linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/module.h>
  27#include <linux/mount.h>
  28#include <linux/file.h>
  29#include <asm/uaccess.h>
  30#include <linux/security.h>
  31#include <linux/seqlock.h>
  32#include <linux/swap.h>
  33#include <linux/bootmem.h>
  34#include <linux/fs_struct.h>
  35#include "internal.h"
  36
  37int sysctl_vfs_cache_pressure __read_mostly = 100;
  38EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  39
  40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
  41__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  42
  43EXPORT_SYMBOL(dcache_lock);
  44
  45static struct kmem_cache *dentry_cache __read_mostly;
  46
  47#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
  48
  49/*
  50 * This is the single most critical data structure when it comes
  51 * to the dcache: the hashtable for lookups. Somebody should try
  52 * to make this good - I've just made it work.
  53 *
  54 * This hash-function tries to avoid losing too many bits of hash
  55 * information, yet avoid using a prime hash-size or similar.
  56 */
  57#define D_HASHBITS     d_hash_shift
  58#define D_HASHMASK     d_hash_mask
  59
  60static unsigned int d_hash_mask __read_mostly;
  61static unsigned int d_hash_shift __read_mostly;
  62static struct hlist_head *dentry_hashtable __read_mostly;
  63
  64/* Statistics gathering. */
  65struct dentry_stat_t dentry_stat = {
  66        .age_limit = 45,
  67};
  68
  69static void __d_free(struct dentry *dentry)
  70{
  71        WARN_ON(!list_empty(&dentry->d_alias));
  72        if (dname_external(dentry))
  73                kfree(dentry->d_name.name);
  74        kmem_cache_free(dentry_cache, dentry); 
  75}
  76
  77static void d_callback(struct rcu_head *head)
  78{
  79        struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
  80        __d_free(dentry);
  81}
  82
  83/*
  84 * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
  85 * inside dcache_lock.
  86 */
  87static void d_free(struct dentry *dentry)
  88{
  89        if (dentry->d_op && dentry->d_op->d_release)
  90                dentry->d_op->d_release(dentry);
  91        /* if dentry was never inserted into hash, immediate free is OK */
  92        if (hlist_unhashed(&dentry->d_hash))
  93                __d_free(dentry);
  94        else
  95                call_rcu(&dentry->d_u.d_rcu, d_callback);
  96}
  97
  98/*
  99 * Release the dentry's inode, using the filesystem
 100 * d_iput() operation if defined.
 101 */
 102static void dentry_iput(struct dentry * dentry)
 103        __releases(dentry->d_lock)
 104        __releases(dcache_lock)
 105{
 106        struct inode *inode = dentry->d_inode;
 107        if (inode) {
 108                dentry->d_inode = NULL;
 109                list_del_init(&dentry->d_alias);
 110                spin_unlock(&dentry->d_lock);
 111                spin_unlock(&dcache_lock);
 112                if (!inode->i_nlink)
 113                        fsnotify_inoderemove(inode);
 114                if (dentry->d_op && dentry->d_op->d_iput)
 115                        dentry->d_op->d_iput(dentry, inode);
 116                else
 117                        iput(inode);
 118        } else {
 119                spin_unlock(&dentry->d_lock);
 120                spin_unlock(&dcache_lock);
 121        }
 122}
 123
 124/*
 125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
 126 */
 127static void dentry_lru_add(struct dentry *dentry)
 128{
 129        list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 130        dentry->d_sb->s_nr_dentry_unused++;
 131        dentry_stat.nr_unused++;
 132}
 133
 134static void dentry_lru_add_tail(struct dentry *dentry)
 135{
 136        list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 137        dentry->d_sb->s_nr_dentry_unused++;
 138        dentry_stat.nr_unused++;
 139}
 140
 141static void dentry_lru_del(struct dentry *dentry)
 142{
 143        if (!list_empty(&dentry->d_lru)) {
 144                list_del(&dentry->d_lru);
 145                dentry->d_sb->s_nr_dentry_unused--;
 146                dentry_stat.nr_unused--;
 147        }
 148}
 149
 150static void dentry_lru_del_init(struct dentry *dentry)
 151{
 152        if (likely(!list_empty(&dentry->d_lru))) {
 153                list_del_init(&dentry->d_lru);
 154                dentry->d_sb->s_nr_dentry_unused--;
 155                dentry_stat.nr_unused--;
 156        }
 157}
 158
 159/**
 160 * d_kill - kill dentry and return parent
 161 * @dentry: dentry to kill
 162 *
 163 * The dentry must already be unhashed and removed from the LRU.
 164 *
 165 * If this is the root of the dentry tree, return NULL.
 166 */
 167static struct dentry *d_kill(struct dentry *dentry)
 168        __releases(dentry->d_lock)
 169        __releases(dcache_lock)
 170{
 171        struct dentry *parent;
 172
 173        list_del(&dentry->d_u.d_child);
 174        dentry_stat.nr_dentry--;        /* For d_free, below */
 175        /*drops the locks, at that point nobody can reach this dentry */
 176        dentry_iput(dentry);
 177        if (IS_ROOT(dentry))
 178                parent = NULL;
 179        else
 180                parent = dentry->d_parent;
 181        d_free(dentry);
 182        return parent;
 183}
 184
 185/* 
 186 * This is dput
 187 *
 188 * This is complicated by the fact that we do not want to put
 189 * dentries that are no longer on any hash chain on the unused
 190 * list: we'd much rather just get rid of them immediately.
 191 *
 192 * However, that implies that we have to traverse the dentry
 193 * tree upwards to the parents which might _also_ now be
 194 * scheduled for deletion (it may have been only waiting for
 195 * its last child to go away).
 196 *
 197 * This tail recursion is done by hand as we don't want to depend
 198 * on the compiler to always get this right (gcc generally doesn't).
 199 * Real recursion would eat up our stack space.
 200 */
 201
 202/*
 203 * dput - release a dentry
 204 * @dentry: dentry to release 
 205 *
 206 * Release a dentry. This will drop the usage count and if appropriate
 207 * call the dentry unlink method as well as removing it from the queues and
 208 * releasing its resources. If the parent dentries were scheduled for release
 209 * they too may now get deleted.
 210 *
 211 * no dcache lock, please.
 212 */
 213
 214void dput(struct dentry *dentry)
 215{
 216        if (!dentry)
 217                return;
 218
 219repeat:
 220        if (atomic_read(&dentry->d_count) == 1)
 221                might_sleep();
 222        if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
 223                return;
 224
 225        spin_lock(&dentry->d_lock);
 226        if (atomic_read(&dentry->d_count)) {
 227                spin_unlock(&dentry->d_lock);
 228                spin_unlock(&dcache_lock);
 229                return;
 230        }
 231
 232        /*
 233         * AV: ->d_delete() is _NOT_ allowed to block now.
 234         */
 235        if (dentry->d_op && dentry->d_op->d_delete) {
 236                if (dentry->d_op->d_delete(dentry))
 237                        goto unhash_it;
 238        }
 239        /* Unreachable? Get rid of it */
 240        if (d_unhashed(dentry))
 241                goto kill_it;
 242        if (list_empty(&dentry->d_lru)) {
 243                dentry->d_flags |= DCACHE_REFERENCED;
 244                dentry_lru_add(dentry);
 245        }
 246        spin_unlock(&dentry->d_lock);
 247        spin_unlock(&dcache_lock);
 248        return;
 249
 250unhash_it:
 251        __d_drop(dentry);
 252kill_it:
 253        /* if dentry was on the d_lru list delete it from there */
 254        dentry_lru_del(dentry);
 255        dentry = d_kill(dentry);
 256        if (dentry)
 257                goto repeat;
 258}
 259
 260/**
 261 * d_invalidate - invalidate a dentry
 262 * @dentry: dentry to invalidate
 263 *
 264 * Try to invalidate the dentry if it turns out to be
 265 * possible. If there are other dentries that can be
 266 * reached through this one we can't delete it and we
 267 * return -EBUSY. On success we return 0.
 268 *
 269 * no dcache lock.
 270 */
 271 
 272int d_invalidate(struct dentry * dentry)
 273{
 274        /*
 275         * If it's already been dropped, return OK.
 276         */
 277        spin_lock(&dcache_lock);
 278        if (d_unhashed(dentry)) {
 279                spin_unlock(&dcache_lock);
 280                return 0;
 281        }
 282        /*
 283         * Check whether to do a partial shrink_dcache
 284         * to get rid of unused child entries.
 285         */
 286        if (!list_empty(&dentry->d_subdirs)) {
 287                spin_unlock(&dcache_lock);
 288                shrink_dcache_parent(dentry);
 289                spin_lock(&dcache_lock);
 290        }
 291
 292        /*
 293         * Somebody else still using it?
 294         *
 295         * If it's a directory, we can't drop it
 296         * for fear of somebody re-populating it
 297         * with children (even though dropping it
 298         * would make it unreachable from the root,
 299         * we might still populate it if it was a
 300         * working directory or similar).
