linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <scsi/scsi.h>
  60#include <scsi/scsi_cmnd.h>
  61#include <scsi/scsi_host.h>
  62#include <linux/libata.h>
  63#include <asm/byteorder.h>
  64#include <linux/cdrom.h>
  65
  66#include "libata.h"
  67
  68
  69/* debounce timing parameters in msecs { interval, duration, timeout } */
  70const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  71const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  72const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  73
  74const struct ata_port_operations ata_base_port_ops = {
  75        .prereset               = ata_std_prereset,
  76        .postreset              = ata_std_postreset,
  77        .error_handler          = ata_std_error_handler,
  78};
  79
  80const struct ata_port_operations sata_port_ops = {
  81        .inherits               = &ata_base_port_ops,
  82
  83        .qc_defer               = ata_std_qc_defer,
  84        .hardreset              = sata_std_hardreset,
  85};
  86
  87static unsigned int ata_dev_init_params(struct ata_device *dev,
  88                                        u16 heads, u16 sectors);
  89static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  90static unsigned int ata_dev_set_feature(struct ata_device *dev,
  91                                        u8 enable, u8 feature);
  92static void ata_dev_xfermask(struct ata_device *dev);
  93static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  94
  95unsigned int ata_print_id = 1;
  96static struct workqueue_struct *ata_wq;
  97
  98struct workqueue_struct *ata_aux_wq;
  99
 100struct ata_force_param {
 101        const char      *name;
 102        unsigned int    cbl;
 103        int             spd_limit;
 104        unsigned long   xfer_mask;
 105        unsigned int    horkage_on;
 106        unsigned int    horkage_off;
 107        unsigned int    lflags;
 108};
 109
 110struct ata_force_ent {
 111        int                     port;
 112        int                     device;
 113        struct ata_force_param  param;
 114};
 115
 116static struct ata_force_ent *ata_force_tbl;
 117static int ata_force_tbl_size;
 118
 119static char ata_force_param_buf[PAGE_SIZE] __initdata;
 120/* param_buf is thrown away after initialization, disallow read */
 121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 123
 124static int atapi_enabled = 1;
 125module_param(atapi_enabled, int, 0444);
 126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
 127
 128static int atapi_dmadir = 0;
 129module_param(atapi_dmadir, int, 0444);
 130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
 131
 132int atapi_passthru16 = 1;
 133module_param(atapi_passthru16, int, 0444);
 134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
 135
 136int libata_fua = 0;
 137module_param_named(fua, libata_fua, int, 0444);
 138MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
 139
 140static int ata_ignore_hpa;
 141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 143
 144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 145module_param_named(dma, libata_dma_mask, int, 0444);
 146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 147
 148static int ata_probe_timeout;
 149module_param(ata_probe_timeout, int, 0444);
 150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 151
 152int libata_noacpi = 0;
 153module_param_named(noacpi, libata_noacpi, int, 0444);
 154MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
 155
 156int libata_allow_tpm = 0;
 157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
 159
 160MODULE_AUTHOR("Jeff Garzik");
 161MODULE_DESCRIPTION("Library module for ATA devices");
 162MODULE_LICENSE("GPL");
 163MODULE_VERSION(DRV_VERSION);
 164
 165
 166/*
 167 * Iterator helpers.  Don't use directly.
 168 *
 169 * LOCKING:
 170 * Host lock or EH context.
 171 */
 172struct ata_link *__ata_port_next_link(struct ata_port *ap,
 173                                      struct ata_link *link, bool dev_only)
 174{
 175        /* NULL link indicates start of iteration */
 176        if (!link) {
 177                if (dev_only && sata_pmp_attached(ap))
 178                        return ap->pmp_link;
 179                return &ap->link;
 180        }
 181
 182        /* we just iterated over the host master link, what's next? */
 183        if (link == &ap->link) {
 184                if (!sata_pmp_attached(ap)) {
 185                        if (unlikely(ap->slave_link) && !dev_only)
 186                                return ap->slave_link;
 187                        return NULL;
 188                }
 189                return ap->pmp_link;
 190        }
 191
 192        /* slave_link excludes PMP */
 193        if (unlikely(link == ap->slave_link))
 194                return NULL;
 195
 196        /* iterate to the next PMP link */
 197        if (++link < ap->pmp_link + ap->nr_pmp_links)
 198                return link;
 199        return NULL;
 200}
 201
 202/**
 203 *      ata_dev_phys_link - find physical link for a device
 204 *      @dev: ATA device to look up physical link for
 205 *
 206 *      Look up physical link which @dev is attached to.  Note that
 207 *      this is different from @dev->link only when @dev is on slave
 208 *      link.  For all other cases, it's the same as @dev->link.
 209 *
 210 *      LOCKING:
 211 *      Don't care.
 212 *
 213 *      RETURNS:
 214 *      Pointer to the found physical link.
 215 */
 216struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 217{
 218        struct ata_port *ap = dev->link->ap;
 219
 220        if (!ap->slave_link)
 221                return dev->link;
 222        if (!dev->devno)
 223                return &ap->link;
 224        return ap->slave_link;
 225}
 226
 227/**
 228 *      ata_force_cbl - force cable type according to libata.force
 229 *      @ap: ATA port of interest
 230 *
 231 *      Force cable type according to libata.force and whine about it.
 232 *      The last entry which has matching port number is used, so it
 233 *      can be specified as part of device force parameters.  For
 234 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 235 *      same effect.
 236 *
 237 *      LOCKING:
 238 *      EH context.
 239 */
 240void ata_force_cbl(struct ata_port *ap)
 241{
 242        int i;
 243
 244        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 245                const struct ata_force_ent *fe = &ata_force_tbl[i];
 246
 247                if (fe->port != -1 && fe->port != ap->print_id)
 248                        continue;
 249
 250                if (fe->param.cbl == ATA_CBL_NONE)
 251                        continue;
 252
 253                ap->cbl = fe->param.cbl;
 254                ata_port_printk(ap, KERN_NOTICE,
 255                                "FORCE: cable set to %s\n", fe->param.name);
 256                return;
 257        }
 258}
 259
 260/**
 261 *      ata_force_link_limits - force link limits according to libata.force
 262 *      @link: ATA link of interest
 263 *
 264 *      Force link flags and SATA spd limit according to libata.force
 265 *      and whine about it.  When only the port part is specified
 266 *      (e.g. 1:), the limit applies to all links connected to both
 267 *      the host link and all fan-out ports connected via PMP.  If the
 268 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 269 *      first fan-out link not the host link.  Device number 15 always
 270 *      points to the host link whether PMP is attached or not.  If the
 271 *      controller has slave link, device number 16 points to it.
 272 *
 273 *      LOCKING:
 274 *      EH context.
 275 */
 276static void ata_force_link_limits(struct ata_link *link)
 277{
 278        bool did_spd = false;
 279        int linkno = link->pmp;
 280        int i;
 281
 282        if (ata_is_host_link(link))
 283                linkno += 15;
 284
 285        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 286                const struct ata_force_ent *fe = &ata_force_tbl[i];
 287
 288                if (fe->port != -1 && fe->port != link->ap->print_id)
 289                        continue;
 290
 291                if (fe->device != -1 && fe->device != linkno)
 292                        continue;
 293
 294                /* only honor the first spd limit */
 295                if (!did_spd && fe->param.spd_limit) {
 296                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 297                        ata_link_printk(link, KERN_NOTICE,
 298                                        "FORCE: PHY spd limit set to %s\n",
 299                                        fe->param.name);
 300                        did_spd = true;
 301                }
 302
 303                /* let lflags stack */
 304                if (fe->param.lflags) {
 305                        link->flags |= fe->param.lflags;
 306                        ata_link_printk(link, KERN_NOTICE,
 307                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 308                                        fe->param.lflags, link->flags);
 309                }
 310        }
 311}
 312
 313/**
 314 *      ata_force_xfermask - force xfermask according to libata.force
 315 *      @dev: ATA device of interest
 316 *
 317 *      Force xfer_mask according to libata.force and whine about it.
 318 *      For consistency with link selection, device number 15 selects
 319 *      the first device connected to the host link.
 320 *
 321 *      LOCKING:
 322 *      EH context.
 323 */
 324static void ata_force_xfermask(struct ata_device *dev)
 325{
 326        int devno = dev->link->pmp + dev->devno;
 327        int alt_devno = devno;
 328        int i;
 329
 330        /* allow n.15/16 for devices attached to host port */
 331        if (ata_is_host_link(dev->link))
 332                alt_devno += 15;
 333
 334        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 335                const struct ata_force_ent *fe = &ata_force_tbl[i];
 336                unsigned long pio_mask, mwdma_mask, udma_mask;
 337
 338                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 339                        continue;
 340
 341                if (fe->device != -1 && fe->device != devno &&
 342                    fe->device != alt_devno)
 343                        continue;
 344
 345                if (!fe->param.xfer_mask)
 346                        continue;
 347
 348                ata_unpack_xfermask(fe->param.xfer_mask,
 349                                    &pio_mask, &mwdma_mask, &udma_mask);
 350                if (udma_mask)
 351                        dev->udma_mask = udma_mask;
 352                else if (mwdma_mask) {
 353                        dev->udma_mask = 0;
 354                        dev->mwdma_mask = mwdma_mask;
 355                } else {
 356                        dev->udma_mask = 0;
 357                        dev->mwdma_mask = 0;
 358                        dev->pio_mask = pio_mask;
 359                }
 360
 361                ata_dev_printk(dev, KERN_NOTICE,
 362                        "FORCE: xfer_mask set to %s\n", fe->param.name);
 363                return;
 364        }
 365}
 366
 367/**
 368 *      ata_force_horkage - force horkage according to libata.force
 369 *      @dev: ATA device of interest
 370 *
 371 *      Force horkage according to libata.force and whine about it.
 372 *      For consistency with link selection, device number 15 selects
 373 *      the first device connected to the host link.
 374 *
 375 *      LOCKING:
 376 *      EH context.
 377 */
 378static void ata_force_horkage(struct ata_device *dev)
 379{
 380        int devno = dev->link->pmp + dev->devno;
 381        int alt_devno = devno;
 382        int i;
 383
 384        /* allow n.15/16 for devices attached to host port */
 385        if (ata_is_host_link(dev->link))
 386                alt_devno += 15;
 387
 388        for (i = 0; i < ata_force_tbl_size; i++) {
 389                const struct ata_force_ent *fe = &ata_force_tbl[i];
 390
 391                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 392                        continue;
 393
 394                if (fe->device != -1 && fe->device != devno &&
 395                    fe->device != alt_devno)
 396                        continue;
 397
 398                if (!(~dev->horkage & fe->param.horkage_on) &&
 399                    !(dev->horkage & fe->param.horkage_off))
 400                        continue;
 401
 402                dev->horkage |= fe->param.horkage_on;
 403                dev->horkage &= ~fe->param.horkage_off;
 404
 405                ata_dev_printk(dev, KERN_NOTICE,
 406                        "FORCE: horkage modified (%s)\n", fe->param.name);
 407        }
 408}
 409
 410/**
 411 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 412 *      @opcode: SCSI opcode
 413 *
 414 *      Determine ATAPI command type from @opcode.
 415 *
 416 *      LOCKING:
 417 *      None.
 418 *
 419 *      RETURNS:
 420 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 421 */
 422int atapi_cmd_type(u8 opcode)
 423{
 424        switch (opcode) {
 425        case GPCMD_READ_10:
 426        case GPCMD_READ_12:
 427                return ATAPI_READ;
 428
 429        case GPCMD_WRITE_10:
 430        case GPCMD_WRITE_12:
 431        case GPCMD_WRITE_AND_VERIFY_10:
 432                return ATAPI_WRITE;
 433
 434        case GPCMD_READ_CD:
 435        case GPCMD_READ_CD_MSF:
 436                return ATAPI_READ_CD;
 437
 438        case ATA_16:
 439        case ATA_12:
 440                if (atapi_passthru16)
 441                        return ATAPI_PASS_THRU;
 442                /* fall thru */
 443        default:
 444                return ATAPI_MISC;
 445        }
 446}
 447
 448/**
 449 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 450 *      @tf: Taskfile to convert
 451 *      @pmp: Port multiplier port
 452 *      @is_cmd: This FIS is for command
 453 *      @fis: Buffer into which data will output
 454 *
 455 *      Converts a standard ATA taskfile to a Serial ATA
 456 *      FIS structure (Register - Host to Device).
 457 *
 458 *      LOCKING:
 459 *      Inherited from caller.
 460 */
 461void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 462{
 463        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 464        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 465        if (is_cmd)
 466                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 467
 468        fis[2] = tf->command;
 469        fis[3] = tf->feature;
 470
 471        fis[4] = tf->lbal;
 472        fis[5] = tf->lbam;
 473        fis[6] = tf->lbah;
 474        fis[7] = tf->device;
 475
 476        fis[8] = tf->hob_lbal;
 477        fis[9] = tf->hob_lbam;
 478        fis[10] = tf->hob_lbah;
 479        fis[11] = tf->hob_feature;
 480
 481        fis[12] = tf->nsect;
 482        fis[13] = tf->hob_nsect;
 483        fis[14] = 0;
 484        fis[15] = tf->ctl;
 485
 486        fis[16] = 0;
 487        fis[17] = 0;
 488        fis[18] = 0;
 489        fis[19] = 0;
 490}
 491
 492/**
 493 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 494 *      @fis: Buffer from which data will be input
 495 *      @tf: Taskfile to output
 496 *
 497 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 498 *
 499 *      LOCKING:
 500 *      Inherited from caller.
 501 */
 502
 503void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 504{
 505        tf->command     = fis[2];       /* status */
 506        tf->feature     = fis[3];       /* error */
 507
 508        tf->lbal        = fis[4];
 509        tf->lbam        = fis[5];
 510        tf->lbah        = fis[6];
 511        tf->device      = fis[7];
 512
 513        tf->hob_lbal    = fis[8];
 514        tf->hob_lbam    = fis[9];
 515        tf->hob_lbah    = fis[10];
 516
 517        tf->nsect       = fis[12];
 518        tf->hob_nsect   = fis[13];
 519}
 520
 521static const u8 ata_rw_cmds[] = {
 522        /* pio multi */
 523        ATA_CMD_READ_MULTI,
 524        ATA_CMD_WRITE_MULTI,
 525        ATA_CMD_READ_MULTI_EXT,
 526        ATA_CMD_WRITE_MULTI_EXT,
 527        0,
 528        0,
 529        0,
 530        ATA_CMD_WRITE_MULTI_FUA_EXT,
 531        /* pio */
 532        ATA_CMD_PIO_READ,
 533        ATA_CMD_PIO_WRITE,
 534        ATA_CMD_PIO_READ_EXT,
 535        ATA_CMD_PIO_WRITE_EXT,
 536        0,
 537        0,
 538        0,
 539        0,
 540        /* dma */
 541        ATA_CMD_READ,
 542        ATA_CMD_WRITE,
 543        ATA_CMD_READ_EXT,
 544        ATA_CMD_WRITE_EXT,
 545        0,
 546        0,
 547        0,
 548        ATA_CMD_WRITE_FUA_EXT
 549};
 550
 551/**
 552 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 553 *      @tf: command to examine and configure
 554 *      @dev: device tf belongs to
 555 *
 556 *      Examine the device configuration and tf->flags to calculate
 557 *      the proper read/write commands and protocol to use.
 558 *
 559 *      LOCKING:
 560 *      caller.
 561 */
 562static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 563{
 564        u8 cmd;
 565
 566        int index, fua, lba48, write;
 567
 568        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 569        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 570        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 571
 572        if (dev->flags & ATA_DFLAG_PIO) {
 573                tf->protocol = ATA_PROT_PIO;
 574                index = dev->multi_count ? 0 : 8;
 575        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 576                /* Unable to use DMA due to host limitation */
 577                tf->protocol = ATA_PROT_PIO;
 578                index = dev->multi_count ? 0 : 8;
 579        } else {
 580                tf->protocol = ATA_PROT_DMA;
 581                index = 16;
 582        }
 583
 584        cmd = ata_rw_cmds[index + fua + lba48 + write];
 585        if (cmd) {
 586                tf->command = cmd;
 587                return 0;
 588        }
 589        return -1;
 590}
 591
 592/**
 593 *      ata_tf_read_block - Read block address from ATA taskfile
 594 *      @tf: ATA taskfile of interest
 595 *      @dev: ATA device @tf belongs to
 596 *
 597 *      LOCKING:
 598 *      None.
 599 *
 600 *      Read block address from @tf.  This function can handle all
 601 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 602 *      flags select the address format to use.
 603 *
 604 *      RETURNS:
 605 *      Block address read from @tf.
 606 */
 607u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 608{
 609        u64 block = 0;
 610
 611        if (tf->flags & ATA_TFLAG_LBA) {
 612                if (tf->flags & ATA_TFLAG_LBA48) {
 613                        block |= (u64)tf->hob_lbah << 40;
 614                        block |= (u64)tf->hob_lbam << 32;
 615                        block |= (u64)tf->hob_lbal << 24;
 616                } else
 617                        block |= (tf->device & 0xf) << 24;
 618
 619                block |= tf->lbah << 16;
 620                block |= tf->lbam << 8;
 621                block |= tf->lbal;
 622        } else {
 623                u32 cyl, head, sect;
 624
 625                cyl = tf->lbam | (tf->lbah << 8);
 626                head = tf->device & 0xf;
 627                sect = tf->lbal;
 628
 629                block = (cyl * dev->heads + head) * dev->sectors + sect;
 630        }
 631
 632        return block;
 633}
 634
 635/**
 636 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 637 *      @tf: Target ATA taskfile
 638 *      @dev: ATA device @tf belongs to
 639 *      @block: Block address
 640 *      @n_block: Number of blocks
 641 *      @tf_flags: RW/FUA etc...
 642 *      @tag: tag
 643 *
 644 *      LOCKING:
 645 *      None.
 646 *
 647 *      Build ATA taskfile @tf for read/write request described by
 648 *      @block, @n_block, @tf_flags and @tag on @dev.
 649 *
 650 *      RETURNS:
 651 *
 652 *      0 on success, -ERANGE if the request is too large for @dev,
 653 *      -EINVAL if the request is invalid.
 654 */
 655int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 656                    u64 block, u32 n_block, unsigned int tf_flags,
 657                    unsigned int tag)
 658{
 659        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 660        tf->flags |= tf_flags;
 661
 662        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 663                /* yay, NCQ */
 664                if (!lba_48_ok(block, n_block))
 665                        return -ERANGE;
 666
 667                tf->protocol = ATA_PROT_NCQ;
 668                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 669
 670                if (tf->flags & ATA_TFLAG_WRITE)
 671                        tf->command = ATA_CMD_FPDMA_WRITE;
 672                else
 673                        tf->command = ATA_CMD_FPDMA_READ;
 674
 675                tf->nsect = tag << 3;
 676                tf->hob_feature = (n_block >> 8) & 0xff;
 677                tf->feature = n_block & 0xff;
 678
 679                tf->hob_lbah = (block >> 40) & 0xff;
 680                tf->hob_lbam = (block >> 32) & 0xff;
 681                tf->hob_lbal = (block >> 24) & 0xff;
 682                tf->lbah = (block >> 16) & 0xff;
 683                tf->lbam = (block >> 8) & 0xff;
 684                tf->lbal = block & 0xff;
 685
 686                tf->device = 1 << 6;
 687                if (tf->flags & ATA_TFLAG_FUA)
 688                        tf->device |= 1 << 7;
 689        } else if (dev->flags & ATA_DFLAG_LBA) {
 690                tf->flags |= ATA_TFLAG_LBA;
 691
 692                if (lba_28_ok(block, n_block)) {
 693                        /* use LBA28 */
 694                        tf->device |= (block >> 24) & 0xf;
 695                } else if (lba_48_ok(block, n_block)) {
 696                        if (!(dev->flags & ATA_DFLAG_LBA48))
 697                                return -ERANGE;
 698
 699                        /* use LBA48 */
 700                        tf->flags |= ATA_TFLAG_LBA48;
 701
 702                        tf->hob_nsect = (n_block >> 8) & 0xff;
 703
 704                        tf->hob_lbah = (block >> 40) & 0xff;
 705                        tf->hob_lbam = (block >> 32) & 0xff;
 706                        tf->hob_lbal = (block >> 24) & 0xff;
 707                } else
 708                        /* request too large even for LBA48 */
 709                        return -ERANGE;
 710
 711                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 712                        return -EINVAL;
 713
 714                tf->nsect = n_block & 0xff;
 715
 716                tf->lbah = (block >> 16) & 0xff;
 717                tf->lbam = (block >> 8) & 0xff;
 718                tf->lbal = block & 0xff;
 719
 720                tf->device |= ATA_LBA;
 721        } else {
 722                /* CHS */
 723                u32 sect, head, cyl, track;
 724
 725                /* The request -may- be too large for CHS addressing. */
 726                if (!lba_28_ok(block, n_block))
 727                        return -ERANGE;
 728
 729                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 730                        return -EINVAL;
 731
 732                /* Convert LBA to CHS */
 733                track = (u32)block / dev->sectors;
 734                cyl   = track / dev->heads;
 735                head  = track % dev->heads;
 736                sect  = (u32)block % dev->sectors + 1;
 737
 738                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 739                        (u32)block, track, cyl, head, sect);
 740
 741                /* Check whether the converted CHS can fit.
