linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41
  42#ifdef __KERNEL__
  43
  44struct sched_param {
  45        int sched_priority;
  46};
  47
  48#include <asm/param.h>  /* for HZ */
  49
  50#include <linux/capability.h>
  51#include <linux/threads.h>
  52#include <linux/kernel.h>
  53#include <linux/types.h>
  54#include <linux/timex.h>
  55#include <linux/jiffies.h>
  56#include <linux/rbtree.h>
  57#include <linux/thread_info.h>
  58#include <linux/cpumask.h>
  59#include <linux/errno.h>
  60#include <linux/nodemask.h>
  61#include <linux/mm_types.h>
  62
  63#include <asm/system.h>
  64#include <asm/page.h>
  65#include <asm/ptrace.h>
  66#include <asm/cputime.h>
  67
  68#include <linux/smp.h>
  69#include <linux/sem.h>
  70#include <linux/signal.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compiler.h>
  73#include <linux/completion.h>
  74#include <linux/pid.h>
  75#include <linux/percpu.h>
  76#include <linux/topology.h>
  77#include <linux/proportions.h>
  78#include <linux/seccomp.h>
  79#include <linux/rcupdate.h>
  80#include <linux/rtmutex.h>
  81
  82#include <linux/time.h>
  83#include <linux/param.h>
  84#include <linux/resource.h>
  85#include <linux/timer.h>
  86#include <linux/hrtimer.h>
  87#include <linux/task_io_accounting.h>
  88#include <linux/kobject.h>
  89#include <linux/latencytop.h>
  90#include <linux/cred.h>
  91
  92#include <asm/processor.h>
  93
  94struct mem_cgroup;
  95struct exec_domain;
  96struct futex_pi_state;
  97struct robust_list_head;
  98struct bio;
  99
 100/*
 101 * List of flags we want to share for kernel threads,
 102 * if only because they are not used by them anyway.
 103 */
 104#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 105
 106/*
 107 * These are the constant used to fake the fixed-point load-average
 108 * counting. Some notes:
 109 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 110 *    a load-average precision of 10 bits integer + 11 bits fractional
 111 *  - if you want to count load-averages more often, you need more
 112 *    precision, or rounding will get you. With 2-second counting freq,
 113 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 114 *    11 bit fractions.
 115 */
 116extern unsigned long avenrun[];         /* Load averages */
 117
 118#define FSHIFT          11              /* nr of bits of precision */
 119#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 120#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 121#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 122#define EXP_5           2014            /* 1/exp(5sec/5min) */
 123#define EXP_15          2037            /* 1/exp(5sec/15min) */
 124
 125#define CALC_LOAD(load,exp,n) \
 126        load *= exp; \
 127        load += n*(FIXED_1-exp); \
 128        load >>= FSHIFT;
 129
 130extern unsigned long total_forks;
 131extern int nr_threads;
 132DECLARE_PER_CPU(unsigned long, process_counts);
 133extern int nr_processes(void);
 134extern unsigned long nr_running(void);
 135extern unsigned long nr_uninterruptible(void);
 136extern unsigned long nr_active(void);
 137extern unsigned long nr_iowait(void);
 138
 139struct seq_file;
 140struct cfs_rq;
 141struct task_group;
 142#ifdef CONFIG_SCHED_DEBUG
 143extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 144extern void proc_sched_set_task(struct task_struct *p);
 145extern void
 146print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 147#else
 148static inline void
 149proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 150{
 151}
 152static inline void proc_sched_set_task(struct task_struct *p)
 153{
 154}
 155static inline void
 156print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 157{
 158}
 159#endif
 160
 161extern unsigned long long time_sync_thresh;
 162
 163/*
 164 * Task state bitmask. NOTE! These bits are also
 165 * encoded in fs/proc/array.c: get_task_state().
 166 *
 167 * We have two separate sets of flags: task->state
 168 * is about runnability, while task->exit_state are
 169 * about the task exiting. Confusing, but this way
 170 * modifying one set can't modify the other one by
 171 * mistake.
 172 */
 173#define TASK_RUNNING            0
 174#define TASK_INTERRUPTIBLE      1
 175#define TASK_UNINTERRUPTIBLE    2
 176#define __TASK_STOPPED          4
 177#define __TASK_TRACED           8
 178/* in tsk->exit_state */
 179#define EXIT_ZOMBIE             16
 180#define EXIT_DEAD               32
 181/* in tsk->state again */
 182#define TASK_DEAD               64
 183#define TASK_WAKEKILL           128
 184
 185/* Convenience macros for the sake of set_task_state */
 186#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 187#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 188#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 189
 190/* Convenience macros for the sake of wake_up */
 191#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 192#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 193
 194/* get_task_state() */
 195#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 196                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 197                                 __TASK_TRACED)
 198
 199#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 200#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 201#define task_is_stopped_or_traced(task) \
 202                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 203#define task_contributes_to_load(task)  \
 204                                ((task->state & TASK_UNINTERRUPTIBLE) != 0)
 205
 206#define __set_task_state(tsk, state_value)              \
 207        do { (tsk)->state = (state_value); } while (0)
 208#define set_task_state(tsk, state_value)                \
 209        set_mb((tsk)->state, (state_value))
 210
 211/*
 212 * set_current_state() includes a barrier so that the write of current->state
 213 * is correctly serialised wrt the caller's subsequent test of whether to
 214 * actually sleep:
 215 *
 216 *      set_current_state(TASK_UNINTERRUPTIBLE);
 217 *      if (do_i_need_to_sleep())
 218 *              schedule();
 219 *
 220 * If the caller does not need such serialisation then use __set_current_state()
 221 */
 222#define __set_current_state(state_value)                        \
 223        do { current->state = (state_value); } while (0)
 224#define set_current_state(state_value)          \
 225        set_mb(current->state, (state_value))
 226
 227/* Task command name length */
 228#define TASK_COMM_LEN 16
 229
 230#include <linux/spinlock.h>
 231
 232/*
 233 * This serializes "schedule()" and also protects
 234 * the run-queue from deletions/modifications (but
 235 * _adding_ to the beginning of the run-queue has
 236 * a separate lock).
 237 */
 238extern rwlock_t tasklist_lock;
 239extern spinlock_t mmlist_lock;
 240
 241struct task_struct;
 242
 243extern void sched_init(void);
 244extern void sched_init_smp(void);
 245extern asmlinkage void schedule_tail(struct task_struct *prev);
 246extern void init_idle(struct task_struct *idle, int cpu);
 247extern void init_idle_bootup_task(struct task_struct *idle);
 248
 249extern int runqueue_is_locked(void);
 250extern void task_rq_unlock_wait(struct task_struct *p);
 251
 252extern cpumask_t nohz_cpu_mask;
 253#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 254extern int select_nohz_load_balancer(int cpu);
 255#else
 256static inline int select_nohz_load_balancer(int cpu)
 257{
 258        return 0;
 259}
 260#endif
 261
 262extern unsigned long rt_needs_cpu(int cpu);
 263
 264/*
 265 * Only dump TASK_* tasks. (0 for all tasks)
 266 */
 267extern void show_state_filter(unsigned long state_filter);
 268
 269static inline void show_state(void)
 270{
 271        show_state_filter(0);
 272}
 273
 274extern void show_regs(struct pt_regs *);
 275
 276/*
 277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 278 * task), SP is the stack pointer of the first frame that should be shown in the back
 279 * trace (or NULL if the entire call-chain of the task should be shown).
 280 */
 281extern void show_stack(struct task_struct *task, unsigned long *sp);
 282
 283void io_schedule(void);
 284long io_schedule_timeout(long timeout);
 285
 286extern void cpu_init (void);
 287extern void trap_init(void);
 288extern void account_process_tick(struct task_struct *task, int user);
 289extern void update_process_times(int user);
 290extern void scheduler_tick(void);
 291
 292extern void sched_show_task(struct task_struct *p);
 293
 294#ifdef CONFIG_DETECT_SOFTLOCKUP
 295extern void softlockup_tick(void);
 296extern void touch_softlockup_watchdog(void);
 297extern void touch_all_softlockup_watchdogs(void);
 298extern unsigned int  softlockup_panic;
 299extern unsigned long sysctl_hung_task_check_count;
 300extern unsigned long sysctl_hung_task_timeout_secs;
 301extern unsigned long sysctl_hung_task_warnings;
 302extern int softlockup_thresh;
 303#else
 304static inline void softlockup_tick(void)
 305{
 306}
 307static inline void spawn_softlockup_task(void)
 308{
 309}
 310static inline void touch_softlockup_watchdog(void)
 311{
 312}
 313static inline void touch_all_softlockup_watchdogs(void)
 314{
 315}
 316#endif
 317
 318
 319/* Attach to any functions which should be ignored in wchan output. */
 320#define __sched         __attribute__((__section__(".sched.text")))
 321
 322/* Linker adds these: start and end of __sched functions */
 323extern char __sched_text_start[], __sched_text_end[];
 324
 325/* Is this address in the __sched functions? */
 326extern int in_sched_functions(unsigned long addr);
 327
 328#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 329extern signed long schedule_timeout(signed long timeout);
 330extern signed long schedule_timeout_interruptible(signed long timeout);
 331extern signed long schedule_timeout_killable(signed long timeout);
 332extern signed long schedule_timeout_uninterruptible(signed long timeout);
 333asmlinkage void schedule(void);
 334
 335struct nsproxy;
 336struct user_namespace;
 337
 338/* Maximum number of active map areas.. This is a random (large) number */
 339#define DEFAULT_MAX_MAP_COUNT   65536
 340
 341extern int sysctl_max_map_count;
 342
 343#include <linux/aio.h>
 344
 345extern unsigned long
 346arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 347                       unsigned long, unsigned long);
 348extern unsigned long
 349arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 350                          unsigned long len, unsigned long pgoff,
 351                          unsigned long flags);
 352extern void arch_unmap_area(struct mm_struct *, unsigned long);
 353extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 354
 355#if USE_SPLIT_PTLOCKS
 356/*
 357 * The mm counters are not protected by its page_table_lock,
 358 * so must be incremented atomically.