 301         */
 302        spin_lock(&dentry->d_lock);
 303        if (atomic_read(&dentry->d_count) > 1) {
 304                if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
 305                        spin_unlock(&dentry->d_lock);
 306                        spin_unlock(&dcache_lock);
 307                        return -EBUSY;
 308                }
 309        }
 310
 311        __d_drop(dentry);
 312        spin_unlock(&dentry->d_lock);
 313        spin_unlock(&dcache_lock);
 314        return 0;
 315}
 316
 317/* This should be called _only_ with dcache_lock held */
 318
 319static inline struct dentry * __dget_locked(struct dentry *dentry)
 320{
 321        atomic_inc(&dentry->d_count);
 322        dentry_lru_del_init(dentry);
 323        return dentry;
 324}
 325
 326struct dentry * dget_locked(struct dentry *dentry)
 327{
 328        return __dget_locked(dentry);
 329}
 330
 331/**
 332 * d_find_alias - grab a hashed alias of inode
 333 * @inode: inode in question
 334 * @want_discon:  flag, used by d_splice_alias, to request
 335 *          that only a DISCONNECTED alias be returned.
 336 *
 337 * If inode has a hashed alias, or is a directory and has any alias,
 338 * acquire the reference to alias and return it. Otherwise return NULL.
 339 * Notice that if inode is a directory there can be only one alias and
 340 * it can be unhashed only if it has no children, or if it is the root
 341 * of a filesystem.
 342 *
 343 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 344 * any other hashed alias over that one unless @want_discon is set,
 345 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
 346 */
 347
 348static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
 349{
 350        struct list_head *head, *next, *tmp;
 351        struct dentry *alias, *discon_alias=NULL;
 352
 353        head = &inode->i_dentry;
 354        next = inode->i_dentry.next;
 355        while (next != head) {
 356                tmp = next;
 357                next = tmp->next;
 358                prefetch(next);
 359                alias = list_entry(tmp, struct dentry, d_alias);
 360                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 361                        if (IS_ROOT(alias) &&
 362                            (alias->d_flags & DCACHE_DISCONNECTED))
 363                                discon_alias = alias;
 364                        else if (!want_discon) {
 365                                __dget_locked(alias);
 366                                return alias;
 367                        }
 368                }
 369        }
 370        if (discon_alias)
 371                __dget_locked(discon_alias);
 372        return discon_alias;
 373}
 374
 375struct dentry * d_find_alias(struct inode *inode)
 376{
 377        struct dentry *de = NULL;
 378
 379        if (!list_empty(&inode->i_dentry)) {
 380                spin_lock(&dcache_lock);
 381                de = __d_find_alias(inode, 0);
 382                spin_unlock(&dcache_lock);
 383        }
 384        return de;
 385}
 386
 387/*
 388 *      Try to kill dentries associated with this inode.
 389 * WARNING: you must own a reference to inode.
 390 */
 391void d_prune_aliases(struct inode *inode)
 392{
 393        struct dentry *dentry;
 394restart:
 395        spin_lock(&dcache_lock);
 396        list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
 397                spin_lock(&dentry->d_lock);
 398                if (!atomic_read(&dentry->d_count)) {
 399                        __dget_locked(dentry);
 400                        __d_drop(dentry);
 401                        spin_unlock(&dentry->d_lock);
 402                        spin_unlock(&dcache_lock);
 403                        dput(dentry);
 404                        goto restart;
 405                }
 406                spin_unlock(&dentry->d_lock);
 407        }
 408        spin_unlock(&dcache_lock);
 409}
 410
 411/*
 412 * Throw away a dentry - free the inode, dput the parent.  This requires that
 413 * the LRU list has already been removed.
 414 *
 415 * Try to prune ancestors as well.  This is necessary to prevent
 416 * quadratic behavior of shrink_dcache_parent(), but is also expected
 417 * to be beneficial in reducing dentry cache fragmentation.
 418 */
 419static void prune_one_dentry(struct dentry * dentry)
 420        __releases(dentry->d_lock)
 421        __releases(dcache_lock)
 422        __acquires(dcache_lock)
 423{
 424        __d_drop(dentry);
 425        dentry = d_kill(dentry);
 426
 427        /*
 428         * Prune ancestors.  Locking is simpler than in dput(),
 429         * because dcache_lock needs to be taken anyway.
 430         */
 431        spin_lock(&dcache_lock);
 432        while (dentry) {
 433                if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
 434                        return;
 435
 436                if (dentry->d_op && dentry->d_op->d_delete)
 437                        dentry->d_op->d_delete(dentry);
 438                dentry_lru_del_init(dentry);
 439                __d_drop(dentry);
 440                dentry = d_kill(dentry);
 441                spin_lock(&dcache_lock);
 442        }
 443}
 444
 445/*
 446 * Shrink the dentry LRU on a given superblock.
 447 * @sb   : superblock to shrink dentry LRU.
 448 * @count: If count is NULL, we prune all dentries on superblock.
 449 * @flags: If flags is non-zero, we need to do special processing based on
 450 * which flags are set. This means we don't need to maintain multiple
 451 * similar copies of this loop.
 452 */
 453static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
 454{
 455        LIST_HEAD(referenced);
 456        LIST_HEAD(tmp);
 457        struct dentry *dentry;
 458        int cnt = 0;
 459
 460        BUG_ON(!sb);
 461        BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
 462        spin_lock(&dcache_lock);
 463        if (count != NULL)
 464                /* called from prune_dcache() and shrink_dcache_parent() */
 465                cnt = *count;
 466restart:
 467        if (count == NULL)
 468                list_splice_init(&sb->s_dentry_lru, &tmp);
 469        else {
 470                while (!list_empty(&sb->s_dentry_lru)) {
 471                        dentry = list_entry(sb->s_dentry_lru.prev,
 472                                        struct dentry, d_lru);
 473                        BUG_ON(dentry->d_sb != sb);
 474
 475                        spin_lock(&dentry->d_lock);
 476                        /*
 477                         * If we are honouring the DCACHE_REFERENCED flag and
 478                         * the dentry has this flag set, don't free it. Clear
 479                         * the flag and put it back on the LRU.
 480                         */
 481                        if ((flags & DCACHE_REFERENCED)
 482                                && (dentry->d_flags & DCACHE_REFERENCED)) {
 483                                dentry->d_flags &= ~DCACHE_REFERENCED;
 484                                list_move(&dentry->d_lru, &referenced);
 485                                spin_unlock(&dentry->d_lock);
 486                        } else {
 487                                list_move_tail(&dentry->d_lru, &tmp);
 488                                spin_unlock(&dentry->d_lock);
 489                                cnt--;
 490                                if (!cnt)
 491                                        break;
 492                        }
 493                        cond_resched_lock(&dcache_lock);
 494                }
 495        }
 496        while (!list_empty(&tmp)) {
 497                dentry = list_entry(tmp.prev, struct dentry, d_lru);
 498                dentry_lru_del_init(dentry);
 499                spin_lock(&dentry->d_lock);
 500                /*
 501                 * We found an inuse dentry which was not removed from
 502                 * the LRU because of laziness during lookup.  Do not free
 503                 * it - just keep it off the LRU list.
 504                 */
 505                if (atomic_read(&dentry->d_count)) {
 506                        spin_unlock(&dentry->d_lock);
 507                        continue;
 508                }
 509                prune_one_dentry(dentry);
 510                /* dentry->d_lock was dropped in prune_one_dentry() */
 511                cond_resched_lock(&dcache_lock);
 512        }
 513        if (count == NULL && !list_empty(&sb->s_dentry_lru))
 514                goto restart;
 515        if (count != NULL)
 516                *count = cnt;
 517        if (!list_empty(&referenced))
 518                list_splice(&referenced, &sb->s_dentry_lru);
 519        spin_unlock(&dcache_lock);
 520}
 521
 522/**
 523 * prune_dcache - shrink the dcache
 524 * @count: number of entries to try to free
 525 *
 526 * Shrink the dcache. This is done when we need more memory, or simply when we
 527 * need to unmount something (at which point we need to unuse all dentries).
 528 *
 529 * This function may fail to free any resources if all the dentries are in use.
 530 */
 531static void prune_dcache(int count)
 532{
 533        struct super_block *sb;
 534        int w_count;
 535        int unused = dentry_stat.nr_unused;
 536        int prune_ratio;
 537        int pruned;
 538
 539        if (unused == 0 || count == 0)
 540                return;
 541        spin_lock(&dcache_lock);
 542restart:
 543        if (count >= unused)
 544                prune_ratio = 1;
 545        else
 546                prune_ratio = unused / count;
 547        spin_lock(&sb_lock);
 548        list_for_each_entry(sb, &super_blocks, s_list) {
 549                if (sb->s_nr_dentry_unused == 0)
 550                        continue;
 551                sb->s_count++;
 552                /* Now, we reclaim unused dentrins with fairness.
 553                 * We reclaim them same percentage from each superblock.
 554                 * We calculate number of dentries to scan on this sb
 555                 * as follows, but the implementation is arranged to avoid
 556                 * overflows:
 557                 * number of dentries to scan on this sb =
 558                 * count * (number of dentries on this sb /
 559                 * number of dentries in the machine)
 560                 */
 561                spin_unlock(&sb_lock);
 562                if (prune_ratio != 1)
 563                        w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
 564                else
 565                        w_count = sb->s_nr_dentry_unused;
 566                pruned = w_count;
 567                /*
 568                 * We need to be sure this filesystem isn't being unmounted,
 569                 * otherwise we could race with generic_shutdown_super(), and
 570                 * end up holding a reference to an inode while the filesystem
 571                 * is unmounted.  So we try to get s_umount, and make sure
 572                 * s_root isn't NULL.
