linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41
  42#ifdef __KERNEL__
  43
  44struct sched_param {
  45        int sched_priority;
  46};
  47
  48#include <asm/param.h>  /* for HZ */
  49
  50#include <linux/capability.h>
  51#include <linux/threads.h>
  52#include <linux/kernel.h>
  53#include <linux/types.h>
  54#include <linux/timex.h>
  55#include <linux/jiffies.h>
  56#include <linux/rbtree.h>
  57#include <linux/thread_info.h>
  58#include <linux/cpumask.h>
  59#include <linux/errno.h>
  60#include <linux/nodemask.h>
  61#include <linux/mm_types.h>
  62
  63#include <asm/system.h>
  64#include <asm/page.h>
  65#include <asm/ptrace.h>
  66#include <asm/cputime.h>
  67
  68#include <linux/smp.h>
  69#include <linux/sem.h>
  70#include <linux/signal.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compiler.h>
  73#include <linux/completion.h>
  74#include <linux/pid.h>
  75#include <linux/percpu.h>
  76#include <linux/topology.h>
  77#include <linux/proportions.h>
  78#include <linux/seccomp.h>
  79#include <linux/rcupdate.h>
  80#include <linux/rtmutex.h>
  81
  82#include <linux/time.h>
  83#include <linux/param.h>
  84#include <linux/resource.h>
  85#include <linux/timer.h>
  86#include <linux/hrtimer.h>
  87#include <linux/task_io_accounting.h>
  88#include <linux/kobject.h>
  89#include <linux/latencytop.h>
  90#include <linux/cred.h>
  91
  92#include <asm/processor.h>
  93
  94struct mem_cgroup;
  95struct exec_domain;
  96struct futex_pi_state;
  97struct robust_list_head;
  98struct bio;
  99struct bts_tracer;
 100
 101/*
 102 * List of flags we want to share for kernel threads,
 103 * if only because they are not used by them anyway.
 104 */
 105#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 106
 107/*
 108 * These are the constant used to fake the fixed-point load-average
 109 * counting. Some notes:
 110 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 111 *    a load-average precision of 10 bits integer + 11 bits fractional
 112 *  - if you want to count load-averages more often, you need more
 113 *    precision, or rounding will get you. With 2-second counting freq,
 114 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 115 *    11 bit fractions.
 116 */
 117extern unsigned long avenrun[];         /* Load averages */
 118
 119#define FSHIFT          11              /* nr of bits of precision */
 120#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 121#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 122#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 123#define EXP_5           2014            /* 1/exp(5sec/5min) */
 124#define EXP_15          2037            /* 1/exp(5sec/15min) */
 125
 126#define CALC_LOAD(load,exp,n) \
 127        load *= exp; \
 128        load += n*(FIXED_1-exp); \
 129        load >>= FSHIFT;
 130
 131extern unsigned long total_forks;
 132extern int nr_threads;
 133DECLARE_PER_CPU(unsigned long, process_counts);
 134extern int nr_processes(void);
 135extern unsigned long nr_running(void);
 136extern unsigned long nr_uninterruptible(void);
 137extern unsigned long nr_active(void);
 138extern unsigned long nr_iowait(void);
 139
 140struct seq_file;
 141struct cfs_rq;
 142struct task_group;
 143#ifdef CONFIG_SCHED_DEBUG
 144extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 145extern void proc_sched_set_task(struct task_struct *p);
 146extern void
 147print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 148#else
 149static inline void
 150proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 151{
 152}
 153static inline void proc_sched_set_task(struct task_struct *p)
 154{
 155}
 156static inline void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 158{
 159}
 160#endif
 161
 162extern unsigned long long time_sync_thresh;
 163
 164/*
 165 * Task state bitmask. NOTE! These bits are also
 166 * encoded in fs/proc/array.c: get_task_state().
 167 *
 168 * We have two separate sets of flags: task->state
 169 * is about runnability, while task->exit_state are
 170 * about the task exiting. Confusing, but this way
 171 * modifying one set can't modify the other one by
 172 * mistake.
 173 */
 174#define TASK_RUNNING            0
 175#define TASK_INTERRUPTIBLE      1
 176#define TASK_UNINTERRUPTIBLE    2
 177#define __TASK_STOPPED          4
 178#define __TASK_TRACED           8
 179/* in tsk->exit_state */
 180#define EXIT_ZOMBIE             16
 181#define EXIT_DEAD               32
 182/* in tsk->state again */
 183#define TASK_DEAD               64
 184#define TASK_WAKEKILL           128
 185
 186/* Convenience macros for the sake of set_task_state */
 187#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 188#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 189#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 190
 191/* Convenience macros for the sake of wake_up */
 192#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 193#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 194
 195/* get_task_state() */
 196#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 197                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 198                                 __TASK_TRACED)
 199
 200#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 201#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 202#define task_is_stopped_or_traced(task) \
 203                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 204#define task_contributes_to_load(task)  \
 205                                ((task->state & TASK_UNINTERRUPTIBLE) != 0)
 206
 207#define __set_task_state(tsk, state_value)              \
 208        do { (tsk)->state = (state_value); } while (0)
 209#define set_task_state(tsk, state_value)                \
 210        set_mb((tsk)->state, (state_value))
 211
 212/*
 213 * set_current_state() includes a barrier so that the write of current->state
 214 * is correctly serialised wrt the caller's subsequent test of whether to
 215 * actually sleep:
 216 *
 217 *      set_current_state(TASK_UNINTERRUPTIBLE);
 218 *      if (do_i_need_to_sleep())
 219 *              schedule();
 220 *
 221 * If the caller does not need such serialisation then use __set_current_state()
 222 */
 223#define __set_current_state(state_value)                        \
 224        do { current->state = (state_value); } while (0)
 225#define set_current_state(state_value)          \
 226        set_mb(current->state, (state_value))
 227
 228/* Task command name length */
 229#define TASK_COMM_LEN 16
 230
 231#include <linux/spinlock.h>
 232
 233/*
 234 * This serializes "schedule()" and also protects
 235 * the run-queue from deletions/modifications (but
 236 * _adding_ to the beginning of the run-queue has
 237 * a separate lock).
 238 */
 239extern rwlock_t tasklist_lock;
 240extern spinlock_t mmlist_lock;
 241
 242struct task_struct;
 243
 244extern void sched_init(void);
 245extern void sched_init_smp(void);
 246extern asmlinkage void schedule_tail(struct task_struct *prev);
 247extern void init_idle(struct task_struct *idle, int cpu);
 248extern void init_idle_bootup_task(struct task_struct *idle);
 249
 250extern int runqueue_is_locked(void);
 251extern void task_rq_unlock_wait(struct task_struct *p);
 252
 253extern cpumask_var_t nohz_cpu_mask;
 254#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 255extern int select_nohz_load_balancer(int cpu);
 256#else
 257static inline int select_nohz_load_balancer(int cpu)
 258{
 259        return 0;
 260}
 261#endif
 262
 263/*
 264 * Only dump TASK_* tasks. (0 for all tasks)
 265 */
 266extern void show_state_filter(unsigned long state_filter);
 267
 268static inline void show_state(void)
 269{
 270        show_state_filter(0);
 271}
 272
 273extern void show_regs(struct pt_regs *);
 274
 275/*
 276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 277 * task), SP is the stack pointer of the first frame that should be shown in the back
 278 * trace (or NULL if the entire call-chain of the task should be shown).
 279 */
 280extern void show_stack(struct task_struct *task, unsigned long *sp);
 281
 282void io_schedule(void);
 283long io_schedule_timeout(long timeout);
 284
 285extern void cpu_init (void);
 286extern void trap_init(void);
 287extern void update_process_times(int user);
 288extern void scheduler_tick(void);
 289
 290extern void sched_show_task(struct task_struct *p);
 291
 292#ifdef CONFIG_DETECT_SOFTLOCKUP
 293extern void softlockup_tick(void);
 294extern void touch_softlockup_watchdog(void);
 295extern void touch_all_softlockup_watchdogs(void);
 296extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
 297                                    struct file *filp, void __user *buffer,
 298                                    size_t *lenp, loff_t *ppos);
 299extern unsigned int  softlockup_panic;
 300extern unsigned long sysctl_hung_task_check_count;
 301extern unsigned long sysctl_hung_task_timeout_secs;
 302extern unsigned long sysctl_hung_task_warnings;
 303extern int softlockup_thresh;
 304#else
 305static inline void softlockup_tick(void)
 306{
 307}
 308static inline void spawn_softlockup_task(void)
 309{
 310}
 311static inline void touch_softlockup_watchdog(void)
 312{
 313}
 314static inline void touch_all_softlockup_watchdogs(void)
 315{
 316}
 317#endif
 318
 319
 320/* Attach to any functions which should be ignored in wchan output. */
 321#define __sched         __attribute__((__section__(".sched.text")))
 322
 323/* Linker adds these: start and end of __sched functions */
 324extern char __sched_text_start[], __sched_text_end[];
 325
 326/* Is this address in the __sched functions? */
 327extern int in_sched_functions(unsigned long addr);
 328
 329#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 330extern signed long schedule_timeout(signed long timeout);
 331extern signed long schedule_timeout_interruptible(signed long timeout);
 332extern signed long schedule_timeout_killable(signed long timeout);
 333extern signed long schedule_timeout_uninterruptible(signed long timeout);
 334asmlinkage void schedule(void);
 335
 336struct nsproxy;
 337struct user_namespace;
 338
 339/* Maximum number of active map areas.. This is a random (large) number */
 340#define DEFAULT_MAX_MAP_COUNT   65536
 341
 342extern int sysctl_max_map_count;
 343
 344#include <linux/aio.h>
 345
 346extern unsigned long
 347arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 348                       unsigned long, unsigned long);
 349extern unsigned long
 350arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 351                          unsigned long len, unsigned long pgoff,
 352                          unsigned long flags);
 353extern void arch_unmap_area(struct mm_struct *, unsigned long);
 354extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 355
 356#if USE_SPLIT_PTLOCKS
 357/*
 358 * The mm counters are not protected by its page_table_lock,
 359 * so must be incremented atomically.