 359 */
 360#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
 361#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
 362#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
 363#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
 364#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
 365
 366#else  /* !USE_SPLIT_PTLOCKS */
 367/*
 368 * The mm counters are protected by its page_table_lock,
 369 * so can be incremented directly.
 370 */
 371#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
 372#define get_mm_counter(mm, member) ((mm)->_##member)
 373#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
 374#define inc_mm_counter(mm, member) (mm)->_##member++
 375#define dec_mm_counter(mm, member) (mm)->_##member--
 376
 377#endif /* !USE_SPLIT_PTLOCKS */
 378
 379#define get_mm_rss(mm)                                  \
 380        (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
 381#define update_hiwater_rss(mm)  do {                    \
 382        unsigned long _rss = get_mm_rss(mm);            \
 383        if ((mm)->hiwater_rss < _rss)                   \
 384                (mm)->hiwater_rss = _rss;               \
 385} while (0)
 386#define update_hiwater_vm(mm)   do {                    \
 387        if ((mm)->hiwater_vm < (mm)->total_vm)          \
 388                (mm)->hiwater_vm = (mm)->total_vm;      \
 389} while (0)
 390
 391extern void set_dumpable(struct mm_struct *mm, int value);
 392extern int get_dumpable(struct mm_struct *mm);
 393
 394/* mm flags */
 395/* dumpable bits */
 396#define MMF_DUMPABLE      0  /* core dump is permitted */
 397#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 398#define MMF_DUMPABLE_BITS 2
 399
 400/* coredump filter bits */
 401#define MMF_DUMP_ANON_PRIVATE   2
 402#define MMF_DUMP_ANON_SHARED    3
 403#define MMF_DUMP_MAPPED_PRIVATE 4
 404#define MMF_DUMP_MAPPED_SHARED  5
 405#define MMF_DUMP_ELF_HEADERS    6
 406#define MMF_DUMP_HUGETLB_PRIVATE 7
 407#define MMF_DUMP_HUGETLB_SHARED  8
 408#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 409#define MMF_DUMP_FILTER_BITS    7
 410#define MMF_DUMP_FILTER_MASK \
 411        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 412#define MMF_DUMP_FILTER_DEFAULT \
 413        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 414         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 415
 416#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 417# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 418#else
 419# define MMF_DUMP_MASK_DEFAULT_ELF      0
 420#endif
 421
 422struct sighand_struct {
 423        atomic_t                count;
 424        struct k_sigaction      action[_NSIG];
 425        spinlock_t              siglock;
 426        wait_queue_head_t       signalfd_wqh;
 427};
 428
 429struct pacct_struct {
 430        int                     ac_flag;
 431        long                    ac_exitcode;
 432        unsigned long           ac_mem;
 433        cputime_t               ac_utime, ac_stime;
 434        unsigned long           ac_minflt, ac_majflt;
 435};
 436
 437/**
 438 * struct task_cputime - collected CPU time counts
 439 * @utime:              time spent in user mode, in &cputime_t units
 440 * @stime:              time spent in kernel mode, in &cputime_t units
 441 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 442 *
 443 * This structure groups together three kinds of CPU time that are
 444 * tracked for threads and thread groups.  Most things considering
 445 * CPU time want to group these counts together and treat all three
 446 * of them in parallel.
 447 */
 448struct task_cputime {
 449        cputime_t utime;
 450        cputime_t stime;
 451        unsigned long long sum_exec_runtime;
 452};
 453/* Alternate field names when used to cache expirations. */
 454#define prof_exp        stime
 455#define virt_exp        utime
 456#define sched_exp       sum_exec_runtime
 457
 458/**
 459 * struct thread_group_cputime - thread group interval timer counts
 460 * @totals:             thread group interval timers; substructure for
 461 *                      uniprocessor kernel, per-cpu for SMP kernel.
 462 *
 463 * This structure contains the version of task_cputime, above, that is
 464 * used for thread group CPU clock calculations.
 465 */
 466struct thread_group_cputime {
 467        struct task_cputime *totals;
 468};
 469
 470/*
 471 * NOTE! "signal_struct" does not have it's own
 472 * locking, because a shared signal_struct always
 473 * implies a shared sighand_struct, so locking
 474 * sighand_struct is always a proper superset of
 475 * the locking of signal_struct.
 476 */
 477struct signal_struct {
 478        atomic_t                count;
 479        atomic_t                live;
 480
 481        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 482
 483        /* current thread group signal load-balancing target: */
 484        struct task_struct      *curr_target;
 485
 486        /* shared signal handling: */
 487        struct sigpending       shared_pending;
 488
 489        /* thread group exit support */
 490        int                     group_exit_code;
 491        /* overloaded:
 492         * - notify group_exit_task when ->count is equal to notify_count
 493         * - everyone except group_exit_task is stopped during signal delivery
 494         *   of fatal signals, group_exit_task processes the signal.
 495         */
 496        int                     notify_count;
 497        struct task_struct      *group_exit_task;
 498
 499        /* thread group stop support, overloads group_exit_code too */
 500        int                     group_stop_count;
 501        unsigned int            flags; /* see SIGNAL_* flags below */
 502
 503        /* POSIX.1b Interval Timers */
 504        struct list_head posix_timers;
 505
 506        /* ITIMER_REAL timer for the process */
 507        struct hrtimer real_timer;
 508        struct pid *leader_pid;
 509        ktime_t it_real_incr;
 510
 511        /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
 512        cputime_t it_prof_expires, it_virt_expires;
 513        cputime_t it_prof_incr, it_virt_incr;
 514
 515        /*
 516         * Thread group totals for process CPU clocks.
 517         * See thread_group_cputime(), et al, for details.
 518         */
 519        struct thread_group_cputime cputime;
 520
 521        /* Earliest-expiration cache. */
 522        struct task_cputime cputime_expires;
 523
 524        struct list_head cpu_timers[3];
 525
 526        /* job control IDs */
 527
 528        /*
 529         * pgrp and session fields are deprecated.
 530         * use the task_session_Xnr and task_pgrp_Xnr routines below
 531         */
 532
 533        union {
 534                pid_t pgrp __deprecated;
 535                pid_t __pgrp;
 536        };
 537
 538        struct pid *tty_old_pgrp;
 539
 540        union {
 541                pid_t session __deprecated;
 542                pid_t __session;
 543        };
 544
 545        /* boolean value for session group leader */
 546        int leader;
 547
 548        struct tty_struct *tty; /* NULL if no tty */
 549
 550        /*
 551         * Cumulative resource counters for dead threads in the group,
 552         * and for reaped dead child processes forked by this group.
 553         * Live threads maintain their own counters and add to these
 554         * in __exit_signal, except for the group leader.
 555         */
 556        cputime_t cutime, cstime;
 557        cputime_t gtime;
 558        cputime_t cgtime;
 559        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 560        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 561        unsigned long inblock, oublock, cinblock, coublock;
 562        struct task_io_accounting ioac;
 563
 564        /*
 565         * We don't bother to synchronize most readers of this at all,
 566         * because there is no reader checking a limit that actually needs
 567         * to get both rlim_cur and rlim_max atomically, and either one
 568         * alone is a single word that can safely be read normally.
 569         * getrlimit/setrlimit use task_lock(current->group_leader) to
 570         * protect this instead of the siglock, because they really
 571         * have no need to disable irqs.