 573                 */
 574                if (down_read_trylock(&sb->s_umount)) {
 575                        if ((sb->s_root != NULL) &&
 576                            (!list_empty(&sb->s_dentry_lru))) {
 577                                spin_unlock(&dcache_lock);
 578                                __shrink_dcache_sb(sb, &w_count,
 579                                                DCACHE_REFERENCED);
 580                                pruned -= w_count;
 581                                spin_lock(&dcache_lock);
 582                        }
 583                        up_read(&sb->s_umount);
 584                }
 585                spin_lock(&sb_lock);
 586                count -= pruned;
 587                /*
 588                 * restart only when sb is no longer on the list and
 589                 * we have more work to do.
 590                 */
 591                if (__put_super_and_need_restart(sb) && count > 0) {
 592                        spin_unlock(&sb_lock);
 593                        goto restart;
 594                }
 595        }
 596        spin_unlock(&sb_lock);
 597        spin_unlock(&dcache_lock);
 598}
 599
 600/**
 601 * shrink_dcache_sb - shrink dcache for a superblock
 602 * @sb: superblock
 603 *
 604 * Shrink the dcache for the specified super block. This
 605 * is used to free the dcache before unmounting a file
 606 * system
 607 */
 608void shrink_dcache_sb(struct super_block * sb)
 609{
 610        __shrink_dcache_sb(sb, NULL, 0);
 611}
 612
 613/*
 614 * destroy a single subtree of dentries for unmount
 615 * - see the comments on shrink_dcache_for_umount() for a description of the
 616 *   locking
 617 */
 618static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
 619{
 620        struct dentry *parent;
 621        unsigned detached = 0;
 622
 623        BUG_ON(!IS_ROOT(dentry));
 624
 625        /* detach this root from the system */
 626        spin_lock(&dcache_lock);
 627        dentry_lru_del_init(dentry);
 628        __d_drop(dentry);
 629        spin_unlock(&dcache_lock);
 630
 631        for (;;) {
 632                /* descend to the first leaf in the current subtree */
 633                while (!list_empty(&dentry->d_subdirs)) {
 634                        struct dentry *loop;
 635
 636                        /* this is a branch with children - detach all of them
 637                         * from the system in one go */
 638                        spin_lock(&dcache_lock);
 639                        list_for_each_entry(loop, &dentry->d_subdirs,
 640                                            d_u.d_child) {
 641                                dentry_lru_del_init(loop);
 642                                __d_drop(loop);
 643                                cond_resched_lock(&dcache_lock);
 644                        }
 645                        spin_unlock(&dcache_lock);
 646
 647                        /* move to the first child */
 648                        dentry = list_entry(dentry->d_subdirs.next,
 649                                            struct dentry, d_u.d_child);
 650                }
 651
 652                /* consume the dentries from this leaf up through its parents
 653                 * until we find one with children or run out altogether */
 654                do {
 655                        struct inode *inode;
 656
 657                        if (atomic_read(&dentry->d_count) != 0) {
 658                                printk(KERN_ERR
 659                                       "BUG: Dentry %p{i=%lx,n=%s}"
 660                                       " still in use (%d)"
 661                                       " [unmount of %s %s]\n",
 662                                       dentry,
 663                                       dentry->d_inode ?
 664                                       dentry->d_inode->i_ino : 0UL,
 665                                       dentry->d_name.name,
 666                                       atomic_read(&dentry->d_count),
 667                                       dentry->d_sb->s_type->name,
 668                                       dentry->d_sb->s_id);
 669                                BUG();
 670                        }
 671
 672                        if (IS_ROOT(dentry))
 673                                parent = NULL;
 674                        else {
 675                                parent = dentry->d_parent;
 676                                atomic_dec(&parent->d_count);
 677                        }
 678
 679                        list_del(&dentry->d_u.d_child);
 680                        detached++;
 681
 682                        inode = dentry->d_inode;
 683                        if (inode) {
 684                                dentry->d_inode = NULL;
 685                                list_del_init(&dentry->d_alias);
 686                                if (dentry->d_op && dentry->d_op->d_iput)
 687                                        dentry->d_op->d_iput(dentry, inode);
 688                                else
 689                                        iput(inode);
 690                        }
 691
 692                        d_free(dentry);
 693
 694                        /* finished when we fall off the top of the tree,
 695                         * otherwise we ascend to the parent and move to the
 696                         * next sibling if there is one */
 697                        if (!parent)
 698                                goto out;
 699
 700                        dentry = parent;
 701
 702                } while (list_empty(&dentry->d_subdirs));
 703
 704                dentry = list_entry(dentry->d_subdirs.next,
 705                                    struct dentry, d_u.d_child);
 706        }
 707out:
 708        /* several dentries were freed, need to correct nr_dentry */
 709        spin_lock(&dcache_lock);
 710        dentry_stat.nr_dentry -= detached;
 711        spin_unlock(&dcache_lock);
 712}
 713
 714/*
 715 * destroy the dentries attached to a superblock on unmounting
 716 * - we don't need to use dentry->d_lock, and only need dcache_lock when
 717 *   removing the dentry from the system lists and hashes because:
 718 *   - the superblock is detached from all mountings and open files, so the
 719 *     dentry trees will not be rearranged by the VFS
 720 *   - s_umount is write-locked, so the memory pressure shrinker will ignore
 721 *     any dentries belonging to this superblock that it comes across
 722 *   - the filesystem itself is no longer permitted to rearrange the dentries
 723 *     in this superblock
 724 */
 725void shrink_dcache_for_umount(struct super_block *sb)
 726{
 727        struct dentry *dentry;
 728
 729        if (down_read_trylock(&sb->s_umount))
 730                BUG();
 731
 732        dentry = sb->s_root;
 733        sb->s_root = NULL;
 734        atomic_dec(&dentry->d_count);
 735        shrink_dcache_for_umount_subtree(dentry);
 736
 737        while (!hlist_empty(&sb->s_anon)) {
 738                dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
 739                shrink_dcache_for_umount_subtree(dentry);
 740        }
 741}
 742
 743/*
 744 * Search for at least 1 mount point in the dentry's subdirs.
 745 * We descend to the next level whenever the d_subdirs
 746 * list is non-empty and continue searching.
 747 */
 748 
 749/**
 750 * have_submounts - check for mounts over a dentry
 751 * @parent: dentry to check.
 752 *
 753 * Return true if the parent or its subdirectories contain
 754 * a mount point
 755 */
 756 
 757int have_submounts(struct dentry *parent)
 758{
 759        struct dentry *this_parent = parent;
 760        struct list_head *next;
 761
 762        spin_lock(&dcache_lock);
 763        if (d_mountpoint(parent))
 764                goto positive;
 765repeat:
 766        next = this_parent->d_subdirs.next;
 767resume:
 768        while (next != &this_parent->d_subdirs) {
 769                struct list_head *tmp = next;
 770                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
 771                next = tmp->next;
 772                /* Have we found a mount point ? */
 773                if (d_mountpoint(dentry))
 774                        goto positive;
 775                if (!list_empty(&dentry->d_subdirs)) {
 776                        this_parent = dentry;
 777                        goto repeat;
 778                }
 779        }
 780        /*
 781         * All done at this level ... ascend and resume the search.
 782         */
 783        if (this_parent != parent) {
 784                next = this_parent->d_u.d_child.next;
 785                this_parent = this_parent->d_parent;
 786                goto resume;
 787        }
 788        spin_unlock(&dcache_lock);
 789        return 0; /* No mount points found in tree */
 790positive:
 791        spin_unlock(&dcache_lock);
 792        return 1;
 793}
 794
 795/*
 796 * Search the dentry child list for the specified parent,
 797 * and move any unused dentries to the end of the unused
 798 * list for prune_dcache(). We descend to the next level
 799 * whenever the d_subdirs list is non-empty and continue
 800 * searching.
 801 *
 802 * It returns zero iff there are no unused children,
 803 * otherwise  it returns the number of children moved to
 804 * the end of the unused list. This may not be the total
 805 * number of unused children, because select_parent can
 806 * drop the lock and return early due to latency
 807 * constraints.
 808 */
 809static int select_parent(struct dentry * parent)
 810{
 811        struct dentry *this_parent = parent;
 812        struct list_head *next;
 813        int found = 0;
 814
 815        spin_lock(&dcache_lock);
 816repeat:
 817        next = this_parent->d_subdirs.next;
 818resume:
 819        while (next != &this_parent->d_subdirs) {
 820                struct list_head *tmp = next;
 821                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
 822                next = tmp->next;
 823
 824                dentry_lru_del_init(dentry);
 825                /* 
 826                 * move only zero ref count dentries to the end 
 827                 * of the unused list for prune_dcache
 828                 */
 829                if (!atomic_read(&dentry->d_count)) {
 830                        dentry_lru_add_tail(dentry);
 831                        found++;
 832                }
 833
 834                /*
 835                 * We can return to the caller if we have found some (this
 836                 * ensures forward progress). We'll be coming back to find
 837                 * the rest.
 838                 */
 839                if (found && need_resched())
 840                        goto out;
 841
 842                /*
 843                 * Descend a level if the d_subdirs list is non-empty.
 844                 */
 845                if (!list_empty(&dentry->d_subdirs)) {
 846                        this_parent = dentry;
 847                        goto repeat;
 848                }
 849        }
 850        /*
 851         * All done at this level ... ascend and resume the search.