 742                   Cylinder: 0-65535
 743                   Head: 0-15
 744                   Sector: 1-255*/
 745                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 746                        return -ERANGE;
 747
 748                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 749                tf->lbal = sect;
 750                tf->lbam = cyl;
 751                tf->lbah = cyl >> 8;
 752                tf->device |= head;
 753        }
 754
 755        return 0;
 756}
 757
 758/**
 759 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 760 *      @pio_mask: pio_mask
 761 *      @mwdma_mask: mwdma_mask
 762 *      @udma_mask: udma_mask
 763 *
 764 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 765 *      unsigned int xfer_mask.
 766 *
 767 *      LOCKING:
 768 *      None.
 769 *
 770 *      RETURNS:
 771 *      Packed xfer_mask.
 772 */
 773unsigned long ata_pack_xfermask(unsigned long pio_mask,
 774                                unsigned long mwdma_mask,
 775                                unsigned long udma_mask)
 776{
 777        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 778                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 779                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 780}
 781
 782/**
 783 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 784 *      @xfer_mask: xfer_mask to unpack
 785 *      @pio_mask: resulting pio_mask
 786 *      @mwdma_mask: resulting mwdma_mask
 787 *      @udma_mask: resulting udma_mask
 788 *
 789 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 790 *      Any NULL distination masks will be ignored.
 791 */
 792void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 793                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 794{
 795        if (pio_mask)
 796                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 797        if (mwdma_mask)
 798                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 799        if (udma_mask)
 800                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 801}
 802
 803static const struct ata_xfer_ent {
 804        int shift, bits;
 805        u8 base;
 806} ata_xfer_tbl[] = {
 807        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 808        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 809        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 810        { -1, },
 811};
 812
 813/**
 814 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 815 *      @xfer_mask: xfer_mask of interest
 816 *
 817 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 818 *      bit of @xfer_mask is considered.
 819 *
 820 *      LOCKING:
 821 *      None.
 822 *
 823 *      RETURNS:
 824 *      Matching XFER_* value, 0xff if no match found.
 825 */
 826u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 827{
 828        int highbit = fls(xfer_mask) - 1;
 829        const struct ata_xfer_ent *ent;
 830
 831        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 832                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 833                        return ent->base + highbit - ent->shift;
 834        return 0xff;
 835}
 836
 837/**
 838 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 839 *      @xfer_mode: XFER_* of interest
 840 *
 841 *      Return matching xfer_mask for @xfer_mode.
 842 *
 843 *      LOCKING:
 844 *      None.
 845 *
 846 *      RETURNS:
 847 *      Matching xfer_mask, 0 if no match found.
 848 */
 849unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 850{
 851        const struct ata_xfer_ent *ent;
 852
 853        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 854                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 855                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 856                                & ~((1 << ent->shift) - 1);
 857        return 0;
 858}
 859
 860/**
 861 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 862 *      @xfer_mode: XFER_* of interest
 863 *
 864 *      Return matching xfer_shift for @xfer_mode.
 865 *
 866 *      LOCKING:
 867 *      None.
 868 *
 869 *      RETURNS:
 870 *      Matching xfer_shift, -1 if no match found.
 871 */
 872int ata_xfer_mode2shift(unsigned long xfer_mode)
 873{
 874        const struct ata_xfer_ent *ent;
 875
 876        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 877                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 878                        return ent->shift;
 879        return -1;
 880}
 881
 882/**
 883 *      ata_mode_string - convert xfer_mask to string
 884 *      @xfer_mask: mask of bits supported; only highest bit counts.
 885 *
 886 *      Determine string which represents the highest speed
 887 *      (highest bit in @modemask).
 888 *
 889 *      LOCKING:
 890 *      None.
 891 *
 892 *      RETURNS:
 893 *      Constant C string representing highest speed listed in
 894 *      @mode_mask, or the constant C string "<n/a>".
 895 */
 896const char *ata_mode_string(unsigned long xfer_mask)
 897{
 898        static const char * const xfer_mode_str[] = {
 899                "PIO0",
 900                "PIO1",
 901                "PIO2",
 902                "PIO3",
 903                "PIO4",
 904                "PIO5",
 905                "PIO6",
 906                "MWDMA0",
 907                "MWDMA1",
 908                "MWDMA2",
 909                "MWDMA3",
 910                "MWDMA4",
 911                "UDMA/16",
 912                "UDMA/25",
 913                "UDMA/33",
 914                "UDMA/44",
 915                "UDMA/66",
 916                "UDMA/100",
 917                "UDMA/133",
 918                "UDMA7",
 919        };
 920        int highbit;
 921
 922        highbit = fls(xfer_mask) - 1;
 923        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 924                return xfer_mode_str[highbit];
 925        return "<n/a>";
 926}
 927
 928static const char *sata_spd_string(unsigned int spd)
 929{
 930        static const char * const spd_str[] = {
 931                "1.5 Gbps",
 932                "3.0 Gbps",
 933        };
 934
 935        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 936                return "<unknown>";
 937        return spd_str[spd - 1];
 938}
 939
 940void ata_dev_disable(struct ata_device *dev)
 941{
 942        if (ata_dev_enabled(dev)) {
 943                if (ata_msg_drv(dev->link->ap))
 944                        ata_dev_printk(dev, KERN_WARNING, "disabled\n");
 945                ata_acpi_on_disable(dev);
 946                ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
 947                                             ATA_DNXFER_QUIET);
 948                dev->class++;
 949        }
 950}
 951
 952static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
 953{
 954        struct ata_link *link = dev->link;
 955        struct ata_port *ap = link->ap;
 956        u32 scontrol;
 957        unsigned int err_mask;
 958        int rc;
 959
 960        /*
 961         * disallow DIPM for drivers which haven't set
 962         * ATA_FLAG_IPM.  This is because when DIPM is enabled,
 963         * phy ready will be set in the interrupt status on
 964         * state changes, which will cause some drivers to
 965         * think there are errors - additionally drivers will
 966         * need to disable hot plug.
 967         */
 968        if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
 969                ap->pm_policy = NOT_AVAILABLE;
 970                return -EINVAL;
 971        }
 972
 973        /*
 974         * For DIPM, we will only enable it for the
 975         * min_power setting.
 976         *
 977         * Why?  Because Disks are too stupid to know that
 978         * If the host rejects a request to go to SLUMBER
 979         * they should retry at PARTIAL, and instead it
 980         * just would give up.  So, for medium_power to
 981         * work at all, we need to only allow HIPM.
 982         */
 983        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
 984        if (rc)
 985                return rc;
 986
 987        switch (policy) {
 988        case MIN_POWER:
 989                /* no restrictions on IPM transitions */
 990                scontrol &= ~(0x3 << 8);
 991                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
 992                if (rc)
 993                        return rc;
 994
 995                /* enable DIPM */
 996                if (dev->flags & ATA_DFLAG_DIPM)
 997                        err_mask = ata_dev_set_feature(dev,
 998                                        SETFEATURES_SATA_ENABLE, SATA_DIPM);
 999                break;
1000        case MEDIUM_POWER:
1001                /* allow IPM to PARTIAL */
1002                scontrol &= ~(0x1 << 8);
1003                scontrol |= (0x2 << 8);
1004                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005                if (rc)
1006                        return rc;
1007
1008                /*
1009                 * we don't have to disable DIPM since IPM flags
1010                 * disallow transitions to SLUMBER, which effectively
1011                 * disable DIPM if it does not support PARTIAL
1012                 */
1013                break;
1014        case NOT_AVAILABLE:
1015        case MAX_PERFORMANCE:
1016                /* disable all IPM transitions */
1017                scontrol |= (0x3 << 8);
1018                rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019                if (rc)
1020                        return rc;
1021
1022                /*
1023                 * we don't have to disable DIPM since IPM flags
1024                 * disallow all transitions which effectively
1025                 * disable DIPM anyway.
1026                 */
1027                break;
1028        }
1029
1030        /* FIXME: handle SET FEATURES failure */
1031        (void) err_mask;
1032
1033        return 0;
1034}
1035
1036/**
1037 *      ata_dev_enable_pm - enable SATA interface power management
1038 *      @dev:  device to enable power management
1039 *      @policy: the link power management policy
1040 *
1041 *      Enable SATA Interface power management.  This will enable
1042 *      Device Interface Power Management (DIPM) for min_power
1043 *      policy, and then call driver specific callbacks for
1044 *      enabling Host Initiated Power management.
1045 *
1046 *      Locking: Caller.
1047 *      Returns: -EINVAL if IPM is not supported, 0 otherwise.
1048 */
1049void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1050{
1051        int rc = 0;
1052        struct ata_port *ap = dev->link->ap;
1053
1054        /* set HIPM first, then DIPM */
1055        if (ap->ops->enable_pm)
1056                rc = ap->ops->enable_pm(ap, policy);
1057        if (rc)
1058                goto enable_pm_out;
1059        rc = ata_dev_set_dipm(dev, policy);
1060
1061enable_pm_out:
1062        if (rc)
1063                ap->pm_policy = MAX_PERFORMANCE;
1064        else
1065                ap->pm_policy = policy;
1066        return /* rc */;        /* hopefully we can use 'rc' eventually */
1067}
1068
1069#ifdef CONFIG_PM
1070/**
1071 *      ata_dev_disable_pm - disable SATA interface power management
1072 *      @dev: device to disable power management
1073 *
1074 *      Disable SATA Interface power management.  This will disable
1075 *      Device Interface Power Management (DIPM) without changing
1076 *      policy,  call driver specific callbacks for disabling Host
1077 *      Initiated Power management.
1078 *
1079 *      Locking: Caller.
1080 *      Returns: void
1081 */
1082static void ata_dev_disable_pm(struct ata_device *dev)
1083{
1084        struct ata_port *ap = dev->link->ap;
1085
1086        ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087        if (ap->ops->disable_pm)
1088                ap->ops->disable_pm(ap);
1089}
1090#endif  /* CONFIG_PM */
1091
1092void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1093{
1094        ap->pm_policy = policy;
1095        ap->link.eh_info.action |= ATA_EH_LPM;
1096        ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097        ata_port_schedule_eh(ap);
1098}
1099
1100#ifdef CONFIG_PM
1101static void ata_lpm_enable(struct ata_host *host)
1102{
1103        struct ata_link *link;
1104        struct ata_port *ap;
1105        struct ata_device *dev;
1106        int i;
1107
1108        for (i = 0; i < host->n_ports; i++) {
1109                ap = host->ports[i];
1110                ata_port_for_each_link(link, ap) {
1111                        ata_link_for_each_dev(dev, link)
1112                                ata_dev_disable_pm(dev);
1113                }
1114        }
1115}
1116
1117static void ata_lpm_disable(struct ata_host *host)
1118{
1119        int i;
1120
1121        for (i = 0; i < host->n_ports; i++) {
1122                struct ata_port *ap = host->ports[i];
1123                ata_lpm_schedule(ap, ap->pm_policy);
1124        }
1125}
1126#endif  /* CONFIG_PM */
1127
1128/**
1129 *      ata_dev_classify - determine device type based on ATA-spec signature
1130 *      @tf: ATA taskfile register set for device to be identified
1131 *
1132 *      Determine from taskfile register contents whether a device is
1133 *      ATA or ATAPI, as per "Signature and persistence" section
1134 *      of ATA/PI spec (volume 1, sect 5.14).
1135 *
1136 *      LOCKING:
1137 *      None.
1138 *
1139 *      RETURNS:
1140 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 *      %ATA_DEV_UNKNOWN the event of failure.
1142 */
1143unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1144{
1145        /* Apple's open source Darwin code hints that some devices only
1146         * put a proper signature into the LBA mid/high registers,
1147         * So, we only check those.  It's sufficient for uniqueness.
1148         *
1149         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150         * signatures for ATA and ATAPI devices attached on SerialATA,
1151         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1152         * spec has never mentioned about using different signatures
1153         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1154         * Multiplier specification began to use 0x69/0x96 to identify
1155         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157         * 0x69/0x96 shortly and described them as reserved for
1158         * SerialATA.
1159         *
1160         * We follow the current spec and consider that 0x69/0x96
1161         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1162         */
1163        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164                DPRINTK("found ATA device by sig\n");
1165                return ATA_DEV_ATA;
1166        }
1167
1168        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169                DPRINTK("found ATAPI device by sig\n");
1170                return ATA_DEV_ATAPI;
1171        }
1172
1173        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174                DPRINTK("found PMP device by sig\n");
1175                return ATA_DEV_PMP;
1176        }
1177
1178        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179                printk(KERN_INFO "ata: SEMB device ignored\n");
1180                return ATA_DEV_SEMB_UNSUP; /* not yet */
1181        }
1182
1183        DPRINTK("unknown device\n");
1184        return ATA_DEV_UNKNOWN;
1185}
1186
1187/**
1188 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1189 *      @id: IDENTIFY DEVICE results we will examine
1190 *      @s: string into which data is output
1191 *      @ofs: offset into identify device page
1192 *      @len: length of string to return. must be an even number.
1193 *
1194 *      The strings in the IDENTIFY DEVICE page are broken up into
1195 *      16-bit chunks.  Run through the string, and output each
1196 *      8-bit chunk linearly, regardless of platform.
1197 *
1198 *      LOCKING:
1199 *      caller.
1200 */
1201
1202void ata_id_string(const u16 *id, unsigned char *s,
1203                   unsigned int ofs, unsigned int len)
1204{
1205        unsigned int c;
1206
1207        BUG_ON(len & 1);
1208
1209        while (len > 0) {
1210                c = id[ofs] >> 8;
1211                *s = c;
1212                s++;
1213
1214                c = id[ofs] & 0xff;
1215                *s = c;
1216                s++;
1217
1218                ofs++;
1219                len -= 2;
1220        }
1221}
1222
1223/**
1224 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 *      @id: IDENTIFY DEVICE results we will examine
1226 *      @s: string into which data is output
1227 *      @ofs: offset into identify device page
1228 *      @len: length of string to return. must be an odd number.
1229 *
1230 *      This function is identical to ata_id_string except that it
1231 *      trims trailing spaces and terminates the resulting string with
1232 *      null.  @len must be actual maximum length (even number) + 1.
1233 *
1234 *      LOCKING:
1235 *      caller.
1236 */
1237void ata_id_c_string(const u16 *id, unsigned char *s,
1238                     unsigned int ofs, unsigned int len)
1239{
1240        unsigned char *p;
1241
1242        ata_id_string(id, s, ofs, len - 1);
1243
1244        p = s + strnlen(s, len - 1);
1245        while (p > s && p[-1] == ' ')
1246                p--;
1247        *p = '\0';
1248}
1249
1250static u64 ata_id_n_sectors(const u16 *id)
1251{
1252        if (ata_id_has_lba(id)) {
1253                if (ata_id_has_lba48(id))
1254                        return ata_id_u64(id, 100);
1255                else
1256                        return ata_id_u32(id, 60);
1257        } else {
1258                if (ata_id_current_chs_valid(id))
1259                        return ata_id_u32(id, 57);
1260                else
1261                        return id[1] * id[3] * id[6];
1262        }
1263}
1264
1265u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1266{
1267        u64 sectors = 0;
1268
1269        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1272        sectors |= (tf->lbah & 0xff) << 16;
1273        sectors |= (tf->lbam & 0xff) << 8;
1274        sectors |= (tf->lbal & 0xff);
1275
1276        return sectors;
1277}
1278
1279u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1280{
1281        u64 sectors = 0;
1282
1283        sectors |= (tf->device & 0x0f) << 24;
1284        sectors |= (tf->lbah & 0xff) << 16;
1285        sectors |= (tf->lbam & 0xff) << 8;
1286        sectors |= (tf->lbal & 0xff);
1287
1288        return sectors;
1289}
1290
1291/**
1292 *      ata_read_native_max_address - Read native max address
1293 *      @dev: target device
1294 *      @max_sectors: out parameter for the result native max address
1295 *
1296 *      Perform an LBA48 or LBA28 native size query upon the device in
1297 *      question.
1298 *
1299 *      RETURNS:
1300 *      0 on success, -EACCES if command is aborted by the drive.
1301 *      -EIO on other errors.
1302 */
1303static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1304{
1305        unsigned int err_mask;
1306        struct ata_taskfile tf;
1307        int lba48 = ata_id_has_lba48(dev->id);
1308
1309        ata_tf_init(dev, &tf);
1310
1311        /* always clear all address registers */
1312        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1313
1314        if (lba48) {
1315                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316                tf.flags |= ATA_TFLAG_LBA48;
1317        } else
1318                tf.command = ATA_CMD_READ_NATIVE_MAX;
1319
1320        tf.protocol |= ATA_PROT_NODATA;
1321        tf.device |= ATA_LBA;
1322
1323        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1324        if (err_mask) {
1325                ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326                               "max address (err_mask=0x%x)\n", err_mask);
1327                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328                        return -EACCES;
1329                return -EIO;
1330        }
1331
1332        if (lba48)
1333                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1334        else
1335                *max_sectors = ata_tf_to_lba(&tf) + 1;
1336        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1337                (*max_sectors)--;
1338        return 0;
1339}
1340
1341/**
1342 *      ata_set_max_sectors - Set max sectors
1343 *      @dev: target device
1344 *      @new_sectors: new max sectors value to set for the device
1345 *
1346 *      Set max sectors of @dev to @new_sectors.
1347 *
1348 *      RETURNS:
1349 *      0 on success, -EACCES if command is aborted or denied (due to
1350 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1351 *      errors.
1352 */
1353static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1354{
1355        unsigned int err_mask;
1356        struct ata_taskfile tf;
1357        int lba48 = ata_id_has_lba48(dev->id);
1358
1359        new_sectors--;
1360
1361        ata_tf_init(dev, &tf);
1362
1363        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1364
1365        if (lba48) {
1366                tf.command = ATA_CMD_SET_MAX_EXT;
1367                tf.flags |= ATA_TFLAG_LBA48;
1368
1369                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1372        } else {
1373                tf.command = ATA_CMD_SET_MAX;
1374
1375                tf.device |= (new_sectors >> 24) & 0xf;
1376        }
1377
1378        tf.protocol |= ATA_PROT_NODATA;
1379        tf.device |= ATA_LBA;
1380
1381        tf.lbal = (new_sectors >> 0) & 0xff;
1382        tf.lbam = (new_sectors >> 8) & 0xff;
1383        tf.lbah = (new_sectors >> 16) & 0xff;
1384
1385        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1386        if (err_mask) {
1387                ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388                               "max address (err_mask=0x%x)\n", err_mask);
1389                if (err_mask == AC_ERR_DEV &&
1390                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391                        return -EACCES;
1392                return -EIO;
1393        }
1394
1395        return 0;
1396}
1397
1398/**
1399 *      ata_hpa_resize          -       Resize a device with an HPA set
1400 *      @dev: Device to resize
1401 *
1402 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 *      it if required to the full size of the media. The caller must check
1404 *      the drive has the HPA feature set enabled.
1405 *
1406 *      RETURNS:
1407 *      0 on success, -errno on failure.
1408 */
1409static int ata_hpa_resize(struct ata_device *dev)
1410{
1411        struct ata_eh_context *ehc = &dev->link->eh_context;
1412        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413        u64 sectors = ata_id_n_sectors(dev->id);
1414        u64 native_sectors;
1415        int rc;
1416
1417        /* do we need to do it? */
1418        if (dev->class != ATA_DEV_ATA ||
1419            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1421                return 0;
1422
1423        /* read native max address */
1424        rc = ata_read_native_max_address(dev, &native_sectors);
1425        if (rc) {
1426                /* If device aborted the command or HPA isn't going to
1427                 * be unlocked, skip HPA resizing.