 572         */
 573        struct rlimit rlim[RLIM_NLIMITS];
 574
 575        /* keep the process-shared keyrings here so that they do the right
 576         * thing in threads created with CLONE_THREAD */
 577#ifdef CONFIG_KEYS
 578        struct key *session_keyring;    /* keyring inherited over fork */
 579        struct key *process_keyring;    /* keyring private to this process */
 580#endif
 581#ifdef CONFIG_BSD_PROCESS_ACCT
 582        struct pacct_struct pacct;      /* per-process accounting information */
 583#endif
 584#ifdef CONFIG_TASKSTATS
 585        struct taskstats *stats;
 586#endif
 587#ifdef CONFIG_AUDIT
 588        unsigned audit_tty;
 589        struct tty_audit_buf *tty_audit_buf;
 590#endif
 591};
 592
 593/* Context switch must be unlocked if interrupts are to be enabled */
 594#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 595# define __ARCH_WANT_UNLOCKED_CTXSW
 596#endif
 597
 598/*
 599 * Bits in flags field of signal_struct.
 600 */
 601#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 602#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 603#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 604#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 605/*
 606 * Pending notifications to parent.
 607 */
 608#define SIGNAL_CLD_STOPPED      0x00000010
 609#define SIGNAL_CLD_CONTINUED    0x00000020
 610#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 611
 612#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 613
 614/* If true, all threads except ->group_exit_task have pending SIGKILL */
 615static inline int signal_group_exit(const struct signal_struct *sig)
 616{
 617        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 618                (sig->group_exit_task != NULL);
 619}
 620
 621/*
 622 * Some day this will be a full-fledged user tracking system..
 623 */
 624struct user_struct {
 625        atomic_t __count;       /* reference count */
 626        atomic_t processes;     /* How many processes does this user have? */
 627        atomic_t files;         /* How many open files does this user have? */
 628        atomic_t sigpending;    /* How many pending signals does this user have? */
 629#ifdef CONFIG_INOTIFY_USER
 630        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 631        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 632#endif
 633#ifdef CONFIG_EPOLL
 634        atomic_t epoll_devs;    /* The number of epoll descriptors currently open */
 635        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 636#endif
 637#ifdef CONFIG_POSIX_MQUEUE
 638        /* protected by mq_lock */
 639        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 640#endif
 641        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 642
 643#ifdef CONFIG_KEYS
 644        struct key *uid_keyring;        /* UID specific keyring */
 645        struct key *session_keyring;    /* UID's default session keyring */
 646#endif
 647
 648        /* Hash table maintenance information */
 649        struct hlist_node uidhash_node;
 650        uid_t uid;
 651
 652#ifdef CONFIG_USER_SCHED
 653        struct task_group *tg;
 654#ifdef CONFIG_SYSFS
 655        struct kobject kobj;
 656        struct work_struct work;
 657#endif
 658#endif
 659};
 660
 661extern int uids_sysfs_init(void);
 662
 663extern struct user_struct *find_user(uid_t);
 664
 665extern struct user_struct root_user;
 666#define INIT_USER (&root_user)
 667
 668struct backing_dev_info;
 669struct reclaim_state;
 670
 671#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 672struct sched_info {
 673        /* cumulative counters */
 674        unsigned long pcount;         /* # of times run on this cpu */
 675        unsigned long long cpu_time,  /* time spent on the cpu */
 676                           run_delay; /* time spent waiting on a runqueue */
 677
 678        /* timestamps */
 679        unsigned long long last_arrival,/* when we last ran on a cpu */
 680                           last_queued; /* when we were last queued to run */
 681#ifdef CONFIG_SCHEDSTATS
 682        /* BKL stats */
 683        unsigned int bkl_count;
 684#endif
 685};
 686#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 687
 688#ifdef CONFIG_TASK_DELAY_ACCT
 689struct task_delay_info {
 690        spinlock_t      lock;
 691        unsigned int    flags;  /* Private per-task flags */
 692
 693        /* For each stat XXX, add following, aligned appropriately
 694         *
 695         * struct timespec XXX_start, XXX_end;
 696         * u64 XXX_delay;
 697         * u32 XXX_count;
 698         *
 699         * Atomicity of updates to XXX_delay, XXX_count protected by
 700         * single lock above (split into XXX_lock if contention is an issue).
 701         */
 702
 703        /*
 704         * XXX_count is incremented on every XXX operation, the delay
 705         * associated with the operation is added to XXX_delay.
 706         * XXX_delay contains the accumulated delay time in nanoseconds.
 707         */
 708        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 709        u64 blkio_delay;        /* wait for sync block io completion */
 710        u64 swapin_delay;       /* wait for swapin block io completion */
 711        u32 blkio_count;        /* total count of the number of sync block */
 712                                /* io operations performed */
 713        u32 swapin_count;       /* total count of the number of swapin block */
 714                                /* io operations performed */
 715
 716        struct timespec freepages_start, freepages_end;
 717        u64 freepages_delay;    /* wait for memory reclaim */
 718        u32 freepages_count;    /* total count of memory reclaim */
 719};
 720#endif  /* CONFIG_TASK_DELAY_ACCT */
 721
 722static inline int sched_info_on(void)
 723{
 724#ifdef CONFIG_SCHEDSTATS
 725        return 1;
 726#elif defined(CONFIG_TASK_DELAY_ACCT)
 727        extern int delayacct_on;
 728        return delayacct_on;
 729#else
 730        return 0;
 731#endif
 732}
 733
 734enum cpu_idle_type {
 735        CPU_IDLE,
 736        CPU_NOT_IDLE,
 737        CPU_NEWLY_IDLE,
 738        CPU_MAX_IDLE_TYPES
 739};
 740
 741/*
 742 * sched-domains (multiprocessor balancing) declarations:
 743 */
 744
 745/*
 746 * Increase resolution of nice-level calculations:
 747 */
 748#define SCHED_LOAD_SHIFT        10
 749#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 750
 751#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 752
 753#ifdef CONFIG_SMP
 754#define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
 755#define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
 756#define SD_BALANCE_EXEC         4       /* Balance on exec */
 757#define SD_BALANCE_FORK         8       /* Balance on fork, clone */
 758#define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
 759#define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
 760#define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
 761#define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
 762#define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
 763#define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
 764#define SD_SERIALIZE            1024    /* Only a single load balancing instance */
 765#define SD_WAKE_IDLE_FAR        2048    /* Gain latency sacrificing cache hit */
 766
 767#define BALANCE_FOR_MC_POWER    \
 768        (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
 769
 770#define BALANCE_FOR_PKG_POWER   \
 771        ((sched_mc_power_savings || sched_smt_power_savings) ?  \
 772         SD_POWERSAVINGS_BALANCE : 0)
 773
 774#define test_sd_parent(sd, flag)        ((sd->parent &&         \
 775                                         (sd->parent->flags & flag)) ? 1 : 0)
 776
 777
 778struct sched_group {
 779        struct sched_group *next;       /* Must be a circular list */
 780        cpumask_t cpumask;
 781
 782        /*
 783         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 784         * single CPU. This is read only (except for setup, hotplug CPU).
 785         * Note : Never change cpu_power without recompute its reciprocal
 786         */
 787        unsigned int __cpu_power;
 788        /*
 789         * reciprocal value of cpu_power to avoid expensive divides
 790         * (see include/linux/reciprocal_div.h)
 791         */
 792        u32 reciprocal_cpu_power;
 793};
 794
 795enum sched_domain_level {
 796        SD_LV_NONE = 0,
 797        SD_LV_SIBLING,
 798        SD_LV_MC,
 799        SD_LV_CPU,
 800        SD_LV_NODE,
 801        SD_LV_ALLNODES,
 802        SD_LV_MAX
 803};
 804
 805struct sched_domain_attr {
 806        int relax_domain_level;
 807};
 808
 809#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 810        .relax_domain_level = -1,                       \
 811}
 812
 813struct sched_domain {
 814        /* These fields must be setup */
 815        struct sched_domain *parent;    /* top domain must be null terminated */
 816        struct sched_domain *child;     /* bottom domain must be null terminated */
 817        struct sched_group *groups;     /* the balancing groups of the domain */
 818        cpumask_t span;                 /* span of all CPUs in this domain */
 819        unsigned long min_interval;     /* Minimum balance interval ms */
 820        unsigned long max_interval;     /* Maximum balance interval ms */
 821        unsigned int busy_factor;       /* less balancing by factor if busy */
 822        unsigned int imbalance_pct;     /* No balance until over watermark */
 823        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 824        unsigned int busy_idx;
 825        unsigned int idle_idx;
 826        unsigned int newidle_idx;
 827        unsigned int wake_idx;
 828        unsigned int forkexec_idx;
 829        int flags;                      /* See SD_* */
 830        enum sched_domain_level level;
 831
 832        /* Runtime fields. */
 833        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 834        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 835        unsigned int nr_balance_failed; /* initialise to 0 */
 836
 837        u64 last_update;
 838
 839#ifdef CONFIG_SCHEDSTATS
 840        /* load_balance() stats */
 841        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 842        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 843        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 844        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 845        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 846        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 847        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 848        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 849
 850        /* Active load balancing */
 851        unsigned int alb_count;
 852        unsigned int alb_failed;
 853        unsigned int alb_pushed;
 854
 855        /* SD_BALANCE_EXEC stats */
 856        unsigned int sbe_count;
 857        unsigned int sbe_balanced;
 858        unsigned int sbe_pushed;
 859
 860        /* SD_BALANCE_FORK stats */
 861        unsigned int sbf_count;
 862        unsigned int sbf_balanced;
 863        unsigned int sbf_pushed;
 864
 865        /* try_to_wake_up() stats */
 866        unsigned int ttwu_wake_remote;
 867        unsigned int ttwu_move_affine;
 868        unsigned int ttwu_move_balance;
 869#endif
 870#ifdef CONFIG_SCHED_DEBUG
 871        char *name;
 872#endif
 873};
 874
 875extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
 876                                    struct sched_domain_attr *dattr_new);
 877extern int arch_reinit_sched_domains(void);
 878
 879#else /* CONFIG_SMP */
 880
 881struct sched_domain_attr;
 882
 883static inline void
 884partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
 885                        struct sched_domain_attr *dattr_new)
 886{
 887}
 888#endif  /* !CONFIG_SMP */
 889
 890struct io_context;                      /* See blkdev.h */
 891#define NGROUPS_SMALL           32
 892#define NGROUPS_PER_BLOCK       ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
 893struct group_info {
 894        int ngroups;
 895        atomic_t usage;
 896        gid_t small_block[NGROUPS_SMALL];
 897        int nblocks;
 898        gid_t *blocks[0];
 899};
 900
 901/*
 902 * get_group_info() must be called with the owning task locked (via task_lock())
 903 * when task != current.  The reason being that the vast majority of callers are
 904 * looking at current->group_info, which can not be changed except by the
 905 * current task.  Changing current->group_info requires the task lock, too.