 852         */
 853        if (this_parent != parent) {
 854                next = this_parent->d_u.d_child.next;
 855                this_parent = this_parent->d_parent;
 856                goto resume;
 857        }
 858out:
 859        spin_unlock(&dcache_lock);
 860        return found;
 861}
 862
 863/**
 864 * shrink_dcache_parent - prune dcache
 865 * @parent: parent of entries to prune
 866 *
 867 * Prune the dcache to remove unused children of the parent dentry.
 868 */
 869 
 870void shrink_dcache_parent(struct dentry * parent)
 871{
 872        struct super_block *sb = parent->d_sb;
 873        int found;
 874
 875        while ((found = select_parent(parent)) != 0)
 876                __shrink_dcache_sb(sb, &found, 0);
 877}
 878
 879/*
 880 * Scan `nr' dentries and return the number which remain.
 881 *
 882 * We need to avoid reentering the filesystem if the caller is performing a
 883 * GFP_NOFS allocation attempt.  One example deadlock is:
 884 *
 885 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
 886 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
 887 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
 888 *
 889 * In this case we return -1 to tell the caller that we baled.
 890 */
 891static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
 892{
 893        if (nr) {
 894                if (!(gfp_mask & __GFP_FS))
 895                        return -1;
 896                prune_dcache(nr);
 897        }
 898        return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
 899}
 900
 901static struct shrinker dcache_shrinker = {
 902        .shrink = shrink_dcache_memory,
 903        .seeks = DEFAULT_SEEKS,
 904};
 905
 906/**
 907 * d_alloc      -       allocate a dcache entry
 908 * @parent: parent of entry to allocate
 909 * @name: qstr of the name
 910 *
 911 * Allocates a dentry. It returns %NULL if there is insufficient memory
 912 * available. On a success the dentry is returned. The name passed in is
 913 * copied and the copy passed in may be reused after this call.
 914 */
 915 
 916struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
 917{
 918        struct dentry *dentry;
 919        char *dname;
 920
 921        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
 922        if (!dentry)
 923                return NULL;
 924
 925        if (name->len > DNAME_INLINE_LEN-1) {
 926                dname = kmalloc(name->len + 1, GFP_KERNEL);
 927                if (!dname) {
 928                        kmem_cache_free(dentry_cache, dentry); 
 929                        return NULL;
 930                }
 931        } else  {
 932                dname = dentry->d_iname;
 933        }       
 934        dentry->d_name.name = dname;
 935
 936        dentry->d_name.len = name->len;
 937        dentry->d_name.hash = name->hash;
 938        memcpy(dname, name->name, name->len);
 939        dname[name->len] = 0;
 940
 941        atomic_set(&dentry->d_count, 1);
 942        dentry->d_flags = DCACHE_UNHASHED;
 943        spin_lock_init(&dentry->d_lock);
 944        dentry->d_inode = NULL;
 945        dentry->d_parent = NULL;
 946        dentry->d_sb = NULL;
 947        dentry->d_op = NULL;
 948        dentry->d_fsdata = NULL;
 949        dentry->d_mounted = 0;
 950        INIT_HLIST_NODE(&dentry->d_hash);
 951        INIT_LIST_HEAD(&dentry->d_lru);
 952        INIT_LIST_HEAD(&dentry->d_subdirs);
 953        INIT_LIST_HEAD(&dentry->d_alias);
 954
 955        if (parent) {
 956                dentry->d_parent = dget(parent);
 957                dentry->d_sb = parent->d_sb;
 958        } else {
 959                INIT_LIST_HEAD(&dentry->d_u.d_child);
 960        }
 961
 962        spin_lock(&dcache_lock);
 963        if (parent)
 964                list_add(&dentry->d_u.d_child, &parent->d_subdirs);
 965        dentry_stat.nr_dentry++;
 966        spin_unlock(&dcache_lock);
 967
 968        return dentry;
 969}
 970
 971struct dentry *d_alloc_name(struct dentry *parent, const char *name)
 972{
 973        struct qstr q;
 974
 975        q.name = name;
 976        q.len = strlen(name);
 977        q.hash = full_name_hash(q.name, q.len);
 978        return d_alloc(parent, &q);
 979}
 980
 981/* the caller must hold dcache_lock */
 982static void __d_instantiate(struct dentry *dentry, struct inode *inode)
 983{
 984        if (inode)
 985                list_add(&dentry->d_alias, &inode->i_dentry);
 986        dentry->d_inode = inode;
 987        fsnotify_d_instantiate(dentry, inode);
 988}
 989
 990/**
 991 * d_instantiate - fill in inode information for a dentry
 992 * @entry: dentry to complete
 993 * @inode: inode to attach to this dentry
 994 *
 995 * Fill in inode information in the entry.
 996 *
 997 * This turns negative dentries into productive full members
 998 * of society.
 999 *
1000 * NOTE! This assumes that the inode count has been incremented
1001 * (or otherwise set) by the caller to indicate that it is now
1002 * in use by the dcache.
1003 */
1004 
1005void d_instantiate(struct dentry *entry, struct inode * inode)
1006{
1007        BUG_ON(!list_empty(&entry->d_alias));
1008        spin_lock(&dcache_lock);
1009        __d_instantiate(entry, inode);
1010        spin_unlock(&dcache_lock);
1011        security_d_instantiate(entry, inode);
1012}
1013
1014/**
1015 * d_instantiate_unique - instantiate a non-aliased dentry
1016 * @entry: dentry to instantiate
1017 * @inode: inode to attach to this dentry
1018 *
1019 * Fill in inode information in the entry. On success, it returns NULL.
1020 * If an unhashed alias of "entry" already exists, then we return the
1021 * aliased dentry instead and drop one reference to inode.
1022 *
1023 * Note that in order to avoid conflicts with rename() etc, the caller
1024 * had better be holding the parent directory semaphore.
1025 *
1026 * This also assumes that the inode count has been incremented
1027 * (or otherwise set) by the caller to indicate that it is now
1028 * in use by the dcache.
1029 */
1030static struct dentry *__d_instantiate_unique(struct dentry *entry,
1031                                             struct inode *inode)
1032{
1033        struct dentry *alias;
1034        int len = entry->d_name.len;
1035        const char *name = entry->d_name.name;
1036        unsigned int hash = entry->d_name.hash;
1037
1038        if (!inode) {
1039                __d_instantiate(entry, NULL);
1040                return NULL;
1041        }
1042
1043        list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1044                struct qstr *qstr = &alias->d_name;
1045
1046                if (qstr->hash != hash)
1047                        continue;
1048                if (alias->d_parent != entry->d_parent)
1049                        continue;
1050                if (qstr->len != len)
1051                        continue;
1052                if (memcmp(qstr->name, name, len))
1053                        continue;
1054                dget_locked(alias);
1055                return alias;
1056        }
1057
1058        __d_instantiate(entry, inode);
1059        return NULL;
1060}
1061
1062struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1063{
1064        struct dentry *result;
1065
1066        BUG_ON(!list_empty(&entry->d_alias));
1067
1068        spin_lock(&dcache_lock);
1069        result = __d_instantiate_unique(entry, inode);
1070        spin_unlock(&dcache_lock);
1071
1072        if (!result) {
1073                security_d_instantiate(entry, inode);
1074                return NULL;
1075        }
1076
1077        BUG_ON(!d_unhashed(result));
1078        iput(inode);
1079        return result;
1080}
1081
1082EXPORT_SYMBOL(d_instantiate_unique);
1083
1084/**
1085 * d_alloc_root - allocate root dentry
1086 * @root_inode: inode to allocate the root for
1087 *
1088 * Allocate a root ("/") dentry for the inode given. The inode is
1089 * instantiated and returned. %NULL is returned if there is insufficient
1090 * memory or the inode passed is %NULL.
1091 */
1092 
1093struct dentry * d_alloc_root(struct inode * root_inode)
1094{
1095        struct dentry *res = NULL;
1096
1097        if (root_inode) {
1098                static const struct qstr name = { .name = "/", .len = 1 };
1099
1100                res = d_alloc(NULL, &name);
1101                if (res) {
1102                        res->d_sb = root_inode->i_sb;
1103                        res->d_parent = res;
1104                        d_instantiate(res, root_inode);
1105                }
1106        }
1107        return res;
1108}
1109
1110static inline struct hlist_head *d_hash(struct dentry *parent,
1111                                        unsigned long hash)
1112{
1113        hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1114        hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1115        return dentry_hashtable + (hash & D_HASHMASK);
1116}
1117
1118/**
1119 * d_obtain_alias - find or allocate a dentry for a given inode
1120 * @inode: inode to allocate the dentry for
1121 *
1122 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1123 * similar open by handle operations.  The returned dentry may be anonymous,
1124 * or may have a full name (if the inode was already in the cache).
1125 *
1126 * When called on a directory inode, we must ensure that the inode only ever
1127 * has one dentry.  If a dentry is found, that is returned instead of
1128 * allocating a new one.
1129 *
1130 * On successful return, the reference to the inode has been transferred
1131 * to the dentry.  In case of an error the reference on the inode is released.
