linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-bio-list.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/moduleparam.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/buffer_head.h>
  19#include <linux/mempool.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/hdreg.h>
  23#include <linux/blktrace_api.h>
  24#include <linux/smp_lock.h>
  25
  26#define DM_MSG_PREFIX "core"
  27
  28static const char *_name = DM_NAME;
  29
  30static unsigned int major = 0;
  31static unsigned int _major = 0;
  32
  33static DEFINE_SPINLOCK(_minor_lock);
  34/*
  35 * One of these is allocated per bio.
  36 */
  37struct dm_io {
  38        struct mapped_device *md;
  39        int error;
  40        atomic_t io_count;
  41        struct bio *bio;
  42        unsigned long start_time;
  43};
  44
  45/*
  46 * One of these is allocated per target within a bio.  Hopefully
  47 * this will be simplified out one day.
  48 */
  49struct dm_target_io {
  50        struct dm_io *io;
  51        struct dm_target *ti;
  52        union map_info info;
  53};
  54
  55union map_info *dm_get_mapinfo(struct bio *bio)
  56{
  57        if (bio && bio->bi_private)
  58                return &((struct dm_target_io *)bio->bi_private)->info;
  59        return NULL;
  60}
  61
  62#define MINOR_ALLOCED ((void *)-1)
  63
  64/*
  65 * Bits for the md->flags field.
  66 */
  67#define DMF_BLOCK_IO 0
  68#define DMF_SUSPENDED 1
  69#define DMF_FROZEN 2
  70#define DMF_FREEING 3
  71#define DMF_DELETING 4
  72#define DMF_NOFLUSH_SUSPENDING 5
  73
  74/*
  75 * Work processed by per-device workqueue.
  76 */
  77struct dm_wq_req {
  78        enum {
  79                DM_WQ_FLUSH_ALL,
  80                DM_WQ_FLUSH_DEFERRED,
  81        } type;
  82        struct work_struct work;
  83        struct mapped_device *md;
  84        void *context;
  85};
  86
  87struct mapped_device {
  88        struct rw_semaphore io_lock;
  89        struct mutex suspend_lock;
  90        spinlock_t pushback_lock;
  91        rwlock_t map_lock;
  92        atomic_t holders;
  93        atomic_t open_count;
  94
  95        unsigned long flags;
  96
  97        struct request_queue *queue;
  98        struct gendisk *disk;
  99        char name[16];
 100
 101        void *interface_ptr;
 102
 103        /*
 104         * A list of ios that arrived while we were suspended.
 105         */
 106        atomic_t pending;
 107        wait_queue_head_t wait;
 108        struct bio_list deferred;
 109        struct bio_list pushback;
 110
 111        /*
 112         * Processing queue (flush/barriers)
 113         */
 114        struct workqueue_struct *wq;
 115
 116        /*
 117         * The current mapping.
 118         */
 119        struct dm_table *map;
 120
 121        /*
 122         * io objects are allocated from here.
 123         */
 124        mempool_t *io_pool;
 125        mempool_t *tio_pool;
 126
 127        struct bio_set *bs;
 128
 129        /*
 130         * Event handling.