 360 */
 361#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
 362#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
 363#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
 364#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
 365#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
 366
 367#else  /* !USE_SPLIT_PTLOCKS */
 368/*
 369 * The mm counters are protected by its page_table_lock,
 370 * so can be incremented directly.
 371 */
 372#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
 373#define get_mm_counter(mm, member) ((mm)->_##member)
 374#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
 375#define inc_mm_counter(mm, member) (mm)->_##member++
 376#define dec_mm_counter(mm, member) (mm)->_##member--
 377
 378#endif /* !USE_SPLIT_PTLOCKS */
 379
 380#define get_mm_rss(mm)                                  \
 381        (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
 382#define update_hiwater_rss(mm)  do {                    \
 383        unsigned long _rss = get_mm_rss(mm);            \
 384        if ((mm)->hiwater_rss < _rss)                   \
 385                (mm)->hiwater_rss = _rss;               \
 386} while (0)
 387#define update_hiwater_vm(mm)   do {                    \
 388        if ((mm)->hiwater_vm < (mm)->total_vm)          \
 389                (mm)->hiwater_vm = (mm)->total_vm;      \
 390} while (0)
 391
 392#define get_mm_hiwater_rss(mm)  max((mm)->hiwater_rss, get_mm_rss(mm))
 393#define get_mm_hiwater_vm(mm)   max((mm)->hiwater_vm, (mm)->total_vm)
 394
 395extern void set_dumpable(struct mm_struct *mm, int value);
 396extern int get_dumpable(struct mm_struct *mm);
 397
 398/* mm flags */
 399/* dumpable bits */
 400#define MMF_DUMPABLE      0  /* core dump is permitted */
 401#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 402#define MMF_DUMPABLE_BITS 2
 403
 404/* coredump filter bits */
 405#define MMF_DUMP_ANON_PRIVATE   2
 406#define MMF_DUMP_ANON_SHARED    3
 407#define MMF_DUMP_MAPPED_PRIVATE 4
 408#define MMF_DUMP_MAPPED_SHARED  5
 409#define MMF_DUMP_ELF_HEADERS    6
 410#define MMF_DUMP_HUGETLB_PRIVATE 7
 411#define MMF_DUMP_HUGETLB_SHARED  8
 412#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 413#define MMF_DUMP_FILTER_BITS    7
 414#define MMF_DUMP_FILTER_MASK \
 415        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 416#define MMF_DUMP_FILTER_DEFAULT \
 417        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 418         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 419
 420#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 421# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 422#else
 423# define MMF_DUMP_MASK_DEFAULT_ELF      0
 424#endif
 425
 426struct sighand_struct {
 427        atomic_t                count;
 428        struct k_sigaction      action[_NSIG];
 429        spinlock_t              siglock;
 430        wait_queue_head_t       signalfd_wqh;
 431};
 432
 433struct pacct_struct {
 434        int                     ac_flag;
 435        long                    ac_exitcode;
 436        unsigned long           ac_mem;
 437        cputime_t               ac_utime, ac_stime;
 438        unsigned long           ac_minflt, ac_majflt;
 439};
 440
 441/**
 442 * struct task_cputime - collected CPU time counts
 443 * @utime:              time spent in user mode, in &cputime_t units
 444 * @stime:              time spent in kernel mode, in &cputime_t units
 445 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 446 *
 447 * This structure groups together three kinds of CPU time that are
 448 * tracked for threads and thread groups.  Most things considering
 449 * CPU time want to group these counts together and treat all three
 450 * of them in parallel.
 451 */
 452struct task_cputime {
 453        cputime_t utime;
 454        cputime_t stime;
 455        unsigned long long sum_exec_runtime;
 456};
 457/* Alternate field names when used to cache expirations. */
 458#define prof_exp        stime
 459#define virt_exp        utime
 460#define sched_exp       sum_exec_runtime
 461
 462#define INIT_CPUTIME    \
 463        (struct task_cputime) {                                 \
 464                .utime = cputime_zero,                          \
 465                .stime = cputime_zero,                          \
 466                .sum_exec_runtime = 0,                          \
 467        }
 468
 469/**
 470 * struct thread_group_cputimer - thread group interval timer counts
 471 * @cputime:            thread group interval timers.
 472 * @running:            non-zero when there are timers running and
 473 *                      @cputime receives updates.
 474 * @lock:               lock for fields in this struct.
 475 *
 476 * This structure contains the version of task_cputime, above, that is
 477 * used for thread group CPU timer calculations.
 478 */
 479struct thread_group_cputimer {
 480        struct task_cputime cputime;
 481        int running;
 482        spinlock_t lock;
 483};
 484
 485/*
 486 * NOTE! "signal_struct" does not have it's own
 487 * locking, because a shared signal_struct always
 488 * implies a shared sighand_struct, so locking
 489 * sighand_struct is always a proper superset of
 490 * the locking of signal_struct.
 491 */
 492struct signal_struct {
 493        atomic_t                count;
 494        atomic_t                live;
 495
 496        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 497
 498        /* current thread group signal load-balancing target: */
 499        struct task_struct      *curr_target;
 500
 501        /* shared signal handling: */
 502        struct sigpending       shared_pending;
 503
 504        /* thread group exit support */
 505        int                     group_exit_code;
 506        /* overloaded:
 507         * - notify group_exit_task when ->count is equal to notify_count
 508         * - everyone except group_exit_task is stopped during signal delivery
 509         *   of fatal signals, group_exit_task processes the signal.
 510         */
 511        int                     notify_count;
 512        struct task_struct      *group_exit_task;
 513
 514        /* thread group stop support, overloads group_exit_code too */
 515        int                     group_stop_count;
 516        unsigned int            flags; /* see SIGNAL_* flags below */
 517
 518        /* POSIX.1b Interval Timers */
 519        struct list_head posix_timers;
 520
 521        /* ITIMER_REAL timer for the process */
 522        struct hrtimer real_timer;
 523        struct pid *leader_pid;
 524        ktime_t it_real_incr;
 525
 526        /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
 527        cputime_t it_prof_expires, it_virt_expires;
 528        cputime_t it_prof_incr, it_virt_incr;
 529
 530        /*
 531         * Thread group totals for process CPU timers.
 532         * See thread_group_cputimer(), et al, for details.
 533         */
 534        struct thread_group_cputimer cputimer;
 535
 536        /* Earliest-expiration cache. */
 537        struct task_cputime cputime_expires;
 538
 539        struct list_head cpu_timers[3];
 540
 541        /* job control IDs */
 542
 543        /*
 544         * pgrp and session fields are deprecated.
 545         * use the task_session_Xnr and task_pgrp_Xnr routines below
 546         */
 547
 548        union {
 549                pid_t pgrp __deprecated;
 550                pid_t __pgrp;
 551        };
 552
 553        struct pid *tty_old_pgrp;
 554
 555        union {
 556                pid_t session __deprecated;
 557                pid_t __session;
 558        };
 559
 560        /* boolean value for session group leader */
 561        int leader;
 562
 563        struct tty_struct *tty; /* NULL if no tty */
 564
 565        /*
 566         * Cumulative resource counters for dead threads in the group,
 567         * and for reaped dead child processes forked by this group.
 568         * Live threads maintain their own counters and add to these
 569         * in __exit_signal, except for the group leader.
 570         */
 571        cputime_t utime, stime, cutime, cstime;
 572        cputime_t gtime;
 573        cputime_t cgtime;
 574        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 575        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 576        unsigned long inblock, oublock, cinblock, coublock;
 577        struct task_io_accounting ioac;
 578
 579        /*
 580         * Cumulative ns of schedule CPU time fo dead threads in the
 581         * group, not including a zombie group leader, (This only differs
 582         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 583         * other than jiffies.)
 584         */
 585        unsigned long long sum_sched_runtime;
 586
 587        /*
 588         * We don't bother to synchronize most readers of this at all,
 589         * because there is no reader checking a limit that actually needs
 590         * to get both rlim_cur and rlim_max atomically, and either one
 591         * alone is a single word that can safely be read normally.