1132 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1133 * be passed in and will be the error will be propagate to the return value,
1134 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1135 */
1136struct dentry *d_obtain_alias(struct inode *inode)
1137{
1138        static const struct qstr anonstring = { .name = "" };
1139        struct dentry *tmp;
1140        struct dentry *res;
1141
1142        if (!inode)
1143                return ERR_PTR(-ESTALE);
1144        if (IS_ERR(inode))
1145                return ERR_CAST(inode);
1146
1147        res = d_find_alias(inode);
1148        if (res)
1149                goto out_iput;
1150
1151        tmp = d_alloc(NULL, &anonstring);
1152        if (!tmp) {
1153                res = ERR_PTR(-ENOMEM);
1154                goto out_iput;
1155        }
1156        tmp->d_parent = tmp; /* make sure dput doesn't croak */
1157
1158        spin_lock(&dcache_lock);
1159        res = __d_find_alias(inode, 0);
1160        if (res) {
1161                spin_unlock(&dcache_lock);
1162                dput(tmp);
1163                goto out_iput;
1164        }
1165
1166        /* attach a disconnected dentry */
1167        spin_lock(&tmp->d_lock);
1168        tmp->d_sb = inode->i_sb;
1169        tmp->d_inode = inode;
1170        tmp->d_flags |= DCACHE_DISCONNECTED;
1171        tmp->d_flags &= ~DCACHE_UNHASHED;
1172        list_add(&tmp->d_alias, &inode->i_dentry);
1173        hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1174        spin_unlock(&tmp->d_lock);
1175
1176        spin_unlock(&dcache_lock);
1177        return tmp;
1178
1179 out_iput:
1180        iput(inode);
1181        return res;
1182}
1183EXPORT_SYMBOL(d_obtain_alias);
1184
1185/**
1186 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1187 * @inode:  the inode which may have a disconnected dentry
1188 * @dentry: a negative dentry which we want to point to the inode.
1189 *
1190 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1191 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1192 * and return it, else simply d_add the inode to the dentry and return NULL.
1193 *
1194 * This is needed in the lookup routine of any filesystem that is exportable
1195 * (via knfsd) so that we can build dcache paths to directories effectively.
1196 *
1197 * If a dentry was found and moved, then it is returned.  Otherwise NULL
1198 * is returned.  This matches the expected return value of ->lookup.
1199 *
1200 */
1201struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1202{
1203        struct dentry *new = NULL;
1204
1205        if (inode && S_ISDIR(inode->i_mode)) {
1206                spin_lock(&dcache_lock);
1207                new = __d_find_alias(inode, 1);
1208                if (new) {
1209                        BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1210                        spin_unlock(&dcache_lock);
1211                        security_d_instantiate(new, inode);
1212                        d_rehash(dentry);
1213                        d_move(new, dentry);
1214                        iput(inode);
1215                } else {
1216                        /* already taking dcache_lock, so d_add() by hand */
1217                        __d_instantiate(dentry, inode);
1218                        spin_unlock(&dcache_lock);
1219                        security_d_instantiate(dentry, inode);
1220                        d_rehash(dentry);
1221                }
1222        } else
1223                d_add(dentry, inode);
1224        return new;
1225}
1226
1227/**
1228 * d_add_ci - lookup or allocate new dentry with case-exact name
1229 * @inode:  the inode case-insensitive lookup has found
1230 * @dentry: the negative dentry that was passed to the parent's lookup func
1231 * @name:   the case-exact name to be associated with the returned dentry
1232 *
1233 * This is to avoid filling the dcache with case-insensitive names to the
1234 * same inode, only the actual correct case is stored in the dcache for
1235 * case-insensitive filesystems.
1236 *
1237 * For a case-insensitive lookup match and if the the case-exact dentry
1238 * already exists in in the dcache, use it and return it.
1239 *
1240 * If no entry exists with the exact case name, allocate new dentry with
1241 * the exact case, and return the spliced entry.
1242 */
1243struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1244                        struct qstr *name)
1245{
1246        int error;
1247        struct dentry *found;
1248        struct dentry *new;
1249
1250        /*
1251         * First check if a dentry matching the name already exists,
1252         * if not go ahead and create it now.
1253         */
1254        found = d_hash_and_lookup(dentry->d_parent, name);
1255        if (!found) {
1256                new = d_alloc(dentry->d_parent, name);
1257                if (!new) {
1258                        error = -ENOMEM;
1259                        goto err_out;
1260                }
1261
1262                found = d_splice_alias(inode, new);
1263                if (found) {
1264                        dput(new);
1265                        return found;
1266                }
1267                return new;
1268        }
1269
1270        /*
1271         * If a matching dentry exists, and it's not negative use it.
1272         *
1273         * Decrement the reference count to balance the iget() done
1274         * earlier on.
1275         */
1276        if (found->d_inode) {
1277                if (unlikely(found->d_inode != inode)) {
1278                        /* This can't happen because bad inodes are unhashed. */
1279                        BUG_ON(!is_bad_inode(inode));
1280                        BUG_ON(!is_bad_inode(found->d_inode));
1281                }
1282                iput(inode);
1283                return found;
1284        }
1285
1286        /*
1287         * Negative dentry: instantiate it unless the inode is a directory and
1288         * already has a dentry.
1289         */
1290        spin_lock(&dcache_lock);
1291        if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1292                __d_instantiate(found, inode);
1293                spin_unlock(&dcache_lock);
1294                security_d_instantiate(found, inode);
1295                return found;
1296        }
1297
1298        /*
1299         * In case a directory already has a (disconnected) entry grab a
1300         * reference to it, move it in place and use it.
1301         */
1302        new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1303        dget_locked(new);
1304        spin_unlock(&dcache_lock);
1305        security_d_instantiate(found, inode);
1306        d_move(new, found);
1307        iput(inode);
1308        dput(found);
1309        return new;
1310
1311err_out:
1312        iput(inode);
1313        return ERR_PTR(error);
1314}
1315
1316/**
1317 * d_lookup - search for a dentry
1318 * @parent: parent dentry
1319 * @name: qstr of name we wish to find
1320 *
1321 * Searches the children of the parent dentry for the name in question. If
1322 * the dentry is found its reference count is incremented and the dentry
1323 * is returned. The caller must use dput to free the entry when it has
1324 * finished using it. %NULL is returned on failure.
1325 *
1326 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1327 * Memory barriers are used while updating and doing lockless traversal. 
1328 * To avoid races with d_move while rename is happening, d_lock is used.
1329 *
1330 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1331 * and name pointer in one structure pointed by d_qstr.
1332 *
1333 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1334 * lookup is going on.
1335 *
1336 * The dentry unused LRU is not updated even if lookup finds the required dentry
1337 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1338 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1339 * acquisition.
1340 *
1341 * d_lookup() is protected against the concurrent renames in some unrelated
1342 * directory using the seqlockt_t rename_lock.
1343 */
1344
1345struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1346{
1347        struct dentry * dentry = NULL;
1348        unsigned long seq;
1349
1350        do {
1351                seq = read_seqbegin(&rename_lock);
1352                dentry = __d_lookup(parent, name);
1353                if (dentry)
1354                        break;
1355        } while (read_seqretry(&rename_lock, seq));
1356        return dentry;
1357}
1358
1359struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1360{
1361        unsigned int len = name->len;
1362        unsigned int hash = name->hash;
1363        const unsigned char *str = name->name;
1364        struct hlist_head *head = d_hash(parent,hash);
1365        struct dentry *found = NULL;
1366        struct hlist_node *node;
1367        struct dentry *dentry;
1368
1369        rcu_read_lock();
1370        
1371        hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1372                struct qstr *qstr;
1373
1374                if (dentry->d_name.hash != hash)
1375                        continue;
1376                if (dentry->d_parent != parent)
1377                        continue;
1378
1379                spin_lock(&dentry->d_lock);
1380
1381                /*
1382                 * Recheck the dentry after taking the lock - d_move may have
1383                 * changed things.  Don't bother checking the hash because we're
1384                 * about to compare the whole name anyway.
1385                 */
1386                if (dentry->d_parent != parent)
1387                        goto next;
1388
1389                /* non-existing due to RCU? */
1390                if (d_unhashed(dentry))
1391                        goto next;
1392
1393                /*
1394                 * It is safe to compare names since d_move() cannot
1395                 * change the qstr (protected by d_lock).
1396                 */
1397                qstr = &dentry->d_name;
1398                if (parent->d_op && parent->d_op->d_compare) {
1399                        if (parent->d_op->d_compare(parent, qstr, name))
1400                                goto next;
1401                } else {
1402                        if (qstr->len != len)
1403                                goto next;
1404                        if (memcmp(qstr->name, str, len))
1405                                goto next;
1406                }
1407
1408                atomic_inc(&dentry->d_count);
1409                found = dentry;
1410                spin_unlock(&dentry->d_lock);
1411                break;
1412next:
1413                spin_unlock(&dentry->d_lock);
1414        }
1415        rcu_read_unlock();
1416
1417        return found;
1418}
1419
1420/**
1421 * d_hash_and_lookup - hash the qstr then search for a dentry
1422 * @dir: Directory to search in
1423 * @name: qstr of name we wish to find
1424 *
1425 * On hash failure or on lookup failure NULL is returned.
1426 */
1427struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1428{
1429        struct dentry *dentry = NULL;
1430
1431        /*
1432         * Check for a fs-specific hash function. Note that we must
1433         * calculate the standard hash first, as the d_op->d_hash()
1434         * routine may choose to leave the hash value unchanged.
1435         */
1436        name->hash = full_name_hash(name->name, name->len);
1437        if (dir->d_op && dir->d_op->d_hash) {
1438                if (dir->d_op->d_hash(dir, name) < 0)
1439                        goto out;
1440        }
1441        dentry = d_lookup(dir, name);
1442out:
1443        return dentry;
1444}
1445
1446/**
1447 * d_validate - verify dentry provided from insecure source
1448 * @dentry: The dentry alleged to be valid child of @dparent
1449 * @dparent: The parent dentry (known to be valid)
1450 *
1451 * An insecure source has sent us a dentry, here we verify it and dget() it.