 131         */
 132        atomic_t event_nr;
 133        wait_queue_head_t eventq;
 134        atomic_t uevent_seq;
 135        struct list_head uevent_list;
 136        spinlock_t uevent_lock; /* Protect access to uevent_list */
 137
 138        /*
 139         * freeze/thaw support require holding onto a super block
 140         */
 141        struct super_block *frozen_sb;
 142        struct block_device *suspended_bdev;
 143
 144        /* forced geometry settings */
 145        struct hd_geometry geometry;
 146};
 147
 148#define MIN_IOS 256
 149static struct kmem_cache *_io_cache;
 150static struct kmem_cache *_tio_cache;
 151
 152static int __init local_init(void)
 153{
 154        int r;
 155
 156        /* allocate a slab for the dm_ios */
 157        _io_cache = KMEM_CACHE(dm_io, 0);
 158        if (!_io_cache)
 159                return -ENOMEM;
 160
 161        /* allocate a slab for the target ios */
 162        _tio_cache = KMEM_CACHE(dm_target_io, 0);
 163        if (!_tio_cache) {
 164                kmem_cache_destroy(_io_cache);
 165                return -ENOMEM;
 166        }
 167
 168        r = dm_uevent_init();
 169        if (r) {
 170                kmem_cache_destroy(_tio_cache);
 171                kmem_cache_destroy(_io_cache);
 172                return r;
 173        }
 174
 175        _major = major;
 176        r = register_blkdev(_major, _name);
 177        if (r < 0) {
 178                kmem_cache_destroy(_tio_cache);
 179                kmem_cache_destroy(_io_cache);
 180                dm_uevent_exit();
 181                return r;
 182        }
 183
 184        if (!_major)
 185                _major = r;
 186
 187        return 0;
 188}
 189
 190static void local_exit(void)
 191{
 192        kmem_cache_destroy(_tio_cache);
 193        kmem_cache_destroy(_io_cache);
 194        unregister_blkdev(_major, _name);
 195        dm_uevent_exit();
 196
 197        _major = 0;
 198
 199        DMINFO("cleaned up");
 200}
 201
 202static int (*_inits[])(void) __initdata = {
 203        local_init,
 204        dm_target_init,
 205        dm_linear_init,
 206        dm_stripe_init,
 207        dm_kcopyd_init,
 208        dm_interface_init,
 209};
 210
 211static void (*_exits[])(void) = {
 212        local_exit,
 213        dm_target_exit,
 214        dm_linear_exit,
 215        dm_stripe_exit,
 216        dm_kcopyd_exit,
 217        dm_interface_exit,
 218};
 219
 220static int __init dm_init(void)
 221{
 222        const int count = ARRAY_SIZE(_inits);
 223
 224        int r, i;
 225
 226        for (i = 0; i < count; i++) {
 227                r = _inits[i]();
 228                if (r)
 229                        goto bad;
 230        }
 231
 232        return 0;
 233
 234      bad:
 235        while (i--)
 236                _exits[i]();
 237
 238        return r;
 239}
 240
 241static void __exit dm_exit(void)
 242{
 243        int i = ARRAY_SIZE(_exits);
 244
 245        while (i--)
 246                _exits[i]();
 247}
 248
 249/*
 250 * Block device functions
 251 */
 252static int dm_blk_open(struct inode *inode, struct file *file)
 253{
 254        struct mapped_device *md;
 255
 256        spin_lock(&_minor_lock);
 257
 258        md = inode->i_bdev->bd_disk->private_data;
 259        if (!md)
 260                goto out;
 261
 262        if (test_bit(DMF_FREEING, &md->flags) ||
 263            test_bit(DMF_DELETING, &md->flags)) {
 264                md = NULL;
 265                goto out;
 266        }
 267
 268        dm_get(md);
 269        atomic_inc(&md->open_count);
 270
 271out:
 272        spin_unlock(&_minor_lock);
 273
 274        return md ? 0 : -ENXIO;
 275}
 276
 277static int dm_blk_close(struct inode *inode, struct file *file)
 278{
 279        struct mapped_device *md;
 280
 281        md = inode->i_bdev->bd_disk->private_data;
 282        atomic_dec(&md->open_count);
 283        dm_put(md);
 284        return 0;
 285}
 286
 287int dm_open_count(struct mapped_device *md)
 288{
 289        return atomic_read(&md->open_count);
 290}
 291
 292/*
 293 * Guarantees nothing is using the device before it's deleted.