 592         * getrlimit/setrlimit use task_lock(current->group_leader) to
 593         * protect this instead of the siglock, because they really
 594         * have no need to disable irqs.
 595         */
 596        struct rlimit rlim[RLIM_NLIMITS];
 597
 598#ifdef CONFIG_BSD_PROCESS_ACCT
 599        struct pacct_struct pacct;      /* per-process accounting information */
 600#endif
 601#ifdef CONFIG_TASKSTATS
 602        struct taskstats *stats;
 603#endif
 604#ifdef CONFIG_AUDIT
 605        unsigned audit_tty;
 606        struct tty_audit_buf *tty_audit_buf;
 607#endif
 608};
 609
 610/* Context switch must be unlocked if interrupts are to be enabled */
 611#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 612# define __ARCH_WANT_UNLOCKED_CTXSW
 613#endif
 614
 615/*
 616 * Bits in flags field of signal_struct.
 617 */
 618#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 619#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 620#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 621#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 622/*
 623 * Pending notifications to parent.
 624 */
 625#define SIGNAL_CLD_STOPPED      0x00000010
 626#define SIGNAL_CLD_CONTINUED    0x00000020
 627#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 628
 629#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 630
 631/* If true, all threads except ->group_exit_task have pending SIGKILL */
 632static inline int signal_group_exit(const struct signal_struct *sig)
 633{
 634        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 635                (sig->group_exit_task != NULL);
 636}
 637
 638/*
 639 * Some day this will be a full-fledged user tracking system..
 640 */
 641struct user_struct {
 642        atomic_t __count;       /* reference count */
 643        atomic_t processes;     /* How many processes does this user have? */
 644        atomic_t files;         /* How many open files does this user have? */
 645        atomic_t sigpending;    /* How many pending signals does this user have? */
 646#ifdef CONFIG_INOTIFY_USER
 647        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 648        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 649#endif
 650#ifdef CONFIG_EPOLL
 651        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 652#endif
 653#ifdef CONFIG_POSIX_MQUEUE
 654        /* protected by mq_lock */
 655        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 656#endif
 657        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 658
 659#ifdef CONFIG_KEYS
 660        struct key *uid_keyring;        /* UID specific keyring */
 661        struct key *session_keyring;    /* UID's default session keyring */
 662#endif
 663
 664        /* Hash table maintenance information */
 665        struct hlist_node uidhash_node;
 666        uid_t uid;
 667        struct user_namespace *user_ns;
 668
 669#ifdef CONFIG_USER_SCHED
 670        struct task_group *tg;
 671#ifdef CONFIG_SYSFS
 672        struct kobject kobj;
 673        struct work_struct work;
 674#endif
 675#endif
 676};
 677
 678extern int uids_sysfs_init(void);
 679
 680extern struct user_struct *find_user(uid_t);
 681
 682extern struct user_struct root_user;
 683#define INIT_USER (&root_user)
 684
 685
 686struct backing_dev_info;
 687struct reclaim_state;
 688
 689#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 690struct sched_info {
 691        /* cumulative counters */
 692        unsigned long pcount;         /* # of times run on this cpu */
 693        unsigned long long run_delay; /* time spent waiting on a runqueue */
 694
 695        /* timestamps */
 696        unsigned long long last_arrival,/* when we last ran on a cpu */
 697                           last_queued; /* when we were last queued to run */
 698#ifdef CONFIG_SCHEDSTATS
 699        /* BKL stats */
 700        unsigned int bkl_count;
 701#endif
 702};
 703#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 704
 705#ifdef CONFIG_TASK_DELAY_ACCT
 706struct task_delay_info {
 707        spinlock_t      lock;
 708        unsigned int    flags;  /* Private per-task flags */
 709
 710        /* For each stat XXX, add following, aligned appropriately
 711         *
 712         * struct timespec XXX_start, XXX_end;
 713         * u64 XXX_delay;
 714         * u32 XXX_count;
 715         *
 716         * Atomicity of updates to XXX_delay, XXX_count protected by
 717         * single lock above (split into XXX_lock if contention is an issue).
 718         */
 719
 720        /*
 721         * XXX_count is incremented on every XXX operation, the delay
 722         * associated with the operation is added to XXX_delay.
 723         * XXX_delay contains the accumulated delay time in nanoseconds.
 724         */
 725        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 726        u64 blkio_delay;        /* wait for sync block io completion */
 727        u64 swapin_delay;       /* wait for swapin block io completion */
 728        u32 blkio_count;        /* total count of the number of sync block */
 729                                /* io operations performed */
 730        u32 swapin_count;       /* total count of the number of swapin block */
 731                                /* io operations performed */
 732
 733        struct timespec freepages_start, freepages_end;
 734        u64 freepages_delay;    /* wait for memory reclaim */
 735        u32 freepages_count;    /* total count of memory reclaim */
 736};
 737#endif  /* CONFIG_TASK_DELAY_ACCT */
 738
 739static inline int sched_info_on(void)
 740{
 741#ifdef CONFIG_SCHEDSTATS
 742        return 1;
 743#elif defined(CONFIG_TASK_DELAY_ACCT)
 744        extern int delayacct_on;
 745        return delayacct_on;
 746#else
 747        return 0;
 748#endif
 749}
 750
 751enum cpu_idle_type {
 752        CPU_IDLE,
 753        CPU_NOT_IDLE,
 754        CPU_NEWLY_IDLE,
 755        CPU_MAX_IDLE_TYPES
 756};
 757
 758/*
 759 * sched-domains (multiprocessor balancing) declarations:
 760 */
 761
 762/*
 763 * Increase resolution of nice-level calculations:
 764 */
 765#define SCHED_LOAD_SHIFT        10
 766#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 767
 768#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 769
 770#ifdef CONFIG_SMP
 771#define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
 772#define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
 773#define SD_BALANCE_EXEC         4       /* Balance on exec */
 774#define SD_BALANCE_FORK         8       /* Balance on fork, clone */
 775#define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
 776#define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
 777#define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
 778#define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
 779#define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
 780#define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
 781#define SD_SERIALIZE            1024    /* Only a single load balancing instance */
 782#define SD_WAKE_IDLE_FAR        2048    /* Gain latency sacrificing cache hit */
 783
 784enum powersavings_balance_level {
 785        POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 786        POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
 787                                         * first for long running threads
 788                                         */
 789        POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
 790                                         * cpu package for power savings
 791                                         */
 792        MAX_POWERSAVINGS_BALANCE_LEVELS
 793};
 794
 795extern int sched_mc_power_savings, sched_smt_power_savings;
 796
 797static inline int sd_balance_for_mc_power(void)
 798{
 799        if (sched_smt_power_savings)
 800                return SD_POWERSAVINGS_BALANCE;
 801
 802        return 0;
 803}
 804
 805static inline int sd_balance_for_package_power(void)
 806{
 807        if (sched_mc_power_savings | sched_smt_power_savings)
 808                return SD_POWERSAVINGS_BALANCE;
 809
 810        return 0;
 811}
 812
 813/*
 814 * Optimise SD flags for power savings:
 815 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 816 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 817 */
 818
 819static inline int sd_power_saving_flags(void)
 820{
 821        if (sched_mc_power_savings | sched_smt_power_savings)
 822                return SD_BALANCE_NEWIDLE;
 823
 824        return 0;
 825}
 826
 827struct sched_group {
 828        struct sched_group *next;       /* Must be a circular list */
 829
 830        /*
 831         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 832         * single CPU. This is read only (except for setup, hotplug CPU).