1452 * This is used by ncpfs in its readdir implementation.
1453 * Zero is returned in the dentry is invalid.
1454 */
1455 
1456int d_validate(struct dentry *dentry, struct dentry *dparent)
1457{
1458        struct hlist_head *base;
1459        struct hlist_node *lhp;
1460
1461        /* Check whether the ptr might be valid at all.. */
1462        if (!kmem_ptr_validate(dentry_cache, dentry))
1463                goto out;
1464
1465        if (dentry->d_parent != dparent)
1466                goto out;
1467
1468        spin_lock(&dcache_lock);
1469        base = d_hash(dparent, dentry->d_name.hash);
1470        hlist_for_each(lhp,base) { 
1471                /* hlist_for_each_entry_rcu() not required for d_hash list
1472                 * as it is parsed under dcache_lock
1473                 */
1474                if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1475                        __dget_locked(dentry);
1476                        spin_unlock(&dcache_lock);
1477                        return 1;
1478                }
1479        }
1480        spin_unlock(&dcache_lock);
1481out:
1482        return 0;
1483}
1484
1485/*
1486 * When a file is deleted, we have two options:
1487 * - turn this dentry into a negative dentry
1488 * - unhash this dentry and free it.
1489 *
1490 * Usually, we want to just turn this into
1491 * a negative dentry, but if anybody else is
1492 * currently using the dentry or the inode
1493 * we can't do that and we fall back on removing
1494 * it from the hash queues and waiting for
1495 * it to be deleted later when it has no users
1496 */
1497 
1498/**
1499 * d_delete - delete a dentry
1500 * @dentry: The dentry to delete
1501 *
1502 * Turn the dentry into a negative dentry if possible, otherwise
1503 * remove it from the hash queues so it can be deleted later
1504 */
1505 
1506void d_delete(struct dentry * dentry)
1507{
1508        int isdir = 0;
1509        /*
1510         * Are we the only user?
1511         */
1512        spin_lock(&dcache_lock);
1513        spin_lock(&dentry->d_lock);
1514        isdir = S_ISDIR(dentry->d_inode->i_mode);
1515        if (atomic_read(&dentry->d_count) == 1) {
1516                dentry_iput(dentry);
1517                fsnotify_nameremove(dentry, isdir);
1518                return;
1519        }
1520
1521        if (!d_unhashed(dentry))
1522                __d_drop(dentry);
1523
1524        spin_unlock(&dentry->d_lock);
1525        spin_unlock(&dcache_lock);
1526
1527        fsnotify_nameremove(dentry, isdir);
1528}
1529
1530static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1531{
1532
1533        entry->d_flags &= ~DCACHE_UNHASHED;
1534        hlist_add_head_rcu(&entry->d_hash, list);
1535}
1536
1537static void _d_rehash(struct dentry * entry)
1538{
1539        __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1540}
1541
1542/**
1543 * d_rehash     - add an entry back to the hash
1544 * @entry: dentry to add to the hash
1545 *
1546 * Adds a dentry to the hash according to its name.
1547 */
1548 
1549void d_rehash(struct dentry * entry)
1550{
1551        spin_lock(&dcache_lock);
1552        spin_lock(&entry->d_lock);
1553        _d_rehash(entry);
1554        spin_unlock(&entry->d_lock);
1555        spin_unlock(&dcache_lock);
1556}
1557
1558/*
1559 * When switching names, the actual string doesn't strictly have to
1560 * be preserved in the target - because we're dropping the target
1561 * anyway. As such, we can just do a simple memcpy() to copy over
1562 * the new name before we switch.
1563 *
1564 * Note that we have to be a lot more careful about getting the hash
1565 * switched - we have to switch the hash value properly even if it
1566 * then no longer matches the actual (corrupted) string of the target.
1567 * The hash value has to match the hash queue that the dentry is on..
1568 */
1569static void switch_names(struct dentry *dentry, struct dentry *target)
1570{
1571        if (dname_external(target)) {
1572                if (dname_external(dentry)) {
1573                        /*
1574                         * Both external: swap the pointers
1575                         */
1576                        swap(target->d_name.name, dentry->d_name.name);
1577                } else {
1578                        /*
1579                         * dentry:internal, target:external.  Steal target's
1580                         * storage and make target internal.
1581                         */
1582                        memcpy(target->d_iname, dentry->d_name.name,
1583                                        dentry->d_name.len + 1);
1584                        dentry->d_name.name = target->d_name.name;
1585                        target->d_name.name = target->d_iname;
1586                }
1587        } else {
1588                if (dname_external(dentry)) {
1589                        /*
1590                         * dentry:external, target:internal.  Give dentry's
1591                         * storage to target and make dentry internal
1592                         */
1593                        memcpy(dentry->d_iname, target->d_name.name,
1594                                        target->d_name.len + 1);
1595                        target->d_name.name = dentry->d_name.name;
1596                        dentry->d_name.name = dentry->d_iname;
1597                } else {
1598                        /*
1599                         * Both are internal.  Just copy target to dentry
1600                         */
1601                        memcpy(dentry->d_iname, target->d_name.name,
1602                                        target->d_name.len + 1);
1603                        dentry->d_name.len = target->d_name.len;
1604                        return;
1605                }
1606        }
1607        swap(dentry->d_name.len, target->d_name.len);
1608}
1609
1610/*
1611 * We cannibalize "target" when moving dentry on top of it,
1612 * because it's going to be thrown away anyway. We could be more
1613 * polite about it, though.
1614 *
1615 * This forceful removal will result in ugly /proc output if
1616 * somebody holds a file open that got deleted due to a rename.
1617 * We could be nicer about the deleted file, and let it show
1618 * up under the name it had before it was deleted rather than
1619 * under the original name of the file that was moved on top of it.
1620 */
1621 
1622/*
1623 * d_move_locked - move a dentry
1624 * @dentry: entry to move
1625 * @target: new dentry
1626 *
1627 * Update the dcache to reflect the move of a file name. Negative
1628 * dcache entries should not be moved in this way.
1629 */
1630static void d_move_locked(struct dentry * dentry, struct dentry * target)
1631{
1632        struct hlist_head *list;
1633
1634        if (!dentry->d_inode)
1635                printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1636
1637        write_seqlock(&rename_lock);
1638        /*
1639         * XXXX: do we really need to take target->d_lock?
1640         */
1641        if (target < dentry) {
1642                spin_lock(&target->d_lock);
1643                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1644        } else {
1645                spin_lock(&dentry->d_lock);
1646                spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1647        }
1648
1649        /* Move the dentry to the target hash queue, if on different bucket */
1650        if (d_unhashed(dentry))
1651                goto already_unhashed;
1652
1653        hlist_del_rcu(&dentry->d_hash);
1654
1655already_unhashed:
1656        list = d_hash(target->d_parent, target->d_name.hash);
1657        __d_rehash(dentry, list);
1658
1659        /* Unhash the target: dput() will then get rid of it */
1660        __d_drop(target);
1661
1662        list_del(&dentry->d_u.d_child);
1663        list_del(&target->d_u.d_child);
1664
1665        /* Switch the names.. */
1666        switch_names(dentry, target);
1667        swap(dentry->d_name.hash, target->d_name.hash);
1668
1669        /* ... and switch the parents */
1670        if (IS_ROOT(dentry)) {
1671                dentry->d_parent = target->d_parent;
1672                target->d_parent = target;
1673                INIT_LIST_HEAD(&target->d_u.d_child);
1674        } else {
1675                swap(dentry->d_parent, target->d_parent);
1676
1677                /* And add them back to the (new) parent lists */
1678                list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1679        }
1680
1681        list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1682        spin_unlock(&target->d_lock);
1683        fsnotify_d_move(dentry);
1684        spin_unlock(&dentry->d_lock);
1685        write_sequnlock(&rename_lock);
1686}
1687
1688/**
1689 * d_move - move a dentry
1690 * @dentry: entry to move
1691 * @target: new dentry
1692 *
1693 * Update the dcache to reflect the move of a file name. Negative
1694 * dcache entries should not be moved in this way.
1695 */
1696
1697void d_move(struct dentry * dentry, struct dentry * target)
1698{
1699        spin_lock(&dcache_lock);
1700        d_move_locked(dentry, target);
1701        spin_unlock(&dcache_lock);
1702}
1703
1704/**
1705 * d_ancestor - search for an ancestor
1706 * @p1: ancestor dentry
1707 * @p2: child dentry
1708 *
1709 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1710 * an ancestor of p2, else NULL.
1711 */
1712struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1713{
1714        struct dentry *p;
1715
1716        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1717                if (p->d_parent == p1)
1718                        return p;
1719        }
1720        return NULL;
1721}
1722
1723/*
1724 * This helper attempts to cope with remotely renamed directories
1725 *
1726 * It assumes that the caller is already holding
1727 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1728 *
1729 * Note: If ever the locking in lock_rename() changes, then please
1730 * remember to update this too...