 294 */
 295int dm_lock_for_deletion(struct mapped_device *md)
 296{
 297        int r = 0;
 298
 299        spin_lock(&_minor_lock);
 300
 301        if (dm_open_count(md))
 302                r = -EBUSY;
 303        else
 304                set_bit(DMF_DELETING, &md->flags);
 305
 306        spin_unlock(&_minor_lock);
 307
 308        return r;
 309}
 310
 311static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 312{
 313        struct mapped_device *md = bdev->bd_disk->private_data;
 314
 315        return dm_get_geometry(md, geo);
 316}
 317
 318static int dm_blk_ioctl(struct inode *inode, struct file *file,
 319                        unsigned int cmd, unsigned long arg)
 320{
 321        struct mapped_device *md;
 322        struct dm_table *map;
 323        struct dm_target *tgt;
 324        int r = -ENOTTY;
 325
 326        /* We don't really need this lock, but we do need 'inode'. */
 327        unlock_kernel();
 328
 329        md = inode->i_bdev->bd_disk->private_data;
 330
 331        map = dm_get_table(md);
 332
 333        if (!map || !dm_table_get_size(map))
 334                goto out;
 335
 336        /* We only support devices that have a single target */
 337        if (dm_table_get_num_targets(map) != 1)
 338                goto out;
 339
 340        tgt = dm_table_get_target(map, 0);
 341
 342        if (dm_suspended(md)) {
 343                r = -EAGAIN;
 344                goto out;
 345        }
 346
 347        if (tgt->type->ioctl)
 348                r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
 349
 350out:
 351        dm_table_put(map);
 352
 353        lock_kernel();
 354        return r;
 355}
 356
 357static struct dm_io *alloc_io(struct mapped_device *md)
 358{
 359        return mempool_alloc(md->io_pool, GFP_NOIO);
 360}
 361
 362static void free_io(struct mapped_device *md, struct dm_io *io)
 363{
 364        mempool_free(io, md->io_pool);
 365}
 366
 367static struct dm_target_io *alloc_tio(struct mapped_device *md)
 368{
 369        return mempool_alloc(md->tio_pool, GFP_NOIO);
 370}
 371
 372static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 373{
 374        mempool_free(tio, md->tio_pool);
 375}
 376
 377static void start_io_acct(struct dm_io *io)
 378{
 379        struct mapped_device *md = io->md;
 380
 381        io->start_time = jiffies;
 382
 383        preempt_disable();
 384        disk_round_stats(dm_disk(md));
 385        preempt_enable();
 386        dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
 387}
 388
 389static int end_io_acct(struct dm_io *io)
 390{
 391        struct mapped_device *md = io->md;
 392        struct bio *bio = io->bio;
 393        unsigned long duration = jiffies - io->start_time;
 394        int pending;
 395        int rw = bio_data_dir(bio);
 396
 397        preempt_disable();
 398        disk_round_stats(dm_disk(md));
 399        preempt_enable();
 400        dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
 401
 402        disk_stat_add(dm_disk(md), ticks[rw], duration);
 403
 404        return !pending;
 405}
 406
 407/*
 408 * Add the bio to the list of deferred io.
 409 */
 410static int queue_io(struct mapped_device *md, struct bio *bio)
 411{
 412        down_write(&md->io_lock);
 413
 414        if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
 415                up_write(&md->io_lock);
 416                return 1;
 417        }
 418
 419        bio_list_add(&md->deferred, bio);
 420
 421        up_write(&md->io_lock);
 422        return 0;               /* deferred successfully */
 423}
 424
 425/*
 426 * Everyone (including functions in this file), should use this
 427 * function to access the md->map field, and make sure they call
 428 * dm_table_put() when finished.
 429 */
 430struct dm_table *dm_get_table(struct mapped_device *md)
 431{
 432        struct dm_table *t;
 433
 434        read_lock(&md->map_lock);
 435        t = md->map;
 436        if (t)
 437                dm_table_get(t);
 438        read_unlock(&md->map_lock);
 439
 440        return t;
 441}
 442
 443/*
 444 * Get the geometry associated with a dm device
 445 */
 446int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 447{
 448        *geo = md->geometry;
 449
 450        return 0;
 451}
 452
 453/*
 454 * Set the geometry of a device.
 455 */
 456int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 457{
 458        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 459
 460        if (geo->start > sz) {
 461                DMWARN("Start sector is beyond the geometry limits.");
 462                return -EINVAL;
 463        }
 464
 465        md->geometry = *geo;
 466
 467        return 0;
 468}
 469
 470/*-----------------------------------------------------------------
 471 * CRUD START:
 472 *   A more elegant soln is in the works that uses the queue
 473 *   merge fn, unfortunately there are a couple of changes to
 474 *   the block layer that I want to make for this.  So in the
 475 *   interests of getting something for people to use I give
 476 *   you this clearly demarcated crap.
 477 *---------------------------------------------------------------*/
 478
 479static int __noflush_suspending(struct mapped_device *md)
 480{
 481        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 482}
 483
 484/*
 485 * Decrements the number of outstanding ios that a bio has been
 486 * cloned into, completing the original io if necc.