1428                 */
1429                if (rc == -EACCES || !ata_ignore_hpa) {
1430                        ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431                                       "broken, skipping HPA handling\n");
1432                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1433
1434                        /* we can continue if device aborted the command */
1435                        if (rc == -EACCES)
1436                                rc = 0;
1437                }
1438
1439                return rc;
1440        }
1441
1442        /* nothing to do? */
1443        if (native_sectors <= sectors || !ata_ignore_hpa) {
1444                if (!print_info || native_sectors == sectors)
1445                        return 0;
1446
1447                if (native_sectors > sectors)
1448                        ata_dev_printk(dev, KERN_INFO,
1449                                "HPA detected: current %llu, native %llu\n",
1450                                (unsigned long long)sectors,
1451                                (unsigned long long)native_sectors);
1452                else if (native_sectors < sectors)
1453                        ata_dev_printk(dev, KERN_WARNING,
1454                                "native sectors (%llu) is smaller than "
1455                                "sectors (%llu)\n",
1456                                (unsigned long long)native_sectors,
1457                                (unsigned long long)sectors);
1458                return 0;
1459        }
1460
1461        /* let's unlock HPA */
1462        rc = ata_set_max_sectors(dev, native_sectors);
1463        if (rc == -EACCES) {
1464                /* if device aborted the command, skip HPA resizing */
1465                ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466                               "(%llu -> %llu), skipping HPA handling\n",
1467                               (unsigned long long)sectors,
1468                               (unsigned long long)native_sectors);
1469                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470                return 0;
1471        } else if (rc)
1472                return rc;
1473
1474        /* re-read IDENTIFY data */
1475        rc = ata_dev_reread_id(dev, 0);
1476        if (rc) {
1477                ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478                               "data after HPA resizing\n");
1479                return rc;
1480        }
1481
1482        if (print_info) {
1483                u64 new_sectors = ata_id_n_sectors(dev->id);
1484                ata_dev_printk(dev, KERN_INFO,
1485                        "HPA unlocked: %llu -> %llu, native %llu\n",
1486                        (unsigned long long)sectors,
1487                        (unsigned long long)new_sectors,
1488                        (unsigned long long)native_sectors);
1489        }
1490
1491        return 0;
1492}
1493
1494/**
1495 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1496 *      @id: IDENTIFY DEVICE page to dump
1497 *
1498 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 *      page.
1500 *
1501 *      LOCKING:
1502 *      caller.
1503 */
1504
1505static inline void ata_dump_id(const u16 *id)
1506{
1507        DPRINTK("49==0x%04x  "
1508                "53==0x%04x  "
1509                "63==0x%04x  "
1510                "64==0x%04x  "
1511                "75==0x%04x  \n",
1512                id[49],
1513                id[53],
1514                id[63],
1515                id[64],
1516                id[75]);
1517        DPRINTK("80==0x%04x  "
1518                "81==0x%04x  "
1519                "82==0x%04x  "
1520                "83==0x%04x  "
1521                "84==0x%04x  \n",
1522                id[80],
1523                id[81],
1524                id[82],
1525                id[83],
1526                id[84]);
1527        DPRINTK("88==0x%04x  "
1528                "93==0x%04x\n",
1529                id[88],
1530                id[93]);
1531}
1532
1533/**
1534 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 *      @id: IDENTIFY data to compute xfer mask from
1536 *
1537 *      Compute the xfermask for this device. This is not as trivial
1538 *      as it seems if we must consider early devices correctly.
1539 *
1540 *      FIXME: pre IDE drive timing (do we care ?).
1541 *
1542 *      LOCKING:
1543 *      None.
1544 *
1545 *      RETURNS:
1546 *      Computed xfermask
1547 */
1548unsigned long ata_id_xfermask(const u16 *id)
1549{
1550        unsigned long pio_mask, mwdma_mask, udma_mask;
1551
1552        /* Usual case. Word 53 indicates word 64 is valid */
1553        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555                pio_mask <<= 3;
1556                pio_mask |= 0x7;
1557        } else {
1558                /* If word 64 isn't valid then Word 51 high byte holds
1559                 * the PIO timing number for the maximum. Turn it into
1560                 * a mask.
1561                 */
1562                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563                if (mode < 5)   /* Valid PIO range */
1564                        pio_mask = (2 << mode) - 1;
1565                else
1566                        pio_mask = 1;
1567
1568                /* But wait.. there's more. Design your standards by
1569                 * committee and you too can get a free iordy field to
1570                 * process. However its the speeds not the modes that
1571                 * are supported... Note drivers using the timing API
1572                 * will get this right anyway
1573                 */
1574        }
1575
1576        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1577
1578        if (ata_id_is_cfa(id)) {
1579                /*
1580                 *      Process compact flash extended modes
1581                 */
1582                int pio = id[163] & 0x7;
1583                int dma = (id[163] >> 3) & 7;
1584
1585                if (pio)
1586                        pio_mask |= (1 << 5);
1587                if (pio > 1)
1588                        pio_mask |= (1 << 6);
1589                if (dma)
1590                        mwdma_mask |= (1 << 3);
1591                if (dma > 1)
1592                        mwdma_mask |= (1 << 4);
1593        }
1594
1595        udma_mask = 0;
1596        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1598
1599        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1600}
1601
1602/**
1603 *      ata_pio_queue_task - Queue port_task
1604 *      @ap: The ata_port to queue port_task for
1605 *      @data: data for @fn to use
1606 *      @delay: delay time in msecs for workqueue function
1607 *
1608 *      Schedule @fn(@data) for execution after @delay jiffies using
1609 *      port_task.  There is one port_task per port and it's the
1610 *      user(low level driver)'s responsibility to make sure that only
1611 *      one task is active at any given time.
1612 *
1613 *      libata core layer takes care of synchronization between
1614 *      port_task and EH.  ata_pio_queue_task() may be ignored for EH
1615 *      synchronization.
1616 *
1617 *      LOCKING:
1618 *      Inherited from caller.
1619 */
1620void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1621{
1622        ap->port_task_data = data;
1623
1624        /* may fail if ata_port_flush_task() in progress */
1625        queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1626}
1627
1628/**
1629 *      ata_port_flush_task - Flush port_task
1630 *      @ap: The ata_port to flush port_task for
1631 *
1632 *      After this function completes, port_task is guranteed not to
1633 *      be running or scheduled.
1634 *
1635 *      LOCKING:
1636 *      Kernel thread context (may sleep)
1637 */
1638void ata_port_flush_task(struct ata_port *ap)
1639{
1640        DPRINTK("ENTER\n");
1641
1642        cancel_rearming_delayed_work(&ap->port_task);
1643
1644        if (ata_msg_ctl(ap))
1645                ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1646}
1647
1648static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1649{
1650        struct completion *waiting = qc->private_data;
1651
1652        complete(waiting);
1653}
1654
1655/**
1656 *      ata_exec_internal_sg - execute libata internal command
1657 *      @dev: Device to which the command is sent
1658 *      @tf: Taskfile registers for the command and the result
1659 *      @cdb: CDB for packet command
1660 *      @dma_dir: Data tranfer direction of the command
1661 *      @sgl: sg list for the data buffer of the command
1662 *      @n_elem: Number of sg entries
1663 *      @timeout: Timeout in msecs (0 for default)
1664 *
1665 *      Executes libata internal command with timeout.  @tf contains
1666 *      command on entry and result on return.  Timeout and error
1667 *      conditions are reported via return value.  No recovery action
1668 *      is taken after a command times out.  It's caller's duty to
1669 *      clean up after timeout.
1670 *
1671 *      LOCKING:
1672 *      None.  Should be called with kernel context, might sleep.
1673 *
1674 *      RETURNS:
1675 *      Zero on success, AC_ERR_* mask on failure
1676 */
1677unsigned ata_exec_internal_sg(struct ata_device *dev,
1678                              struct ata_taskfile *tf, const u8 *cdb,
1679                              int dma_dir, struct scatterlist *sgl,
1680                              unsigned int n_elem, unsigned long timeout)
1681{
1682        struct ata_link *link = dev->link;
1683        struct ata_port *ap = link->ap;
1684        u8 command = tf->command;
1685        int auto_timeout = 0;
1686        struct ata_queued_cmd *qc;
1687        unsigned int tag, preempted_tag;
1688        u32 preempted_sactive, preempted_qc_active;
1689        int preempted_nr_active_links;
1690        DECLARE_COMPLETION_ONSTACK(wait);
1691        unsigned long flags;
1692        unsigned int err_mask;
1693        int rc;
1694
1695        spin_lock_irqsave(ap->lock, flags);
1696
1697        /* no internal command while frozen */
1698        if (ap->pflags & ATA_PFLAG_FROZEN) {
1699                spin_unlock_irqrestore(ap->lock, flags);
1700                return AC_ERR_SYSTEM;
1701        }
1702
1703        /* initialize internal qc */
1704
1705        /* XXX: Tag 0 is used for drivers with legacy EH as some
1706         * drivers choke if any other tag is given.  This breaks
1707         * ata_tag_internal() test for those drivers.  Don't use new
1708         * EH stuff without converting to it.
1709         */
1710        if (ap->ops->error_handler)
1711                tag = ATA_TAG_INTERNAL;
1712        else
1713                tag = 0;
1714
1715        if (test_and_set_bit(tag, &ap->qc_allocated))
1716                BUG();
1717        qc = __ata_qc_from_tag(ap, tag);
1718
1719        qc->tag = tag;
1720        qc->scsicmd = NULL;
1721        qc->ap = ap;
1722        qc->dev = dev;
1723        ata_qc_reinit(qc);
1724
1725        preempted_tag = link->active_tag;
1726        preempted_sactive = link->sactive;
1727        preempted_qc_active = ap->qc_active;
1728        preempted_nr_active_links = ap->nr_active_links;
1729        link->active_tag = ATA_TAG_POISON;
1730        link->sactive = 0;
1731        ap->qc_active = 0;
1732        ap->nr_active_links = 0;
1733
1734        /* prepare & issue qc */
1735        qc->tf = *tf;
1736        if (cdb)
1737                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1738        qc->flags |= ATA_QCFLAG_RESULT_TF;
1739        qc->dma_dir = dma_dir;
1740        if (dma_dir != DMA_NONE) {
1741                unsigned int i, buflen = 0;
1742                struct scatterlist *sg;
1743
1744                for_each_sg(sgl, sg, n_elem, i)
1745                        buflen += sg->length;
1746
1747                ata_sg_init(qc, sgl, n_elem);
1748                qc->nbytes = buflen;
1749        }
1750
1751        qc->private_data = &wait;
1752        qc->complete_fn = ata_qc_complete_internal;
1753
1754        ata_qc_issue(qc);
1755
1756        spin_unlock_irqrestore(ap->lock, flags);
1757
1758        if (!timeout) {
1759                if (ata_probe_timeout)
1760                        timeout = ata_probe_timeout * 1000;
1761                else {
1762                        timeout = ata_internal_cmd_timeout(dev, command);
1763                        auto_timeout = 1;
1764                }
1765        }
1766
1767        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1768
1769        ata_port_flush_task(ap);
1770
1771        if (!rc) {
1772                spin_lock_irqsave(ap->lock, flags);
1773
1774                /* We're racing with irq here.  If we lose, the
1775                 * following test prevents us from completing the qc
1776                 * twice.  If we win, the port is frozen and will be
1777                 * cleaned up by ->post_internal_cmd().
1778                 */
1779                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1780                        qc->err_mask |= AC_ERR_TIMEOUT;
1781
1782                        if (ap->ops->error_handler)
1783                                ata_port_freeze(ap);
1784                        else
1785                                ata_qc_complete(qc);
1786
1787                        if (ata_msg_warn(ap))
1788                                ata_dev_printk(dev, KERN_WARNING,
1789                                        "qc timeout (cmd 0x%x)\n", command);
1790                }
1791
1792                spin_unlock_irqrestore(ap->lock, flags);
1793        }
1794
1795        /* do post_internal_cmd */
1796        if (ap->ops->post_internal_cmd)
1797                ap->ops->post_internal_cmd(qc);
1798
1799        /* perform minimal error analysis */
1800        if (qc->flags & ATA_QCFLAG_FAILED) {
1801                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1802                        qc->err_mask |= AC_ERR_DEV;
1803
1804                if (!qc->err_mask)
1805                        qc->err_mask |= AC_ERR_OTHER;
1806
1807                if (qc->err_mask & ~AC_ERR_OTHER)
1808                        qc->err_mask &= ~AC_ERR_OTHER;
1809        }
1810
1811        /* finish up */
1812        spin_lock_irqsave(ap->lock, flags);
1813
1814        *tf = qc->result_tf;
1815        err_mask = qc->err_mask;
1816
1817        ata_qc_free(qc);
1818        link->active_tag = preempted_tag;
1819        link->sactive = preempted_sactive;
1820        ap->qc_active = preempted_qc_active;
1821        ap->nr_active_links = preempted_nr_active_links;
1822
1823        /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1824         * Until those drivers are fixed, we detect the condition
1825         * here, fail the command with AC_ERR_SYSTEM and reenable the
1826         * port.
1827         *
1828         * Note that this doesn't change any behavior as internal
1829         * command failure results in disabling the device in the
1830         * higher layer for LLDDs without new reset/EH callbacks.
1831         *
1832         * Kill the following code as soon as those drivers are fixed.
1833         */
1834        if (ap->flags & ATA_FLAG_DISABLED) {
1835                err_mask |= AC_ERR_SYSTEM;
1836                ata_port_probe(ap);
1837        }
1838
1839        spin_unlock_irqrestore(ap->lock, flags);
1840
1841        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1842                ata_internal_cmd_timed_out(dev, command);
1843
1844        return err_mask;
1845}
1846
1847/**
1848 *      ata_exec_internal - execute libata internal command
1849 *      @dev: Device to which the command is sent
1850 *      @tf: Taskfile registers for the command and the result
1851 *      @cdb: CDB for packet command
1852 *      @dma_dir: Data tranfer direction of the command
1853 *      @buf: Data buffer of the command
1854 *      @buflen: Length of data buffer
1855 *      @timeout: Timeout in msecs (0 for default)
1856 *
1857 *      Wrapper around ata_exec_internal_sg() which takes simple
1858 *      buffer instead of sg list.
1859 *
1860 *      LOCKING:
1861 *      None.  Should be called with kernel context, might sleep.
1862 *
1863 *      RETURNS:
1864 *      Zero on success, AC_ERR_* mask on failure
1865 */
1866unsigned ata_exec_internal(struct ata_device *dev,
1867                           struct ata_taskfile *tf, const u8 *cdb,
1868                           int dma_dir, void *buf, unsigned int buflen,
1869                           unsigned long timeout)
1870{
1871        struct scatterlist *psg = NULL, sg;
1872        unsigned int n_elem = 0;
1873
1874        if (dma_dir != DMA_NONE) {
1875                WARN_ON(!buf);
1876                sg_init_one(&sg, buf, buflen);
1877                psg = &sg;
1878                n_elem++;
1879        }
1880
1881        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1882                                    timeout);
1883}
1884
1885/**
1886 *      ata_do_simple_cmd - execute simple internal command
1887 *      @dev: Device to which the command is sent
1888 *      @cmd: Opcode to execute
1889 *
1890 *      Execute a 'simple' command, that only consists of the opcode
1891 *      'cmd' itself, without filling any other registers
1892 *
1893 *      LOCKING:
1894 *      Kernel thread context (may sleep).
1895 *
1896 *      RETURNS:
1897 *      Zero on success, AC_ERR_* mask on failure
1898 */
1899unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1900{
1901        struct ata_taskfile tf;
1902
1903        ata_tf_init(dev, &tf);
1904
1905        tf.command = cmd;
1906        tf.flags |= ATA_TFLAG_DEVICE;
1907        tf.protocol = ATA_PROT_NODATA;
1908
1909        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1910}
1911
1912/**
1913 *      ata_pio_need_iordy      -       check if iordy needed
1914 *      @adev: ATA device
1915 *
1916 *      Check if the current speed of the device requires IORDY. Used
1917 *      by various controllers for chip configuration.
1918 */
1919
1920unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1921{
1922        /* Controller doesn't support  IORDY. Probably a pointless check
1923           as the caller should know this */
1924        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1925                return 0;
1926        /* PIO3 and higher it is mandatory */
1927        if (adev->pio_mode > XFER_PIO_2)
1928                return 1;
1929        /* We turn it on when possible */
1930        if (ata_id_has_iordy(adev->id))
1931                return 1;
1932        return 0;
1933}
1934
1935/**
1936 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1937 *      @adev: ATA device
1938 *
1939 *      Compute the highest mode possible if we are not using iordy. Return
1940 *      -1 if no iordy mode is available.
1941 */
1942
1943static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1944{
1945        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1946        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1947                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1948                /* Is the speed faster than the drive allows non IORDY ? */
1949                if (pio) {
1950                        /* This is cycle times not frequency - watch the logic! */
1951                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1952                                return 3 << ATA_SHIFT_PIO;
1953                        return 7 << ATA_SHIFT_PIO;
1954                }
1955        }
1956        return 3 << ATA_SHIFT_PIO;
1957}
1958
1959/**
1960 *      ata_do_dev_read_id              -       default ID read method
1961 *      @dev: device
1962 *      @tf: proposed taskfile
1963 *      @id: data buffer
1964 *
1965 *      Issue the identify taskfile and hand back the buffer containing
1966 *      identify data. For some RAID controllers and for pre ATA devices
1967 *      this function is wrapped or replaced by the driver
1968 */
1969unsigned int ata_do_dev_read_id(struct ata_device *dev,
1970                                        struct ata_taskfile *tf, u16 *id)
1971{
1972        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1973                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1974}
1975
1976/**
1977 *      ata_dev_read_id - Read ID data from the specified device
1978 *      @dev: target device
1979 *      @p_class: pointer to class of the target device (may be changed)
1980 *      @flags: ATA_READID_* flags
1981 *      @id: buffer to read IDENTIFY data into
1982 *
1983 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1984 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1985 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1986 *      for pre-ATA4 drives.
1987 *
1988 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1989 *      now we abort if we hit that case.
1990 *
1991 *      LOCKING:
1992 *      Kernel thread context (may sleep)
1993 *
1994 *      RETURNS:
1995 *      0 on success, -errno otherwise.
1996 */
1997int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1998                    unsigned int flags, u16 *id)
1999{
2000        struct ata_port *ap = dev->link->ap;
2001        unsigned int class = *p_class;
2002        struct ata_taskfile tf;
2003        unsigned int err_mask = 0;
2004        const char *reason;
2005        int may_fallback = 1, tried_spinup = 0;
2006        int rc;
2007
2008        if (ata_msg_ctl(ap))
2009                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2010
2011retry:
2012        ata_tf_init(dev, &tf);
2013
2014        switch (class) {
2015        case ATA_DEV_ATA:
2016                tf.command = ATA_CMD_ID_ATA;
2017                break;
2018        case ATA_DEV_ATAPI:
2019                tf.command = ATA_CMD_ID_ATAPI;
2020                break;
2021        default:
2022                rc = -ENODEV;
2023                reason = "unsupported class";
2024                goto err_out;
2025        }
2026
2027        tf.protocol = ATA_PROT_PIO;
2028
2029        /* Some devices choke if TF registers contain garbage.  Make
2030         * sure those are properly initialized.
2031         */
2032        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2033
2034        /* Device presence detection is unreliable on some
2035         * controllers.  Always poll IDENTIFY if available.
2036         */
2037        tf.flags |= ATA_TFLAG_POLLING;
2038
2039        if (ap->ops->read_id)
2040                err_mask = ap->ops->read_id(dev, &tf, id);
2041        else
2042                err_mask = ata_do_dev_read_id(dev, &tf, id);
2043
2044        if (err_mask) {
2045                if (err_mask & AC_ERR_NODEV_HINT) {
2046                        ata_dev_printk(dev, KERN_DEBUG,
2047                                       "NODEV after polling detection\n");
2048                        return -ENOENT;
2049                }
2050
2051                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2052                        /* Device or controller might have reported
2053                         * the wrong device class.  Give a shot at the
2054                         * other IDENTIFY if the current one is
2055                         * aborted by the device.
2056                         */
2057                        if (may_fallback) {
2058                                may_fallback = 0;
2059
2060                                if (class == ATA_DEV_ATA)
2061                                        class = ATA_DEV_ATAPI;
2062                                else
2063                                        class = ATA_DEV_ATA;
2064                                goto retry;
2065                        }
2066
2067                        /* Control reaches here iff the device aborted
2068                         * both flavors of IDENTIFYs which happens
2069                         * sometimes with phantom devices.
2070                         */
2071                        ata_dev_printk(dev, KERN_DEBUG,
2072                                       "both IDENTIFYs aborted, assuming NODEV\n");
2073                        return -ENOENT;
2074                }
2075
2076                rc = -EIO;
2077                reason = "I/O error";
2078                goto err_out;
2079        }
2080
2081        /* Falling back doesn't make sense if ID data was read
2082         * successfully at least once.
2083         */
2084        may_fallback = 0;
2085
2086        swap_buf_le16(id, ATA_ID_WORDS);
2087
2088        /* sanity check */
2089        rc = -EINVAL;
2090        reason = "device reports invalid type";
2091
2092        if (class == ATA_DEV_ATA) {
2093                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2094                        goto err_out;
2095        } else {
2096                if (ata_id_is_ata(id))
2097                        goto err_out;
2098        }
2099
2100        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2101                tried_spinup = 1;
2102                /*
2103                 * Drive powered-up in standby mode, and requires a specific
2104                 * SET_FEATURES spin-up subcommand before it will accept
2105                 * anything other than the original IDENTIFY command.