1731 */
1732static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1733        __releases(dcache_lock)
1734{
1735        struct mutex *m1 = NULL, *m2 = NULL;
1736        struct dentry *ret;
1737
1738        /* If alias and dentry share a parent, then no extra locks required */
1739        if (alias->d_parent == dentry->d_parent)
1740                goto out_unalias;
1741
1742        /* Check for loops */
1743        ret = ERR_PTR(-ELOOP);
1744        if (d_ancestor(alias, dentry))
1745                goto out_err;
1746
1747        /* See lock_rename() */
1748        ret = ERR_PTR(-EBUSY);
1749        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1750                goto out_err;
1751        m1 = &dentry->d_sb->s_vfs_rename_mutex;
1752        if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1753                goto out_err;
1754        m2 = &alias->d_parent->d_inode->i_mutex;
1755out_unalias:
1756        d_move_locked(alias, dentry);
1757        ret = alias;
1758out_err:
1759        spin_unlock(&dcache_lock);
1760        if (m2)
1761                mutex_unlock(m2);
1762        if (m1)
1763                mutex_unlock(m1);
1764        return ret;
1765}
1766
1767/*
1768 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1769 * named dentry in place of the dentry to be replaced.
1770 */
1771static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1772{
1773        struct dentry *dparent, *aparent;
1774
1775        switch_names(dentry, anon);
1776        swap(dentry->d_name.hash, anon->d_name.hash);
1777
1778        dparent = dentry->d_parent;
1779        aparent = anon->d_parent;
1780
1781        dentry->d_parent = (aparent == anon) ? dentry : aparent;
1782        list_del(&dentry->d_u.d_child);
1783        if (!IS_ROOT(dentry))
1784                list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1785        else
1786                INIT_LIST_HEAD(&dentry->d_u.d_child);
1787
1788        anon->d_parent = (dparent == dentry) ? anon : dparent;
1789        list_del(&anon->d_u.d_child);
1790        if (!IS_ROOT(anon))
1791                list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1792        else
1793                INIT_LIST_HEAD(&anon->d_u.d_child);
1794
1795        anon->d_flags &= ~DCACHE_DISCONNECTED;
1796}
1797
1798/**
1799 * d_materialise_unique - introduce an inode into the tree
1800 * @dentry: candidate dentry
1801 * @inode: inode to bind to the dentry, to which aliases may be attached
1802 *
1803 * Introduces an dentry into the tree, substituting an extant disconnected
1804 * root directory alias in its place if there is one
1805 */
1806struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1807{
1808        struct dentry *actual;
1809
1810        BUG_ON(!d_unhashed(dentry));
1811
1812        spin_lock(&dcache_lock);
1813
1814        if (!inode) {
1815                actual = dentry;
1816                __d_instantiate(dentry, NULL);
1817                goto found_lock;
1818        }
1819
1820        if (S_ISDIR(inode->i_mode)) {
1821                struct dentry *alias;
1822
1823                /* Does an aliased dentry already exist? */
1824                alias = __d_find_alias(inode, 0);
1825                if (alias) {
1826                        actual = alias;
1827                        /* Is this an anonymous mountpoint that we could splice
1828                         * into our tree? */
1829                        if (IS_ROOT(alias)) {
1830                                spin_lock(&alias->d_lock);
1831                                __d_materialise_dentry(dentry, alias);
1832                                __d_drop(alias);
1833                                goto found;
1834                        }
1835                        /* Nope, but we must(!) avoid directory aliasing */
1836                        actual = __d_unalias(dentry, alias);
1837                        if (IS_ERR(actual))
1838                                dput(alias);
1839                        goto out_nolock;
1840                }
1841        }
1842
1843        /* Add a unique reference */
1844        actual = __d_instantiate_unique(dentry, inode);
1845        if (!actual)
1846                actual = dentry;
1847        else if (unlikely(!d_unhashed(actual)))
1848                goto shouldnt_be_hashed;
1849
1850found_lock:
1851        spin_lock(&actual->d_lock);
1852found:
1853        _d_rehash(actual);
1854        spin_unlock(&actual->d_lock);
1855        spin_unlock(&dcache_lock);
1856out_nolock:
1857        if (actual == dentry) {
1858                security_d_instantiate(dentry, inode);
1859                return NULL;
1860        }
1861
1862        iput(inode);
1863        return actual;
1864
1865shouldnt_be_hashed:
1866        spin_unlock(&dcache_lock);
1867        BUG();
1868}
1869
1870static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1871{
1872        *buflen -= namelen;
1873        if (*buflen < 0)
1874                return -ENAMETOOLONG;
1875        *buffer -= namelen;
1876        memcpy(*buffer, str, namelen);
1877        return 0;
1878}
1879
1880static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1881{
1882        return prepend(buffer, buflen, name->name, name->len);
1883}
1884
1885/**
1886 * __d_path - return the path of a dentry
1887 * @path: the dentry/vfsmount to report
1888 * @root: root vfsmnt/dentry (may be modified by this function)
1889 * @buffer: buffer to return value in
1890 * @buflen: buffer length
1891 *
1892 * Convert a dentry into an ASCII path name. If the entry has been deleted
1893 * the string " (deleted)" is appended. Note that this is ambiguous.
1894 *
1895 * Returns a pointer into the buffer or an error code if the
1896 * path was too long.
1897 *
1898 * "buflen" should be positive. Caller holds the dcache_lock.
1899 *
1900 * If path is not reachable from the supplied root, then the value of
1901 * root is changed (without modifying refcounts).
1902 */
1903char *__d_path(const struct path *path, struct path *root,
1904               char *buffer, int buflen)
1905{
1906        struct dentry *dentry = path->dentry;
1907        struct vfsmount *vfsmnt = path->mnt;
1908        char *end = buffer + buflen;
1909        char *retval;
1910
1911        spin_lock(&vfsmount_lock);
1912        prepend(&end, &buflen, "\0", 1);
1913        if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1914                (prepend(&end, &buflen, " (deleted)", 10) != 0))
1915                        goto Elong;
1916
1917        if (buflen < 1)
1918                goto Elong;
1919        /* Get '/' right */
1920        retval = end-1;
1921        *retval = '/';
1922
1923        for (;;) {
1924                struct dentry * parent;
1925
1926                if (dentry == root->dentry && vfsmnt == root->mnt)
1927                        break;
1928                if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1929                        /* Global root? */
1930                        if (vfsmnt->mnt_parent == vfsmnt) {
1931                                goto global_root;
1932                        }
1933                        dentry = vfsmnt->mnt_mountpoint;
1934                        vfsmnt = vfsmnt->mnt_parent;
1935                        continue;
1936                }
1937                parent = dentry->d_parent;
1938                prefetch(parent);
1939                if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1940                    (prepend(&end, &buflen, "/", 1) != 0))
1941                        goto Elong;
1942                retval = end;
1943                dentry = parent;
1944        }
1945
1946out:
1947        spin_unlock(&vfsmount_lock);
1948        return retval;
1949
1950global_root:
1951        retval += 1;    /* hit the slash */
1952        if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1953                goto Elong;
1954        root->mnt = vfsmnt;
1955        root->dentry = dentry;
1956        goto out;
1957
1958Elong:
1959        retval = ERR_PTR(-ENAMETOOLONG);
1960        goto out;
1961}
1962
1963/**
1964 * d_path - return the path of a dentry
1965 * @path: path to report
1966 * @buf: buffer to return value in
1967 * @buflen: buffer length
1968 *
1969 * Convert a dentry into an ASCII path name. If the entry has been deleted
1970 * the string " (deleted)" is appended. Note that this is ambiguous.
1971 *
1972 * Returns a pointer into the buffer or an error code if the path was
1973 * too long. Note: Callers should use the returned pointer, not the passed
1974 * in buffer, to use the name! The implementation often starts at an offset
1975 * into the buffer, and may leave 0 bytes at the start.
1976 *
1977 * "buflen" should be positive.
1978 */
1979char *d_path(const struct path *path, char *buf, int buflen)
1980{
1981        char *res;
1982        struct path root;
1983        struct path tmp;
1984
1985        /*
1986         * We have various synthetic filesystems that never get mounted.  On
1987         * these filesystems dentries are never used for lookup purposes, and
1988         * thus don't need to be hashed.  They also don't need a name until a
1989         * user wants to identify the object in /proc/pid/fd/.  The little hack
1990         * below allows us to generate a name for these objects on demand:
1991         */
1992        if (path->dentry->d_op && path->dentry->d_op->d_dname)
1993                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1994
1995        read_lock(&current->fs->lock);
1996        root = current->fs->root;
1997        path_get(&root);
1998        read_unlock(&current->fs->lock);
1999        spin_lock(&dcache_lock);
2000        tmp = root;
2001        res = __d_path(path, &tmp, buf, buflen);
2002        spin_unlock(&dcache_lock);
2003        path_put(&root);
2004        return res;
2005}
2006
2007/*
2008 * Helper function for dentry_operations.d_dname() members
2009 */
2010char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2011                        const char *fmt, ...)
2012{
2013        va_list args;
2014        char temp[64];
2015        int sz;
2016
2017        va_start(args, fmt);
2018        sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2019        va_end(args);
2020
2021        if (sz > sizeof(temp) || sz > buflen)
2022                return ERR_PTR(-ENAMETOOLONG);
2023
2024        buffer += buflen - sz;
2025        return memcpy(buffer, temp, sz);
2026}
2027
2028/*
2029 * Write full pathname from the root of the filesystem into the buffer.