 487 */
 488static void dec_pending(struct dm_io *io, int error)
 489{
 490        unsigned long flags;
 491
 492        /* Push-back supersedes any I/O errors */
 493        if (error && !(io->error > 0 && __noflush_suspending(io->md)))
 494                io->error = error;
 495
 496        if (atomic_dec_and_test(&io->io_count)) {
 497                if (io->error == DM_ENDIO_REQUEUE) {
 498                        /*
 499                         * Target requested pushing back the I/O.
 500                         * This must be handled before the sleeper on
 501                         * suspend queue merges the pushback list.
 502                         */
 503                        spin_lock_irqsave(&io->md->pushback_lock, flags);
 504                        if (__noflush_suspending(io->md))
 505                                bio_list_add(&io->md->pushback, io->bio);
 506                        else
 507                                /* noflush suspend was interrupted. */
 508                                io->error = -EIO;
 509                        spin_unlock_irqrestore(&io->md->pushback_lock, flags);
 510                }
 511
 512                if (end_io_acct(io))
 513                        /* nudge anyone waiting on suspend queue */
 514                        wake_up(&io->md->wait);
 515
 516                if (io->error != DM_ENDIO_REQUEUE) {
 517                        blk_add_trace_bio(io->md->queue, io->bio,
 518                                          BLK_TA_COMPLETE);
 519
 520                        bio_endio(io->bio, io->error);
 521                }
 522
 523                free_io(io->md, io);
 524        }
 525}
 526
 527static void clone_endio(struct bio *bio, int error)
 528{
 529        int r = 0;
 530        struct dm_target_io *tio = bio->bi_private;
 531        struct mapped_device *md = tio->io->md;
 532        dm_endio_fn endio = tio->ti->type->end_io;
 533
 534        if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 535                error = -EIO;
 536
 537        if (endio) {
 538                r = endio(tio->ti, bio, error, &tio->info);
 539                if (r < 0 || r == DM_ENDIO_REQUEUE)
 540                        /*
 541                         * error and requeue request are handled
 542                         * in dec_pending().
 543                         */
 544                        error = r;
 545                else if (r == DM_ENDIO_INCOMPLETE)
 546                        /* The target will handle the io */
 547                        return;
 548                else if (r) {
 549                        DMWARN("unimplemented target endio return value: %d", r);
 550                        BUG();
 551                }
 552        }
 553
 554        dec_pending(tio->io, error);
 555
 556        /*
 557         * Store md for cleanup instead of tio which is about to get freed.
 558         */
 559        bio->bi_private = md->bs;
 560
 561        bio_put(bio);
 562        free_tio(md, tio);
 563}
 564
 565static sector_t max_io_len(struct mapped_device *md,
 566                           sector_t sector, struct dm_target *ti)
 567{
 568        sector_t offset = sector - ti->begin;
 569        sector_t len = ti->len - offset;
 570
 571        /*
 572         * Does the target need to split even further ?
 573         */
 574        if (ti->split_io) {
 575                sector_t boundary;
 576                boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 577                           - offset;
 578                if (len > boundary)
 579                        len = boundary;
 580        }
 581
 582        return len;
 583}
 584
 585static void __map_bio(struct dm_target *ti, struct bio *clone,
 586                      struct dm_target_io *tio)
 587{
 588        int r;
 589        sector_t sector;
 590        struct mapped_device *md;
 591
 592        /*
 593         * Sanity checks.
 594         */
 595        BUG_ON(!clone->bi_size);
 596
 597        clone->bi_end_io = clone_endio;
 598        clone->bi_private = tio;
 599
 600        /*
 601         * Map the clone.  If r == 0 we don't need to do
 602         * anything, the target has assumed ownership of
 603         * this io.
 604         */
 605        atomic_inc(&tio->io->io_count);
 606        sector = clone->bi_sector;
 607        r = ti->type->map(ti, clone, &tio->info);
 608        if (r == DM_MAPIO_REMAPPED) {
 609                /* the bio has been remapped so dispatch it */
 610
 611                blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
 612                                    tio->io->bio->bi_bdev->bd_dev,
 613                                    clone->bi_sector, sector);
 614
 615                generic_make_request(clone);
 616        } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
 617                /* error the io and bail out, or requeue it if needed */
 618                md = tio->io->md;
 619                dec_pending(tio->io, r);
 620                /*
 621                 * Store bio_set for cleanup.