 906 */
 907#define get_group_info(group_info) do { \
 908        atomic_inc(&(group_info)->usage); \
 909} while (0)
 910
 911#define put_group_info(group_info) do { \
 912        if (atomic_dec_and_test(&(group_info)->usage)) \
 913                groups_free(group_info); \
 914} while (0)
 915
 916extern struct group_info *groups_alloc(int gidsetsize);
 917extern void groups_free(struct group_info *group_info);
 918extern int set_current_groups(struct group_info *group_info);
 919extern int groups_search(struct group_info *group_info, gid_t grp);
 920/* access the groups "array" with this macro */
 921#define GROUP_AT(gi, i) \
 922    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
 923
 924#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 925extern void prefetch_stack(struct task_struct *t);
 926#else
 927static inline void prefetch_stack(struct task_struct *t) { }
 928#endif
 929
 930struct audit_context;           /* See audit.c */
 931struct mempolicy;
 932struct pipe_inode_info;
 933struct uts_namespace;
 934
 935struct rq;
 936struct sched_domain;
 937
 938struct sched_class {
 939        const struct sched_class *next;
 940
 941        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
 942        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
 943        void (*yield_task) (struct rq *rq);
 944
 945        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
 946
 947        struct task_struct * (*pick_next_task) (struct rq *rq);
 948        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 949
 950#ifdef CONFIG_SMP
 951        int  (*select_task_rq)(struct task_struct *p, int sync);
 952
 953        unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
 954                        struct rq *busiest, unsigned long max_load_move,
 955                        struct sched_domain *sd, enum cpu_idle_type idle,
 956                        int *all_pinned, int *this_best_prio);
 957
 958        int (*move_one_task) (struct rq *this_rq, int this_cpu,
 959                              struct rq *busiest, struct sched_domain *sd,
 960                              enum cpu_idle_type idle);
 961        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 962        void (*post_schedule) (struct rq *this_rq);
 963        void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
 964
 965        void (*set_cpus_allowed)(struct task_struct *p,
 966                                 const cpumask_t *newmask);
 967
 968        void (*rq_online)(struct rq *rq);
 969        void (*rq_offline)(struct rq *rq);
 970#endif
 971
 972        void (*set_curr_task) (struct rq *rq);
 973        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
 974        void (*task_new) (struct rq *rq, struct task_struct *p);
 975
 976        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
 977                               int running);
 978        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
 979                             int running);
 980        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 981                             int oldprio, int running);
 982
 983#ifdef CONFIG_FAIR_GROUP_SCHED
 984        void (*moved_group) (struct task_struct *p);
 985#endif
 986};
 987
 988struct load_weight {
 989        unsigned long weight, inv_weight;
 990};
 991
 992/*
 993 * CFS stats for a schedulable entity (task, task-group etc)
 994 *
 995 * Current field usage histogram:
 996 *
 997 *     4 se->block_start
 998 *     4 se->run_node
 999 *     4 se->sleep_start
1000 *     6 se->load.weight
1001 */
1002struct sched_entity {
1003        struct load_weight      load;           /* for load-balancing */
1004        struct rb_node          run_node;
1005        struct list_head        group_node;
1006        unsigned int            on_rq;
1007
1008        u64                     exec_start;
1009        u64                     sum_exec_runtime;
1010        u64                     vruntime;
1011        u64                     prev_sum_exec_runtime;
1012
1013        u64                     last_wakeup;
1014        u64                     avg_overlap;
1015
1016#ifdef CONFIG_SCHEDSTATS
1017        u64                     wait_start;
1018        u64                     wait_max;
1019        u64                     wait_count;
1020        u64                     wait_sum;
1021
1022        u64                     sleep_start;
1023        u64                     sleep_max;
1024        s64                     sum_sleep_runtime;
1025
1026        u64                     block_start;
1027        u64                     block_max;
1028        u64                     exec_max;
1029        u64                     slice_max;
1030
1031        u64                     nr_migrations;
1032        u64                     nr_migrations_cold;
1033        u64                     nr_failed_migrations_affine;
1034        u64                     nr_failed_migrations_running;
1035        u64                     nr_failed_migrations_hot;
1036        u64                     nr_forced_migrations;
1037        u64                     nr_forced2_migrations;
1038
1039        u64                     nr_wakeups;
1040        u64                     nr_wakeups_sync;
1041        u64                     nr_wakeups_migrate;
1042        u64                     nr_wakeups_local;
1043        u64                     nr_wakeups_remote;
1044        u64                     nr_wakeups_affine;
1045        u64                     nr_wakeups_affine_attempts;
1046        u64                     nr_wakeups_passive;
1047        u64                     nr_wakeups_idle;
1048#endif
1049
1050#ifdef CONFIG_FAIR_GROUP_SCHED
1051        struct sched_entity     *parent;
1052        /* rq on which this entity is (to be) queued: */
1053        struct cfs_rq           *cfs_rq;
1054        /* rq "owned" by this entity/group: */
1055        struct cfs_rq           *my_q;
1056#endif
1057};
1058
1059struct sched_rt_entity {
1060        struct list_head run_list;
1061        unsigned long timeout;
1062        unsigned int time_slice;
1063        int nr_cpus_allowed;
1064
1065        struct sched_rt_entity *back;
1066#ifdef CONFIG_RT_GROUP_SCHED
1067        struct sched_rt_entity  *parent;
1068        /* rq on which this entity is (to be) queued: */
1069        struct rt_rq            *rt_rq;
1070        /* rq "owned" by this entity/group: */
1071        struct rt_rq            *my_q;
1072#endif
1073};
1074
1075struct task_struct {
1076        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1077        void *stack;
1078        atomic_t usage;
1079        unsigned int flags;     /* per process flags, defined below */
1080        unsigned int ptrace;
1081
1082        int lock_depth;         /* BKL lock depth */
1083
1084#ifdef CONFIG_SMP
1085#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1086        int oncpu;
1087#endif
1088#endif
1089
1090        int prio, static_prio, normal_prio;
1091        unsigned int rt_priority;
1092        const struct sched_class *sched_class;
1093        struct sched_entity se;
1094        struct sched_rt_entity rt;
1095
1096#ifdef CONFIG_PREEMPT_NOTIFIERS
1097        /* list of struct preempt_notifier: */
1098        struct hlist_head preempt_notifiers;
1099#endif
1100
1101        /*
1102         * fpu_counter contains the number of consecutive context switches
1103         * that the FPU is used. If this is over a threshold, the lazy fpu
1104         * saving becomes unlazy to save the trap. This is an unsigned char
1105         * so that after 256 times the counter wraps and the behavior turns
1106         * lazy again; this to deal with bursty apps that only use FPU for
1107         * a short time
1108         */
1109        unsigned char fpu_counter;
1110        s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1111#ifdef CONFIG_BLK_DEV_IO_TRACE
1112        unsigned int btrace_seq;
1113#endif
1114
1115        unsigned int policy;
1116        cpumask_t cpus_allowed;
1117
1118#ifdef CONFIG_PREEMPT_RCU
1119        int rcu_read_lock_nesting;
1120        int rcu_flipctr_idx;
1121#endif /* #ifdef CONFIG_PREEMPT_RCU */
1122
1123#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1124        struct sched_info sched_info;
1125#endif
1126
1127        struct list_head tasks;
1128
1129        struct mm_struct *mm, *active_mm;
1130
1131/* task state */
1132        struct linux_binfmt *binfmt;
1133        int exit_state;
1134        int exit_code, exit_signal;
1135        int pdeath_signal;  /*  The signal sent when the parent dies  */
1136        /* ??? */
1137        unsigned int personality;
1138        unsigned did_exec:1;
1139        pid_t pid;
1140        pid_t tgid;
1141
1142#ifdef CONFIG_CC_STACKPROTECTOR
1143        /* Canary value for the -fstack-protector gcc feature */
1144        unsigned long stack_canary;
1145#endif
1146        /* 
1147         * pointers to (original) parent process, youngest child, younger sibling,
1148         * older sibling, respectively.  (p->father can be replaced with 
1149         * p->real_parent->pid)
1150         */
1151        struct task_struct *real_parent; /* real parent process */
1152        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1153        /*
1154         * children/sibling forms the list of my natural children
1155         */
1156        struct list_head children;      /* list of my children */
1157        struct list_head sibling;       /* linkage in my parent's children list */
1158        struct task_struct *group_leader;       /* threadgroup leader */
1159
1160        /*
1161         * ptraced is the list of tasks this task is using ptrace on.