 833         * Note : Never change cpu_power without recompute its reciprocal
 834         */
 835        unsigned int __cpu_power;
 836        /*
 837         * reciprocal value of cpu_power to avoid expensive divides
 838         * (see include/linux/reciprocal_div.h)
 839         */
 840        u32 reciprocal_cpu_power;
 841
 842        unsigned long cpumask[];
 843};
 844
 845static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 846{
 847        return to_cpumask(sg->cpumask);
 848}
 849
 850enum sched_domain_level {
 851        SD_LV_NONE = 0,
 852        SD_LV_SIBLING,
 853        SD_LV_MC,
 854        SD_LV_CPU,
 855        SD_LV_NODE,
 856        SD_LV_ALLNODES,
 857        SD_LV_MAX
 858};
 859
 860struct sched_domain_attr {
 861        int relax_domain_level;
 862};
 863
 864#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 865        .relax_domain_level = -1,                       \
 866}
 867
 868struct sched_domain {
 869        /* These fields must be setup */
 870        struct sched_domain *parent;    /* top domain must be null terminated */
 871        struct sched_domain *child;     /* bottom domain must be null terminated */
 872        struct sched_group *groups;     /* the balancing groups of the domain */
 873        unsigned long min_interval;     /* Minimum balance interval ms */
 874        unsigned long max_interval;     /* Maximum balance interval ms */
 875        unsigned int busy_factor;       /* less balancing by factor if busy */
 876        unsigned int imbalance_pct;     /* No balance until over watermark */
 877        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 878        unsigned int busy_idx;
 879        unsigned int idle_idx;
 880        unsigned int newidle_idx;
 881        unsigned int wake_idx;
 882        unsigned int forkexec_idx;
 883        int flags;                      /* See SD_* */
 884        enum sched_domain_level level;
 885
 886        /* Runtime fields. */
 887        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 888        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 889        unsigned int nr_balance_failed; /* initialise to 0 */
 890
 891        u64 last_update;
 892
 893#ifdef CONFIG_SCHEDSTATS
 894        /* load_balance() stats */
 895        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 896        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 897        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 898        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 899        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 900        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 901        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 902        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 903
 904        /* Active load balancing */
 905        unsigned int alb_count;
 906        unsigned int alb_failed;
 907        unsigned int alb_pushed;
 908
 909        /* SD_BALANCE_EXEC stats */
 910        unsigned int sbe_count;
 911        unsigned int sbe_balanced;
 912        unsigned int sbe_pushed;
 913
 914        /* SD_BALANCE_FORK stats */
 915        unsigned int sbf_count;
 916        unsigned int sbf_balanced;
 917        unsigned int sbf_pushed;
 918
 919        /* try_to_wake_up() stats */
 920        unsigned int ttwu_wake_remote;
 921        unsigned int ttwu_move_affine;
 922        unsigned int ttwu_move_balance;
 923#endif
 924#ifdef CONFIG_SCHED_DEBUG
 925        char *name;
 926#endif
 927
 928        /* span of all CPUs in this domain */
 929        unsigned long span[];
 930};
 931
 932static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 933{
 934        return to_cpumask(sd->span);
 935}
 936
 937extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
 938                                    struct sched_domain_attr *dattr_new);
 939
 940/* Test a flag in parent sched domain */
 941static inline int test_sd_parent(struct sched_domain *sd, int flag)
 942{
 943        if (sd->parent && (sd->parent->flags & flag))
 944                return 1;
 945
 946        return 0;
 947}
 948
 949#else /* CONFIG_SMP */
 950
 951struct sched_domain_attr;
 952
 953static inline void
 954partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
 955                        struct sched_domain_attr *dattr_new)
 956{
 957}
 958#endif  /* !CONFIG_SMP */
 959
 960struct io_context;                      /* See blkdev.h */
 961
 962
 963#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 964extern void prefetch_stack(struct task_struct *t);
 965#else
 966static inline void prefetch_stack(struct task_struct *t) { }
 967#endif
 968
 969struct audit_context;           /* See audit.c */
 970struct mempolicy;
 971struct pipe_inode_info;
 972struct uts_namespace;
 973
 974struct rq;
 975struct sched_domain;
 976
 977struct sched_class {
 978        const struct sched_class *next;
 979
 980        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
 981        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
 982        void (*yield_task) (struct rq *rq);
 983
 984        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
 985
 986        struct task_struct * (*pick_next_task) (struct rq *rq);
 987        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 988
 989#ifdef CONFIG_SMP
 990        int  (*select_task_rq)(struct task_struct *p, int sync);
 991
 992        unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
 993                        struct rq *busiest, unsigned long max_load_move,
 994                        struct sched_domain *sd, enum cpu_idle_type idle,
 995                        int *all_pinned, int *this_best_prio);
 996
 997        int (*move_one_task) (struct rq *this_rq, int this_cpu,
 998                              struct rq *busiest, struct sched_domain *sd,
 999                              enum cpu_idle_type idle);
1000        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1001        void (*post_schedule) (struct rq *this_rq);
1002        void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1003
1004        void (*set_cpus_allowed)(struct task_struct *p,
1005                                 const struct cpumask *newmask);
1006
1007        void (*rq_online)(struct rq *rq);
1008        void (*rq_offline)(struct rq *rq);
1009#endif
1010
1011        void (*set_curr_task) (struct rq *rq);
1012        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1013        void (*task_new) (struct rq *rq, struct task_struct *p);
1014
1015        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1016                               int running);
1017        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1018                             int running);
1019        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1020                             int oldprio, int running);
1021
1022#ifdef CONFIG_FAIR_GROUP_SCHED
1023        void (*moved_group) (struct task_struct *p);
1024#endif
1025};
1026
1027struct load_weight {
1028        unsigned long weight, inv_weight;
1029};
1030
1031/*
1032 * CFS stats for a schedulable entity (task, task-group etc)
1033 *
1034 * Current field usage histogram:
1035 *
1036 *     4 se->block_start
1037 *     4 se->run_node
1038 *     4 se->sleep_start
1039 *     6 se->load.weight
1040 */
1041struct sched_entity {
1042        struct load_weight      load;           /* for load-balancing */
1043        struct rb_node          run_node;
1044        struct list_head        group_node;
1045        unsigned int            on_rq;
1046
1047        u64                     exec_start;
1048        u64                     sum_exec_runtime;
1049        u64                     vruntime;
1050        u64                     prev_sum_exec_runtime;
1051
1052        u64                     last_wakeup;
1053        u64                     avg_overlap;
1054
1055#ifdef CONFIG_SCHEDSTATS
1056        u64                     wait_start;
1057        u64                     wait_max;
1058        u64                     wait_count;
1059        u64                     wait_sum;
1060
1061        u64                     sleep_start;
1062        u64                     sleep_max;
1063        s64                     sum_sleep_runtime;
1064
1065        u64                     block_start;
1066        u64                     block_max;
1067        u64                     exec_max;
1068        u64                     slice_max;
1069
1070        u64                     nr_migrations;
1071        u64                     nr_migrations_cold;
1072        u64                     nr_failed_migrations_affine;
1073        u64                     nr_failed_migrations_running;
1074        u64                     nr_failed_migrations_hot;
1075        u64                     nr_forced_migrations;
1076        u64                     nr_forced2_migrations;
1077
1078        u64                     nr_wakeups;
1079        u64                     nr_wakeups_sync;
1080        u64                     nr_wakeups_migrate;
1081        u64                     nr_wakeups_local;
1082        u64                     nr_wakeups_remote;
1083        u64                     nr_wakeups_affine;
1084        u64                     nr_wakeups_affine_attempts;
1085        u64                     nr_wakeups_passive;
1086        u64                     nr_wakeups_idle;
1087#endif
1088
1089#ifdef CONFIG_FAIR_GROUP_SCHED
1090        struct sched_entity     *parent;
1091        /* rq on which this entity is (to be) queued: */
1092        struct cfs_rq           *cfs_rq;
1093        /* rq "owned" by this entity/group: */
1094        struct cfs_rq           *my_q;
1095#endif
1096};
1097
1098struct sched_rt_entity {
1099        struct list_head run_list;
1100        unsigned long timeout;
1101        unsigned int time_slice;
1102        int nr_cpus_allowed;
1103
1104        struct sched_rt_entity *back;
1105#ifdef CONFIG_RT_GROUP_SCHED
1106        struct sched_rt_entity  *parent;
1107        /* rq on which this entity is (to be) queued: */
1108        struct rt_rq            *rt_rq;
1109        /* rq "owned" by this entity/group: */
1110        struct rt_rq            *my_q;
1111#endif
1112};
1113
1114struct task_struct {
1115        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1116        void *stack;
1117        atomic_t usage;
1118        unsigned int flags;     /* per process flags, defined below */
1119        unsigned int ptrace;
1120
1121        int lock_depth;         /* BKL lock depth */
1122
1123#ifdef CONFIG_SMP
1124#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1125        int oncpu;
1126#endif
1127#endif
1128
1129        int prio, static_prio, normal_prio;
1130        unsigned int rt_priority;
1131        const struct sched_class *sched_class;
1132        struct sched_entity se;
1133        struct sched_rt_entity rt;
1134
1135#ifdef CONFIG_PREEMPT_NOTIFIERS
1136        /* list of struct preempt_notifier: */
1137        struct hlist_head preempt_notifiers;
1138#endif
1139
1140        /*
1141         * fpu_counter contains the number of consecutive context switches
1142         * that the FPU is used. If this is over a threshold, the lazy fpu
1143         * saving becomes unlazy to save the trap. This is an unsigned char
1144         * so that after 256 times the counter wraps and the behavior turns
1145         * lazy again; this to deal with bursty apps that only use FPU for
1146         * a short time
1147         */
1148        unsigned char fpu_counter;
1149        s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1150#ifdef CONFIG_BLK_DEV_IO_TRACE
1151        unsigned int btrace_seq;
1152#endif
1153
1154        unsigned int policy;
1155        cpumask_t cpus_allowed;
1156
1157#ifdef CONFIG_PREEMPT_RCU
1158        int rcu_read_lock_nesting;
1159        int rcu_flipctr_idx;
1160#endif /* #ifdef CONFIG_PREEMPT_RCU */
1161
1162#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1163        struct sched_info sched_info;
1164#endif
1165
1166        struct list_head tasks;
1167
1168        struct mm_struct *mm, *active_mm;
1169
1170/* task state */
1171        struct linux_binfmt *binfmt;
1172        int exit_state;
1173        int exit_code, exit_signal;
1174        int pdeath_signal;  /*  The signal sent when the parent dies  */
1175        /* ??? */
1176        unsigned int personality;
1177        unsigned did_exec:1;
1178        pid_t pid;
1179        pid_t tgid;
1180
1181#ifdef CONFIG_CC_STACKPROTECTOR
1182        /* Canary value for the -fstack-protector gcc feature */
1183        unsigned long stack_canary;
1184#endif
1185        /* 
1186         * pointers to (original) parent process, youngest child, younger sibling,
1187         * older sibling, respectively.  (p->father can be replaced with 
1188         * p->real_parent->pid)
1189         */
1190        struct task_struct *real_parent; /* real parent process */
1191        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1192        /*
1193         * children/sibling forms the list of my natural children
1194         */
1195        struct list_head children;      /* list of my children */
1196        struct list_head sibling;       /* linkage in my parent's children list */
1197        struct task_struct *group_leader;       /* threadgroup leader */
1198
1199        /*
1200         * ptraced is the list of tasks this task is using ptrace on.