2106                 */
2107                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2108                if (err_mask && id[2] != 0x738c) {
2109                        rc = -EIO;
2110                        reason = "SPINUP failed";
2111                        goto err_out;
2112                }
2113                /*
2114                 * If the drive initially returned incomplete IDENTIFY info,
2115                 * we now must reissue the IDENTIFY command.
2116                 */
2117                if (id[2] == 0x37c8)
2118                        goto retry;
2119        }
2120
2121        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2122                /*
2123                 * The exact sequence expected by certain pre-ATA4 drives is:
2124                 * SRST RESET
2125                 * IDENTIFY (optional in early ATA)
2126                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2127                 * anything else..
2128                 * Some drives were very specific about that exact sequence.
2129                 *
2130                 * Note that ATA4 says lba is mandatory so the second check
2131                 * shoud never trigger.
2132                 */
2133                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2134                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2135                        if (err_mask) {
2136                                rc = -EIO;
2137                                reason = "INIT_DEV_PARAMS failed";
2138                                goto err_out;
2139                        }
2140
2141                        /* current CHS translation info (id[53-58]) might be
2142                         * changed. reread the identify device info.
2143                         */
2144                        flags &= ~ATA_READID_POSTRESET;
2145                        goto retry;
2146                }
2147        }
2148
2149        *p_class = class;
2150
2151        return 0;
2152
2153 err_out:
2154        if (ata_msg_warn(ap))
2155                ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2156                               "(%s, err_mask=0x%x)\n", reason, err_mask);
2157        return rc;
2158}
2159
2160static inline u8 ata_dev_knobble(struct ata_device *dev)
2161{
2162        struct ata_port *ap = dev->link->ap;
2163
2164        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2165                return 0;
2166
2167        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2168}
2169
2170static void ata_dev_config_ncq(struct ata_device *dev,
2171                               char *desc, size_t desc_sz)
2172{
2173        struct ata_port *ap = dev->link->ap;
2174        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2175
2176        if (!ata_id_has_ncq(dev->id)) {
2177                desc[0] = '\0';
2178                return;
2179        }
2180        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2181                snprintf(desc, desc_sz, "NCQ (not used)");
2182                return;
2183        }
2184        if (ap->flags & ATA_FLAG_NCQ) {
2185                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2186                dev->flags |= ATA_DFLAG_NCQ;
2187        }
2188
2189        if (hdepth >= ddepth)
2190                snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2191        else
2192                snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2193}
2194
2195/**
2196 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2197 *      @dev: Target device to configure
2198 *
2199 *      Configure @dev according to @dev->id.  Generic and low-level
2200 *      driver specific fixups are also applied.
2201 *
2202 *      LOCKING:
2203 *      Kernel thread context (may sleep)
2204 *
2205 *      RETURNS:
2206 *      0 on success, -errno otherwise
2207 */
2208int ata_dev_configure(struct ata_device *dev)
2209{
2210        struct ata_port *ap = dev->link->ap;
2211        struct ata_eh_context *ehc = &dev->link->eh_context;
2212        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2213        const u16 *id = dev->id;
2214        unsigned long xfer_mask;
2215        char revbuf[7];         /* XYZ-99\0 */
2216        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2217        char modelbuf[ATA_ID_PROD_LEN+1];
2218        int rc;
2219
2220        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2221                ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2222                               __func__);
2223                return 0;
2224        }
2225
2226        if (ata_msg_probe(ap))
2227                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2228
2229        /* set horkage */
2230        dev->horkage |= ata_dev_blacklisted(dev);
2231        ata_force_horkage(dev);
2232
2233        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2234                ata_dev_printk(dev, KERN_INFO,
2235                               "unsupported device, disabling\n");
2236                ata_dev_disable(dev);
2237                return 0;
2238        }
2239
2240        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2241            dev->class == ATA_DEV_ATAPI) {
2242                ata_dev_printk(dev, KERN_WARNING,
2243                        "WARNING: ATAPI is %s, device ignored.\n",
2244                        atapi_enabled ? "not supported with this driver"
2245                                      : "disabled");
2246                ata_dev_disable(dev);
2247                return 0;
2248        }
2249
2250        /* let ACPI work its magic */
2251        rc = ata_acpi_on_devcfg(dev);
2252        if (rc)
2253                return rc;
2254
2255        /* massage HPA, do it early as it might change IDENTIFY data */
2256        rc = ata_hpa_resize(dev);
2257        if (rc)
2258                return rc;
2259
2260        /* print device capabilities */
2261        if (ata_msg_probe(ap))
2262                ata_dev_printk(dev, KERN_DEBUG,
2263                               "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2264                               "85:%04x 86:%04x 87:%04x 88:%04x\n",
2265                               __func__,
2266                               id[49], id[82], id[83], id[84],
2267                               id[85], id[86], id[87], id[88]);
2268
2269        /* initialize to-be-configured parameters */
2270        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2271        dev->max_sectors = 0;
2272        dev->cdb_len = 0;
2273        dev->n_sectors = 0;
2274        dev->cylinders = 0;
2275        dev->heads = 0;
2276        dev->sectors = 0;
2277
2278        /*
2279         * common ATA, ATAPI feature tests
2280         */
2281
2282        /* find max transfer mode; for printk only */
2283        xfer_mask = ata_id_xfermask(id);
2284
2285        if (ata_msg_probe(ap))
2286                ata_dump_id(id);
2287
2288        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2289        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2290                        sizeof(fwrevbuf));
2291
2292        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2293                        sizeof(modelbuf));
2294
2295        /* ATA-specific feature tests */
2296        if (dev->class == ATA_DEV_ATA) {
2297                if (ata_id_is_cfa(id)) {
2298                        if (id[162] & 1) /* CPRM may make this media unusable */
2299                                ata_dev_printk(dev, KERN_WARNING,
2300                                               "supports DRM functions and may "
2301                                               "not be fully accessable.\n");
2302                        snprintf(revbuf, 7, "CFA");
2303                } else {
2304                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2305                        /* Warn the user if the device has TPM extensions */
2306                        if (ata_id_has_tpm(id))
2307                                ata_dev_printk(dev, KERN_WARNING,
2308                                               "supports DRM functions and may "
2309                                               "not be fully accessable.\n");
2310                }
2311
2312                dev->n_sectors = ata_id_n_sectors(id);
2313
2314                if (dev->id[59] & 0x100)
2315                        dev->multi_count = dev->id[59] & 0xff;
2316
2317                if (ata_id_has_lba(id)) {
2318                        const char *lba_desc;
2319                        char ncq_desc[20];
2320
2321                        lba_desc = "LBA";
2322                        dev->flags |= ATA_DFLAG_LBA;
2323                        if (ata_id_has_lba48(id)) {
2324                                dev->flags |= ATA_DFLAG_LBA48;
2325                                lba_desc = "LBA48";
2326
2327                                if (dev->n_sectors >= (1UL << 28) &&
2328                                    ata_id_has_flush_ext(id))
2329                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2330                        }
2331
2332                        /* config NCQ */
2333                        ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2334
2335                        /* print device info to dmesg */
2336                        if (ata_msg_drv(ap) && print_info) {
2337                                ata_dev_printk(dev, KERN_INFO,
2338                                        "%s: %s, %s, max %s\n",
2339                                        revbuf, modelbuf, fwrevbuf,
2340                                        ata_mode_string(xfer_mask));
2341                                ata_dev_printk(dev, KERN_INFO,
2342                                        "%Lu sectors, multi %u: %s %s\n",
2343                                        (unsigned long long)dev->n_sectors,
2344                                        dev->multi_count, lba_desc, ncq_desc);
2345                        }
2346                } else {
2347                        /* CHS */
2348
2349                        /* Default translation */
2350                        dev->cylinders  = id[1];
2351                        dev->heads      = id[3];
2352                        dev->sectors    = id[6];
2353
2354                        if (ata_id_current_chs_valid(id)) {
2355                                /* Current CHS translation is valid. */
2356                                dev->cylinders = id[54];
2357                                dev->heads     = id[55];
2358                                dev->sectors   = id[56];
2359                        }
2360
2361                        /* print device info to dmesg */
2362                        if (ata_msg_drv(ap) && print_info) {
2363                                ata_dev_printk(dev, KERN_INFO,
2364                                        "%s: %s, %s, max %s\n",
2365                                        revbuf, modelbuf, fwrevbuf,
2366                                        ata_mode_string(xfer_mask));
2367                                ata_dev_printk(dev, KERN_INFO,
2368                                        "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2369                                        (unsigned long long)dev->n_sectors,
2370                                        dev->multi_count, dev->cylinders,
2371                                        dev->heads, dev->sectors);
2372                        }
2373                }
2374
2375                dev->cdb_len = 16;
2376        }
2377
2378        /* ATAPI-specific feature tests */
2379        else if (dev->class == ATA_DEV_ATAPI) {
2380                const char *cdb_intr_string = "";
2381                const char *atapi_an_string = "";
2382                const char *dma_dir_string = "";
2383                u32 sntf;
2384
2385                rc = atapi_cdb_len(id);
2386                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2387                        if (ata_msg_warn(ap))
2388                                ata_dev_printk(dev, KERN_WARNING,
2389                                               "unsupported CDB len\n");
2390                        rc = -EINVAL;
2391                        goto err_out_nosup;
2392                }
2393                dev->cdb_len = (unsigned int) rc;
2394
2395                /* Enable ATAPI AN if both the host and device have
2396                 * the support.  If PMP is attached, SNTF is required
2397                 * to enable ATAPI AN to discern between PHY status
2398                 * changed notifications and ATAPI ANs.
2399                 */
2400                if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2401                    (!sata_pmp_attached(ap) ||
2402                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2403                        unsigned int err_mask;
2404
2405                        /* issue SET feature command to turn this on */
2406                        err_mask = ata_dev_set_feature(dev,
2407                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2408                        if (err_mask)
2409                                ata_dev_printk(dev, KERN_ERR,
2410                                        "failed to enable ATAPI AN "
2411                                        "(err_mask=0x%x)\n", err_mask);
2412                        else {
2413                                dev->flags |= ATA_DFLAG_AN;
2414                                atapi_an_string = ", ATAPI AN";
2415                        }
2416                }
2417
2418                if (ata_id_cdb_intr(dev->id)) {
2419                        dev->flags |= ATA_DFLAG_CDB_INTR;
2420                        cdb_intr_string = ", CDB intr";
2421                }
2422
2423                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2424                        dev->flags |= ATA_DFLAG_DMADIR;
2425                        dma_dir_string = ", DMADIR";
2426                }
2427
2428                /* print device info to dmesg */
2429                if (ata_msg_drv(ap) && print_info)
2430                        ata_dev_printk(dev, KERN_INFO,
2431                                       "ATAPI: %s, %s, max %s%s%s%s\n",
2432                                       modelbuf, fwrevbuf,
2433                                       ata_mode_string(xfer_mask),
2434                                       cdb_intr_string, atapi_an_string,
2435                                       dma_dir_string);
2436        }
2437
2438        /* determine max_sectors */
2439        dev->max_sectors = ATA_MAX_SECTORS;
2440        if (dev->flags & ATA_DFLAG_LBA48)
2441                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2442
2443        if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2444                if (ata_id_has_hipm(dev->id))
2445                        dev->flags |= ATA_DFLAG_HIPM;
2446                if (ata_id_has_dipm(dev->id))
2447                        dev->flags |= ATA_DFLAG_DIPM;
2448        }
2449
2450        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2451           200 sectors */
2452        if (ata_dev_knobble(dev)) {
2453                if (ata_msg_drv(ap) && print_info)
2454                        ata_dev_printk(dev, KERN_INFO,
2455                                       "applying bridge limits\n");
2456                dev->udma_mask &= ATA_UDMA5;
2457                dev->max_sectors = ATA_MAX_SECTORS;
2458        }
2459
2460        if ((dev->class == ATA_DEV_ATAPI) &&
2461            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2462                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2463                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2464        }
2465
2466        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2467                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2468                                         dev->max_sectors);
2469
2470        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2471                dev->horkage |= ATA_HORKAGE_IPM;
2472
2473                /* reset link pm_policy for this port to no pm */
2474                ap->pm_policy = MAX_PERFORMANCE;
2475        }
2476
2477        if (ap->ops->dev_config)
2478                ap->ops->dev_config(dev);
2479
2480        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2481                /* Let the user know. We don't want to disallow opens for
2482                   rescue purposes, or in case the vendor is just a blithering
2483                   idiot. Do this after the dev_config call as some controllers
2484                   with buggy firmware may want to avoid reporting false device
2485                   bugs */
2486
2487                if (print_info) {
2488                        ata_dev_printk(dev, KERN_WARNING,
2489"Drive reports diagnostics failure. This may indicate a drive\n");
2490                        ata_dev_printk(dev, KERN_WARNING,
2491"fault or invalid emulation. Contact drive vendor for information.\n");
2492                }
2493        }
2494
2495        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2496                ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2497                               "firmware update to be fully functional.\n");
2498                ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2499                               "or visit http://ata.wiki.kernel.org.\n");
2500        }
2501
2502        return 0;
2503
2504err_out_nosup:
2505        if (ata_msg_probe(ap))
2506                ata_dev_printk(dev, KERN_DEBUG,
2507                               "%s: EXIT, err\n", __func__);
2508        return rc;
2509}
2510
2511/**
2512 *      ata_cable_40wire        -       return 40 wire cable type
2513 *      @ap: port
2514 *
2515 *      Helper method for drivers which want to hardwire 40 wire cable
2516 *      detection.
2517 */
2518
2519int ata_cable_40wire(struct ata_port *ap)
2520{
2521        return ATA_CBL_PATA40;
2522}
2523
2524/**
2525 *      ata_cable_80wire        -       return 80 wire cable type
2526 *      @ap: port
2527 *
2528 *      Helper method for drivers which want to hardwire 80 wire cable
2529 *      detection.
2530 */
2531
2532int ata_cable_80wire(struct ata_port *ap)
2533{
2534        return ATA_CBL_PATA80;
2535}
2536
2537/**
2538 *      ata_cable_unknown       -       return unknown PATA cable.
2539 *      @ap: port
2540 *
2541 *      Helper method for drivers which have no PATA cable detection.
2542 */
2543
2544int ata_cable_unknown(struct ata_port *ap)
2545{
2546        return ATA_CBL_PATA_UNK;
2547}
2548
2549/**
2550 *      ata_cable_ignore        -       return ignored PATA cable.
2551 *      @ap: port
2552 *
2553 *      Helper method for drivers which don't use cable type to limit
2554 *      transfer mode.
2555 */
2556int ata_cable_ignore(struct ata_port *ap)
2557{
2558        return ATA_CBL_PATA_IGN;
2559}
2560
2561/**
2562 *      ata_cable_sata  -       return SATA cable type
2563 *      @ap: port
2564 *
2565 *      Helper method for drivers which have SATA cables
2566 */
2567
2568int ata_cable_sata(struct ata_port *ap)
2569{
2570        return ATA_CBL_SATA;
2571}
2572
2573/**
2574 *      ata_bus_probe - Reset and probe ATA bus
2575 *      @ap: Bus to probe
2576 *
2577 *      Master ATA bus probing function.  Initiates a hardware-dependent
2578 *      bus reset, then attempts to identify any devices found on
2579 *      the bus.
2580 *
2581 *      LOCKING:
2582 *      PCI/etc. bus probe sem.
2583 *
2584 *      RETURNS:
2585 *      Zero on success, negative errno otherwise.
2586 */
2587
2588int ata_bus_probe(struct ata_port *ap)
2589{
2590        unsigned int classes[ATA_MAX_DEVICES];
2591        int tries[ATA_MAX_DEVICES];
2592        int rc;
2593        struct ata_device *dev;
2594
2595        ata_port_probe(ap);
2596
2597        ata_link_for_each_dev(dev, &ap->link)
2598                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2599
2600 retry:
2601        ata_link_for_each_dev(dev, &ap->link) {
2602                /* If we issue an SRST then an ATA drive (not ATAPI)
2603                 * may change configuration and be in PIO0 timing. If
2604                 * we do a hard reset (or are coming from power on)
2605                 * this is true for ATA or ATAPI. Until we've set a
2606                 * suitable controller mode we should not touch the
2607                 * bus as we may be talking too fast.
2608                 */
2609                dev->pio_mode = XFER_PIO_0;
2610
2611                /* If the controller has a pio mode setup function
2612                 * then use it to set the chipset to rights. Don't
2613                 * touch the DMA setup as that will be dealt with when
2614                 * configuring devices.
2615                 */
2616                if (ap->ops->set_piomode)
2617                        ap->ops->set_piomode(ap, dev);
2618        }
2619
2620        /* reset and determine device classes */
2621        ap->ops->phy_reset(ap);
2622
2623        ata_link_for_each_dev(dev, &ap->link) {
2624                if (!(ap->flags & ATA_FLAG_DISABLED) &&
2625                    dev->class != ATA_DEV_UNKNOWN)
2626                        classes[dev->devno] = dev->class;
2627                else
2628                        classes[dev->devno] = ATA_DEV_NONE;
2629
2630                dev->class = ATA_DEV_UNKNOWN;
2631        }
2632
2633        ata_port_probe(ap);
2634
2635        /* read IDENTIFY page and configure devices. We have to do the identify
2636           specific sequence bass-ackwards so that PDIAG- is released by
2637           the slave device */
2638
2639        ata_link_for_each_dev_reverse(dev, &ap->link) {
2640                if (tries[dev->devno])
2641                        dev->class = classes[dev->devno];
2642
2643                if (!ata_dev_enabled(dev))
2644                        continue;
2645
2646                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647                                     dev->id);
2648                if (rc)
2649                        goto fail;
2650        }
2651
2652        /* Now ask for the cable type as PDIAG- should have been released */
2653        if (ap->ops->cable_detect)
2654                ap->cbl = ap->ops->cable_detect(ap);
2655
2656        /* We may have SATA bridge glue hiding here irrespective of the
2657           reported cable types and sensed types */
2658        ata_link_for_each_dev(dev, &ap->link) {
2659                if (!ata_dev_enabled(dev))
2660                        continue;
2661                /* SATA drives indicate we have a bridge. We don't know which
2662                   end of the link the bridge is which is a problem */
2663                if (ata_id_is_sata(dev->id))
2664                        ap->cbl = ATA_CBL_SATA;
2665        }
2666
2667        /* After the identify sequence we can now set up the devices. We do
2668           this in the normal order so that the user doesn't get confused */
2669
2670        ata_link_for_each_dev(dev, &ap->link) {
2671                if (!ata_dev_enabled(dev))
2672                        continue;
2673
2674                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2675                rc = ata_dev_configure(dev);
2676                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2677                if (rc)
2678                        goto fail;
2679        }
2680
2681        /* configure transfer mode */
2682        rc = ata_set_mode(&ap->link, &dev);
2683        if (rc)
2684                goto fail;
2685
2686        ata_link_for_each_dev(dev, &ap->link)
2687                if (ata_dev_enabled(dev))
2688                        return 0;
2689
2690        /* no device present, disable port */
2691        ata_port_disable(ap);
2692        return -ENODEV;
2693
2694 fail:
2695        tries[dev->devno]--;
2696
2697        switch (rc) {
2698        case -EINVAL:
2699                /* eeek, something went very wrong, give up */
2700                tries[dev->devno] = 0;
2701                break;
2702
2703        case -ENODEV:
2704                /* give it just one more chance */
2705                tries[dev->devno] = min(tries[dev->devno], 1);
2706        case -EIO:
2707                if (tries[dev->devno] == 1) {
2708                        /* This is the last chance, better to slow
2709                         * down than lose it.
2710                         */
2711                        sata_down_spd_limit(&ap->link);
2712                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2713                }
2714        }
2715
2716        if (!tries[dev->devno])
2717                ata_dev_disable(dev);
2718
2719        goto retry;
2720}
2721
2722/**
2723 *      ata_port_probe - Mark port as enabled
2724 *      @ap: Port for which we indicate enablement
2725 *
2726 *      Modify @ap data structure such that the system
2727 *      thinks that the entire port is enabled.
2728 *
2729 *      LOCKING: host lock, or some other form of
2730 *      serialization.
2731 */
2732
2733void ata_port_probe(struct ata_port *ap)
2734{
2735        ap->flags &= ~ATA_FLAG_DISABLED;
2736}
2737
2738/**
2739 *      sata_print_link_status - Print SATA link status
2740 *      @link: SATA link to printk link status about
2741 *
2742 *      This function prints link speed and status of a SATA link.
2743 *
2744 *      LOCKING:
2745 *      None.