1162         * This includes both natural children and PTRACE_ATTACH targets.
1163         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1164         */
1165        struct list_head ptraced;
1166        struct list_head ptrace_entry;
1167
1168        /* PID/PID hash table linkage. */
1169        struct pid_link pids[PIDTYPE_MAX];
1170        struct list_head thread_group;
1171
1172        struct completion *vfork_done;          /* for vfork() */
1173        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1174        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1175
1176        cputime_t utime, stime, utimescaled, stimescaled;
1177        cputime_t gtime;
1178        cputime_t prev_utime, prev_stime;
1179        unsigned long nvcsw, nivcsw; /* context switch counts */
1180        struct timespec start_time;             /* monotonic time */
1181        struct timespec real_start_time;        /* boot based time */
1182/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1183        unsigned long min_flt, maj_flt;
1184
1185        struct task_cputime cputime_expires;
1186        struct list_head cpu_timers[3];
1187
1188/* process credentials */
1189        uid_t uid,euid,suid,fsuid;
1190        gid_t gid,egid,sgid,fsgid;
1191        struct group_info *group_info;
1192        kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1193        struct user_struct *user;
1194        unsigned securebits;
1195#ifdef CONFIG_KEYS
1196        unsigned char jit_keyring;      /* default keyring to attach requested keys to */
1197        struct key *request_key_auth;   /* assumed request_key authority */
1198        struct key *thread_keyring;     /* keyring private to this thread */
1199#endif
1200        char comm[TASK_COMM_LEN]; /* executable name excluding path
1201                                     - access with [gs]et_task_comm (which lock
1202                                       it with task_lock())
1203                                     - initialized normally by flush_old_exec */
1204/* file system info */
1205        int link_count, total_link_count;
1206#ifdef CONFIG_SYSVIPC
1207/* ipc stuff */
1208        struct sysv_sem sysvsem;
1209#endif
1210#ifdef CONFIG_DETECT_SOFTLOCKUP
1211/* hung task detection */
1212        unsigned long last_switch_timestamp;
1213        unsigned long last_switch_count;
1214#endif
1215/* CPU-specific state of this task */
1216        struct thread_struct thread;
1217/* filesystem information */
1218        struct fs_struct *fs;
1219/* open file information */
1220        struct files_struct *files;
1221/* namespaces */
1222        struct nsproxy *nsproxy;
1223/* signal handlers */
1224        struct signal_struct *signal;
1225        struct sighand_struct *sighand;
1226
1227        sigset_t blocked, real_blocked;
1228        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1229        struct sigpending pending;
1230
1231        unsigned long sas_ss_sp;
1232        size_t sas_ss_size;
1233        int (*notifier)(void *priv);
1234        void *notifier_data;
1235        sigset_t *notifier_mask;
1236#ifdef CONFIG_SECURITY
1237        void *security;
1238#endif
1239        struct audit_context *audit_context;
1240#ifdef CONFIG_AUDITSYSCALL
1241        uid_t loginuid;
1242        unsigned int sessionid;
1243#endif
1244        seccomp_t seccomp;
1245
1246/* Thread group tracking */
1247        u32 parent_exec_id;
1248        u32 self_exec_id;
1249/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1250        spinlock_t alloc_lock;
1251
1252        /* Protection of the PI data structures: */
1253        spinlock_t pi_lock;
1254
1255#ifdef CONFIG_RT_MUTEXES
1256        /* PI waiters blocked on a rt_mutex held by this task */
1257        struct plist_head pi_waiters;
1258        /* Deadlock detection and priority inheritance handling */
1259        struct rt_mutex_waiter *pi_blocked_on;
1260#endif
1261
1262#ifdef CONFIG_DEBUG_MUTEXES
1263        /* mutex deadlock detection */
1264        struct mutex_waiter *blocked_on;
1265#endif
1266#ifdef CONFIG_TRACE_IRQFLAGS
1267        unsigned int irq_events;
1268        int hardirqs_enabled;
1269        unsigned long hardirq_enable_ip;
1270        unsigned int hardirq_enable_event;
1271        unsigned long hardirq_disable_ip;
1272        unsigned int hardirq_disable_event;
1273        int softirqs_enabled;
1274        unsigned long softirq_disable_ip;
1275        unsigned int softirq_disable_event;
1276        unsigned long softirq_enable_ip;
1277        unsigned int softirq_enable_event;
1278        int hardirq_context;
1279        int softirq_context;
1280#endif
1281#ifdef CONFIG_LOCKDEP
1282# define MAX_LOCK_DEPTH 48UL
1283        u64 curr_chain_key;
1284        int lockdep_depth;
1285        unsigned int lockdep_recursion;
1286        struct held_lock held_locks[MAX_LOCK_DEPTH];
1287#endif
1288
1289/* journalling filesystem info */
1290        void *journal_info;
1291
1292/* stacked block device info */
1293        struct bio *bio_list, **bio_tail;
1294
1295/* VM state */
1296        struct reclaim_state *reclaim_state;
1297
1298        struct backing_dev_info *backing_dev_info;
1299
1300        struct io_context *io_context;
1301
1302        unsigned long ptrace_message;
1303        siginfo_t *last_siginfo; /* For ptrace use.  */
1304        struct task_io_accounting ioac;
1305#if defined(CONFIG_TASK_XACCT)
1306        u64 acct_rss_mem1;      /* accumulated rss usage */
1307        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1308        cputime_t acct_timexpd; /* stime + utime since last update */
1309#endif
1310#ifdef CONFIG_CPUSETS
1311        nodemask_t mems_allowed;
1312        int cpuset_mems_generation;
1313        int cpuset_mem_spread_rotor;
1314#endif
1315#ifdef CONFIG_CGROUPS
1316        /* Control Group info protected by css_set_lock */
1317        struct css_set *cgroups;
1318        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1319        struct list_head cg_list;
1320#endif
1321#ifdef CONFIG_FUTEX
1322        struct robust_list_head __user *robust_list;
1323#ifdef CONFIG_COMPAT
1324        struct compat_robust_list_head __user *compat_robust_list;
1325#endif
1326        struct list_head pi_state_list;
1327        struct futex_pi_state *pi_state_cache;
1328#endif
1329#ifdef CONFIG_NUMA
1330        struct mempolicy *mempolicy;
1331        short il_next;
1332#endif
1333        atomic_t fs_excl;       /* holding fs exclusive resources */
1334        struct rcu_head rcu;
1335
1336        /*
1337         * cache last used pipe for splice
1338         */
1339        struct pipe_inode_info *splice_pipe;
1340#ifdef  CONFIG_TASK_DELAY_ACCT
1341        struct task_delay_info *delays;
1342#endif
1343#ifdef CONFIG_FAULT_INJECTION
1344        int make_it_fail;
1345#endif
1346        struct prop_local_single dirties;
1347#ifdef CONFIG_LATENCYTOP
1348        int latency_record_count;
1349        struct latency_record latency_record[LT_SAVECOUNT];
1350#endif
1351        /*
1352         * time slack values; these are used to round up poll() and
1353         * select() etc timeout values. These are in nanoseconds.
1354         */
1355        unsigned long timer_slack_ns;
1356        unsigned long default_timer_slack_ns;
1357
1358        struct list_head        *scm_work_list;
1359};
1360
1361/*
1362 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1363 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1364 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1365 * values are inverted: lower p->prio value means higher priority.
