struct timeval ktv;
2446        int err;
2447
2448        set_fs(KERNEL_DS);
2449        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2450        set_fs(old_fs);
2451        if (!err) {
2452                err = put_user(ktv.tv_sec, &up->tv_sec);
2453                err |= __put_user(ktv.tv_usec, &up->tv_usec);
2454        }
2455        return err;
2456}
2457
2458static int do_siocgstampns(struct net *net, struct socket *sock,
2459                         unsigned int cmd, struct compat_timespec __user *up)
2460{
2461        mm_segment_t old_fs = get_fs();
2462        struct timespec kts;
2463        int err;
2464
2465        set_fs(KERNEL_DS);
2466        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2467        set_fs(old_fs);
2468        if (!err) {
2469                err = put_user(kts.tv_sec, &up->tv_sec);
2470                err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2471        }
2472        return err;
2473}
2474
2475static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2476{
2477        struct ifreq __user *uifr;
2478        int err;
2479
2480        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2481        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2482                return -EFAULT;
2483
2484        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2485        if (err)
2486                return err;
2487
2488        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2489                return -EFAULT;
2490
2491        return 0;
2492}
2493
2494static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2495{
2496        struct compat_ifconf ifc32;
2497        struct ifconf ifc;
2498        struct ifconf __user *uifc;
2499        struct compat_ifreq __user *ifr32;
2500        struct ifreq __user *ifr;
2501        unsigned int i, j;
2502        int err;
2503
2504        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2505                return -EFAULT;
2506
2507        if (ifc32.ifcbuf == 0) {
2508                ifc32.ifc_len = 0;
2509                ifc.ifc_len = 0;
2510                ifc.ifc_req = NULL;
2511                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2512        } else {
2513                size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2514                        sizeof (struct ifreq);
2515                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2516                ifc.ifc_len = len;
2517                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2518                ifr32 = compat_ptr(ifc32.ifcbuf);
2519                for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2520                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2521                                return -EFAULT;
2522                        ifr++;
2523                        ifr32++;
2524                }
2525        }
2526        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2527                return -EFAULT;
2528
2529        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2530        if (err)
2531                return err;
2532
2533        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2534                return -EFAULT;
2535
2536        ifr = ifc.ifc_req;
2537        ifr32 = compat_ptr(ifc32.ifcbuf);
2538        for (i = 0, j = 0;
2539             i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2540             i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2541                if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2542                        return -EFAULT;
2543                ifr32++;
2544                ifr++;
2545        }
2546
2547        if (ifc32.ifcbuf == 0) {
2548                /* Translate from 64-bit structure multiple to
2549                 * a 32-bit one.
2550                 */
2551                i = ifc.ifc_len;
2552                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2553                ifc32.ifc_len = i;
2554        } else {
2555                ifc32.ifc_len = i;
2556        }
2557        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2558                return -EFAULT;
2559
2560        return 0;
2561}
2562
2563static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2564{
2565        struct ifreq __user *ifr;
2566        u32 data;
2567        void __user *datap;
2568
2569        ifr = compat_alloc_user_space(sizeof(*ifr));
2570
2571        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2572                return -EFAULT;
2573
2574        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2575                return -EFAULT;
2576
2577        datap = compat_ptr(data);
2578        if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2579                return -EFAULT;
2580
2581        return dev_ioctl(net, SIOCETHTOOL, ifr);
2582}
2583
2584static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2585{
2586        void __user *uptr;
2587        compat_uptr_t uptr32;