2746 */
2747static void sata_print_link_status(struct ata_link *link)
2748{
2749        u32 sstatus, scontrol, tmp;
2750
2751        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2752                return;
2753        sata_scr_read(link, SCR_CONTROL, &scontrol);
2754
2755        if (ata_phys_link_online(link)) {
2756                tmp = (sstatus >> 4) & 0xf;
2757                ata_link_printk(link, KERN_INFO,
2758                                "SATA link up %s (SStatus %X SControl %X)\n",
2759                                sata_spd_string(tmp), sstatus, scontrol);
2760        } else {
2761                ata_link_printk(link, KERN_INFO,
2762                                "SATA link down (SStatus %X SControl %X)\n",
2763                                sstatus, scontrol);
2764        }
2765}
2766
2767/**
2768 *      ata_dev_pair            -       return other device on cable
2769 *      @adev: device
2770 *
2771 *      Obtain the other device on the same cable, or if none is
2772 *      present NULL is returned
2773 */
2774
2775struct ata_device *ata_dev_pair(struct ata_device *adev)
2776{
2777        struct ata_link *link = adev->link;
2778        struct ata_device *pair = &link->device[1 - adev->devno];
2779        if (!ata_dev_enabled(pair))
2780                return NULL;
2781        return pair;
2782}
2783
2784/**
2785 *      ata_port_disable - Disable port.
2786 *      @ap: Port to be disabled.
2787 *
2788 *      Modify @ap data structure such that the system
2789 *      thinks that the entire port is disabled, and should
2790 *      never attempt to probe or communicate with devices
2791 *      on this port.
2792 *
2793 *      LOCKING: host lock, or some other form of
2794 *      serialization.
2795 */
2796
2797void ata_port_disable(struct ata_port *ap)
2798{
2799        ap->link.device[0].class = ATA_DEV_NONE;
2800        ap->link.device[1].class = ATA_DEV_NONE;
2801        ap->flags |= ATA_FLAG_DISABLED;
2802}
2803
2804/**
2805 *      sata_down_spd_limit - adjust SATA spd limit downward
2806 *      @link: Link to adjust SATA spd limit for
2807 *
2808 *      Adjust SATA spd limit of @link downward.  Note that this
2809 *      function only adjusts the limit.  The change must be applied
2810 *      using sata_set_spd().
2811 *
2812 *      LOCKING:
2813 *      Inherited from caller.
2814 *
2815 *      RETURNS:
2816 *      0 on success, negative errno on failure
2817 */
2818int sata_down_spd_limit(struct ata_link *link)
2819{
2820        u32 sstatus, spd, mask;
2821        int rc, highbit;
2822
2823        if (!sata_scr_valid(link))
2824                return -EOPNOTSUPP;
2825
2826        /* If SCR can be read, use it to determine the current SPD.
2827         * If not, use cached value in link->sata_spd.
2828         */
2829        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2830        if (rc == 0)
2831                spd = (sstatus >> 4) & 0xf;
2832        else
2833                spd = link->sata_spd;
2834
2835        mask = link->sata_spd_limit;
2836        if (mask <= 1)
2837                return -EINVAL;
2838
2839        /* unconditionally mask off the highest bit */
2840        highbit = fls(mask) - 1;
2841        mask &= ~(1 << highbit);
2842
2843        /* Mask off all speeds higher than or equal to the current
2844         * one.  Force 1.5Gbps if current SPD is not available.
2845         */
2846        if (spd > 1)
2847                mask &= (1 << (spd - 1)) - 1;
2848        else
2849                mask &= 1;
2850
2851        /* were we already at the bottom? */
2852        if (!mask)
2853                return -EINVAL;
2854
2855        link->sata_spd_limit = mask;
2856
2857        ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2858                        sata_spd_string(fls(mask)));
2859
2860        return 0;
2861}
2862
2863static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2864{
2865        struct ata_link *host_link = &link->ap->link;
2866        u32 limit, target, spd;
2867
2868        limit = link->sata_spd_limit;
2869
2870        /* Don't configure downstream link faster than upstream link.
2871         * It doesn't speed up anything and some PMPs choke on such
2872         * configuration.
2873         */
2874        if (!ata_is_host_link(link) && host_link->sata_spd)
2875                limit &= (1 << host_link->sata_spd) - 1;
2876
2877        if (limit == UINT_MAX)
2878                target = 0;
2879        else
2880                target = fls(limit);
2881
2882        spd = (*scontrol >> 4) & 0xf;
2883        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2884
2885        return spd != target;
2886}
2887
2888/**
2889 *      sata_set_spd_needed - is SATA spd configuration needed
2890 *      @link: Link in question
2891 *
2892 *      Test whether the spd limit in SControl matches
2893 *      @link->sata_spd_limit.  This function is used to determine
2894 *      whether hardreset is necessary to apply SATA spd
2895 *      configuration.
2896 *
2897 *      LOCKING:
2898 *      Inherited from caller.
2899 *
2900 *      RETURNS:
2901 *      1 if SATA spd configuration is needed, 0 otherwise.
2902 */
2903static int sata_set_spd_needed(struct ata_link *link)
2904{
2905        u32 scontrol;
2906
2907        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2908                return 1;
2909
2910        return __sata_set_spd_needed(link, &scontrol);
2911}
2912
2913/**
2914 *      sata_set_spd - set SATA spd according to spd limit
2915 *      @link: Link to set SATA spd for
2916 *
2917 *      Set SATA spd of @link according to sata_spd_limit.
2918 *
2919 *      LOCKING:
2920 *      Inherited from caller.
2921 *
2922 *      RETURNS:
2923 *      0 if spd doesn't need to be changed, 1 if spd has been
2924 *      changed.  Negative errno if SCR registers are inaccessible.
2925 */
2926int sata_set_spd(struct ata_link *link)
2927{
2928        u32 scontrol;
2929        int rc;
2930
2931        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2932                return rc;
2933
2934        if (!__sata_set_spd_needed(link, &scontrol))
2935                return 0;
2936
2937        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2938                return rc;
2939
2940        return 1;
2941}
2942
2943/*
2944 * This mode timing computation functionality is ported over from
2945 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2946 */
2947/*
2948 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2949 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2950 * for UDMA6, which is currently supported only by Maxtor drives.
2951 *
2952 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2953 */
2954
2955static const struct ata_timing ata_timing[] = {
2956/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
2957        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
2958        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
2959        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
2960        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
2961        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
2962        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
2963        { XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
2964
2965        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
2966        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
2967        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
2968
2969        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
2970        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
2971        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
2972        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
2973        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
2974
2975/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
2976        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
2977        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
2978        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
2979        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
2980        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
2981        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
2982        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
2983
2984        { 0xFF }
2985};
2986
2987#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2988#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2989
2990static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2991{
2992        q->setup   = EZ(t->setup   * 1000,  T);
2993        q->act8b   = EZ(t->act8b   * 1000,  T);
2994        q->rec8b   = EZ(t->rec8b   * 1000,  T);
2995        q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
2996        q->active  = EZ(t->active  * 1000,  T);
2997        q->recover = EZ(t->recover * 1000,  T);
2998        q->cycle   = EZ(t->cycle   * 1000,  T);
2999        q->udma    = EZ(t->udma    * 1000, UT);
3000}
3001
3002void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3003                      struct ata_timing *m, unsigned int what)
3004{
3005        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3006        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3007        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3008        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3009        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3010        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3011        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3012        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3013}
3014
3015const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3016{
3017        const struct ata_timing *t = ata_timing;
3018
3019        while (xfer_mode > t->mode)
3020                t++;
3021
3022        if (xfer_mode == t->mode)
3023                return t;
3024        return NULL;
3025}
3026
3027int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3028                       struct ata_timing *t, int T, int UT)
3029{
3030        const struct ata_timing *s;
3031        struct ata_timing p;
3032
3033        /*
3034         * Find the mode.
3035         */
3036
3037        if (!(s = ata_timing_find_mode(speed)))
3038                return -EINVAL;
3039
3040        memcpy(t, s, sizeof(*s));
3041
3042        /*
3043         * If the drive is an EIDE drive, it can tell us it needs extended
3044         * PIO/MW_DMA cycle timing.
3045         */
3046
3047        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3048                memset(&p, 0, sizeof(p));
3049                if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3050                        if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3051                                            else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3052                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3053                        p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3054                }
3055                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3056        }
3057
3058        /*
3059         * Convert the timing to bus clock counts.
3060         */
3061
3062        ata_timing_quantize(t, t, T, UT);
3063
3064        /*
3065         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3066         * S.M.A.R.T * and some other commands. We have to ensure that the
3067         * DMA cycle timing is slower/equal than the fastest PIO timing.
3068         */
3069
3070        if (speed > XFER_PIO_6) {
3071                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3072                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3073        }
3074
3075        /*
3076         * Lengthen active & recovery time so that cycle time is correct.
3077         */
3078
3079        if (t->act8b + t->rec8b < t->cyc8b) {
3080                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3081                t->rec8b = t->cyc8b - t->act8b;
3082        }
3083
3084        if (t->active + t->recover < t->cycle) {
3085                t->active += (t->cycle - (t->active + t->recover)) / 2;
3086                t->recover = t->cycle - t->active;
3087        }
3088
3089        /* In a few cases quantisation may produce enough errors to
3090           leave t->cycle too low for the sum of active and recovery
3091           if so we must correct this */
3092        if (t->active + t->recover > t->cycle)
3093                t->cycle = t->active + t->recover;
3094
3095        return 0;
3096}
3097
3098/**
3099 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3100 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3101 *      @cycle: cycle duration in ns
3102 *
3103 *      Return matching xfer mode for @cycle.  The returned mode is of
3104 *      the transfer type specified by @xfer_shift.  If @cycle is too
3105 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3106 *      than the fastest known mode, the fasted mode is returned.
3107 *
3108 *      LOCKING:
3109 *      None.
3110 *
3111 *      RETURNS:
3112 *      Matching xfer_mode, 0xff if no match found.
3113 */
3114u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3115{
3116        u8 base_mode = 0xff, last_mode = 0xff;
3117        const struct ata_xfer_ent *ent;
3118        const struct ata_timing *t;
3119
3120        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3121                if (ent->shift == xfer_shift)
3122                        base_mode = ent->base;
3123
3124        for (t = ata_timing_find_mode(base_mode);
3125             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3126                unsigned short this_cycle;
3127
3128                switch (xfer_shift) {
3129                case ATA_SHIFT_PIO:
3130                case ATA_SHIFT_MWDMA:
3131                        this_cycle = t->cycle;
3132                        break;
3133                case ATA_SHIFT_UDMA:
3134                        this_cycle = t->udma;
3135                        break;
3136                default:
3137                        return 0xff;
3138                }
3139
3140                if (cycle > this_cycle)
3141                        break;
3142
3143                last_mode = t->mode;
3144        }
3145
3146        return last_mode;
3147}
3148
3149/**
3150 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3151 *      @dev: Device to adjust xfer masks
3152 *      @sel: ATA_DNXFER_* selector
3153 *
3154 *      Adjust xfer masks of @dev downward.  Note that this function
3155 *      does not apply the change.  Invoking ata_set_mode() afterwards
3156 *      will apply the limit.
3157 *
3158 *      LOCKING:
3159 *      Inherited from caller.
3160 *
3161 *      RETURNS:
3162 *      0 on success, negative errno on failure
3163 */
3164int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3165{
3166        char buf[32];
3167        unsigned long orig_mask, xfer_mask;
3168        unsigned long pio_mask, mwdma_mask, udma_mask;
3169        int quiet, highbit;
3170
3171        quiet = !!(sel & ATA_DNXFER_QUIET);
3172        sel &= ~ATA_DNXFER_QUIET;
3173
3174        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3175                                                  dev->mwdma_mask,
3176                                                  dev->udma_mask);
3177        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3178
3179        switch (sel) {
3180        case ATA_DNXFER_PIO:
3181                highbit = fls(pio_mask) - 1;
3182                pio_mask &= ~(1 << highbit);
3183                break;
3184
3185        case ATA_DNXFER_DMA:
3186                if (udma_mask) {
3187                        highbit = fls(udma_mask) - 1;
3188                        udma_mask &= ~(1 << highbit);
3189                        if (!udma_mask)
3190                                return -ENOENT;
3191                } else if (mwdma_mask) {
3192                        highbit = fls(mwdma_mask) - 1;
3193                        mwdma_mask &= ~(1 << highbit);
3194                        if (!mwdma_mask)
3195                                return -ENOENT;
3196                }
3197                break;
3198
3199        case ATA_DNXFER_40C:
3200                udma_mask &= ATA_UDMA_MASK_40C;
3201                break;
3202
3203        case ATA_DNXFER_FORCE_PIO0:
3204                pio_mask &= 1;
3205        case ATA_DNXFER_FORCE_PIO:
3206                mwdma_mask = 0;
3207                udma_mask = 0;
3208                break;
3209
3210        default:
3211                BUG();
3212        }
3213
3214        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3215
3216        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3217                return -ENOENT;
3218
3219        if (!quiet) {
3220                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3221                        snprintf(buf, sizeof(buf), "%s:%s",
3222                                 ata_mode_string(xfer_mask),
3223                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3224                else
3225                        snprintf(buf, sizeof(buf), "%s",
3226                                 ata_mode_string(xfer_mask));
3227
3228                ata_dev_printk(dev, KERN_WARNING,
3229                               "limiting speed to %s\n", buf);
3230        }
3231
3232        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3233                            &dev->udma_mask);
3234
3235        return 0;
3236}
3237
3238static int ata_dev_set_mode(struct ata_device *dev)
3239{
3240        struct ata_eh_context *ehc = &dev->link->eh_context;
3241        const char *dev_err_whine = "";
3242        int ign_dev_err = 0;
3243        unsigned int err_mask;
3244        int rc;
3245
3246        dev->flags &= ~ATA_DFLAG_PIO;
3247        if (dev->xfer_shift == ATA_SHIFT_PIO)
3248                dev->flags |= ATA_DFLAG_PIO;
3249
3250        err_mask = ata_dev_set_xfermode(dev);
3251
3252        if (err_mask & ~AC_ERR_DEV)
3253                goto fail;
3254
3255        /* revalidate */
3256        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3257        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3258        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3259        if (rc)
3260                return rc;
3261
3262        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3263                /* Old CFA may refuse this command, which is just fine */
3264                if (ata_id_is_cfa(dev->id))
3265                        ign_dev_err = 1;
3266                /* Catch several broken garbage emulations plus some pre
3267                   ATA devices */
3268                if (ata_id_major_version(dev->id) == 0 &&
3269                                        dev->pio_mode <= XFER_PIO_2)
3270                        ign_dev_err = 1;
3271                /* Some very old devices and some bad newer ones fail
3272                   any kind of SET_XFERMODE request but support PIO0-2
3273                   timings and no IORDY */
3274                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3275                        ign_dev_err = 1;
3276        }
3277        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3278           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3279        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3280            dev->dma_mode == XFER_MW_DMA_0 &&
3281            (dev->id[63] >> 8) & 1)
3282                ign_dev_err = 1;
3283
3284        /* if the device is actually configured correctly, ignore dev err */
3285        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3286                ign_dev_err = 1;
3287
3288        if (err_mask & AC_ERR_DEV) {
3289                if (!ign_dev_err)
3290                        goto fail;
3291                else
3292                        dev_err_whine = " (device error ignored)";
3293        }
3294
3295        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3296                dev->xfer_shift, (int)dev->xfer_mode);
3297
3298        ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3299                       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3300                       dev_err_whine);
3301
3302        return 0;
3303
3304 fail:
3305        ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3306                       "(err_mask=0x%x)\n", err_mask);
3307        return -EIO;
3308}
3309
3310/**
3311 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3312 *      @link: link on which timings will be programmed
3313 *      @r_failed_dev: out parameter for failed device
3314 *
3315 *      Standard implementation of the function used to tune and set
3316 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3317 *      ata_dev_set_mode() fails, pointer to the failing device is
3318 *      returned in @r_failed_dev.
3319 *
3320 *      LOCKING:
3321 *      PCI/etc. bus probe sem.
3322 *
3323 *      RETURNS:
3324 *      0 on success, negative errno otherwise
3325 */
3326
3327int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3328{
3329        struct ata_port *ap = link->ap;
3330        struct ata_device *dev;
3331        int rc = 0, used_dma = 0, found = 0;
3332
3333        /* step 1: calculate xfer_mask */
3334        ata_link_for_each_dev(dev, link) {
3335                unsigned long pio_mask, dma_mask;
3336                unsigned int mode_mask;
3337
3338                if (!ata_dev_enabled(dev))
3339                        continue;
3340
3341                mode_mask = ATA_DMA_MASK_ATA;
3342                if (dev->class == ATA_DEV_ATAPI)
3343                        mode_mask = ATA_DMA_MASK_ATAPI;
3344                else if (ata_id_is_cfa(dev->id))
3345                        mode_mask = ATA_DMA_MASK_CFA;
3346
3347                ata_dev_xfermask(dev);
3348                ata_force_xfermask(dev);
3349
3350                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3351                dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3352
3353                if (libata_dma_mask & mode_mask)
3354                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3355                else
3356                        dma_mask = 0;
3357
3358                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3359                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3360
3361                found = 1;
3362                if (ata_dma_enabled(dev))
3363                        used_dma = 1;
3364        }
3365        if (!found)
3366                goto out;
3367
3368        /* step 2: always set host PIO timings */
3369        ata_link_for_each_dev(dev, link) {
3370                if (!ata_dev_enabled(dev))
3371                        continue;
3372
3373                if (dev->pio_mode == 0xff) {
3374                        ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3375                        rc = -EINVAL;
3376                        goto out;
3377                }
3378
3379                dev->xfer_mode = dev->pio_mode;
3380                dev->xfer_shift = ATA_SHIFT_PIO;
3381                if (ap->ops->set_piomode)
3382                        ap->ops->set_piomode(ap, dev);
3383        }
3384
3385        /* step 3: set host DMA timings */
3386        ata_link_for_each_dev(dev, link) {
3387                if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3388                        continue;
3389
3390                dev->xfer_mode = dev->dma_mode;
3391                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3392                if (ap->ops->set_dmamode)
3393                        ap->ops->set_dmamode(ap, dev);
3394        }
3395
3396        /* step 4: update devices' xfer mode */
3397        ata_link_for_each_dev(dev, link) {
3398                /* don't update suspended devices' xfer mode */
3399                if (!ata_dev_enabled(dev))
3400                        continue;
3401
3402                rc = ata_dev_set_mode(dev);
3403                if (rc)
3404                        goto out;
3405        }
3406
3407        /* Record simplex status. If we selected DMA then the other
3408         * host channels are not permitted to do so.
3409         */
3410        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3411                ap->host->simplex_claimed = ap;
3412
3413 out:
3414        if (rc)
3415                *r_failed_dev = dev;
3416        return rc;
3417}
3418
3419/**
3420 *      ata_wait_ready - wait for link to become ready
3421 *      @link: link to be waited on
3422 *      @deadline: deadline jiffies for the operation
3423 *      @check_ready: callback to check link readiness
3424 *
3425 *      Wait for @link to become ready.  @check_ready should return
3426 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3427 *      link doesn't seem to be occupied, other errno for other error
3428 *      conditions.
3429 *
3430 *      Transient -ENODEV conditions are allowed for
3431 *      ATA_TMOUT_FF_WAIT.
3432 *
3433 *      LOCKING:
3434 *      EH context.
3435 *
3436 *      RETURNS:
3437 *      0 if @linke is ready before @deadline; otherwise, -errno.
3438 */
3439int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3440                   int (*check_ready)(struct ata_link *link))
3441{
3442        unsigned long start = jiffies;
3443        unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3444        int warned = 0;
3445
3446        /* Slave readiness can't be tested separately from master.  On
3447         * M/S emulation configuration, this function should be called
3448         * only on the master and it will handle both master and slave.
3449         */
3450        WARN_ON(link == link->ap->slave_link);
3451
3452        if (time_after(nodev_deadline, deadline))
3453                nodev_deadline = deadline;
3454
3455        while (1) {
3456                unsigned long now = jiffies;
3457                int ready, tmp;
3458
3459                ready = tmp = check_ready(link);
3460                if (ready > 0)
3461                        return 0;
3462
3463                /* -ENODEV could be transient.  Ignore -ENODEV if link
3464                 * is online.  Also, some SATA devices take a long
3465                 * time to clear 0xff after reset.  For example,
3466                 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3467                 * GoVault needs even more than that.  Wait for
3468                 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3469                 *
3470                 * Note that some PATA controllers (pata_ali) explode
3471                 * if status register is read more than once when
3472                 * there's no device attached.
3473                 */
3474                if (ready == -ENODEV) {
3475                        if (ata_link_online(link))
3476                                ready = 0;
3477                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3478                                 !ata_link_offline(link) &&
3479                                 time_before(now, nodev_deadline))
3480                                ready = 0;
3481                }
3482
3483                if (ready)
3484                        return ready;
3485                if (time_after(now, deadline))
3486                        return -EBUSY;
3487
3488                if (!warned && time_after(now, start + 5 * HZ) &&
3489                    (deadline - now > 3 * HZ)) {
3490                        ata_link_printk(link, KERN_WARNING,
3491                                "link is slow to respond, please be patient "
3492                                "(ready=%d)\n", tmp);
3493                        warned = 1;
3494                }
3495
3496                msleep(50);
3497        }
3498}
3499
3500/**
3501 *      ata_wait_after_reset - wait for link to become ready after reset
3502 *      @link: link to be waited on
3503 *      @deadline: deadline jiffies for the operation
3504 *      @check_ready: callback to check link readiness
3505 *
3506 *      Wait for @link to become ready after reset.