1366 *
1367 * The MAX_USER_RT_PRIO value allows the actual maximum
1368 * RT priority to be separate from the value exported to
1369 * user-space.  This allows kernel threads to set their
1370 * priority to a value higher than any user task. Note:
1371 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1372 */
1373
1374#define MAX_USER_RT_PRIO        100
1375#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1376
1377#define MAX_PRIO                (MAX_RT_PRIO + 40)
1378#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1379
1380static inline int rt_prio(int prio)
1381{
1382        if (unlikely(prio < MAX_RT_PRIO))
1383                return 1;
1384        return 0;
1385}
1386
1387static inline int rt_task(struct task_struct *p)
1388{
1389        return rt_prio(p->prio);
1390}
1391
1392static inline void set_task_session(struct task_struct *tsk, pid_t session)
1393{
1394        tsk->signal->__session = session;
1395}
1396
1397static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1398{
1399        tsk->signal->__pgrp = pgrp;
1400}
1401
1402static inline struct pid *task_pid(struct task_struct *task)
1403{
1404        return task->pids[PIDTYPE_PID].pid;
1405}
1406
1407static inline struct pid *task_tgid(struct task_struct *task)
1408{
1409        return task->group_leader->pids[PIDTYPE_PID].pid;
1410}
1411
1412static inline struct pid *task_pgrp(struct task_struct *task)
1413{
1414        return task->group_leader->pids[PIDTYPE_PGID].pid;
1415}
1416
1417static inline struct pid *task_session(struct task_struct *task)
1418{
1419        return task->group_leader->pids[PIDTYPE_SID].pid;
1420}
1421
1422struct pid_namespace;
1423
1424/*
1425 * the helpers to get the task's different pids as they are seen
1426 * from various namespaces
1427 *
1428 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1429 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1430 *                     current.
1431 * task_xid_nr_ns()  : id seen from the ns specified;
1432 *
1433 * set_task_vxid()   : assigns a virtual id to a task;
1434 *
1435 * see also pid_nr() etc in include/linux/pid.h
1436 */
1437
1438static inline pid_t task_pid_nr(struct task_struct *tsk)
1439{
1440        return tsk->pid;
1441}
1442
1443pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1444
1445static inline pid_t task_pid_vnr(struct task_struct *tsk)
1446{
1447        return pid_vnr(task_pid(tsk));
1448}
1449
1450
1451static inline pid_t task_tgid_nr(struct task_struct *tsk)
1452{
1453        return tsk->tgid;
1454}
1455
1456pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1457
1458static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1459{
1460        return pid_vnr(task_tgid(tsk));
1461}
1462
1463
1464static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1465{
1466        return tsk->signal->__pgrp;
1467}
1468
1469pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1470
1471static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1472{
1473        return pid_vnr(task_pgrp(tsk));
1474}
1475
1476
1477static inline pid_t task_session_nr(struct task_struct *tsk)
1478{
1479        return tsk->signal->__session;
1480}
1481
1482pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1483
1484static inline pid_t task_session_vnr(struct task_struct *tsk)
1485{
1486        return pid_vnr(task_session(tsk));
1487}
1488
1489
1490/**
1491 * pid_alive - check that a task structure is not stale
1492 * @p: Task structure to be checked.
1493 *
1494 * Test if a process is not yet dead (at most zombie state)
1495 * If pid_alive fails, then pointers within the task structure
1496 * can be stale and must not be dereferenced.
1497 */
1498static inline int pid_alive(struct task_struct *p)
1499{
1500        return p->pids[PIDTYPE_PID].pid != NULL;
1501}
1502
1503/**
1504 * is_global_init - check if a task structure is init
1505 * @tsk: Task structure to be checked.
1506 *
1507 * Check if a task structure is the first user space task the kernel created.
1508 */
1509static inline int is_global_init(struct task_struct *tsk)
1510{
1511        return tsk->pid == 1;
1512}
1513
1514/*
1515 * is_container_init:
1516 * check whether in the task is init in its own pid namespace.
1517 */
1518extern int is_container_init(struct task_struct *tsk);
1519
1520extern struct pid *cad_pid;
1521
1522extern void free_task(struct task_struct *tsk);
1523#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1524
1525extern void __put_task_struct(struct task_struct *t);
1526
1527static inline void put_task_struct(struct task_struct *t)
1528{
1529        if (atomic_dec_and_test(&t->usage))
1530                __put_task_struct(t);
1531}
1532
1533extern cputime_t task_utime(struct task_struct *p);
1534extern cputime_t task_stime(struct task_struct *p);
1535extern cputime_t task_gtime(struct task_struct *p);
1536
1537/*
1538 * Per process flags
1539 */
1540#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1541                                        /* Not implemented yet, only for 486*/
1542#define PF_STARTING     0x00000002      /* being created */
1543#define PF_EXITING      0x00000004      /* getting shut down */
1544#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1545#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1546#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1547#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1548#define PF_DUMPCORE     0x00000200      /* dumped core */
1549#define PF_SIGNALED     0x00000400      /* killed by a signal */
1550#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1551#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1552#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1553#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1554#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1555#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1556#define PF_KSWAPD       0x00040000      /* I am kswapd */
1557#define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1558#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1559#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1560#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1561#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1562#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1563#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1564#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1565#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1566#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1567#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1568#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1569
1570/*
1571 * Only the _current_ task can read/write to tsk->flags, but other
1572 * tasks can access tsk->flags in readonly mode for example
1573 * with tsk_used_math (like during threaded core dumping).
1574 * There is however an exception to this rule during ptrace
1575 * or during fork: the ptracer task is allowed to write to the
1576 * child->flags of its traced child (same goes for fork, the parent
1577 * can write to the child->flags), because we're guaranteed the
1578 * child is not running and in turn not changing child->flags
1579 * at the same time the parent does it.
1580 */
1581#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1582#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1583#define clear_used_math() clear_stopped_child_used_math(current)
1584#define set_used_math() set_stopped_child_used_math(current)
1585#define conditional_stopped_child_used_math(condition, child) \
1586        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1587#define conditional_used_math(condition) \
1588        conditional_stopped_child_used_math(condition, current)
1589#define copy_to_stopped_child_used_math(child) \
1590        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1591/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1592#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1593#define used_math() tsk_used_math(current)
1594
1595#ifdef CONFIG_SMP
1596extern int set_cpus_allowed_ptr(struct task_struct *p,
1597                                const cpumask_t *new_mask);
1598#else
1599static inline int set_cpus_allowed_ptr(struct task_struct *p,
1600                                       const cpumask_t *new_mask)
1601{
1602        if (!cpu_isset(0, *new_mask))
1603                return -EINVAL;
1604        return 0;
1605}
1606#endif
1607static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1608{
1609        return set_cpus_allowed_ptr(p, &new_mask);
1610}
1611
1612extern unsigned long long sched_clock(void);
1613
1614extern void sched_clock_init(void);
1615extern u64 sched_clock_cpu(int cpu);
1616
1617#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1618static inline void sched_clock_tick(void)
1619{
1620}
1621
1622static inline void sched_clock_idle_sleep_event(void)
1623{
1624}
1625
1626static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1627{
1628}
1629#else
1630extern void sched_clock_tick(void);
1631extern void sched_clock_idle_sleep_event(void);
1632extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1633#endif
1634
1635/*
1636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1637 * clock constructed from sched_clock():
1638 */
1639extern unsigned long long cpu_clock(int cpu);
1640
1641extern unsigned long long
1642task_sched_runtime(struct task_struct *task);
1643extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1644
1645/* sched_exec is called by processes performing an exec */
1646#ifdef CONFIG_SMP
1647extern void sched_exec(void);
1648#else
1649#define sched_exec()   {}
1650#endif
1651
1652extern void sched_clock_idle_sleep_event(void);
1653extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1654
1655#ifdef CONFIG_HOTPLUG_CPU
1656extern void idle_task_exit(void);
1657#else
1658static inline void idle_task_exit(void) {}
1659#endif
1660
1661extern void sched_idle_next(void);
1662
1663#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1664extern void wake_up_idle_cpu(int cpu);
1665#else
1666static inline void wake_up_idle_cpu(int cpu) { }
1667#endif
1668
1669#ifdef CONFIG_SCHED_DEBUG
1670extern unsigned int sysctl_sched_latency;
1671extern unsigned int sysctl_sched_min_granularity;
1672extern unsigned int sysctl_sched_wakeup_granularity;
1673extern unsigned int sysctl_sched_child_runs_first;
1674extern unsigned int sysctl_sched_features;
1675extern unsigned int sysctl_sched_migration_cost;
1676extern unsigned int sysctl_sched_nr_migrate;
1677extern unsigned int sysctl_sched_shares_ratelimit;
1678extern unsigned int sysctl_sched_shares_thresh;
1679
1680int sched_nr_latency_handler(struct ctl_table *table, int write,
1681                struct file *file, void __user *buffer, size_t *length,
1682                loff_t *ppos);
1683#endif
1684extern unsigned int sysctl_sched_rt_period;
1685extern int sysctl_sched_rt_runtime;
1686
1687int sched_rt_handler(struct ctl_table *table, int write,
1688                struct file *filp, void __user *buffer, size_t *lenp,
1689                loff_t *ppos);
1690
1691extern unsigned int sysctl_sched_compat_yield;
1692
1693#ifdef CONFIG_RT_MUTEXES
1694extern int rt_mutex_getprio(struct task_struct *p);
1695extern void rt_mutex_setprio(struct task_struct *p, int prio);
1696extern void rt_mutex_adjust_pi(struct task_struct *p);
1697#else
1698static inline int rt_mutex_getprio(struct task_struct *p)
1699{
1700        return p->normal_prio;
1701}
1702# define rt_mutex_adjust_pi(p)          do { } while (0)
1703#endif
1704
1705extern void set_user_nice(struct task_struct *p, long nice);
1706extern int task_prio(const struct task_struct *p);
1707extern int task_nice(const struct task_struct *p);
1708extern int can_nice(const struct task_struct *p, const int nice);
1709extern int task_curr(const struct task_struct *p);
1710extern int idle_cpu(int cpu);
1711extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1712extern int sched_setscheduler_nocheck(struct task_struct *, int,
1713                                      struct sched_param *);
1714extern struct task_struct *idle_task(int cpu);
1715extern struct task_struct *curr_task(int cpu);
1716extern void set_curr_task(int cpu, struct task_struct *p);
1717
1718void yield(void);
1719
1720/*
1721 * The default (Linux) execution domain.