2588        struct ifreq __user *uifr;
2589
2590        uifr = compat_alloc_user_space(sizeof (*uifr));
2591        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2592                return -EFAULT;
2593
2594        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2595                return -EFAULT;
2596
2597        uptr = compat_ptr(uptr32);
2598
2599        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2600                return -EFAULT;
2601
2602        return dev_ioctl(net, SIOCWANDEV, uifr);
2603}
2604
2605static int bond_ioctl(struct net *net, unsigned int cmd,
2606                         struct compat_ifreq __user *ifr32)
2607{
2608        struct ifreq kifr;
2609        struct ifreq __user *uifr;
2610        mm_segment_t old_fs;
2611        int err;
2612        u32 data;
2613        void __user *datap;
2614
2615        switch (cmd) {
2616        case SIOCBONDENSLAVE:
2617        case SIOCBONDRELEASE:
2618        case SIOCBONDSETHWADDR:
2619        case SIOCBONDCHANGEACTIVE:
2620                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2621                        return -EFAULT;
2622
2623                old_fs = get_fs();
2624                set_fs (KERNEL_DS);
2625                err = dev_ioctl(net, cmd, &kifr);
2626                set_fs (old_fs);
2627
2628                return err;
2629        case SIOCBONDSLAVEINFOQUERY:
2630        case SIOCBONDINFOQUERY:
2631                uifr = compat_alloc_user_space(sizeof(*uifr));
2632                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2633                        return -EFAULT;
2634
2635                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2636                        return -EFAULT;
2637
2638                datap = compat_ptr(data);
2639                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2640                        return -EFAULT;
2641
2642                return dev_ioctl(net, cmd, uifr);
2643        default:
2644                return -EINVAL;
2645        };
2646}
2647
2648static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2649                                 struct compat_ifreq __user *u_ifreq32)
2650{
2651        struct ifreq __user *u_ifreq64;
2652        char tmp_buf[IFNAMSIZ];
2653        void __user *data64;
2654        u32 data32;
2655
2656        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2657                           IFNAMSIZ))
2658                return -EFAULT;
2659        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2660                return -EFAULT;
2661        data64 = compat_ptr(data32);
2662
2663        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2664
2665        /* Don't check these user accesses, just let that get trapped
2666         * in the ioctl handler instead.
2667         */
2668        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2669                         IFNAMSIZ))
2670                return -EFAULT;
2671        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2672                return -EFAULT;
2673
2674        return dev_ioctl(net, cmd, u_ifreq64);
2675}
2676
2677static int dev_ifsioc(struct net *net, struct socket *sock,
2678                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2679{
2680        struct ifreq __user *uifr;
2681        int err;
2682
2683        uifr = compat_alloc_user_space(sizeof(*uifr));
2684        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2685                return -EFAULT;
2686
2687        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2688
2689        if (!err) {
2690                switch (cmd) {
2691                case SIOCGIFFLAGS:
2692                case SIOCGIFMETRIC:
2693                case SIOCGIFMTU:
2694                case SIOCGIFMEM:
2695                case SIOCGIFHWADDR:
2696                case SIOCGIFINDEX:
2697                case SIOCGIFADDR:
2698                case SIOCGIFBRDADDR:
2699                case SIOCGIFDSTADDR:
2700                case SIOCGIFNETMASK:
2701                case SIOCGIFPFLAGS:
2702                case SIOCGIFTXQLEN:
2703                case SIOCGMIIPHY:
2704                case SIOCGMIIREG:
2705                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2706                                err = -EFAULT;
2707                        break;
2708                }
2709        }
2710        return err;
2711}
2712
2713static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2714                        struct compat_ifreq __user *uifr32)
2715{
2716        struct ifreq ifr;
2717        struct compat_ifmap __user *uifmap32;
2718        mm_segment_t old_fs;
2719        int err;
2720
2721        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2722        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2723        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2724        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2725        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2726        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2727        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2728        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2729        if (err)