3507 *
3508 *      LOCKING:
3509 *      EH context.
3510 *
3511 *      RETURNS:
3512 *      0 if @linke is ready before @deadline; otherwise, -errno.
3513 */
3514int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3515                                int (*check_ready)(struct ata_link *link))
3516{
3517        msleep(ATA_WAIT_AFTER_RESET);
3518
3519        return ata_wait_ready(link, deadline, check_ready);
3520}
3521
3522/**
3523 *      sata_link_debounce - debounce SATA phy status
3524 *      @link: ATA link to debounce SATA phy status for
3525 *      @params: timing parameters { interval, duratinon, timeout } in msec
3526 *      @deadline: deadline jiffies for the operation
3527 *
3528*       Make sure SStatus of @link reaches stable state, determined by
3529 *      holding the same value where DET is not 1 for @duration polled
3530 *      every @interval, before @timeout.  Timeout constraints the
3531 *      beginning of the stable state.  Because DET gets stuck at 1 on
3532 *      some controllers after hot unplugging, this functions waits
3533 *      until timeout then returns 0 if DET is stable at 1.
3534 *
3535 *      @timeout is further limited by @deadline.  The sooner of the
3536 *      two is used.
3537 *
3538 *      LOCKING:
3539 *      Kernel thread context (may sleep)
3540 *
3541 *      RETURNS:
3542 *      0 on success, -errno on failure.
3543 */
3544int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3545                       unsigned long deadline)
3546{
3547        unsigned long interval = params[0];
3548        unsigned long duration = params[1];
3549        unsigned long last_jiffies, t;
3550        u32 last, cur;
3551        int rc;
3552
3553        t = ata_deadline(jiffies, params[2]);
3554        if (time_before(t, deadline))
3555                deadline = t;
3556
3557        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3558                return rc;
3559        cur &= 0xf;
3560
3561        last = cur;
3562        last_jiffies = jiffies;
3563
3564        while (1) {
3565                msleep(interval);
3566                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3567                        return rc;
3568                cur &= 0xf;
3569
3570                /* DET stable? */
3571                if (cur == last) {
3572                        if (cur == 1 && time_before(jiffies, deadline))
3573                                continue;
3574                        if (time_after(jiffies,
3575                                       ata_deadline(last_jiffies, duration)))
3576                                return 0;
3577                        continue;
3578                }
3579
3580                /* unstable, start over */
3581                last = cur;
3582                last_jiffies = jiffies;
3583
3584                /* Check deadline.  If debouncing failed, return
3585                 * -EPIPE to tell upper layer to lower link speed.
3586                 */
3587                if (time_after(jiffies, deadline))
3588                        return -EPIPE;
3589        }
3590}
3591
3592/**
3593 *      sata_link_resume - resume SATA link
3594 *      @link: ATA link to resume SATA
3595 *      @params: timing parameters { interval, duratinon, timeout } in msec
3596 *      @deadline: deadline jiffies for the operation
3597 *
3598 *      Resume SATA phy @link and debounce it.
3599 *
3600 *      LOCKING:
3601 *      Kernel thread context (may sleep)
3602 *
3603 *      RETURNS:
3604 *      0 on success, -errno on failure.
3605 */
3606int sata_link_resume(struct ata_link *link, const unsigned long *params,
3607                     unsigned long deadline)
3608{
3609        u32 scontrol, serror;
3610        int rc;
3611
3612        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3613                return rc;
3614
3615        scontrol = (scontrol & 0x0f0) | 0x300;
3616
3617        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3618                return rc;
3619
3620        /* Some PHYs react badly if SStatus is pounded immediately
3621         * after resuming.  Delay 200ms before debouncing.
3622         */
3623        msleep(200);
3624
3625        if ((rc = sata_link_debounce(link, params, deadline)))
3626                return rc;
3627
3628        /* clear SError, some PHYs require this even for SRST to work */
3629        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3630                rc = sata_scr_write(link, SCR_ERROR, serror);
3631
3632        return rc != -EINVAL ? rc : 0;
3633}
3634
3635/**
3636 *      ata_std_prereset - prepare for reset
3637 *      @link: ATA link to be reset
3638 *      @deadline: deadline jiffies for the operation
3639 *
3640 *      @link is about to be reset.  Initialize it.  Failure from
3641 *      prereset makes libata abort whole reset sequence and give up
3642 *      that port, so prereset should be best-effort.  It does its
3643 *      best to prepare for reset sequence but if things go wrong, it
3644 *      should just whine, not fail.
3645 *
3646 *      LOCKING:
3647 *      Kernel thread context (may sleep)
3648 *
3649 *      RETURNS:
3650 *      0 on success, -errno otherwise.
3651 */
3652int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653{
3654        struct ata_port *ap = link->ap;
3655        struct ata_eh_context *ehc = &link->eh_context;
3656        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657        int rc;
3658
3659        /* if we're about to do hardreset, nothing more to do */
3660        if (ehc->i.action & ATA_EH_HARDRESET)
3661                return 0;
3662
3663        /* if SATA, resume link */
3664        if (ap->flags & ATA_FLAG_SATA) {
3665                rc = sata_link_resume(link, timing, deadline);
3666                /* whine about phy resume failure but proceed */
3667                if (rc && rc != -EOPNOTSUPP)
3668                        ata_link_printk(link, KERN_WARNING, "failed to resume "
3669                                        "link for reset (errno=%d)\n", rc);
3670        }
3671
3672        /* no point in trying softreset on offline link */
3673        if (ata_phys_link_offline(link))
3674                ehc->i.action &= ~ATA_EH_SOFTRESET;
3675
3676        return 0;
3677}
3678
3679/**
3680 *      sata_link_hardreset - reset link via SATA phy reset
3681 *      @link: link to reset
3682 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3683 *      @deadline: deadline jiffies for the operation
3684 *      @online: optional out parameter indicating link onlineness
3685 *      @check_ready: optional callback to check link readiness
3686 *
3687 *      SATA phy-reset @link using DET bits of SControl register.
3688 *      After hardreset, link readiness is waited upon using
3689 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3690 *      allowed to not specify @check_ready and wait itself after this
3691 *      function returns.  Device classification is LLD's
3692 *      responsibility.
3693 *
3694 *      *@online is set to one iff reset succeeded and @link is online
3695 *      after reset.
3696 *
3697 *      LOCKING:
3698 *      Kernel thread context (may sleep)
3699 *
3700 *      RETURNS:
3701 *      0 on success, -errno otherwise.
3702 */
3703int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3704                        unsigned long deadline,
3705                        bool *online, int (*check_ready)(struct ata_link *))
3706{
3707        u32 scontrol;
3708        int rc;
3709
3710        DPRINTK("ENTER\n");
3711
3712        if (online)
3713                *online = false;
3714
3715        if (sata_set_spd_needed(link)) {
3716                /* SATA spec says nothing about how to reconfigure
3717                 * spd.  To be on the safe side, turn off phy during
3718                 * reconfiguration.  This works for at least ICH7 AHCI
3719                 * and Sil3124.
3720                 */
3721                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3722                        goto out;
3723
3724                scontrol = (scontrol & 0x0f0) | 0x304;
3725
3726                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3727                        goto out;
3728
3729                sata_set_spd(link);
3730        }
3731
3732        /* issue phy wake/reset */
3733        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3734                goto out;
3735
3736        scontrol = (scontrol & 0x0f0) | 0x301;
3737
3738        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3739                goto out;
3740
3741        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3742         * 10.4.2 says at least 1 ms.
3743         */
3744        msleep(1);
3745
3746        /* bring link back */
3747        rc = sata_link_resume(link, timing, deadline);
3748        if (rc)
3749                goto out;
3750        /* if link is offline nothing more to do */
3751        if (ata_phys_link_offline(link))
3752                goto out;
3753
3754        /* Link is online.  From this point, -ENODEV too is an error. */
3755        if (online)
3756                *online = true;
3757
3758        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3759                /* If PMP is supported, we have to do follow-up SRST.
3760                 * Some PMPs don't send D2H Reg FIS after hardreset if
3761                 * the first port is empty.  Wait only for
3762                 * ATA_TMOUT_PMP_SRST_WAIT.
3763                 */
3764                if (check_ready) {
3765                        unsigned long pmp_deadline;
3766
3767                        pmp_deadline = ata_deadline(jiffies,
3768                                                    ATA_TMOUT_PMP_SRST_WAIT);
3769                        if (time_after(pmp_deadline, deadline))
3770                                pmp_deadline = deadline;
3771                        ata_wait_ready(link, pmp_deadline, check_ready);
3772                }
3773                rc = -EAGAIN;
3774                goto out;
3775        }
3776
3777        rc = 0;
3778        if (check_ready)
3779                rc = ata_wait_ready(link, deadline, check_ready);
3780 out:
3781        if (rc && rc != -EAGAIN) {
3782                /* online is set iff link is online && reset succeeded */
3783                if (online)
3784                        *online = false;
3785                ata_link_printk(link, KERN_ERR,
3786                                "COMRESET failed (errno=%d)\n", rc);
3787        }
3788        DPRINTK("EXIT, rc=%d\n", rc);
3789        return rc;
3790}
3791
3792/**
3793 *      sata_std_hardreset - COMRESET w/o waiting or classification
3794 *      @link: link to reset
3795 *      @class: resulting class of attached device
3796 *      @deadline: deadline jiffies for the operation
3797 *
3798 *      Standard SATA COMRESET w/o waiting or classification.
3799 *
3800 *      LOCKING:
3801 *      Kernel thread context (may sleep)
3802 *
3803 *      RETURNS:
3804 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3805 */
3806int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807                       unsigned long deadline)
3808{
3809        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810        bool online;
3811        int rc;
3812
3813        /* do hardreset */
3814        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815        return online ? -EAGAIN : rc;
3816}
3817
3818/**
3819 *      ata_std_postreset - standard postreset callback
3820 *      @link: the target ata_link
3821 *      @classes: classes of attached devices
3822 *
3823 *      This function is invoked after a successful reset.  Note that
3824 *      the device might have been reset more than once using
3825 *      different reset methods before postreset is invoked.
3826 *
3827 *      LOCKING:
3828 *      Kernel thread context (may sleep)
3829 */
3830void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831{
3832        u32 serror;
3833
3834        DPRINTK("ENTER\n");
3835
3836        /* reset complete, clear SError */
3837        if (!sata_scr_read(link, SCR_ERROR, &serror))
3838                sata_scr_write(link, SCR_ERROR, serror);
3839
3840        /* print link status */
3841        sata_print_link_status(link);
3842
3843        DPRINTK("EXIT\n");
3844}
3845
3846/**
3847 *      ata_dev_same_device - Determine whether new ID matches configured device
3848 *      @dev: device to compare against
3849 *      @new_class: class of the new device
3850 *      @new_id: IDENTIFY page of the new device
3851 *
3852 *      Compare @new_class and @new_id against @dev and determine
3853 *      whether @dev is the device indicated by @new_class and
3854 *      @new_id.
3855 *
3856 *      LOCKING:
3857 *      None.
3858 *
3859 *      RETURNS:
3860 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3861 */
3862static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863                               const u16 *new_id)
3864{
3865        const u16 *old_id = dev->id;
3866        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868
3869        if (dev->class != new_class) {
3870                ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3871                               dev->class, new_class);
3872                return 0;
3873        }
3874
3875        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879
3880        if (strcmp(model[0], model[1])) {
3881                ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3882                               "'%s' != '%s'\n", model[0], model[1]);
3883                return 0;
3884        }
3885
3886        if (strcmp(serial[0], serial[1])) {
3887                ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3888                               "'%s' != '%s'\n", serial[0], serial[1]);
3889                return 0;
3890        }
3891
3892        return 1;
3893}
3894
3895/**
3896 *      ata_dev_reread_id - Re-read IDENTIFY data
3897 *      @dev: target ATA device
3898 *      @readid_flags: read ID flags
3899 *
3900 *      Re-read IDENTIFY page and make sure @dev is still attached to
3901 *      the port.
3902 *
3903 *      LOCKING:
3904 *      Kernel thread context (may sleep)
3905 *
3906 *      RETURNS:
3907 *      0 on success, negative errno otherwise
3908 */
3909int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910{
3911        unsigned int class = dev->class;
3912        u16 *id = (void *)dev->link->ap->sector_buf;
3913        int rc;
3914
3915        /* read ID data */
3916        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917        if (rc)
3918                return rc;
3919
3920        /* is the device still there? */
3921        if (!ata_dev_same_device(dev, class, id))
3922                return -ENODEV;
3923
3924        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925        return 0;
3926}
3927
3928/**
3929 *      ata_dev_revalidate - Revalidate ATA device
3930 *      @dev: device to revalidate
3931 *      @new_class: new class code
3932 *      @readid_flags: read ID flags
3933 *
3934 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3935 *      port and reconfigure it according to the new IDENTIFY page.
3936 *
3937 *      LOCKING:
3938 *      Kernel thread context (may sleep)
3939 *
3940 *      RETURNS:
3941 *      0 on success, negative errno otherwise
3942 */
3943int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944                       unsigned int readid_flags)
3945{
3946        u64 n_sectors = dev->n_sectors;
3947        int rc;
3948
3949        if (!ata_dev_enabled(dev))
3950                return -ENODEV;
3951
3952        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3953        if (ata_class_enabled(new_class) &&
3954            new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3955                ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3956                               dev->class, new_class);
3957                rc = -ENODEV;
3958                goto fail;
3959        }
3960
3961        /* re-read ID */
3962        rc = ata_dev_reread_id(dev, readid_flags);
3963        if (rc)
3964                goto fail;
3965
3966        /* configure device according to the new ID */
3967        rc = ata_dev_configure(dev);
3968        if (rc)
3969                goto fail;
3970
3971        /* verify n_sectors hasn't changed */
3972        if (dev->class == ATA_DEV_ATA && n_sectors &&
3973            dev->n_sectors != n_sectors) {
3974                ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3975                               "%llu != %llu\n",
3976                               (unsigned long long)n_sectors,
3977                               (unsigned long long)dev->n_sectors);
3978
3979                /* restore original n_sectors */
3980                dev->n_sectors = n_sectors;
3981
3982                rc = -ENODEV;
3983                goto fail;
3984        }
3985
3986        return 0;
3987
3988 fail:
3989        ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3990        return rc;
3991}
3992
3993struct ata_blacklist_entry {
3994        const char *model_num;
3995        const char *model_rev;
3996        unsigned long horkage;
3997};
3998
3999static const struct ata_blacklist_entry ata_device_blacklist [] = {
4000        /* Devices with DMA related problems under Linux */
4001        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4002        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4003        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4004        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4005        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4006        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4007        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4008        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4009        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4010        { "CRD-8480B",          NULL,           ATA_HORKAGE_NODMA },
4011        { "CRD-8482B",          NULL,           ATA_HORKAGE_NODMA },
4012        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4013        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4014        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4015        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4016        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4017        { "HITACHI CDR-8335",   NULL,           ATA_HORKAGE_NODMA },
4018        { "HITACHI CDR-8435",   NULL,           ATA_HORKAGE_NODMA },
4019        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4020        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4021        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4022        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4023        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4024        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4025        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4026        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4027        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4028        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4029        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4030        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4031        /* Odd clown on sil3726/4726 PMPs */
4032        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4033
4034        /* Weird ATAPI devices */
4035        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4036        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4037
4038        /* Devices we expect to fail diagnostics */
4039
4040        /* Devices where NCQ should be avoided */
4041        /* NCQ is slow */
4042        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4043        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4044        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4045        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4046        /* NCQ is broken */
4047        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4048        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4049        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4050        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4051
4052        /* Seagate NCQ + FLUSH CACHE firmware bug */
4053        { "ST31500341AS",       "SD15",         ATA_HORKAGE_NONCQ |
4054                                                ATA_HORKAGE_FIRMWARE_WARN },
4055        { "ST31500341AS",       "SD16",         ATA_HORKAGE_NONCQ |
4056                                                ATA_HORKAGE_FIRMWARE_WARN },
4057        { "ST31500341AS",       "SD17",         ATA_HORKAGE_NONCQ |
4058                                                ATA_HORKAGE_FIRMWARE_WARN },
4059        { "ST31500341AS",       "SD18",         ATA_HORKAGE_NONCQ |
4060                                                ATA_HORKAGE_FIRMWARE_WARN },
4061        { "ST31500341AS",       "SD19",         ATA_HORKAGE_NONCQ |
4062                                                ATA_HORKAGE_FIRMWARE_WARN },
4063
4064        { "ST31000333AS",       "SD15",         ATA_HORKAGE_NONCQ |
4065                                                ATA_HORKAGE_FIRMWARE_WARN },
4066        { "ST31000333AS",       "SD16",         ATA_HORKAGE_NONCQ |
4067                                                ATA_HORKAGE_FIRMWARE_WARN },
4068        { "ST31000333AS",       "SD17",         ATA_HORKAGE_NONCQ |
4069                                                ATA_HORKAGE_FIRMWARE_WARN },
4070        { "ST31000333AS",       "SD18",         ATA_HORKAGE_NONCQ |
4071                                                ATA_HORKAGE_FIRMWARE_WARN },
4072        { "ST31000333AS",       "SD19",         ATA_HORKAGE_NONCQ |
4073                                                ATA_HORKAGE_FIRMWARE_WARN },
4074
4075        { "ST3640623AS",        "SD15",         ATA_HORKAGE_NONCQ |
4076                                                ATA_HORKAGE_FIRMWARE_WARN },
4077        { "ST3640623AS",        "SD16",         ATA_HORKAGE_NONCQ |
4078                                                ATA_HORKAGE_FIRMWARE_WARN },
4079        { "ST3640623AS",        "SD17",         ATA_HORKAGE_NONCQ |
4080                                                ATA_HORKAGE_FIRMWARE_WARN },
4081        { "ST3640623AS",        "SD18",         ATA_HORKAGE_NONCQ |
4082                                                ATA_HORKAGE_FIRMWARE_WARN },
4083        { "ST3640623AS",        "SD19",         ATA_HORKAGE_NONCQ |
4084                                                ATA_HORKAGE_FIRMWARE_WARN },
4085
4086        { "ST3640323AS",        "SD15",         ATA_HORKAGE_NONCQ |
4087                                                ATA_HORKAGE_FIRMWARE_WARN },
4088        { "ST3640323AS",        "SD16",         ATA_HORKAGE_NONCQ |
4089                                                ATA_HORKAGE_FIRMWARE_WARN },
4090        { "ST3640323AS",        "SD17",         ATA_HORKAGE_NONCQ |
4091                                                ATA_HORKAGE_FIRMWARE_WARN },
4092        { "ST3640323AS",        "SD18",         ATA_HORKAGE_NONCQ |
4093                                                ATA_HORKAGE_FIRMWARE_WARN },
4094        { "ST3640323AS",        "SD19",         ATA_HORKAGE_NONCQ |
4095                                                ATA_HORKAGE_FIRMWARE_WARN },
4096
4097        { "ST3320813AS",        "SD15",         ATA_HORKAGE_NONCQ |
4098                                                ATA_HORKAGE_FIRMWARE_WARN },
4099        { "ST3320813AS",        "SD16",         ATA_HORKAGE_NONCQ |
4100                                                ATA_HORKAGE_FIRMWARE_WARN },
4101        { "ST3320813AS",        "SD17",         ATA_HORKAGE_NONCQ |
4102                                                ATA_HORKAGE_FIRMWARE_WARN },
4103        { "ST3320813AS",        "SD18",         ATA_HORKAGE_NONCQ |
4104                                                ATA_HORKAGE_FIRMWARE_WARN },
4105        { "ST3320813AS",        "SD19",         ATA_HORKAGE_NONCQ |
4106                                                ATA_HORKAGE_FIRMWARE_WARN },
4107
4108        { "ST3320613AS",        "SD15",         ATA_HORKAGE_NONCQ |
4109                                                ATA_HORKAGE_FIRMWARE_WARN },
4110        { "ST3320613AS",        "SD16",         ATA_HORKAGE_NONCQ |
4111                                                ATA_HORKAGE_FIRMWARE_WARN },
4112        { "ST3320613AS",        "SD17",         ATA_HORKAGE_NONCQ |
4113                                                ATA_HORKAGE_FIRMWARE_WARN },
4114        { "ST3320613AS",        "SD18",         ATA_HORKAGE_NONCQ |
4115                                                ATA_HORKAGE_FIRMWARE_WARN },
4116        { "ST3320613AS",        "SD19",         ATA_HORKAGE_NONCQ |
4117                                                ATA_HORKAGE_FIRMWARE_WARN },
4118
4119        /* Blacklist entries taken from Silicon Image 3124/3132
4120           Windows driver .inf file - also several Linux problem reports */
4121        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4122        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4123        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4124
4125        /* devices which puke on READ_NATIVE_MAX */
4126        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4127        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4128        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4129        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4130
4131        /* Devices which report 1 sector over size HPA */
4132        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4133        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4134        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4135
4136        /* Devices which get the IVB wrong */
4137        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4138        /* Maybe we should just blacklist TSSTcorp... */
4139        { "TSSTcorp CDDVDW SH-S202H", "SB00",     ATA_HORKAGE_IVB, },
4140        { "TSSTcorp CDDVDW SH-S202H", "SB01",     ATA_HORKAGE_IVB, },
4141        { "TSSTcorp CDDVDW SH-S202J", "SB00",     ATA_HORKAGE_IVB, },
4142        { "TSSTcorp CDDVDW SH-S202J", "SB01",     ATA_HORKAGE_IVB, },
4143        { "TSSTcorp CDDVDW SH-S202N", "SB00",     ATA_HORKAGE_IVB, },
4144        { "TSSTcorp CDDVDW SH-S202N", "SB01",     ATA_HORKAGE_IVB, },
4145
4146        /* Devices that do not need bridging limits applied */
4147        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4148
4149        /* End Marker */
4150        { }
4151};
4152
4153static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4154{
4155        const char *p;
4156        int len;
4157
4158        /*
4159         * check for trailing wildcard: *\0
4160         */
4161        p = strchr(patt, wildchar);
4162        if (p && ((*(p + 1)) == 0))
4163                len = p - patt;
4164        else {
4165                len = strlen(name);
4166                if (!len) {
4167                        if (!*patt)
4168                                return 0;
4169                        return -1;
4170                }
4171        }
4172
4173        return strncmp(patt, name, len);
4174}
4175
4176static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4177{
4178        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4179        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4180        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4181
4182        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4183        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4184
4185        while (ad->model_num) {
4186                if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4187                        if (ad->model_rev == NULL)
4188                                return ad->horkage;
4189                        if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4190                                return ad->horkage;
4191                }
4192                ad++;
4193        }
4194        return 0;
4195}
4196
4197static int ata_dma_blacklisted(const struct ata_device *dev)
4198{
4199        /* We don't support polling DMA.