1722 */
1723extern struct exec_domain       default_exec_domain;
1724
1725union thread_union {
1726        struct thread_info thread_info;
1727        unsigned long stack[THREAD_SIZE/sizeof(long)];
1728};
1729
1730#ifndef __HAVE_ARCH_KSTACK_END
1731static inline int kstack_end(void *addr)
1732{
1733        /* Reliable end of stack detection:
1734         * Some APM bios versions misalign the stack
1735         */
1736        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1737}
1738#endif
1739
1740extern union thread_union init_thread_union;
1741extern struct task_struct init_task;
1742
1743extern struct   mm_struct init_mm;
1744
1745extern struct pid_namespace init_pid_ns;
1746
1747/*
1748 * find a task by one of its numerical ids
1749 *
1750 * find_task_by_pid_type_ns():
1751 *      it is the most generic call - it finds a task by all id,
1752 *      type and namespace specified
1753 * find_task_by_pid_ns():
1754 *      finds a task by its pid in the specified namespace
1755 * find_task_by_vpid():
1756 *      finds a task by its virtual pid
1757 *
1758 * see also find_vpid() etc in include/linux/pid.h
1759 */
1760
1761extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1762                struct pid_namespace *ns);
1763
1764extern struct task_struct *find_task_by_vpid(pid_t nr);
1765extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1766                struct pid_namespace *ns);
1767
1768extern void __set_special_pids(struct pid *pid);
1769
1770/* per-UID process charging. */
1771extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1772static inline struct user_struct *get_uid(struct user_struct *u)
1773{
1774        atomic_inc(&u->__count);
1775        return u;
1776}
1777extern void free_uid(struct user_struct *);
1778extern void switch_uid(struct user_struct *);
1779extern void release_uids(struct user_namespace *ns);
1780
1781#include <asm/current.h>
1782
1783extern void do_timer(unsigned long ticks);
1784
1785extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1786extern int wake_up_process(struct task_struct *tsk);
1787extern void wake_up_new_task(struct task_struct *tsk,
1788                                unsigned long clone_flags);
1789#ifdef CONFIG_SMP
1790 extern void kick_process(struct task_struct *tsk);
1791#else
1792 static inline void kick_process(struct task_struct *tsk) { }
1793#endif
1794extern void sched_fork(struct task_struct *p, int clone_flags);
1795extern void sched_dead(struct task_struct *p);
1796
1797extern int in_group_p(gid_t);
1798extern int in_egroup_p(gid_t);
1799
1800extern void proc_caches_init(void);
1801extern void flush_signals(struct task_struct *);
1802extern void ignore_signals(struct task_struct *);
1803extern void flush_signal_handlers(struct task_struct *, int force_default);
1804extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1805
1806static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1807{
1808        unsigned long flags;
1809        int ret;
1810
1811        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1812        ret = dequeue_signal(tsk, mask, info);
1813        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1814
1815        return ret;
1816}       
1817
1818extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1819                              sigset_t *mask);
1820extern void unblock_all_signals(void);
1821extern void release_task(struct task_struct * p);
1822extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1823extern int force_sigsegv(int, struct task_struct *);
1824extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1825extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1826extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1827extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1828extern int kill_pgrp(struct pid *pid, int sig, int priv);
1829extern int kill_pid(struct pid *pid, int sig, int priv);
1830extern int kill_proc_info(int, struct siginfo *, pid_t);
1831extern int do_notify_parent(struct task_struct *, int);
1832extern void force_sig(int, struct task_struct *);
1833extern void force_sig_specific(int, struct task_struct *);
1834extern int send_sig(int, struct task_struct *, int);
1835extern void zap_other_threads(struct task_struct *p);
1836extern struct sigqueue *sigqueue_alloc(void);
1837extern void sigqueue_free(struct sigqueue *);
1838extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1839extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1840extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1841
1842static inline int kill_cad_pid(int sig, int priv)
1843{
1844        return kill_pid(cad_pid, sig, priv);
1845}
1846
1847/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1848#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1849#define SEND_SIG_PRIV   ((struct siginfo *) 1)
1850#define SEND_SIG_FORCED ((struct siginfo *) 2)
1851
1852static inline int is_si_special(const struct siginfo *info)
1853{
1854        return info <= SEND_SIG_FORCED;
1855}
1856
1857/* True if we are on the alternate signal stack.  */
1858
1859static inline int on_sig_stack(unsigned long sp)
1860{
1861        return (sp - current->sas_ss_sp < current->sas_ss_size);
1862}
1863
1864static inline int sas_ss_flags(unsigned long sp)
1865{
1866        return (current->sas_ss_size == 0 ? SS_DISABLE
1867                : on_sig_stack(sp) ? SS_ONSTACK : 0);
1868}
1869
1870/*
1871 * Routines for handling mm_structs
1872 */
1873extern struct mm_struct * mm_alloc(void);
1874
1875/* mmdrop drops the mm and the page tables */
1876extern void __mmdrop(struct mm_struct *);
1877static inline void mmdrop(struct mm_struct * mm)
1878{
1879        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1880                __mmdrop(mm);
1881}
1882
1883/* mmput gets rid of the mappings and all user-space */
1884extern void mmput(struct mm_struct *);
1885/* Grab a reference to a task's mm, if it is not already going away */
1886extern struct mm_struct *get_task_mm(struct task_struct *task);
1887/* Remove the current tasks stale references to the old mm_struct */
1888extern void mm_release(struct task_struct *, struct mm_struct *);
1889/* Allocate a new mm structure and copy contents from tsk->mm */
1890extern struct mm_struct *dup_mm(struct task_struct *tsk);
1891
1892extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1893extern void flush_thread(void);
1894extern void exit_thread(void);
1895
1896extern void exit_files(struct task_struct *);
1897extern void __cleanup_signal(struct signal_struct *);
1898extern void __cleanup_sighand(struct sighand_struct *);
1899
1900extern void exit_itimers(struct signal_struct *);
1901extern void flush_itimer_signals(void);
1902
1903extern NORET_TYPE void do_group_exit(int);
1904
1905extern void daemonize(const char *, ...);
1906extern int allow_signal(int);
1907extern int disallow_signal(int);
1908
1909extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1910extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1911struct task_struct *fork_idle(int);
1912
1913extern void set_task_comm(struct task_struct *tsk, char *from);
1914extern char *get_task_comm(char *to, struct task_struct *tsk);
1915
1916#ifdef CONFIG_SMP
1917extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1918#else
1919static inline unsigned long wait_task_inactive(struct task_struct *p,
1920                                               long match_state)
1921{
1922        return 1;
1923}
1924#endif
1925
1926#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1927
1928#define for_each_process(p) \
1929        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1930
1931/*
1932 * Careful: do_each_thread/while_each_thread is a double loop so
1933 *          'break' will not work as expected - use goto instead.
1934 */
1935#define do_each_thread(g, t) \
1936        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1937
1938#define while_each_thread(g, t) \
1939        while ((t = next_thread(t)) != g)
1940
1941/* de_thread depends on thread_group_leader not being a pid based check */
1942#define thread_group_leader(p)  (p == p->group_leader)
1943
1944/* Do to the insanities of de_thread it is possible for a process
1945 * to have the pid of the thread group leader without actually being
1946 * the thread group leader.  For iteration through the pids in proc
1947 * all we care about is that we have a task with the appropriate
1948 * pid, we don't actually care if we have the right task.