 622                 */
 623                clone->bi_private = md->bs;
 624                bio_put(clone);
 625                free_tio(md, tio);
 626        } else if (r) {
 627                DMWARN("unimplemented target map return value: %d", r);
 628                BUG();
 629        }
 630}
 631
 632struct clone_info {
 633        struct mapped_device *md;
 634        struct dm_table *map;
 635        struct bio *bio;
 636        struct dm_io *io;
 637        sector_t sector;
 638        sector_t sector_count;
 639        unsigned short idx;
 640};
 641
 642static void dm_bio_destructor(struct bio *bio)
 643{
 644        struct bio_set *bs = bio->bi_private;
 645
 646        bio_free(bio, bs);
 647}
 648
 649/*
 650 * Creates a little bio that is just does part of a bvec.
 651 */
 652static struct bio *split_bvec(struct bio *bio, sector_t sector,
 653                              unsigned short idx, unsigned int offset,
 654                              unsigned int len, struct bio_set *bs)
 655{
 656        struct bio *clone;
 657        struct bio_vec *bv = bio->bi_io_vec + idx;
 658
 659        clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
 660        clone->bi_destructor = dm_bio_destructor;
 661        *clone->bi_io_vec = *bv;
 662
 663        clone->bi_sector = sector;
 664        clone->bi_bdev = bio->bi_bdev;
 665        clone->bi_rw = bio->bi_rw;
 666        clone->bi_vcnt = 1;
 667        clone->bi_size = to_bytes(len);
 668        clone->bi_io_vec->bv_offset = offset;
 669        clone->bi_io_vec->bv_len = clone->bi_size;
 670
 671        return clone;
 672}
 673
 674/*
 675 * Creates a bio that consists of range of complete bvecs.
 676 */
 677static struct bio *clone_bio(struct bio *bio, sector_t sector,
 678                             unsigned short idx, unsigned short bv_count,
 679                             unsigned int len, struct bio_set *bs)
 680{
 681        struct bio *clone;
 682
 683        clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
 684        __bio_clone(clone, bio);
 685        clone->bi_destructor = dm_bio_destructor;
 686        clone->bi_sector = sector;
 687        clone->bi_idx = idx;
 688        clone->bi_vcnt = idx + bv_count;
 689        clone->bi_size = to_bytes(len);
 690        clone->bi_flags &= ~(1 << BIO_SEG_VALID);
 691
 692        return clone;
 693}
 694
 695static int __clone_and_map(struct clone_info *ci)
 696{
 697        struct bio *clone, *bio = ci->bio;
 698        struct dm_target *ti;
 699        sector_t len = 0, max;
 700        struct dm_target_io *tio;
 701
 702        ti = dm_table_find_target(ci->map, ci->sector);
 703        if (!dm_target_is_valid(ti))
 704                return -EIO;
 705
 706        max = max_io_len(ci->md, ci->sector, ti);
 707
 708        /*
 709         * Allocate a target io object.
 710         */
 711        tio = alloc_tio(ci->md);
 712        tio->io = ci->io;
 713        tio->ti = ti;
 714        memset(&tio->info, 0, sizeof(tio->info));
 715
 716        if (ci->sector_count <= max) {
 717                /*
 718                 * Optimise for the simple case where we can do all of
 719                 * the remaining io with a single clone.
 720                 */
 721                clone = clone_bio(bio, ci->sector, ci->idx,
 722                                  bio->bi_vcnt - ci->idx, ci->sector_count,
 723                                  ci->md->bs);
 724                __map_bio(ti, clone, tio);
 725                ci->sector_count = 0;
 726
 727        } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
 728                /*
 729                 * There are some bvecs that don't span targets.
 730                 * Do as many of these as possible.
 731                 */
 732                int i;
 733                sector_t remaining = max;
 734                sector_t bv_len;
 735
 736                for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
 737                        bv_len = to_sector(bio->bi_io_vec[i].bv_len);
 738
 739                        if (bv_len > remaining)
 740                                break;
 741
 742                        remaining -= bv_len;
 743                        len += bv_len;
 744                }
 745
 746                clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
 747                                  ci->md->bs);
 748                __map_bio(ti, clone, tio);
 749
 750                ci->sector += len;
 751                ci->sector_count -= len;
 752                ci->idx = i;
 753
 754        } else {
 755                /*
 756                 * Handle a bvec that must be split between two or more targets.