4200         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4201         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4202         */
4203        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4204            (dev->flags & ATA_DFLAG_CDB_INTR))
4205                return 1;
4206        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4207}
4208
4209/**
4210 *      ata_is_40wire           -       check drive side detection
4211 *      @dev: device
4212 *
4213 *      Perform drive side detection decoding, allowing for device vendors
4214 *      who can't follow the documentation.
4215 */
4216
4217static int ata_is_40wire(struct ata_device *dev)
4218{
4219        if (dev->horkage & ATA_HORKAGE_IVB)
4220                return ata_drive_40wire_relaxed(dev->id);
4221        return ata_drive_40wire(dev->id);
4222}
4223
4224/**
4225 *      cable_is_40wire         -       40/80/SATA decider
4226 *      @ap: port to consider
4227 *
4228 *      This function encapsulates the policy for speed management
4229 *      in one place. At the moment we don't cache the result but
4230 *      there is a good case for setting ap->cbl to the result when
4231 *      we are called with unknown cables (and figuring out if it
4232 *      impacts hotplug at all).
4233 *
4234 *      Return 1 if the cable appears to be 40 wire.
4235 */
4236
4237static int cable_is_40wire(struct ata_port *ap)
4238{
4239        struct ata_link *link;
4240        struct ata_device *dev;
4241
4242        /* If the controller thinks we are 40 wire, we are. */
4243        if (ap->cbl == ATA_CBL_PATA40)
4244                return 1;
4245
4246        /* If the controller thinks we are 80 wire, we are. */
4247        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4248                return 0;
4249
4250        /* If the system is known to be 40 wire short cable (eg
4251         * laptop), then we allow 80 wire modes even if the drive
4252         * isn't sure.
4253         */
4254        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4255                return 0;
4256
4257        /* If the controller doesn't know, we scan.
4258         *
4259         * Note: We look for all 40 wire detects at this point.  Any
4260         *       80 wire detect is taken to be 80 wire cable because
4261         * - in many setups only the one drive (slave if present) will
4262         *   give a valid detect
4263         * - if you have a non detect capable drive you don't want it
4264         *   to colour the choice
4265         */
4266        ata_port_for_each_link(link, ap) {
4267                ata_link_for_each_dev(dev, link) {
4268                        if (ata_dev_enabled(dev) && !ata_is_40wire(dev))
4269                                return 0;
4270                }
4271        }
4272        return 1;
4273}
4274
4275/**
4276 *      ata_dev_xfermask - Compute supported xfermask of the given device
4277 *      @dev: Device to compute xfermask for
4278 *
4279 *      Compute supported xfermask of @dev and store it in
4280 *      dev->*_mask.  This function is responsible for applying all
4281 *      known limits including host controller limits, device
4282 *      blacklist, etc...
4283 *
4284 *      LOCKING:
4285 *      None.
4286 */
4287static void ata_dev_xfermask(struct ata_device *dev)
4288{
4289        struct ata_link *link = dev->link;
4290        struct ata_port *ap = link->ap;
4291        struct ata_host *host = ap->host;
4292        unsigned long xfer_mask;
4293
4294        /* controller modes available */
4295        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4296                                      ap->mwdma_mask, ap->udma_mask);
4297
4298        /* drive modes available */
4299        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4300                                       dev->mwdma_mask, dev->udma_mask);
4301        xfer_mask &= ata_id_xfermask(dev->id);
4302
4303        /*
4304         *      CFA Advanced TrueIDE timings are not allowed on a shared
4305         *      cable
4306         */
4307        if (ata_dev_pair(dev)) {
4308                /* No PIO5 or PIO6 */
4309                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4310                /* No MWDMA3 or MWDMA 4 */
4311                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4312        }
4313
4314        if (ata_dma_blacklisted(dev)) {
4315                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4316                ata_dev_printk(dev, KERN_WARNING,
4317                               "device is on DMA blacklist, disabling DMA\n");
4318        }
4319
4320        if ((host->flags & ATA_HOST_SIMPLEX) &&
4321            host->simplex_claimed && host->simplex_claimed != ap) {
4322                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4323                ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4324                               "other device, disabling DMA\n");
4325        }
4326
4327        if (ap->flags & ATA_FLAG_NO_IORDY)
4328                xfer_mask &= ata_pio_mask_no_iordy(dev);
4329
4330        if (ap->ops->mode_filter)
4331                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4332
4333        /* Apply cable rule here.  Don't apply it early because when
4334         * we handle hot plug the cable type can itself change.
4335         * Check this last so that we know if the transfer rate was
4336         * solely limited by the cable.
4337         * Unknown or 80 wire cables reported host side are checked
4338         * drive side as well. Cases where we know a 40wire cable
4339         * is used safely for 80 are not checked here.
4340         */
4341        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4342                /* UDMA/44 or higher would be available */
4343                if (cable_is_40wire(ap)) {
4344                        ata_dev_printk(dev, KERN_WARNING,
4345                                 "limited to UDMA/33 due to 40-wire cable\n");
4346                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4347                }
4348
4349        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4350                            &dev->mwdma_mask, &dev->udma_mask);
4351}
4352
4353/**
4354 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4355 *      @dev: Device to which command will be sent
4356 *
4357 *      Issue SET FEATURES - XFER MODE command to device @dev
4358 *      on port @ap.
4359 *
4360 *      LOCKING:
4361 *      PCI/etc. bus probe sem.
4362 *
4363 *      RETURNS:
4364 *      0 on success, AC_ERR_* mask otherwise.
4365 */
4366
4367static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4368{
4369        struct ata_taskfile tf;
4370        unsigned int err_mask;
4371
4372        /* set up set-features taskfile */
4373        DPRINTK("set features - xfer mode\n");
4374
4375        /* Some controllers and ATAPI devices show flaky interrupt
4376         * behavior after setting xfer mode.  Use polling instead.
4377         */
4378        ata_tf_init(dev, &tf);
4379        tf.command = ATA_CMD_SET_FEATURES;
4380        tf.feature = SETFEATURES_XFER;
4381        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4382        tf.protocol = ATA_PROT_NODATA;
4383        /* If we are using IORDY we must send the mode setting command */
4384        if (ata_pio_need_iordy(dev))
4385                tf.nsect = dev->xfer_mode;
4386        /* If the device has IORDY and the controller does not - turn it off */
4387        else if (ata_id_has_iordy(dev->id))
4388                tf.nsect = 0x01;
4389        else /* In the ancient relic department - skip all of this */
4390                return 0;
4391
4392        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4393
4394        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4395        return err_mask;
4396}
4397/**
4398 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4399 *      @dev: Device to which command will be sent
4400 *      @enable: Whether to enable or disable the feature
4401 *      @feature: The sector count represents the feature to set
4402 *
4403 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4404 *      on port @ap with sector count
4405 *
4406 *      LOCKING:
4407 *      PCI/etc. bus probe sem.
4408 *
4409 *      RETURNS:
4410 *      0 on success, AC_ERR_* mask otherwise.
4411 */
4412static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4413                                        u8 feature)
4414{
4415        struct ata_taskfile tf;
4416        unsigned int err_mask;
4417
4418        /* set up set-features taskfile */
4419        DPRINTK("set features - SATA features\n");
4420
4421        ata_tf_init(dev, &tf);
4422        tf.command = ATA_CMD_SET_FEATURES;
4423        tf.feature = enable;
4424        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4425        tf.protocol = ATA_PROT_NODATA;
4426        tf.nsect = feature;
4427
4428        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4429
4430        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4431        return err_mask;
4432}
4433
4434/**
4435 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4436 *      @dev: Device to which command will be sent
4437 *      @heads: Number of heads (taskfile parameter)
4438 *      @sectors: Number of sectors (taskfile parameter)
4439 *
4440 *      LOCKING:
4441 *      Kernel thread context (may sleep)
4442 *
4443 *      RETURNS:
4444 *      0 on success, AC_ERR_* mask otherwise.
4445 */
4446static unsigned int ata_dev_init_params(struct ata_device *dev,
4447                                        u16 heads, u16 sectors)
4448{
4449        struct ata_taskfile tf;
4450        unsigned int err_mask;
4451
4452        /* Number of sectors per track 1-255. Number of heads 1-16 */
4453        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4454                return AC_ERR_INVALID;
4455
4456        /* set up init dev params taskfile */
4457        DPRINTK("init dev params \n");
4458
4459        ata_tf_init(dev, &tf);
4460        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4461        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4462        tf.protocol = ATA_PROT_NODATA;
4463        tf.nsect = sectors;
4464        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4465
4466        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4467        /* A clean abort indicates an original or just out of spec drive
4468           and we should continue as we issue the setup based on the
4469           drive reported working geometry */
4470        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4471                err_mask = 0;
4472
4473        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4474        return err_mask;
4475}
4476
4477/**
4478 *      ata_sg_clean - Unmap DMA memory associated with command
4479 *      @qc: Command containing DMA memory to be released
4480 *
4481 *      Unmap all mapped DMA memory associated with this command.
4482 *
4483 *      LOCKING:
4484 *      spin_lock_irqsave(host lock)
4485 */
4486void ata_sg_clean(struct ata_queued_cmd *qc)
4487{
4488        struct ata_port *ap = qc->ap;
4489        struct scatterlist *sg = qc->sg;
4490        int dir = qc->dma_dir;
4491
4492        WARN_ON(sg == NULL);
4493
4494        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4495
4496        if (qc->n_elem)
4497                dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4498
4499        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4500        qc->sg = NULL;
4501}
4502
4503/**
4504 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4505 *      @qc: Metadata associated with taskfile to check
4506 *
4507 *      Allow low-level driver to filter ATA PACKET commands, returning
4508 *      a status indicating whether or not it is OK to use DMA for the
4509 *      supplied PACKET command.
4510 *
4511 *      LOCKING:
4512 *      spin_lock_irqsave(host lock)
4513 *
4514 *      RETURNS: 0 when ATAPI DMA can be used
4515 *               nonzero otherwise
4516 */
4517int atapi_check_dma(struct ata_queued_cmd *qc)
4518{
4519        struct ata_port *ap = qc->ap;
4520
4521        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4522         * few ATAPI devices choke on such DMA requests.
4523         */
4524        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4525            unlikely(qc->nbytes & 15))
4526                return 1;
4527
4528        if (ap->ops->check_atapi_dma)
4529                return ap->ops->check_atapi_dma(qc);
4530
4531        return 0;
4532}
4533
4534/**
4535 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4536 *      @qc: ATA command in question
4537 *
4538 *      Non-NCQ commands cannot run with any other command, NCQ or
4539 *      not.  As upper layer only knows the queue depth, we are
4540 *      responsible for maintaining exclusion.  This function checks
4541 *      whether a new command @qc can be issued.
4542 *
4543 *      LOCKING:
4544 *      spin_lock_irqsave(host lock)
4545 *
4546 *      RETURNS:
4547 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4548 */
4549int ata_std_qc_defer(struct ata_queued_cmd *qc)
4550{
4551        struct ata_link *link = qc->dev->link;
4552
4553        if (qc->tf.protocol == ATA_PROT_NCQ) {
4554                if (!ata_tag_valid(link->active_tag))
4555                        return 0;
4556        } else {
4557                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4558                        return 0;
4559        }
4560
4561        return ATA_DEFER_LINK;
4562}
4563
4564void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4565
4566/**
4567 *      ata_sg_init - Associate command with scatter-gather table.
4568 *      @qc: Command to be associated
4569 *      @sg: Scatter-gather table.
4570 *      @n_elem: Number of elements in s/g table.
4571 *
4572 *      Initialize the data-related elements of queued_cmd @qc
4573 *      to point to a scatter-gather table @sg, containing @n_elem
4574 *      elements.
4575 *
4576 *      LOCKING:
4577 *      spin_lock_irqsave(host lock)
4578 */
4579void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4580                 unsigned int n_elem)
4581{
4582        qc->sg = sg;
4583        qc->n_elem = n_elem;
4584        qc->cursg = qc->sg;
4585}
4586
4587/**
4588 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4589 *      @qc: Command with scatter-gather table to be mapped.
4590 *
4591 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4592 *
4593 *      LOCKING:
4594 *      spin_lock_irqsave(host lock)
4595 *
4596 *      RETURNS:
4597 *      Zero on success, negative on error.
4598 *
4599 */
4600static int ata_sg_setup(struct ata_queued_cmd *qc)
4601{
4602        struct ata_port *ap = qc->ap;
4603        unsigned int n_elem;
4604
4605        VPRINTK("ENTER, ata%u\n", ap->print_id);
4606
4607        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4608        if (n_elem < 1)
4609                return -1;
4610
4611        DPRINTK("%d sg elements mapped\n", n_elem);
4612
4613        qc->n_elem = n_elem;
4614        qc->flags |= ATA_QCFLAG_DMAMAP;
4615
4616        return 0;
4617}
4618
4619/**
4620 *      swap_buf_le16 - swap halves of 16-bit words in place
4621 *      @buf:  Buffer to swap
4622 *      @buf_words:  Number of 16-bit words in buffer.
4623 *
4624 *      Swap halves of 16-bit words if needed to convert from
4625 *      little-endian byte order to native cpu byte order, or
4626 *      vice-versa.
4627 *
4628 *      LOCKING:
4629 *      Inherited from caller.
4630 */
4631void swap_buf_le16(u16 *buf, unsigned int buf_words)
4632{
4633#ifdef __BIG_ENDIAN
4634        unsigned int i;
4635
4636        for (i = 0; i < buf_words; i++)
4637                buf[i] = le16_to_cpu(buf[i]);
4638#endif /* __BIG_ENDIAN */
4639}
4640
4641/**
4642 *      ata_qc_new - Request an available ATA command, for queueing
4643 *      @ap: Port associated with device @dev
4644 *      @dev: Device from whom we request an available command structure
4645 *
4646 *      LOCKING:
4647 *      None.
4648 */
4649
4650static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4651{
4652        struct ata_queued_cmd *qc = NULL;
4653        unsigned int i;
4654
4655        /* no command while frozen */
4656        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4657                return NULL;
4658
4659        /* the last tag is reserved for internal command. */
4660        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4661                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4662                        qc = __ata_qc_from_tag(ap, i);
4663                        break;
4664                }
4665
4666        if (qc)
4667                qc->tag = i;
4668
4669        return qc;
4670}
4671
4672/**
4673 *      ata_qc_new_init - Request an available ATA command, and initialize it
4674 *      @dev: Device from whom we request an available command structure
4675 *      @tag: command tag
4676 *
4677 *      LOCKING:
4678 *      None.
4679 */
4680
4681struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4682{
4683        struct ata_port *ap = dev->link->ap;
4684        struct ata_queued_cmd *qc;
4685
4686        qc = ata_qc_new(ap);
4687        if (qc) {
4688                qc->scsicmd = NULL;
4689                qc->ap = ap;
4690                qc->dev = dev;
4691
4692                ata_qc_reinit(qc);
4693        }
4694
4695        return qc;
4696}
4697
4698/**
4699 *      ata_qc_free - free unused ata_queued_cmd
4700 *      @qc: Command to complete
4701 *
4702 *      Designed to free unused ata_queued_cmd object
4703 *      in case something prevents using it.
4704 *
4705 *      LOCKING:
4706 *      spin_lock_irqsave(host lock)
4707 */
4708void ata_qc_free(struct ata_queued_cmd *qc)
4709{
4710        struct ata_port *ap = qc->ap;
4711        unsigned int tag;
4712
4713        WARN_ON(qc == NULL);    /* ata_qc_from_tag _might_ return NULL */
4714
4715        qc->flags = 0;
4716        tag = qc->tag;
4717        if (likely(ata_tag_valid(tag))) {
4718                qc->tag = ATA_TAG_POISON;
4719                clear_bit(tag, &ap->qc_allocated);
4720        }
4721}
4722
4723void __ata_qc_complete(struct ata_queued_cmd *qc)
4724{
4725        struct ata_port *ap = qc->ap;
4726        struct ata_link *link = qc->dev->link;
4727
4728        WARN_ON(qc == NULL);    /* ata_qc_from_tag _might_ return NULL */
4729        WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4730
4731        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4732                ata_sg_clean(qc);
4733
4734        /* command should be marked inactive atomically with qc completion */
4735        if (qc->tf.protocol == ATA_PROT_NCQ) {
4736                link->sactive &= ~(1 << qc->tag);
4737                if (!link->sactive)
4738                        ap->nr_active_links--;
4739        } else {
4740                link->active_tag = ATA_TAG_POISON;
4741                ap->nr_active_links--;
4742        }
4743
4744        /* clear exclusive status */
4745        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4746                     ap->excl_link == link))
4747                ap->excl_link = NULL;
4748
4749        /* atapi: mark qc as inactive to prevent the interrupt handler
4750         * from completing the command twice later, before the error handler
4751         * is called. (when rc != 0 and atapi request sense is needed)
4752         */
4753        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4754        ap->qc_active &= ~(1 << qc->tag);
4755
4756        /* call completion callback */
4757        qc->complete_fn(qc);
4758}
4759
4760static void fill_result_tf(struct ata_queued_cmd *qc)
4761{
4762        struct ata_port *ap = qc->ap;
4763
4764        qc->result_tf.flags = qc->tf.flags;
4765        ap->ops->qc_fill_rtf(qc);
4766}
4767
4768static void ata_verify_xfer(struct ata_queued_cmd *qc)
4769{
4770        struct ata_device *dev = qc->dev;
4771
4772        if (ata_tag_internal(qc->tag))
4773                return;
4774
4775        if (ata_is_nodata(qc->tf.protocol))
4776                return;
4777
4778        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4779                return;
4780
4781        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4782}
4783
4784/**
4785 *      ata_qc_complete - Complete an active ATA command
4786 *      @qc: Command to complete
4787 *
4788 *      Indicate to the mid and upper layers that an ATA
4789 *      command has completed, with either an ok or not-ok status.
4790 *
4791 *      LOCKING:
4792 *      spin_lock_irqsave(host lock)
4793 */
4794void ata_qc_complete(struct ata_queued_cmd *qc)
4795{
4796        struct ata_port *ap = qc->ap;
4797
4798        /* XXX: New EH and old EH use different mechanisms to
4799         * synchronize EH with regular execution path.
4800         *
4801         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4802         * Normal execution path is responsible for not accessing a
4803         * failed qc.  libata core enforces the rule by returning NULL
4804         * from ata_qc_from_tag() for failed qcs.
4805         *
4806         * Old EH depends on ata_qc_complete() nullifying completion
4807         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4808         * not synchronize with interrupt handler.  Only PIO task is
4809         * taken care of.