1949 */
1950static inline int has_group_leader_pid(struct task_struct *p)
1951{
1952        return p->pid == p->tgid;
1953}
1954
1955static inline
1956int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1957{
1958        return p1->tgid == p2->tgid;
1959}
1960
1961static inline struct task_struct *next_thread(const struct task_struct *p)
1962{
1963        return list_entry(rcu_dereference(p->thread_group.next),
1964                          struct task_struct, thread_group);
1965}
1966
1967static inline int thread_group_empty(struct task_struct *p)
1968{
1969        return list_empty(&p->thread_group);
1970}
1971
1972#define delay_group_leader(p) \
1973                (thread_group_leader(p) && !thread_group_empty(p))
1974
1975/*
1976 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1977 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1978 * pins the final release of task.io_context.  Also protects ->cpuset and
1979 * ->cgroup.subsys[].
1980 *
1981 * Nests both inside and outside of read_lock(&tasklist_lock).
1982 * It must not be nested with write_lock_irq(&tasklist_lock),
1983 * neither inside nor outside.
1984 */
1985static inline void task_lock(struct task_struct *p)
1986{
1987        spin_lock(&p->alloc_lock);
1988}
1989
1990static inline void task_unlock(struct task_struct *p)
1991{
1992        spin_unlock(&p->alloc_lock);
1993}
1994
1995extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1996                                                        unsigned long *flags);
1997
1998static inline void unlock_task_sighand(struct task_struct *tsk,
1999                                                unsigned long *flags)
2000{
2001        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2002}
2003
2004#ifndef __HAVE_THREAD_FUNCTIONS
2005
2006#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2007#define task_stack_page(task)   ((task)->stack)
2008
2009static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2010{
2011        *task_thread_info(p) = *task_thread_info(org);
2012        task_thread_info(p)->task = p;
2013}
2014
2015static inline unsigned long *end_of_stack(struct task_struct *p)
2016{
2017        return (unsigned long *)(task_thread_info(p) + 1);
2018}
2019
2020#endif
2021
2022static inline int object_is_on_stack(void *obj)
2023{
2024        void *stack = task_stack_page(current);
2025
2026        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2027}
2028
2029extern void thread_info_cache_init(void);
2030
2031/* set thread flags in other task's structures
2032 * - see asm/thread_info.h for TIF_xxxx flags available
2033 */
2034static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035{
2036        set_ti_thread_flag(task_thread_info(tsk), flag);
2037}
2038
2039static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040{
2041        clear_ti_thread_flag(task_thread_info(tsk), flag);
2042}
2043
2044static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2045{
2046        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2047}
2048
2049static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2050{
2051        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2052}
2053
2054static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2055{
2056        return test_ti_thread_flag(task_thread_info(tsk), flag);
2057}
2058
2059static inline void set_tsk_need_resched(struct task_struct *tsk)
2060{
2061        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2062}
2063
2064static inline void clear_tsk_need_resched(struct task_struct *tsk)
2065{
2066        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2067}
2068
2069static inline int test_tsk_need_resched(struct task_struct *tsk)
2070{
2071        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2072}
2073
2074static inline int signal_pending(struct task_struct *p)
2075{
2076        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2077}
2078
2079extern int __fatal_signal_pending(struct task_struct *p);
2080
2081static inline int fatal_signal_pending(struct task_struct *p)
2082{
2083        return signal_pending(p) && __fatal_signal_pending(p);
2084}
2085
2086static inline int signal_pending_state(long state, struct task_struct *p)
2087{
2088        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2089                return 0;
2090        if (!signal_pending(p))
2091                return 0;
2092
2093        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2094}
2095
2096static inline int need_resched(void)
2097{
2098        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2099}
2100
2101/*
2102 * cond_resched() and cond_resched_lock(): latency reduction via
2103 * explicit rescheduling in places that are safe. The return
2104 * value indicates whether a reschedule was done in fact.
2105 * cond_resched_lock() will drop the spinlock before scheduling,
2106 * cond_resched_softirq() will enable bhs before scheduling.
2107 */
2108extern int _cond_resched(void);
2109#ifdef CONFIG_PREEMPT_BKL
2110static inline int cond_resched(void)
2111{
2112        return 0;
2113}
2114#else
2115static inline int cond_resched(void)
2116{
2117        return _cond_resched();
2118}
2119#endif
2120extern int cond_resched_lock(spinlock_t * lock);
2121extern int cond_resched_softirq(void);
2122static inline int cond_resched_bkl(void)
2123{
2124        return _cond_resched();
2125}
2126
2127/*
2128 * Does a critical section need to be broken due to another
2129 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2130 * but a general need for low latency)
2131 */
2132static inline int spin_needbreak(spinlock_t *lock)
2133{
2134#ifdef CONFIG_PREEMPT
2135        return spin_is_contended(lock);
2136#else
2137        return 0;
2138#endif
2139}
2140
2141/*
2142 * Thread group CPU time accounting.
2143 */
2144
2145extern int thread_group_cputime_alloc(struct task_struct *);
2146extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2147
2148static inline void thread_group_cputime_init(struct signal_struct *sig)
2149{
2150        sig->cputime.totals = NULL;
2151}
2152
2153static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2154{
2155        if (curr->signal->cputime.totals)
2156                return 0;
2157        return thread_group_cputime_alloc(curr);
2158}
2159
2160static inline void thread_group_cputime_free(struct signal_struct *sig)
2161{
2162        free_percpu(sig->cputime.totals);
2163}
2164
2165/*
2166 * Reevaluate whether the task has signals pending delivery.
2167 * Wake the task if so.
2168 * This is required every time the blocked sigset_t changes.
2169 * callers must hold sighand->siglock.
2170 */
2171extern void recalc_sigpending_and_wake(struct task_struct *t);
2172extern void recalc_sigpending(void);
2173
2174extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2175
2176/*
2177 * Wrappers for p->thread_info->cpu access. No-op on UP.
2178 */
2179#ifdef CONFIG_SMP
2180
2181static inline unsigned int task_cpu(const struct task_struct *p)
2182{
2183        return task_thread_info(p)->cpu;
2184}
2185
2186extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2187
2188#else
2189
2190static inline unsigned int task_cpu(const struct task_struct *p)
2191{
2192        return 0;
2193}
2194
2195static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2196{
2197}
2198
2199#endif /* CONFIG_SMP */
2200
2201extern void arch_pick_mmap_layout(struct mm_struct *mm);
2202
2203#ifdef CONFIG_TRACING
2204extern void
2205__trace_special(void *__tr, void *__data,
2206                unsigned long arg1, unsigned long arg2, unsigned long arg3);
2207#else
2208static inline void
2209__trace_special(void *__tr, void *__data,
2210                unsigned long arg1, unsigned long arg2, unsigned long arg3)
2211{
2212}
2213#endif
2214
2215extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2216extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2217
2218extern int sched_mc_power_savings, sched_smt_power_savings;
2219
2220extern void normalize_rt_tasks(void);
2221
2222#ifdef CONFIG_GROUP_SCHED
2223
2224extern struct task_group init_task_group;
2225#ifdef CONFIG_USER_SCHED
2226extern struct task_group root_task_group;
2227#endif
2228
2229extern struct task_group *sched_create_group(struct task_group *parent);
2230extern void sched_destroy_group(struct task_group *tg);
2231extern void sched_move_task(struct task_struct *tsk);
2232#ifdef CONFIG_FAIR_GROUP_SCHED
2233extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2234extern unsigned long sched_group_shares(struct task_group *tg);
2235#endif
2236#ifdef CONFIG_RT_GROUP_SCHED
2237extern int sched_group_set_rt_runtime(struct task_group *tg,
2238                                      long rt_runtime_us);
2239extern long sched_group_rt_runtime(struct task_group *tg);
2240extern int sched_group_set_rt_period(struct task_group *tg,
2241                                      long rt_period_us);
2242extern long sched_group_rt_period(struct task_group *tg);
2243#endif
2244#endif
2245
2246#ifdef CONFIG_TASK_XACCT
2247static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2248{
2249        tsk->ioac.rchar += amt;
2250}
2251
2252static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2253{
2254        tsk->ioac.wchar += amt;
2255}
2256
2257static inline void inc_syscr(struct task_struct *tsk)
2258{
2259        tsk->ioac.syscr++;
2260}
2261
2262static inline void inc_syscw(struct task_struct *tsk)
2263{
2264        tsk->ioac.syscw++;
2265}
2266#else
2267static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2268{
2269}
2270
2271static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2272{
2273}
2274
2275static inline void inc_syscr(struct task_struct *tsk)
2276{
2277}
2278
2279static inline void inc_syscw(struct task_struct *tsk)
2280{
2281}
2282#endif
2283
2284#ifndef TASK_SIZE_OF
2285#define TASK_SIZE_OF(tsk)       TASK_SIZE
2286#endif
2287
2288#ifdef CONFIG_MM_OWNER
2289extern void mm_update_next_owner(struct mm_struct *mm);
2290extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2291#else
2292static inline void mm_update_next_owner(struct mm_struct *mm)
2293{
2294}
2295
2296static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2297{
2298}
2299#endif /* CONFIG_MM_OWNER */
2300
2301#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2302
2303#endif /* __KERNEL__ */
2304
2305#endif
2306
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.