1201         * This includes both natural children and PTRACE_ATTACH targets.
1202         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1203         */
1204        struct list_head ptraced;
1205        struct list_head ptrace_entry;
1206
1207#ifdef CONFIG_X86_PTRACE_BTS
1208        /*
1209         * This is the tracer handle for the ptrace BTS extension.
1210         * This field actually belongs to the ptracer task.
1211         */
1212        struct bts_tracer *bts;
1213        /*
1214         * The buffer to hold the BTS data.
1215         */
1216        void *bts_buffer;
1217        size_t bts_size;
1218#endif /* CONFIG_X86_PTRACE_BTS */
1219
1220        /* PID/PID hash table linkage. */
1221        struct pid_link pids[PIDTYPE_MAX];
1222        struct list_head thread_group;
1223
1224        struct completion *vfork_done;          /* for vfork() */
1225        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1226        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1227
1228        cputime_t utime, stime, utimescaled, stimescaled;
1229        cputime_t gtime;
1230        cputime_t prev_utime, prev_stime;
1231        unsigned long nvcsw, nivcsw; /* context switch counts */
1232        struct timespec start_time;             /* monotonic time */
1233        struct timespec real_start_time;        /* boot based time */
1234/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1235        unsigned long min_flt, maj_flt;
1236
1237        struct task_cputime cputime_expires;
1238        struct list_head cpu_timers[3];
1239
1240/* process credentials */
1241        const struct cred *real_cred;   /* objective and real subjective task
1242                                         * credentials (COW) */
1243        const struct cred *cred;        /* effective (overridable) subjective task
1244                                         * credentials (COW) */
1245        struct mutex cred_exec_mutex;   /* execve vs ptrace cred calculation mutex */
1246
1247        char comm[TASK_COMM_LEN]; /* executable name excluding path
1248                                     - access with [gs]et_task_comm (which lock
1249                                       it with task_lock())
1250                                     - initialized normally by flush_old_exec */
1251/* file system info */
1252        int link_count, total_link_count;
1253#ifdef CONFIG_SYSVIPC
1254/* ipc stuff */
1255        struct sysv_sem sysvsem;
1256#endif
1257#ifdef CONFIG_DETECT_SOFTLOCKUP
1258/* hung task detection */
1259        unsigned long last_switch_timestamp;
1260        unsigned long last_switch_count;
1261#endif
1262/* CPU-specific state of this task */
1263        struct thread_struct thread;
1264/* filesystem information */
1265        struct fs_struct *fs;
1266/* open file information */
1267        struct files_struct *files;
1268/* namespaces */
1269        struct nsproxy *nsproxy;
1270/* signal handlers */
1271        struct signal_struct *signal;
1272        struct sighand_struct *sighand;
1273
1274        sigset_t blocked, real_blocked;
1275        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1276        struct sigpending pending;
1277
1278        unsigned long sas_ss_sp;
1279        size_t sas_ss_size;
1280        int (*notifier)(void *priv);
1281        void *notifier_data;
1282        sigset_t *notifier_mask;
1283        struct audit_context *audit_context;
1284#ifdef CONFIG_AUDITSYSCALL
1285        uid_t loginuid;
1286        unsigned int sessionid;
1287#endif
1288        seccomp_t seccomp;
1289
1290/* Thread group tracking */
1291        u32 parent_exec_id;
1292        u32 self_exec_id;
1293/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1294        spinlock_t alloc_lock;
1295
1296        /* Protection of the PI data structures: */
1297        spinlock_t pi_lock;
1298
1299#ifdef CONFIG_RT_MUTEXES
1300        /* PI waiters blocked on a rt_mutex held by this task */
1301        struct plist_head pi_waiters;
1302        /* Deadlock detection and priority inheritance handling */
1303        struct rt_mutex_waiter *pi_blocked_on;
1304#endif
1305
1306#ifdef CONFIG_DEBUG_MUTEXES
1307        /* mutex deadlock detection */
1308        struct mutex_waiter *blocked_on;
1309#endif
1310#ifdef CONFIG_TRACE_IRQFLAGS
1311        unsigned int irq_events;
1312        int hardirqs_enabled;
1313        unsigned long hardirq_enable_ip;
1314        unsigned int hardirq_enable_event;
1315        unsigned long hardirq_disable_ip;
1316        unsigned int hardirq_disable_event;
1317        int softirqs_enabled;
1318        unsigned long softirq_disable_ip;
1319        unsigned int softirq_disable_event;
1320        unsigned long softirq_enable_ip;
1321        unsigned int softirq_enable_event;
1322        int hardirq_context;
1323        int softirq_context;
1324#endif
1325#ifdef CONFIG_LOCKDEP
1326# define MAX_LOCK_DEPTH 48UL
1327        u64 curr_chain_key;
1328        int lockdep_depth;
1329        unsigned int lockdep_recursion;
1330        struct held_lock held_locks[MAX_LOCK_DEPTH];
1331#endif
1332
1333/* journalling filesystem info */
1334        void *journal_info;
1335
1336/* stacked block device info */
1337        struct bio *bio_list, **bio_tail;
1338
1339/* VM state */
1340        struct reclaim_state *reclaim_state;
1341
1342        struct backing_dev_info *backing_dev_info;
1343
1344        struct io_context *io_context;
1345
1346        unsigned long ptrace_message;
1347        siginfo_t *last_siginfo; /* For ptrace use.  */
1348        struct task_io_accounting ioac;
1349#if defined(CONFIG_TASK_XACCT)
1350        u64 acct_rss_mem1;      /* accumulated rss usage */
1351        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1352        cputime_t acct_timexpd; /* stime + utime since last update */
1353#endif
1354#ifdef CONFIG_CPUSETS
1355        nodemask_t mems_allowed;
1356        int cpuset_mems_generation;
1357        int cpuset_mem_spread_rotor;
1358#endif
1359#ifdef CONFIG_CGROUPS
1360        /* Control Group info protected by css_set_lock */
1361        struct css_set *cgroups;
1362        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1363        struct list_head cg_list;
1364#endif
1365#ifdef CONFIG_FUTEX
1366        struct robust_list_head __user *robust_list;
1367#ifdef CONFIG_COMPAT
1368        struct compat_robust_list_head __user *compat_robust_list;
1369#endif
1370        struct list_head pi_state_list;
1371        struct futex_pi_state *pi_state_cache;
1372#endif
1373#ifdef CONFIG_NUMA
1374        struct mempolicy *mempolicy;
1375        short il_next;
1376#endif
1377        atomic_t fs_excl;       /* holding fs exclusive resources */
1378        struct rcu_head rcu;
1379
1380        /*
1381         * cache last used pipe for splice
1382         */
1383        struct pipe_inode_info *splice_pipe;
1384#ifdef  CONFIG_TASK_DELAY_ACCT
1385        struct task_delay_info *delays;
1386#endif
1387#ifdef CONFIG_FAULT_INJECTION
1388        int make_it_fail;
1389#endif
1390        struct prop_local_single dirties;
1391#ifdef CONFIG_LATENCYTOP
1392        int latency_record_count;
1393        struct latency_record latency_record[LT_SAVECOUNT];
1394#endif
1395        /*
1396         * time slack values; these are used to round up poll() and
1397         * select() etc timeout values. These are in nanoseconds.
1398         */
1399        unsigned long timer_slack_ns;
1400        unsigned long default_timer_slack_ns;
1401
1402        struct list_head        *scm_work_list;
1403#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1404        /* Index of current stored adress in ret_stack */
1405        int curr_ret_stack;
1406        /* Stack of return addresses for return function tracing */
1407        struct ftrace_ret_stack *ret_stack;
1408        /*
1409         * Number of functions that haven't been traced
1410         * because of depth overrun.
1411         */
1412        atomic_t trace_overrun;
1413        /* Pause for the tracing */
1414        atomic_t tracing_graph_pause;
1415#endif
1416#ifdef CONFIG_TRACING
1417        /* state flags for use by tracers */
1418        unsigned long trace;
1419#endif
1420};
1421
1422/* Future-safe accessor for struct task_struct's cpus_allowed. */
1423#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1424
1425/*
1426 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1427 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1428 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1429 * values are inverted: lower p->prio value means higher priority.