4810         */
4811        if (ap->ops->error_handler) {
4812                struct ata_device *dev = qc->dev;
4813                struct ata_eh_info *ehi = &dev->link->eh_info;
4814
4815                WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4816
4817                if (unlikely(qc->err_mask))
4818                        qc->flags |= ATA_QCFLAG_FAILED;
4819
4820                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4821                        if (!ata_tag_internal(qc->tag)) {
4822                                /* always fill result TF for failed qc */
4823                                fill_result_tf(qc);
4824                                ata_qc_schedule_eh(qc);
4825                                return;
4826                        }
4827                }
4828
4829                /* read result TF if requested */
4830                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4831                        fill_result_tf(qc);
4832
4833                /* Some commands need post-processing after successful
4834                 * completion.
4835                 */
4836                switch (qc->tf.command) {
4837                case ATA_CMD_SET_FEATURES:
4838                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4839                            qc->tf.feature != SETFEATURES_WC_OFF)
4840                                break;
4841                        /* fall through */
4842                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4843                case ATA_CMD_SET_MULTI: /* multi_count changed */
4844                        /* revalidate device */
4845                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4846                        ata_port_schedule_eh(ap);
4847                        break;
4848
4849                case ATA_CMD_SLEEP:
4850                        dev->flags |= ATA_DFLAG_SLEEPING;
4851                        break;
4852                }
4853
4854                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4855                        ata_verify_xfer(qc);
4856
4857                __ata_qc_complete(qc);
4858        } else {
4859                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4860                        return;
4861
4862                /* read result TF if failed or requested */
4863                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4864                        fill_result_tf(qc);
4865
4866                __ata_qc_complete(qc);
4867        }
4868}
4869
4870/**
4871 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4872 *      @ap: port in question
4873 *      @qc_active: new qc_active mask
4874 *
4875 *      Complete in-flight commands.  This functions is meant to be
4876 *      called from low-level driver's interrupt routine to complete
4877 *      requests normally.  ap->qc_active and @qc_active is compared
4878 *      and commands are completed accordingly.
4879 *
4880 *      LOCKING:
4881 *      spin_lock_irqsave(host lock)
4882 *
4883 *      RETURNS:
4884 *      Number of completed commands on success, -errno otherwise.
4885 */
4886int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4887{
4888        int nr_done = 0;
4889        u32 done_mask;
4890        int i;
4891
4892        done_mask = ap->qc_active ^ qc_active;
4893
4894        if (unlikely(done_mask & qc_active)) {
4895                ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4896                                "(%08x->%08x)\n", ap->qc_active, qc_active);
4897                return -EINVAL;
4898        }
4899
4900        for (i = 0; i < ATA_MAX_QUEUE; i++) {
4901                struct ata_queued_cmd *qc;
4902
4903                if (!(done_mask & (1 << i)))
4904                        continue;
4905
4906                if ((qc = ata_qc_from_tag(ap, i))) {
4907                        ata_qc_complete(qc);
4908                        nr_done++;
4909                }
4910        }
4911
4912        return nr_done;
4913}
4914
4915/**
4916 *      ata_qc_issue - issue taskfile to device
4917 *      @qc: command to issue to device
4918 *
4919 *      Prepare an ATA command to submission to device.
4920 *      This includes mapping the data into a DMA-able
4921 *      area, filling in the S/G table, and finally
4922 *      writing the taskfile to hardware, starting the command.
4923 *
4924 *      LOCKING:
4925 *      spin_lock_irqsave(host lock)
4926 */
4927void ata_qc_issue(struct ata_queued_cmd *qc)
4928{
4929        struct ata_port *ap = qc->ap;
4930        struct ata_link *link = qc->dev->link;
4931        u8 prot = qc->tf.protocol;
4932
4933        /* Make sure only one non-NCQ command is outstanding.  The
4934         * check is skipped for old EH because it reuses active qc to
4935         * request ATAPI sense.
4936         */
4937        WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4938
4939        if (ata_is_ncq(prot)) {
4940                WARN_ON(link->sactive & (1 << qc->tag));
4941
4942                if (!link->sactive)
4943                        ap->nr_active_links++;
4944                link->sactive |= 1 << qc->tag;
4945        } else {
4946                WARN_ON(link->sactive);
4947
4948                ap->nr_active_links++;
4949                link->active_tag = qc->tag;
4950        }
4951
4952        qc->flags |= ATA_QCFLAG_ACTIVE;
4953        ap->qc_active |= 1 << qc->tag;
4954
4955        /* We guarantee to LLDs that they will have at least one
4956         * non-zero sg if the command is a data command.
4957         */
4958        BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4959
4960        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4961                                 (ap->flags & ATA_FLAG_PIO_DMA)))
4962                if (ata_sg_setup(qc))
4963                        goto sg_err;
4964
4965        /* if device is sleeping, schedule reset and abort the link */
4966        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4967                link->eh_info.action |= ATA_EH_RESET;
4968                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4969                ata_link_abort(link);
4970                return;
4971        }
4972
4973        ap->ops->qc_prep(qc);
4974
4975        qc->err_mask |= ap->ops->qc_issue(qc);
4976        if (unlikely(qc->err_mask))
4977                goto err;
4978        return;
4979
4980sg_err:
4981        qc->err_mask |= AC_ERR_SYSTEM;
4982err:
4983        ata_qc_complete(qc);
4984}
4985
4986/**
4987 *      sata_scr_valid - test whether SCRs are accessible
4988 *      @link: ATA link to test SCR accessibility for
4989 *
4990 *      Test whether SCRs are accessible for @link.
4991 *
4992 *      LOCKING:
4993 *      None.
4994 *
4995 *      RETURNS:
4996 *      1 if SCRs are accessible, 0 otherwise.
4997 */
4998int sata_scr_valid(struct ata_link *link)
4999{
5000        struct ata_port *ap = link->ap;
5001
5002        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5003}
5004
5005/**
5006 *      sata_scr_read - read SCR register of the specified port
5007 *      @link: ATA link to read SCR for
5008 *      @reg: SCR to read
5009 *      @val: Place to store read value
5010 *
5011 *      Read SCR register @reg of @link into *@val.  This function is
5012 *      guaranteed to succeed if @link is ap->link, the cable type of
5013 *      the port is SATA and the port implements ->scr_read.
5014 *
5015 *      LOCKING:
5016 *      None if @link is ap->link.  Kernel thread context otherwise.
5017 *
5018 *      RETURNS:
5019 *      0 on success, negative errno on failure.
5020 */
5021int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5022{
5023        if (ata_is_host_link(link)) {
5024                if (sata_scr_valid(link))
5025                        return link->ap->ops->scr_read(link, reg, val);
5026                return -EOPNOTSUPP;
5027        }
5028
5029        return sata_pmp_scr_read(link, reg, val);
5030}
5031
5032/**
5033 *      sata_scr_write - write SCR register of the specified port
5034 *      @link: ATA link to write SCR for
5035 *      @reg: SCR to write
5036 *      @val: value to write
5037 *
5038 *      Write @val to SCR register @reg of @link.  This function is
5039 *      guaranteed to succeed if @link is ap->link, the cable type of
5040 *      the port is SATA and the port implements ->scr_read.
5041 *
5042 *      LOCKING:
5043 *      None if @link is ap->link.  Kernel thread context otherwise.
5044 *
5045 *      RETURNS:
5046 *      0 on success, negative errno on failure.
5047 */
5048int sata_scr_write(struct ata_link *link, int reg, u32 val)
5049{
5050        if (ata_is_host_link(link)) {
5051                if (sata_scr_valid(link))
5052                        return link->ap->ops->scr_write(link, reg, val);
5053                return -EOPNOTSUPP;
5054        }
5055
5056        return sata_pmp_scr_write(link, reg, val);
5057}
5058
5059/**
5060 *      sata_scr_write_flush - write SCR register of the specified port and flush
5061 *      @link: ATA link to write SCR for
5062 *      @reg: SCR to write
5063 *      @val: value to write
5064 *
5065 *      This function is identical to sata_scr_write() except that this
5066 *      function performs flush after writing to the register.
5067 *
5068 *      LOCKING:
5069 *      None if @link is ap->link.  Kernel thread context otherwise.
5070 *
5071 *      RETURNS:
5072 *      0 on success, negative errno on failure.
5073 */
5074int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5075{
5076        if (ata_is_host_link(link)) {
5077                int rc;
5078
5079                if (sata_scr_valid(link)) {
5080                        rc = link->ap->ops->scr_write(link, reg, val);
5081                        if (rc == 0)
5082                                rc = link->ap->ops->scr_read(link, reg, &val);
5083                        return rc;
5084                }
5085                return -EOPNOTSUPP;
5086        }
5087
5088        return sata_pmp_scr_write(link, reg, val);
5089}
5090
5091/**
5092 *      ata_phys_link_online - test whether the given link is online
5093 *      @link: ATA link to test
5094 *
5095 *      Test whether @link is online.  Note that this function returns
5096 *      0 if online status of @link cannot be obtained, so
5097 *      ata_link_online(link) != !ata_link_offline(link).
5098 *
5099 *      LOCKING:
5100 *      None.
5101 *
5102 *      RETURNS:
5103 *      True if the port online status is available and online.
5104 */
5105bool ata_phys_link_online(struct ata_link *link)
5106{
5107        u32 sstatus;
5108
5109        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5110            (sstatus & 0xf) == 0x3)
5111                return true;
5112        return false;
5113}
5114
5115/**
5116 *      ata_phys_link_offline - test whether the given link is offline
5117 *      @link: ATA link to test
5118 *
5119 *      Test whether @link is offline.  Note that this function
5120 *      returns 0 if offline status of @link cannot be obtained, so
5121 *      ata_link_online(link) != !ata_link_offline(link).
5122 *
5123 *      LOCKING:
5124 *      None.
5125 *
5126 *      RETURNS:
5127 *      True if the port offline status is available and offline.
5128 */
5129bool ata_phys_link_offline(struct ata_link *link)
5130{
5131        u32 sstatus;
5132
5133        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5134            (sstatus & 0xf) != 0x3)
5135                return true;
5136        return false;
5137}
5138
5139/**
5140 *      ata_link_online - test whether the given link is online
5141 *      @link: ATA link to test
5142 *
5143 *      Test whether @link is online.  This is identical to
5144 *      ata_phys_link_online() when there's no slave link.  When
5145 *      there's a slave link, this function should only be called on
5146 *      the master link and will return true if any of M/S links is
5147 *      online.
5148 *
5149 *      LOCKING:
5150 *      None.
5151 *
5152 *      RETURNS:
5153 *      True if the port online status is available and online.
5154 */
5155bool ata_link_online(struct ata_link *link)
5156{
5157        struct ata_link *slave = link->ap->slave_link;
5158
5159        WARN_ON(link == slave); /* shouldn't be called on slave link */
5160
5161        return ata_phys_link_online(link) ||
5162                (slave && ata_phys_link_online(slave));
5163}
5164
5165/**
5166 *      ata_link_offline - test whether the given link is offline
5167 *      @link: ATA link to test
5168 *
5169 *      Test whether @link is offline.  This is identical to
5170 *      ata_phys_link_offline() when there's no slave link.  When
5171 *      there's a slave link, this function should only be called on
5172 *      the master link and will return true if both M/S links are
5173 *      offline.
5174 *
5175 *      LOCKING:
5176 *      None.
5177 *
5178 *      RETURNS:
5179 *      True if the port offline status is available and offline.
5180 */
5181bool ata_link_offline(struct ata_link *link)
5182{
5183        struct ata_link *slave = link->ap->slave_link;
5184
5185        WARN_ON(link == slave); /* shouldn't be called on slave link */
5186
5187        return ata_phys_link_offline(link) &&
5188                (!slave || ata_phys_link_offline(slave));
5189}
5190
5191#ifdef CONFIG_PM
5192static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5193                               unsigned int action, unsigned int ehi_flags,
5194                               int wait)
5195{
5196        unsigned long flags;
5197        int i, rc;
5198
5199        for (i = 0; i < host->n_ports; i++) {
5200                struct ata_port *ap = host->ports[i];
5201                struct ata_link *link;
5202
5203                /* Previous resume operation might still be in
5204                 * progress.  Wait for PM_PENDING to clear.
5205                 */
5206                if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5207                        ata_port_wait_eh(ap);
5208                        WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5209                }
5210
5211                /* request PM ops to EH */
5212                spin_lock_irqsave(ap->lock, flags);
5213
5214                ap->pm_mesg = mesg;
5215                if (wait) {
5216                        rc = 0;
5217                        ap->pm_result = &rc;
5218                }
5219
5220                ap->pflags |= ATA_PFLAG_PM_PENDING;
5221                __ata_port_for_each_link(link, ap) {
5222                        link->eh_info.action |= action;
5223                        link->eh_info.flags |= ehi_flags;
5224                }
5225
5226                ata_port_schedule_eh(ap);
5227
5228                spin_unlock_irqrestore(ap->lock, flags);
5229
5230                /* wait and check result */
5231                if (wait) {
5232                        ata_port_wait_eh(ap);
5233                        WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5234                        if (rc)
5235                                return rc;
5236                }
5237        }
5238
5239        return 0;
5240}
5241
5242/**
5243 *      ata_host_suspend - suspend host
5244 *      @host: host to suspend
5245 *      @mesg: PM message
5246 *
5247 *      Suspend @host.  Actual operation is performed by EH.  This
5248 *      function requests EH to perform PM operations and waits for EH
5249 *      to finish.
5250 *
5251 *      LOCKING:
5252 *      Kernel thread context (may sleep).
5253 *
5254 *      RETURNS:
5255 *      0 on success, -errno on failure.
5256 */
5257int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5258{
5259        int rc;
5260
5261        /*
5262         * disable link pm on all ports before requesting
5263         * any pm activity
5264         */
5265        ata_lpm_enable(host);
5266
5267        rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5268        if (rc == 0)
5269                host->dev->power.power_state = mesg;
5270        return rc;
5271}
5272
5273/**
5274 *      ata_host_resume - resume host
5275 *      @host: host to resume
5276 *
5277 *      Resume @host.  Actual operation is performed by EH.  This
5278 *      function requests EH to perform PM operations and returns.
5279 *      Note that all resume operations are performed parallely.
5280 *
5281 *      LOCKING:
5282 *      Kernel thread context (may sleep).
5283 */
5284void ata_host_resume(struct ata_host *host)
5285{
5286        ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5287                            ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5288        host->dev->power.power_state = PMSG_ON;
5289
5290        /* reenable link pm */
5291        ata_lpm_disable(host);
5292}
5293#endif
5294
5295/**
5296 *      ata_port_start - Set port up for dma.
5297 *      @ap: Port to initialize
5298 *
5299 *      Called just after data structures for each port are
5300 *      initialized.  Allocates space for PRD table.
5301 *
5302 *      May be used as the port_start() entry in ata_port_operations.
5303 *
5304 *      LOCKING:
5305 *      Inherited from caller.
5306 */
5307int ata_port_start(struct ata_port *ap)
5308{
5309        struct device *dev = ap->dev;
5310
5311        ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5312                                      GFP_KERNEL);
5313        if (!ap->prd)
5314                return -ENOMEM;
5315
5316        return 0;
5317}
5318
5319/**
5320 *      ata_dev_init - Initialize an ata_device structure
5321 *      @dev: Device structure to initialize
5322 *
5323 *      Initialize @dev in preparation for probing.
5324 *
5325 *      LOCKING:
5326 *      Inherited from caller.
5327 */
5328void ata_dev_init(struct ata_device *dev)
5329{
5330        struct ata_link *link = ata_dev_phys_link(dev);
5331        struct ata_port *ap = link->ap;
5332        unsigned long flags;
5333
5334        /* SATA spd limit is bound to the attached device, reset together */
5335        link->sata_spd_limit = link->hw_sata_spd_limit;
5336        link->sata_spd = 0;
5337
5338        /* High bits of dev->flags are used to record warm plug
5339         * requests which occur asynchronously.  Synchronize using
5340         * host lock.
5341         */
5342        spin_lock_irqsave(ap->lock, flags);
5343        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5344        dev->horkage = 0;
5345        spin_unlock_irqrestore(ap->lock, flags);
5346
5347        memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5348               sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5349        dev->pio_mask = UINT_MAX;
5350        dev->mwdma_mask = UINT_MAX;
5351        dev->udma_mask = UINT_MAX;
5352}
5353
5354/**
5355 *      ata_link_init - Initialize an ata_link structure
5356 *      @ap: ATA port link is attached to
5357 *      @link: Link structure to initialize
5358 *      @pmp: Port multiplier port number
5359 *
5360 *      Initialize @link.
5361 *
5362 *      LOCKING:
5363 *      Kernel thread context (may sleep)
5364 */
5365void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5366{
5367        int i;
5368
5369        /* clear everything except for devices */
5370        memset(link, 0, offsetof(struct ata_link, device[0]));
5371
5372        link->ap = ap;
5373        link->pmp = pmp;
5374        link->active_tag = ATA_TAG_POISON;
5375        link->hw_sata_spd_limit = UINT_MAX;
5376
5377        /* can't use iterator, ap isn't initialized yet */
5378        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5379                struct ata_device *dev = &link->device[i];
5380
5381                dev->link = link;
5382                dev->devno = dev - link->device;
5383                ata_dev_init(dev);
5384        }
5385}
5386
5387/**
5388 *      sata_link_init_spd - Initialize link->sata_spd_limit
5389 *      @link: Link to configure sata_spd_limit for
5390 *
5391 *      Initialize @link->[hw_]sata_spd_limit to the currently
5392 *      configured value.
5393 *
5394 *      LOCKING:
5395 *      Kernel thread context (may sleep).
5396 *
5397 *      RETURNS:
5398 *      0 on success, -errno on failure.
5399 */
5400int sata_link_init_spd(struct ata_link *link)
5401{
5402        u8 spd;
5403        int rc;
5404
5405        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5406        if (rc)
5407                return rc;
5408
5409        spd = (link->saved_scontrol >> 4) & 0xf;
5410        if (spd)
5411                link->hw_sata_spd_limit &= (1 << spd) - 1;
5412
5413        ata_force_link_limits(link);
5414
5415        link->sata_spd_limit = link->hw_sata_spd_limit;
5416
5417        return 0;
5418}
5419
5420/**
5421 *      ata_port_alloc - allocate and initialize basic ATA port resources
5422 *      @host: ATA host this allocated port belongs to
5423 *
5424 *      Allocate and initialize basic ATA port resources.
5425 *
5426 *      RETURNS:
5427 *      Allocate ATA port on success, NULL on failure.
5428 *
5429 *      LOCKING:
5430 *      Inherited from calling layer (may sleep).
5431 */
5432struct ata_port *ata_port_alloc(struct ata_host *host)
5433{
5434        struct ata_port *ap;
5435
5436        DPRINTK("ENTER\n");
5437
5438        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5439        if (!ap)
5440                return NULL;
5441
5442        ap->pflags |= ATA_PFLAG_INITIALIZING;
5443        ap->lock = &host->lock;
5444        ap->flags = ATA_FLAG_DISABLED;
5445        ap->print_id = -1;
5446        ap->ctl = ATA_DEVCTL_OBS;
5447        ap->host = host;
5448        ap->dev = host->dev;
5449        ap->last_ctl = 0xFF;
5450
5451#if defined(ATA_VERBOSE_DEBUG)
5452        /* turn on all debugging levels */
5453        ap->msg_enable = 0x00FF;
5454#elif defined(ATA_DEBUG)
5455        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5456#else
5457        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5458#endif
5459
5460#ifdef CONFIG_ATA_SFF
5461        INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5462#else
5463        INIT_DELAYED_WORK(&ap->port_task, NULL);
5464#endif
5465        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5466        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5467        INIT_LIST_HEAD(&ap->eh_done_q);
5468        init_waitqueue_head(&ap->eh_wait_q);
5469        init_completion(&ap->park_req_pending);
5470        init_timer_deferrable(&ap->fastdrain_timer);
5471        ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5472        ap->fastdrain_timer.data = (unsigned long)ap;
5473
5474        ap->cbl = ATA_CBL_NONE;
5475
5476        ata_link_init(ap, &ap->link, 0);
5477
5478#ifdef ATA_IRQ_TRAP
5479        ap->stats.unhandled_irq = 1;
5480        ap->stats.idle_irq = 1;
5481#endif
5482        return ap;
5483}
5484
5485static void ata_host_release(struct device *gendev, void *res)
5486{
5487        struct ata_host *host = dev_get_drvdata(gendev);
5488        int i;
5489
5490        for (i = 0; i < host->n_ports; i++) {
5491                struct ata_port *ap = host->ports[i];
5492
5493                if (!ap)
5494                        continue;
5495
5496                if (ap->scsi_host)
5497                        scsi_host_put(ap->scsi_host);
5498
5499                kfree(ap->pmp_link);
5500                kfree(ap->slave_link);
5501                kfree(ap);
5502                host->ports[i] = NULL;
5503        }
5504
5505        dev_set_drvdata(gendev, NULL);
5506}
5507
5508/**
<