 757                 */
 758                struct bio_vec *bv = bio->bi_io_vec + ci->idx;
 759                sector_t remaining = to_sector(bv->bv_len);
 760                unsigned int offset = 0;
 761
 762                do {
 763                        if (offset) {
 764                                ti = dm_table_find_target(ci->map, ci->sector);
 765                                if (!dm_target_is_valid(ti))
 766                                        return -EIO;
 767
 768                                max = max_io_len(ci->md, ci->sector, ti);
 769
 770                                tio = alloc_tio(ci->md);
 771                                tio->io = ci->io;
 772                                tio->ti = ti;
 773                                memset(&tio->info, 0, sizeof(tio->info));
 774                        }
 775
 776                        len = min(remaining, max);
 777
 778                        clone = split_bvec(bio, ci->sector, ci->idx,
 779                                           bv->bv_offset + offset, len,
 780                                           ci->md->bs);
 781
 782                        __map_bio(ti, clone, tio);
 783
 784                        ci->sector += len;
 785                        ci->sector_count -= len;
 786                        offset += to_bytes(len);
 787                } while (remaining -= len);
 788
 789                ci->idx++;
 790        }
 791
 792        return 0;
 793}
 794
 795/*
 796 * Split the bio into several clones.
 797 */
 798static int __split_bio(struct mapped_device *md, struct bio *bio)
 799{
 800        struct clone_info ci;
 801        int error = 0;
 802
 803        ci.map = dm_get_table(md);
 804        if (unlikely(!ci.map))
 805                return -EIO;
 806
 807        ci.md = md;
 808        ci.bio = bio;
 809        ci.io = alloc_io(md);
 810        ci.io->error = 0;
 811        atomic_set(&ci.io->io_count, 1);
 812        ci.io->bio = bio;
 813        ci.io->md = md;
 814        ci.sector = bio->bi_sector;
 815        ci.sector_count = bio_sectors(bio);
 816        ci.idx = bio->bi_idx;
 817
 818        start_io_acct(ci.io);
 819        while (ci.sector_count && !error)
 820                error = __clone_and_map(&ci);
 821
 822        /* drop the extra reference count */
 823        dec_pending(ci.io, error);
 824        dm_table_put(ci.map);
 825
 826        return 0;
 827}
 828/*-----------------------------------------------------------------
 829 * CRUD END
 830 *---------------------------------------------------------------*/
 831
 832static int dm_merge_bvec(struct request_queue *q,
 833                         struct bvec_merge_data *bvm,
 834                         struct bio_vec *biovec)
 835{
 836        struct mapped_device *md = q->queuedata;
 837        struct dm_table *map = dm_get_table(md);
 838        struct dm_target *ti;
 839        sector_t max_sectors;
 840        int max_size = 0;
 841
 842        if (unlikely(!map))
 843                goto out;
 844
 845        ti = dm_table_find_target(map, bvm->bi_sector);
 846        if (!dm_target_is_valid(ti))
 847                goto out_table;
 848
 849        /*
 850         * Find maximum amount of I/O that won't need splitting
 851         */
 852        max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
 853                          (sector_t) BIO_MAX_SECTORS);
 854        max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
 855        if (max_size < 0)
 856                max_size = 0;
 857
 858        /*
 859         * merge_bvec_fn() returns number of bytes
 860         * it can accept at this offset
 861         * max is precomputed maximal io size
 862         */
 863        if (max_size && ti->type->merge)
 864                max_size = ti->type->merge(ti, bvm, biovec, max_size);
 865
 866out_table:
 867        dm_table_put(map);
 868
 869out:
 870        /*
 871         * Always allow an entire first page
 872         */
 873        if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
 874                max_size = biovec->bv_len;
 875
 876        return max_size;
 877}
 878
 879/*
 880 * The request function that just remaps the bio built up by
 881 * dm_merge_bvec.
 882 */
 883static int dm_request(struct request_queue *q, struct bio *bio)
 884{
 885        int r = -EIO;
 886        int rw = bio_data_dir(bio);
 887        struct mapped_device *md = q->queuedata;
 888
 889        /*
 890         * There is no use in forwarding any barrier request since we can't
 891         * guarantee it is (or can be) handled by the targets correctly.