2030 */
2031char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2032{
2033        char *end = buf + buflen;
2034        char *retval;
2035
2036        spin_lock(&dcache_lock);
2037        prepend(&end, &buflen, "\0", 1);
2038        if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
2039                (prepend(&end, &buflen, "//deleted", 9) != 0))
2040                        goto Elong;
2041        if (buflen < 1)
2042                goto Elong;
2043        /* Get '/' right */
2044        retval = end-1;
2045        *retval = '/';
2046
2047        while (!IS_ROOT(dentry)) {
2048                struct dentry *parent = dentry->d_parent;
2049
2050                prefetch(parent);
2051                if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2052                    (prepend(&end, &buflen, "/", 1) != 0))
2053                        goto Elong;
2054
2055                retval = end;
2056                dentry = parent;
2057        }
2058        spin_unlock(&dcache_lock);
2059        return retval;
2060Elong:
2061        spin_unlock(&dcache_lock);
2062        return ERR_PTR(-ENAMETOOLONG);
2063}
2064
2065/*
2066 * NOTE! The user-level library version returns a
2067 * character pointer. The kernel system call just
2068 * returns the length of the buffer filled (which
2069 * includes the ending '\0' character), or a negative
2070 * error value. So libc would do something like
2071 *
2072 *      char *getcwd(char * buf, size_t size)
2073 *      {
2074 *              int retval;
2075 *
2076 *              retval = sys_getcwd(buf, size);
2077 *              if (retval >= 0)
2078 *                      return buf;
2079 *              errno = -retval;
2080 *              return NULL;
2081 *      }
2082 */
2083SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2084{
2085        int error;
2086        struct path pwd, root;
2087        char *page = (char *) __get_free_page(GFP_USER);
2088
2089        if (!page)
2090                return -ENOMEM;
2091
2092        read_lock(&current->fs->lock);
2093        pwd = current->fs->pwd;
2094        path_get(&pwd);
2095        root = current->fs->root;
2096        path_get(&root);
2097        read_unlock(&current->fs->lock);
2098
2099        error = -ENOENT;
2100        /* Has the current directory has been unlinked? */
2101        spin_lock(&dcache_lock);
2102        if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2103                unsigned long len;
2104                struct path tmp = root;
2105                char * cwd;
2106
2107                cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2108                spin_unlock(&dcache_lock);
2109
2110                error = PTR_ERR(cwd);
2111                if (IS_ERR(cwd))
2112                        goto out;
2113
2114                error = -ERANGE;
2115                len = PAGE_SIZE + page - cwd;
2116                if (len <= size) {
2117                        error = len;
2118                        if (copy_to_user(buf, cwd, len))
2119                                error = -EFAULT;
2120                }
2121        } else
2122                spin_unlock(&dcache_lock);
2123
2124out:
2125        path_put(&pwd);
2126        path_put(&root);
2127        free_page((unsigned long) page);
2128        return error;
2129}
2130
2131/*
2132 * Test whether new_dentry is a subdirectory of old_dentry.
2133 *
2134 * Trivially implemented using the dcache structure
2135 */
2136
2137/**
2138 * is_subdir - is new dentry a subdirectory of old_dentry
2139 * @new_dentry: new dentry
2140 * @old_dentry: old dentry
2141 *
2142 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2143 * Returns 0 otherwise.
2144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2145 */
2146  
2147int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2148{
2149        int result;
2150        unsigned long seq;
2151
2152        if (new_dentry == old_dentry)
2153                return 1;
2154
2155        /*
2156         * Need rcu_readlock to protect against the d_parent trashing
2157         * due to d_move
2158         */
2159        rcu_read_lock();
2160        do {
2161                /* for restarting inner loop in case of seq retry */
2162                seq = read_seqbegin(&rename_lock);
2163                if (d_ancestor(old_dentry, new_dentry))
2164                        result = 1;
2165                else
2166                        result = 0;
2167        } while (read_seqretry(&rename_lock, seq));
2168        rcu_read_unlock();
2169
2170        return result;
2171}
2172
2173void d_genocide(struct dentry *root)
2174{
2175        struct dentry *this_parent = root;
2176        struct list_head *next;
2177
2178        spin_lock(&dcache_lock);
2179repeat:
2180        next = this_parent->d_subdirs.next;
2181resume:
2182        while (next != &this_parent->d_subdirs) {
2183                struct list_head *tmp = next;
2184                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2185                next = tmp->next;
2186                if (d_unhashed(dentry)||!dentry->d_inode)
2187                        continue;
2188                if (!list_empty(&dentry->d_subdirs)) {
2189                        this_parent = dentry;
2190                        goto repeat;
2191                }
2192                atomic_dec(&dentry->d_count);
2193        }
2194        if (this_parent != root) {
2195                next = this_parent->d_u.d_child.next;
2196                atomic_dec(&this_parent->d_count);
2197                this_parent = this_parent->d_parent;
2198                goto resume;
2199        }
2200        spin_unlock(&dcache_lock);
2201}
2202
2203/**
2204 * find_inode_number - check for dentry with name
2205 * @dir: directory to check
2206 * @name: Name to find.
2207 *
2208 * Check whether a dentry already exists for the given name,
2209 * and return the inode number if it has an inode. Otherwise
2210 * 0 is returned.
2211 *
2212 * This routine is used to post-process directory listings for
2213 * filesystems using synthetic inode numbers, and is necessary
2214 * to keep getcwd() working.
2215 */
2216 
2217ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2218{
2219        struct dentry * dentry;
2220        ino_t ino = 0;
2221
2222        dentry = d_hash_and_lookup(dir, name);
2223        if (dentry) {
2224                if (dentry->d_inode)
2225                        ino = dentry->d_inode->i_ino;
2226                dput(dentry);
2227        }
2228        return ino;
2229}
2230
2231static __initdata unsigned long dhash_entries;
2232static int __init set_dhash_entries(char *str)
2233{
2234        if (!str)
2235                return 0;
2236        dhash_entries = simple_strtoul(str, &str, 0);
2237        return 1;
2238}
2239__setup("dhash_entries=", set_dhash_entries);
2240
2241static void __init dcache_init_early(void)
2242{
2243        int loop;
2244
2245        /* If hashes are distributed across NUMA nodes, defer
2246         * hash allocation until vmalloc space is available.
2247         */
2248        if (hashdist)
2249                return;
2250
2251        dentry_hashtable =
2252                alloc_large_system_hash("Dentry cache",
2253                                        sizeof(struct hlist_head),
2254                                        dhash_entries,
2255                                        13,
2256                                        HASH_EARLY,
2257                                        &d_hash_shift,
2258                                        &d_hash_mask,
2259                                        0);
2260
2261        for (loop = 0; loop < (1 << d_hash_shift); loop++)
2262                INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2263}
2264
2265static void __init dcache_init(void)
2266{
2267        int loop;
2268
2269        /* 
2270         * A constructor could be added for stable state like the lists,
2271         * but it is probably not worth it because of the cache nature
2272         * of the dcache. 
2273         */
2274        dentry_cache = KMEM_CACHE(dentry,
2275                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2276        
2277        register_shrinker(&dcache_shrinker);
2278
2279        /* Hash may have been set up in dcache_init_early */
2280        if (!hashdist)
2281                return;
2282
2283        dentry_hashtable =
2284                alloc_large_system_hash("Dentry cache",
2285                                        sizeof(struct hlist_head),
2286                                        dhash_entries,
2287                                        13,
2288                                        0,
2289                                        &d_hash_shift,
2290                                        &d_hash_mask,
2291                                        0);
2292
2293        for (loop = 0; loop < (1 << d_hash_shift); loop++)
2294                INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2295}
2296
2297/* SLAB cache for __getname() consumers */
2298struct kmem_cache *names_cachep __read_mostly;
2299
2300EXPORT_SYMBOL(d_genocide);
2301
2302void __init vfs_caches_init_early(void)
2303{
2304        dcache_init_early();
2305        inode_init_early();
2306}
2307
2308void __init vfs_caches_init(unsigned long mempages)
2309{
2310        unsigned long reserve;
2311
2312        /* Base hash sizes on available memory, with a reserve equal to
2313           150% of current kernel size */
2314
2315        reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2316        mempages -= reserve;
2317
2318        names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2319                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2320
2321        dcache_init();
2322        inode_init();
2323        files_init(mempages);
2324        mnt_init();
2325        bdev_cache_init();
2326        chrdev_init();
2327}
2328
2329EXPORT_SYMBOL(d_alloc);
2330EXPORT_SYMBOL(d_alloc_root);
2331EXPORT_SYMBOL(d_delete);
2332EXPORT_SYMBOL(d_find_alias);
2333EXPORT_SYMBOL(d_instantiate);
2334EXPORT_SYMBOL(d_invalidate);
2335EXPORT_SYMBOL(d_lookup);
2336EXPORT_SYMBOL(d_move);
2337EXPORT_SYMBOL_GPL(d_materialise_unique);
2338EXPORT_SYMBOL(d_path);
2339EXPORT_SYMBOL(d_prune_aliases);
2340EXPORT_SYMBOL(d_rehash);
2341EXPORT_SYMBOL(d_splice_alias);
2342EXPORT_SYMBOL(d_add_ci);
2343EXPORT_SYMBOL(d_validate);
2344EXPORT_SYMBOL(dget_locked);
2345EXPORT_SYMBOL(dput);
2346EXPORT_SYMBOL(find_inode_number);
2347EXPORT_SYMBOL(have_submounts);
2348EXPORT_SYMBOL(names_cachep);
2349EXPORT_SYMBOL(shrink_dcache_parent);
2350EXPORT_SYMBOL(shrink_dcache_sb);
2351