2730                return -EFAULT;
2731
2732        old_fs = get_fs();
2733        set_fs (KERNEL_DS);
2734        err = dev_ioctl(net, cmd, (void __user *)&ifr);
2735        set_fs (old_fs);
2736
2737        if (cmd == SIOCGIFMAP && !err) {
2738                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2739                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2740                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2741                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2742                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2743                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2744                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2745                if (err)
2746                        err = -EFAULT;
2747        }
2748        return err;
2749}
2750
2751static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2752{
2753        void __user *uptr;
2754        compat_uptr_t uptr32;
2755        struct ifreq __user *uifr;
2756
2757        uifr = compat_alloc_user_space(sizeof (*uifr));
2758        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759                return -EFAULT;
2760
2761        if (get_user(uptr32, &uifr32->ifr_data))
2762                return -EFAULT;
2763
2764        uptr = compat_ptr(uptr32);
2765
2766        if (put_user(uptr, &uifr->ifr_data))
2767                return -EFAULT;
2768
2769        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2770}
2771
2772struct rtentry32 {
2773        u32             rt_pad1;
2774        struct sockaddr rt_dst;         /* target address               */
2775        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2776        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2777        unsigned short  rt_flags;
2778        short           rt_pad2;
2779        u32             rt_pad3;
2780        unsigned char   rt_tos;
2781        unsigned char   rt_class;
2782        short           rt_pad4;
2783        short           rt_metric;      /* +1 for binary compatibility! */
2784        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2785        u32             rt_mtu;         /* per route MTU/Window         */
2786        u32             rt_window;      /* Window clamping              */
2787        unsigned short  rt_irtt;        /* Initial RTT                  */
2788};
2789
2790struct in6_rtmsg32 {
2791        struct in6_addr         rtmsg_dst;
2792        struct in6_addr         rtmsg_src;
2793        struct in6_addr         rtmsg_gateway;
2794        u32                     rtmsg_type;
2795        u16                     rtmsg_dst_len;
2796        u16                     rtmsg_src_len;
2797        u32                     rtmsg_metric;
2798        u32                     rtmsg_info;
2799        u32                     rtmsg_flags;
2800        s32                     rtmsg_ifindex;
2801};
2802
2803static int routing_ioctl(struct net *net, struct socket *sock,
2804                         unsigned int cmd, void __user *argp)
2805{
2806        int ret;
2807        void *r = NULL;
2808        struct in6_rtmsg r6;
2809        struct rtentry r4;
2810        char devname[16];
2811        u32 rtdev;
2812        mm_segment_t old_fs = get_fs();
2813
2814        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2815                struct in6_rtmsg32 __user *ur6 = argp;
2816                ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2817                        3 * sizeof(struct in6_addr));
2818                ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2819                ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2820                ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2821                ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2822                ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2823                ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2824                ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2825
2826                r = (void *) &r6;
2827        } else { /* ipv4 */
2828                struct rtentry32 __user *ur4 = argp;
2829                ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2830                                        3 * sizeof(struct sockaddr));
2831                ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2832                ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2833                ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2834                ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2835                ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2836                ret |= __get_user (rtdev, &(ur4->rt_dev));