1430 *
1431 * The MAX_USER_RT_PRIO value allows the actual maximum
1432 * RT priority to be separate from the value exported to
1433 * user-space.  This allows kernel threads to set their
1434 * priority to a value higher than any user task. Note:
1435 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1436 */
1437
1438#define MAX_USER_RT_PRIO        100
1439#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1440
1441#define MAX_PRIO                (MAX_RT_PRIO + 40)
1442#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1443
1444static inline int rt_prio(int prio)
1445{
1446        if (unlikely(prio < MAX_RT_PRIO))
1447                return 1;
1448        return 0;
1449}
1450
1451static inline int rt_task(struct task_struct *p)
1452{
1453        return rt_prio(p->prio);
1454}
1455
1456static inline void set_task_session(struct task_struct *tsk, pid_t session)
1457{
1458        tsk->signal->__session = session;
1459}
1460
1461static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1462{
1463        tsk->signal->__pgrp = pgrp;
1464}
1465
1466static inline struct pid *task_pid(struct task_struct *task)
1467{
1468        return task->pids[PIDTYPE_PID].pid;
1469}
1470
1471static inline struct pid *task_tgid(struct task_struct *task)
1472{
1473        return task->group_leader->pids[PIDTYPE_PID].pid;
1474}
1475
1476static inline struct pid *task_pgrp(struct task_struct *task)
1477{
1478        return task->group_leader->pids[PIDTYPE_PGID].pid;
1479}
1480
1481static inline struct pid *task_session(struct task_struct *task)
1482{
1483        return task->group_leader->pids[PIDTYPE_SID].pid;
1484}
1485
1486struct pid_namespace;
1487
1488/*
1489 * the helpers to get the task's different pids as they are seen
1490 * from various namespaces
1491 *
1492 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1493 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1494 *                     current.
1495 * task_xid_nr_ns()  : id seen from the ns specified;
1496 *
1497 * set_task_vxid()   : assigns a virtual id to a task;
1498 *
1499 * see also pid_nr() etc in include/linux/pid.h
1500 */
1501
1502static inline pid_t task_pid_nr(struct task_struct *tsk)
1503{
1504        return tsk->pid;
1505}
1506
1507pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1508
1509static inline pid_t task_pid_vnr(struct task_struct *tsk)
1510{
1511        return pid_vnr(task_pid(tsk));
1512}
1513
1514
1515static inline pid_t task_tgid_nr(struct task_struct *tsk)
1516{
1517        return tsk->tgid;
1518}
1519
1520pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1521
1522static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1523{
1524        return pid_vnr(task_tgid(tsk));
1525}
1526
1527
1528static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1529{
1530        return tsk->signal->__pgrp;
1531}
1532
1533pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1534
1535static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1536{
1537        return pid_vnr(task_pgrp(tsk));
1538}
1539
1540
1541static inline pid_t task_session_nr(struct task_struct *tsk)
1542{
1543        return tsk->signal->__session;
1544}
1545
1546pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1547
1548static inline pid_t task_session_vnr(struct task_struct *tsk)
1549{
1550        return pid_vnr(task_session(tsk));
1551}
1552
1553
1554/**
1555 * pid_alive - check that a task structure is not stale
1556 * @p: Task structure to be checked.
1557 *
1558 * Test if a process is not yet dead (at most zombie state)
1559 * If pid_alive fails, then pointers within the task structure
1560 * can be stale and must not be dereferenced.
1561 */
1562static inline int pid_alive(struct task_struct *p)
1563{
1564        return p->pids[PIDTYPE_PID].pid != NULL;
1565}
1566
1567/**
1568 * is_global_init - check if a task structure is init
1569 * @tsk: Task structure to be checked.
1570 *
1571 * Check if a task structure is the first user space task the kernel created.
1572 */
1573static inline int is_global_init(struct task_struct *tsk)
1574{
1575        return tsk->pid == 1;
1576}
1577
1578/*
1579 * is_container_init:
1580 * check whether in the task is init in its own pid namespace.
1581 */
1582extern int is_container_init(struct task_struct *tsk);
1583
1584extern struct pid *cad_pid;
1585
1586extern void free_task(struct task_struct *tsk);
1587#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1588
1589extern void __put_task_struct(struct task_struct *t);
1590
1591static inline void put_task_struct(struct task_struct *t)
1592{
1593        if (atomic_dec_and_test(&t->usage))
1594                __put_task_struct(t);
1595}
1596
1597extern cputime_t task_utime(struct task_struct *p);
1598extern cputime_t task_stime(struct task_struct *p);
1599extern cputime_t task_gtime(struct task_struct *p);
1600
1601/*
1602 * Per process flags
1603 */
1604#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1605                                        /* Not implemented yet, only for 486*/
1606#define PF_STARTING     0x00000002      /* being created */
1607#define PF_EXITING      0x00000004      /* getting shut down */
1608#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1609#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1610#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1611#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1612#define PF_DUMPCORE     0x00000200      /* dumped core */
1613#define PF_SIGNALED     0x00000400      /* killed by a signal */
1614#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1615#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1616#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1617#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1618#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1619#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1620#define PF_KSWAPD       0x00040000      /* I am kswapd */
1621#define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1622#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1623#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1624#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1625#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1626#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1627#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1628#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1629#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1630#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1631#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1632#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1633
1634/*
1635 * Only the _current_ task can read/write to tsk->flags, but other
1636 * tasks can access tsk->flags in readonly mode for example
1637 * with tsk_used_math (like during threaded core dumping).
1638 * There is however an exception to this rule during ptrace
1639 * or during fork: the ptracer task is allowed to write to the
1640 * child->flags of its traced child (same goes for fork, the parent
1641 * can write to the child->flags), because we're guaranteed the
1642 * child is not running and in turn not changing child->flags
1643 * at the same time the parent does it.
1644 */
1645#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1646#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1647#define clear_used_math() clear_stopped_child_used_math(current)
1648#define set_used_math() set_stopped_child_used_math(current)
1649#define conditional_stopped_child_used_math(condition, child) \
1650        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1651#define conditional_used_math(condition) \
1652        conditional_stopped_child_used_math(condition, current)
1653#define copy_to_stopped_child_used_math(child) \
1654        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1655/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1656#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1657#define used_math() tsk_used_math(current)
1658
1659#ifdef CONFIG_SMP
1660extern int set_cpus_allowed_ptr(struct task_struct *p,
1661                                const struct cpumask *new_mask);
1662#else
1663static inline int set_cpus_allowed_ptr(struct task_struct *p,
1664                                       const struct cpumask *new_mask)
1665{
1666        if (!cpumask_test_cpu(0, new_mask))
1667                return -EINVAL;
1668        return 0;
1669}
1670#endif
1671static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1672{
1673        return set_cpus_allowed_ptr(p, &new_mask);
1674}
1675
1676extern unsigned long long sched_clock(void);
1677
1678extern void sched_clock_init(void);
1679extern u64 sched_clock_cpu(int cpu);
1680
1681#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1682static inline void sched_clock_tick(void)
1683{
1684}
1685
1686static inline void sched_clock_idle_sleep_event(void)
1687{
1688}
1689
1690static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1691{
1692}
1693#else
1694extern void sched_clock_tick(void);
1695extern void sched_clock_idle_sleep_event(void);
1696extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1697#endif
1698
1699/*
1700 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1701 * clock constructed from sched_clock():
1702 */
1703extern unsigned long long cpu_clock(int cpu);
1704
1705extern unsigned long long
1706task_sched_runtime(struct task_struct *task);
1707extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1708
1709/* sched_exec is called by processes performing an exec */
1710#ifdef CONFIG_SMP
1711extern void sched_exec(void);
1712#else
1713#define sched_exec()   {}
1714#endif
1715
1716extern void sched_clock_idle_sleep_event(void);
1717extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1718
1719#ifdef CONFIG_HOTPLUG_CPU
1720extern void idle_task_exit(void);
1721#else
1722static inline void idle_task_exit(void) {}
1723#endif
1724
1725extern void sched_idle_next(void);
1726
1727#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1728extern void wake_up_idle_cpu(int cpu);
1729#else
1730static inline void wake_up_idle_cpu(int cpu) { }
1731#endif
1732
1733extern unsigned int sysctl_sched_latency;
1734extern unsigned int sysctl_sched_min_granularity;
1735extern unsigned int sysctl_sched_wakeup_granularity;
1736extern unsigned int sysctl_sched_shares_ratelimit;
1737extern unsigned int sysctl_sched_shares_thresh;
1738#ifdef CONFIG_SCHED_DEBUG
1739extern unsigned int sysctl_sched_child_runs_first;
1740extern unsigned int sysctl_sched_features;
1741extern unsigned int sysctl_sched_migration_cost;
1742extern unsigned int sysctl_sched_nr_migrate;
1743
1744int sched_nr_latency_handler(struct ctl_table *table, int write,
1745                struct file *file, void __user *buffer, size_t *length,
1746                loff_t *ppos);
1747#endif
1748extern unsigned int sysctl_sched_rt_period;
1749extern int sysctl_sched_rt_runtime;
1750
1751int sched_rt_handler(struct ctl_table *table, int write,
1752                struct file *filp, void __user *buffer, size_t *lenp,
1753                loff_t *ppos);
1754
1755extern unsigned int sysctl_sched_compat_yield;
1756
1757#ifdef CONFIG_RT_MUTEXES
1758extern int rt_mutex_getprio(struct task_struct *p);
1759extern void rt_mutex_setprio(struct task_struct *p, int prio);
1760extern void rt_mutex_adjust_pi(struct task_struct *p);
1761#else
1762static inline int rt_mutex_getprio(struct task_struct *p)
1763{
1764        return p->normal_prio;
1765}
1766# define rt_mutex_adjust_pi(p)          do { } while (0)
1767#endif
1768
1769extern void set_user_nice(struct task_struct *p, long nice);
1770extern int task_prio(const struct task_struct *p);
1771extern int task_nice(const struct task_struct *p);
1772extern int can_nice(const struct task_struct *p, const int nice);
1773extern int task_curr(const struct task_struct *p);
1774extern int idle_cpu(int cpu);
1775extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1776extern int sched_setscheduler_nocheck(struct task_struct *, int,
1777                                      struct sched_param *);
1778extern struct task_struct *idle_task(int cpu);
1779extern struct task_struct *curr_task(int cpu);
1780extern void set_curr_task(int cpu, struct task_struct *p);
1781
1782void yield(void);
1783
1784/*
1785 * The default (Linux) execution domain.