2837                if (rtdev) {
2838                        ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2839                        r4.rt_dev = devname; devname[15] = 0;
2840                } else
2841                        r4.rt_dev = NULL;
2842
2843                r = (void *) &r4;
2844        }
2845
2846        if (ret) {
2847                ret = -EFAULT;
2848                goto out;
2849        }
2850
2851        set_fs (KERNEL_DS);
2852        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2853        set_fs (old_fs);
2854
2855out:
2856        return ret;
2857}
2858
2859/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2860 * for some operations; this forces use of the newer bridge-utils that
2861 * use compatiable ioctls
2862 */
2863static int old_bridge_ioctl(compat_ulong_t __user *argp)
2864{
2865        compat_ulong_t tmp;
2866
2867        if (get_user(tmp, argp))
2868                return -EFAULT;
2869        if (tmp == BRCTL_GET_VERSION)
2870                return BRCTL_VERSION + 1;
2871        return -EINVAL;
2872}
2873
2874static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2875                         unsigned int cmd, unsigned long arg)
2876{
2877        void __user *argp = compat_ptr(arg);
2878        struct sock *sk = sock->sk;
2879        struct net *net = sock_net(sk);
2880
2881        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2882                return siocdevprivate_ioctl(net, cmd, argp);
2883
2884        switch (cmd) {
2885        case SIOCSIFBR:
2886        case SIOCGIFBR:
2887                return old_bridge_ioctl(argp);
2888        case SIOCGIFNAME:
2889                return dev_ifname32(net, argp);
2890        case SIOCGIFCONF:
2891                return dev_ifconf(net, argp);
2892        case SIOCETHTOOL:
2893                return ethtool_ioctl(net, argp);
2894        case SIOCWANDEV:
2895                return compat_siocwandev(net, argp);
2896        case SIOCGIFMAP:
2897        case SIOCSIFMAP:
2898                return compat_sioc_ifmap(net, cmd, argp);
2899        case SIOCBONDENSLAVE:
2900        case SIOCBONDRELEASE:
2901        case SIOCBONDSETHWADDR:
2902        case SIOCBONDSLAVEINFOQUERY:
2903        case SIOCBONDINFOQUERY:
2904        case SIOCBONDCHANGEACTIVE:
2905                return bond_ioctl(net, cmd, argp);
2906        case SIOCADDRT:
2907        case SIOCDELRT:
2908                return routing_ioctl(net, sock, cmd, argp);
2909        case SIOCGSTAMP:
2910                return do_siocgstamp(net, sock, cmd, argp);
2911        case SIOCGSTAMPNS:
2912                return do_siocgstampns(net, sock, cmd, argp);
2913        case SIOCSHWTSTAMP:
2914                return compat_siocshwtstamp(net, argp);
2915
2916        case FIOSETOWN:
2917        case SIOCSPGRP:
2918        case FIOGETOWN:
2919        case SIOCGPGRP:
2920        case SIOCBRADDBR:
2921        case SIOCBRDELBR:
2922        case SIOCGIFVLAN:
2923        case SIOCSIFVLAN:
2924        case SIOCADDDLCI:
2925        case SIOCDELDLCI:
2926                return sock_ioctl(file, cmd, arg);
2927
2928        case SIOCGIFFLAGS:
2929        case SIOCSIFFLAGS:
2930        case SIOCGIFMETRIC:
2931        case SIOCSIFMETRIC:
2932        case SIOCGIFMTU:
2933        case SIOCSIFMTU:
2934        case SIOCGIFMEM:
2935        case SIOCSIFMEM:
2936        case SIOCGIFHWADDR:
2937        case SIOCSIFHWADDR:
2938        case SIOCADDMULTI:
2939        case SIOCDELMULTI:
2940        case SIOCGIFINDEX:
2941        case SIOCGIFADDR:
2942        case SIOCSIFADDR:
2943        case SIOCSIFHWBROADCAST:
2944        case SIOCDIFADDR:
2945        case SIOCGIFBRDADDR:
2946        case SIOCSIFBRDADDR:
2947        case SIOCGIFDSTADDR:
2948        case SIOCSIFDSTADDR:
2949        case SIOCGIFNETMASK:
2950        case SIOCSIFNETMASK:
2951        case SIOCSIFPFLAGS:
2952        case SIOCGIFPFLAGS:
2953        case SIOCGIFTXQLEN:
2954        case SIOCSIFTXQLEN:
2955        case SIOCBRADDIF:
2956        case SIOCBRDELIF:
2957        case SIOCSIFNAME:
2958        case SIOCGMIIPHY:
2959        case SIOCGMIIREG:
2960        case SIOCSMIIREG:
2961                return dev_ifsioc(net, sock, cmd, argp);
2962
2963        case SIOCSARP:
2964        case SIOCGARP:
2965        case SIOCDARP:
2966        case SIOCATMARK:
2967                return sock_do_ioctl(net, sock, cmd, arg);
2968        }
2969
2970        /* Prevent warning from compat_sys_ioctl, these always
2971         * result in -EINVAL in the native case anyway. */
2972        switch (cmd) {
2973        case SIOCRTMSG:
2974        case SIOCGIFCOUNT:
2975        case SIOCSRARP:
2976        case SIOCGRARP:
2977        case SIOCDRARP:
2978        case SIOCSIFLINK:
2979        case SIOCGIFSLAVE:
2980        case SIOCSIFSLAVE:
2981                return -EINVAL;
2982        }
2983
2984        return -ENOIOCTLCMD;
2985}
2986
2987static long compat_sock_ioctl(struct file *file, unsigned cmd,
2988                              unsigned long arg)
2989{
2990        struct socket *sock = file->private_data;
2991        int ret = -ENOIOCTLCMD;
2992        struct sock *sk;
2993        struct net *net;
2994
2995        sk = sock->sk;
2996        net = sock_net(sk);
2997
2998        if (sock->ops->compat_ioctl)
2999                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3000
3001        if (ret == -ENOIOCTLCMD &&
3002            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3003                ret = compat_wext_handle_ioctl(net, cmd, arg);
3004
3005        if (ret == -ENOIOCTLCMD)
3006                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3007
3008        return ret;
3009}
3010#endif
3011
3012int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3013{
3014        return sock->ops->bind(sock, addr, addrlen);
3015}
3016
3017int kernel_listen(struct socket *sock, int backlog)
3018{
3019        return sock->ops->listen(sock, backlog);
3020}
3021
3022int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3023{
3024        struct sock *sk = sock->sk;
3025        int err;
3026
3027        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3028                               newsock);
3029        if (err < 0)
3030                goto done;
3031
3032        err = sock->ops->accept(sock, *newsock, flags);
3033        if (err < 0) {
3034                sock_release(*newsock);
3035                *newsock = NULL;
3036                goto done;
3037        }
3038
3039        (*newsock)->ops = sock->ops;
3040        __module_get((*newsock)->ops->owner);
3041
3042done:
3043        return err;
3044}
3045
3046int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3047                   int flags)
3048{
3049        return sock->ops->connect(sock, addr, addrlen, flags);
3050}
3051
3052int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3053                         int *addrlen)
3054{
3055        return sock->ops->getname(sock, addr, addrlen, 0);
3056}
3057
3058int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3059                         int *addrlen)
3060{
3061        return sock->ops->getname(sock, addr, addrlen, 1);
3062}
3063
3064int kernel_getsockopt(struct socket *sock, int level, int optname,
3065                        char *optval, int *optlen)
3066{
3067        mm_segment_t oldfs = get_fs();
3068        int err;
3069
3070        set_fs(KERNEL_DS);
3071        if (level == SOL_SOCKET)
3072                err = sock_getsockopt(sock, level, optname, optval, optlen);
3073        else
3074                err = sock->ops->getsockopt(sock, level, optname, optval,
3075                                            optlen);
3076        set_fs(oldfs);
3077        return err;
3078}
3079
3080int kernel_setsockopt(struct socket *sock, int level, int optname,
3081                        char *optval, unsigned int optlen)
3082{
3083        mm_segment_t oldfs = get_fs();
3084        int err;
3085
3086        set_fs(KERNEL_DS);
3087        if (level == SOL_SOCKET)
3088                err = sock_setsockopt(sock, level, optname, optval, optlen);
3089        else
3090                err = sock->ops->setsockopt(sock, level, optname, optval,
3091                                            optlen);
3092        set_fs(oldfs);
3093        return err;
3094}
3095
3096int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3097                    size_t size, int flags)
3098{
3099        if (sock->ops->sendpage)
3100                return sock->ops->sendpage(sock, page, offset, size, flags);
3101
3102        return sock_no_sendpage(sock, page, offset, size, flags);
3103}
3104
3105int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3106{
3107        mm_segment_t oldfs = get_fs();
3108        int err;
3109
3110        set_fs(KERNEL_DS);
3111        err = sock->ops->ioctl(sock, cmd, arg);
3112        set_fs(oldfs);
3113
3114        return err;
3115}
3116
3117int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3118{
3119        return sock->ops->shutdown(sock, how);
3120}
3121
3122EXPORT_SYMBOL(sock_create);
3123EXPORT_SYMBOL(sock_create_kern);
3124EXPORT_SYMBOL(sock_create_lite);
3125EXPORT_SYMBOL(sock_map_fd);
3126EXPORT_SYMBOL(sock_recvmsg);
3127EXPORT_SYMBOL(sock_register);
3128EXPORT_SYMBOL(sock_release);
3129EXPORT_SYMBOL(sock_sendmsg);
3130EXPORT_SYMBOL(sock_unregister);
3131EXPORT_SYMBOL(sock_wake_async);
3132EXPORT_SYMBOL(sockfd_lookup);
3133EXPORT_SYMBOL(kernel_sendmsg);
3134EXPORT_SYMBOL(kernel_recvmsg);
3135EXPORT_SYMBOL(kernel_bind);
3136EXPORT_SYMBOL(kernel_listen);
3137EXPORT_SYMBOL(kernel_accept);
3138EXPORT_SYMBOL(kernel_connect);
3139EXPORT_SYMBOL(kernel_getsockname);
3140EXPORT_SYMBOL(kernel_getpeername);
3141EXPORT_SYMBOL(kernel_getsockopt);
3142EXPORT_SYMBOL(kernel_setsockopt);
3143EXPORT_SYMBOL(kernel_sendpage);
3144EXPORT_SYMBOL(kernel_sock_ioctl);
3145EXPORT_SYMBOL(kernel_sock_shutdown);
3146