1786 */
1787extern struct exec_domain       default_exec_domain;
1788
1789union thread_union {
1790        struct thread_info thread_info;
1791        unsigned long stack[THREAD_SIZE/sizeof(long)];
1792};
1793
1794#ifndef __HAVE_ARCH_KSTACK_END
1795static inline int kstack_end(void *addr)
1796{
1797        /* Reliable end of stack detection:
1798         * Some APM bios versions misalign the stack
1799         */
1800        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1801}
1802#endif
1803
1804extern union thread_union init_thread_union;
1805extern struct task_struct init_task;
1806
1807extern struct   mm_struct init_mm;
1808
1809extern struct pid_namespace init_pid_ns;
1810
1811/*
1812 * find a task by one of its numerical ids
1813 *
1814 * find_task_by_pid_type_ns():
1815 *      it is the most generic call - it finds a task by all id,
1816 *      type and namespace specified
1817 * find_task_by_pid_ns():
1818 *      finds a task by its pid in the specified namespace
1819 * find_task_by_vpid():
1820 *      finds a task by its virtual pid
1821 *
1822 * see also find_vpid() etc in include/linux/pid.h
1823 */
1824
1825extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1826                struct pid_namespace *ns);
1827
1828extern struct task_struct *find_task_by_vpid(pid_t nr);
1829extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1830                struct pid_namespace *ns);
1831
1832extern void __set_special_pids(struct pid *pid);
1833
1834/* per-UID process charging. */
1835extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1836static inline struct user_struct *get_uid(struct user_struct *u)
1837{
1838        atomic_inc(&u->__count);
1839        return u;
1840}
1841extern void free_uid(struct user_struct *);
1842extern void release_uids(struct user_namespace *ns);
1843
1844#include <asm/current.h>
1845
1846extern void do_timer(unsigned long ticks);
1847
1848extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1849extern int wake_up_process(struct task_struct *tsk);
1850extern void wake_up_new_task(struct task_struct *tsk,
1851                                unsigned long clone_flags);
1852#ifdef CONFIG_SMP
1853 extern void kick_process(struct task_struct *tsk);
1854#else
1855 static inline void kick_process(struct task_struct *tsk) { }
1856#endif
1857extern void sched_fork(struct task_struct *p, int clone_flags);
1858extern void sched_dead(struct task_struct *p);
1859
1860extern void proc_caches_init(void);
1861extern void flush_signals(struct task_struct *);
1862extern void ignore_signals(struct task_struct *);
1863extern void flush_signal_handlers(struct task_struct *, int force_default);
1864extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1865
1866static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1867{
1868        unsigned long flags;
1869        int ret;
1870
1871        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1872        ret = dequeue_signal(tsk, mask, info);
1873        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1874
1875        return ret;
1876}       
1877
1878extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1879                              sigset_t *mask);
1880extern void unblock_all_signals(void);
1881extern void release_task(struct task_struct * p);
1882extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1883extern int force_sigsegv(int, struct task_struct *);
1884extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1885extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1886extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1887extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1888extern int kill_pgrp(struct pid *pid, int sig, int priv);
1889extern int kill_pid(struct pid *pid, int sig, int priv);
1890extern int kill_proc_info(int, struct siginfo *, pid_t);
1891extern int do_notify_parent(struct task_struct *, int);
1892extern void force_sig(int, struct task_struct *);
1893extern void force_sig_specific(int, struct task_struct *);
1894extern int send_sig(int, struct task_struct *, int);
1895extern void zap_other_threads(struct task_struct *p);
1896extern struct sigqueue *sigqueue_alloc(void);
1897extern void sigqueue_free(struct sigqueue *);
1898extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1899extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1900extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1901
1902static inline int kill_cad_pid(int sig, int priv)
1903{
1904        return kill_pid(cad_pid, sig, priv);
1905}
1906
1907/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1908#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1909#define SEND_SIG_PRIV   ((struct siginfo *) 1)
1910#define SEND_SIG_FORCED ((struct siginfo *) 2)
1911
1912static inline int is_si_special(const struct siginfo *info)
1913{
1914        return info <= SEND_SIG_FORCED;
1915}
1916
1917/* True if we are on the alternate signal stack.  */
1918
1919static inline int on_sig_stack(unsigned long sp)
1920{
1921        return (sp - current->sas_ss_sp < current->sas_ss_size);
1922}
1923
1924static inline int sas_ss_flags(unsigned long sp)
1925{
1926        return (current->sas_ss_size == 0 ? SS_DISABLE
1927                : on_sig_stack(sp) ? SS_ONSTACK : 0);
1928}
1929
1930/*
1931 * Routines for handling mm_structs
1932 */
1933extern struct mm_struct * mm_alloc(void);
1934
1935/* mmdrop drops the mm and the page tables */
1936extern void __mmdrop(struct mm_struct *);
1937static inline void mmdrop(struct mm_struct * mm)
1938{
1939        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1940                __mmdrop(mm);
1941}
1942
1943/* mmput gets rid of the mappings and all user-space */
1944extern void mmput(struct mm_struct *);
1945/* Grab a reference to a task's mm, if it is not already going away */
1946extern struct mm_struct *get_task_mm(struct task_struct *task);
1947/* Remove the current tasks stale references to the old mm_struct */
1948extern void mm_release(struct task_struct *, struct mm_struct *);
1949/* Allocate a new mm structure and copy contents from tsk->mm */
1950extern struct mm_struct *dup_mm(struct task_struct *tsk);
1951
1952extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1953extern void flush_thread(void);
1954extern void exit_thread(void);
1955
1956extern void exit_files(struct task_struct *);
1957extern void __cleanup_signal(struct signal_struct *);
1958extern void __cleanup_sighand(struct sighand_struct *);
1959
1960extern void exit_itimers(struct signal_struct *);
1961extern void flush_itimer_signals(void);
1962
1963extern NORET_TYPE void do_group_exit(int);
1964
1965extern void daemonize(const char *, ...);
1966extern int allow_signal(int);
1967extern int disallow_signal(int);
1968
1969extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1970extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1971struct task_struct *fork_idle(int);
1972
1973extern void set_task_comm(struct task_struct *tsk, char *from);
1974extern char *get_task_comm(char *to, struct task_struct *tsk);
1975
1976#ifdef CONFIG_SMP
1977extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1978#else
1979static inline unsigned long wait_task_inactive(struct task_struct *p,
1980                                               long match_state)
1981{
1982        return 1;
1983}
1984#endif
1985
1986#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1987
1988#define for_each_process(p) \
1989        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1990
1991extern bool is_single_threaded(struct task_struct *);
1992
1993/*
1994 * Careful: do_each_thread/while_each_thread is a double loop so
1995 *          'break' will not work as expected - use goto instead.
1996 */
1997#define do_each_thread(g, t) \
1998        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1999
2000#define while_each_thread(g, t) \
2001        while ((t = next_thread(t)) != g)
2002
2003/* de_thread depends on thread_group_leader not being a pid based check */
2004#define thread_group_leader(p)  (p == p->group_leader)
2005
2006/* Do to the insanities of de_thread it is possible for a process
2007 * to have the pid of the thread group leader without actually being
2008 * the thread group leader.  For iteration through the pids in proc
2009 * all we care about is that we have a task with the appropriate
2010 * pid, we don't actually care if we have the right task.
2011 */
2012static inline int has_group_leader_pid(struct task_struct *p)
2013{
2014        return p->pid == p->tgid;
2015}
2016
2017static inline
2018int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2019{
2020        return p1->tgid == p2->tgid;
2021}
2022
2023static inline struct task_struct *next_thread(const struct task_struct *p)
2024{
2025        return list_entry(rcu_dereference(p->thread_group.next),
2026                          struct task_struct, thread_group);
2027}
2028
2029static inline int thread_group_empty(struct task_struct *p)
2030{
2031        return list_empty(&p->thread_group);
2032}
2033
2034#define delay_group_leader(p) \
2035                (thread_group_leader(p) && !thread_group_empty(p))
2036
2037/*
2038 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2039 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2040 * pins the final release of task.io_context.  Also protects ->cpuset and
2041 * ->cgroup.subsys[].
2042 *
2043 * Nests both inside and outside of read_lock(&tasklist_lock).
2044 * It must not be nested with write_lock_irq(&tasklist_lock),
2045 * neither inside nor outside.
2046 */
2047static inline void task_lock(struct task_struct *p)
2048{
2049        spin_lock(&p->alloc_lock);
2050}
2051
2052static inline void task_unlock(struct task_struct *p)
2053{
2054        spin_unlock(&p->alloc_lock);
2055}
2056
2057extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2058                                                        unsigned long *flags);
2059
2060static inline void unlock_task_sighand(struct task_struct *tsk,
2061                                                unsigned long *flags)
2062{
2063        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2064}
2065
2066#ifndef __HAVE_THREAD_FUNCTIONS
2067
2068#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2069#define task_stack_page(task)   ((task)->stack)
2070
2071static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2072{
2073        *task_thread_info(p) = *task_thread_info(org);
2074        task_thread_info(p)->task = p;
2075}
2076
2077static inline unsigned long *end_of_stack(struct task_struct *p)
2078{
2079        return (unsigned long *)(task_thread_info(p) + 1);
2080}
2081
2082#endif
2083
2084static inline int object_is_on_stack(void *obj)
2085{
2086        void *stack = task_stack_page(current);
2087
2088        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2089}
2090
2091extern void thread_info_cache_init(void);
2092
2093/* set thread flags in other task's structures
2094 * - see asm/thread_info.h for TIF_xxxx flags available
2095 */
2096static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2097{
2098        set_ti_thread_flag(task_thread_info(tsk), flag);
2099}
2100
2101static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2102{
2103        clear_ti_thread_flag(task_thread_info(tsk), flag);
2104}
2105
2106static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2107{
2108        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2109}
2110
2111static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2112{
2113        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2114}
2115
2116static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2117{
2118        return test_ti_thread_flag(task_thread_info(tsk), flag);
2119}
2120
2121static inline void set_tsk_need_resched(struct task_struct *tsk)
2122{
2123        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2124}
2125
2126static inline void clear_tsk_need_resched(struct task_struct *tsk)
2127{
2128        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2129}
2130
2131static inline int test_tsk_need_resched(struct task_struct *tsk)
2132{
2133        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2134}
2135
2136static inline int signal_pending(struct task_struct *p)
2137{
2138        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2139}
2140
2141extern int __fatal_signal_pending(struct task_struct *p);
2142
2143static inline int fatal_signal_pending(struct task_struct *p)
2144{
2145        return signal_pending(p) && __fatal_signal_pending(p);
2146}
2147
2148static inline int signal_pending_state(long state, struct task_struct *p)
2149{
2150        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2151                return 0;
2152        if (!signal_pending(p))
2153                return 0;
2154
2155        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2156}
2157
2158static inline int need_resched(void)
2159{
2160        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2161}
2162
2163/*
2164 * cond_resched() and cond_resched_lock(): latency reduction via
2165 * explicit rescheduling in places that are safe. The return
2166 * value indicates whether a reschedule was done in fact.
2167 * cond_resched_lock() will drop the spinlock before scheduling,
2168 * cond_resched_softirq() will enable bhs before scheduling.
2169 */
2170extern int _cond_resched(void);
2171#ifdef CONFIG_PREEMPT_BKL
2172static inline int cond_resched(void)
2173{
2174        return 0;
2175}
2176#else
2177static inline int cond_resched(void)
2178{
2179        return _cond_resched();
2180}
2181#endif
2182extern int cond_resched_lock(spinlock_t * lock);
2183extern int cond_resched_softirq(void);
2184static inline int cond_resched_bkl(void)
2185{
2186        return _cond_resched();
2187}
2188
2189/*
2190 * Does a critical section need to be broken due to another
2191 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2192 * but a general need for low latency)
2193 */
2194static inline int spin_needbreak(spinlock_t *lock)
2195{
2196#ifdef CONFIG_PREEMPT
2197        return spin_is_contended(lock);
2198#else
2199        return 0;
2200#endif
2201}
2202
2203/*
2204 * Thread group CPU time accounting.
2205 */
2206void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2207void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2208
2209static inline void thread_group_cputime_init(struct signal_struct *sig)
2210{
2211        sig->cputimer.cputime = INIT_CPUTIME;
2212        spin_lock_init(&sig->cputimer.lock);
2213        sig->cputimer.running = 0;
2214}
2215
2216static inline void thread_group_cputime_free(struct signal_struct *sig)
2217{
2218}
2219
2220/*
2221 * Reevaluate whether the task has signals pending delivery.
2222 * Wake the task if so.
2223 * This is required every time the blocked sigset_t changes.
2224 * callers must hold sighand->siglock.
2225 */
2226extern void recalc_sigpending_and_wake(struct task_struct *t);
2227extern void recalc_sigpending(void);
2228
2229extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2230
2231/*
2232 * Wrappers for p->thread_info->cpu access. No-op on UP.
2233 */
2234#ifdef CONFIG_SMP
2235
2236static inline unsigned int task_cpu(const struct task_struct *p)
2237{
2238        return task_thread_info(p)->cpu;
2239}
2240
2241extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2242
2243#else
2244
2245static inline unsigned int task_cpu(const struct task_struct *p)
2246{
2247        return 0;
2248}
2249
2250static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2251{
2252}
2253
2254#endif /* CONFIG_SMP */
2255
2256extern void arch_pick_mmap_layout(struct mm_struct *mm);
2257
2258#ifdef CONFIG_TRACING
2259extern void
2260__trace_special(void *__tr, void *__data,
2261                unsigned long arg1, unsigned long arg2, unsigned long arg3);
2262#else
2263static inline void
2264__trace_special(void *__tr, void *__data,
2265                unsigned long arg1, unsigned long arg2, unsigned long arg3)
2266{
2267}
2268#endif
2269
2270extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2271extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2272
2273extern void normalize_rt_tasks(void);
2274
2275#ifdef CONFIG_GROUP_SCHED
2276
2277extern struct task_group init_task_group;
2278#ifdef CONFIG_USER_SCHED
2279extern struct task_group root_task_group;
2280extern void set_tg_uid(struct user_struct *user);
2281#endif
2282
2283extern struct task_group *sched_create_group(struct task_group *parent);
2284extern void sched_destroy_group(struct task_group *tg);
2285extern void sched_move_task(struct task_struct *tsk);
2286#ifdef CONFIG_FAIR_GROUP_SCHED
2287extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2288extern unsigned long sched_group_shares(struct task_group *tg);
2289#endif
2290#ifdef CONFIG_RT_GROUP_SCHED
2291extern int sched_group_set_rt_runtime(struct task_group *tg,
2292                                      long rt_runtime_us);
2293extern long sched_group_rt_runtime(struct task_group *tg);
2294extern int sched_group_set_rt_period(struct task_group *tg,
2295                                      long rt_period_us);
2296extern long sched_group_rt_period(struct task_group *tg);
2297extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2298#endif
2299#endif
2300
2301extern int task_can_switch_user(struct user_struct *up,
2302                                        struct task_struct *tsk);
2303
2304#ifdef CONFIG_TASK_XACCT
2305static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2306{
2307        tsk->ioac.rchar += amt;
2308}
2309
2310static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2311{
2312        tsk->ioac.wchar += amt;
2313}
2314
2315static inline void inc_syscr(struct task_struct *tsk)
2316{
2317        tsk->ioac.syscr++;
2318}
2319
2320static inline void inc_syscw(struct task_struct *tsk)
2321{
2322        tsk->ioac.syscw++;
2323}
2324#else
2325static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2326{
2327}
2328
2329static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2330{
2331}
2332
2333static inline void inc_syscr(struct task_struct *tsk)
2334{
2335}
2336
2337static inline void inc_syscw(struct task_struct *tsk)
2338{
2339}
2340#endif
2341
2342#ifndef TASK_SIZE_OF
2343#define TASK_SIZE_OF(tsk)       TASK_SIZE
2344#endif
2345
2346#ifdef CONFIG_MM_OWNER
2347extern void mm_update_next_owner(struct mm_struct *mm);
2348extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2349#else
2350static inline void mm_update_next_owner(struct mm_struct *mm)
2351{
2352}
2353
2354static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2355{
2356}
2357#endif /* CONFIG_MM_OWNER */
2358
2359#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2360
2361#endif /* __KERNEL__ */
2362
2363#endif
2364