 892         */
 893        if (unlikely(bio_barrier(bio))) {
 894                bio_endio(bio, -EOPNOTSUPP);
 895                return 0;
 896        }
 897
 898        down_read(&md->io_lock);
 899
 900        disk_stat_inc(dm_disk(md), ios[rw]);
 901        disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
 902
 903        /*
 904         * If we're suspended we have to queue
 905         * this io for later.
 906         */
 907        while (test_bit(DMF_BLOCK_IO, &md->flags)) {
 908                up_read(&md->io_lock);
 909
 910                if (bio_rw(bio) != READA)
 911                        r = queue_io(md, bio);
 912
 913                if (r <= 0)
 914                        goto out_req;
 915
 916                /*
 917                 * We're in a while loop, because someone could suspend
 918                 * before we get to the following read lock.
 919                 */
 920                down_read(&md->io_lock);
 921        }
 922
 923        r = __split_bio(md, bio);
 924        up_read(&md->io_lock);
 925
 926out_req:
 927        if (r < 0)
 928                bio_io_error(bio);
 929
 930        return 0;
 931}
 932
 933static void dm_unplug_all(struct request_queue *q)
 934{
 935        struct mapped_device *md = q->queuedata;
 936        struct dm_table *map = dm_get_table(md);
 937
 938        if (map) {
 939                dm_table_unplug_all(map);
 940                dm_table_put(map);
 941        }
 942}
 943
 944static int dm_any_congested(void *congested_data, int bdi_bits)
 945{
 946        int r;
 947        struct mapped_device *md = (struct mapped_device *) congested_data;
 948        struct dm_table *map = dm_get_table(md);
 949
 950        if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
 951                r = bdi_bits;
 952        else
 953                r = dm_table_any_congested(map, bdi_bits);
 954
 955        dm_table_put(map);
 956        return r;
 957}
 958
 959/*-----------------------------------------------------------------
 960 * An IDR is used to keep track of allocated minor numbers.
 961 *---------------------------------------------------------------*/
 962static DEFINE_IDR(_minor_idr);
 963
 964static void free_minor(int minor)
 965{
 966        spin_lock(&_minor_lock);
 967        idr_remove(&_minor_idr, minor);
 968        spin_unlock(&_minor_lock);
 969}
 970
 971/*
 972 * See if the device with a specific minor # is free.
 973 */
 974static int specific_minor(int minor)
 975{
 976        int r, m;
 977
 978        if (minor >= (1 << MINORBITS))
 979                return -EINVAL;
 980
 981        r = idr_pre_get(&_minor_idr, GFP_KERNEL);
 982        if (!r)
 983                return -ENOMEM;
 984
 985        spin_lock(&_minor_lock);
 986
 987        if (idr_find(&_minor_idr, minor)) {
 988                r = -EBUSY;
 989                goto out;
 990        }
 991
 992        r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
 993        if (r)
 994                goto out;
 995
 996        if (m != minor) {
 997                idr_remove(&_minor_idr, m);
 998                r = -EBUSY;
 999                goto out;
1000        }
1001
1002out:
1003        spin_unlock(&_minor_lock);
1004        return r;
1005}
1006
1007static int next_free_minor(int *minor)
1008{
1009        int r, m;
1010
1011        r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1012        if (!r)
1013                return -ENOMEM;
1014
1015        spin_lock(&_minor_lock);
1016
1017        r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1018        if (r)
1019                goto out;
1020
1021        if (m >= (1 << MINORBITS)) {
1022                idr_remove(&_minor_idr, m);
1023                r = -ENOSPC;
1024                goto out;
1025        }
1026
1027        *minor = m;
1028
1029out:
1030        spin_unlock(&_minor_lock);
1031        return r;
1032}
1033
1034static struct block_device_operations dm_blk_dops;
1035
1036/*
1037 * Allocate and initialise a blank device with a given minor.
1038 */
1039static struct mapped_device *alloc_dev(int minor)
1040{
1041        int r;
1042        struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1043        void *old_md;
1044
1045        if (!md) {
1046                DMWARN("unable to allocate device, out of memory.");
1047                return NULL;
1048        }
1049
1050        if (!try_module_get(THIS_MODULE))
1051                goto bad_module_get;
1052
1053        /* get a minor number for the dev */
1054        if (minor == DM_ANY_MINOR)
1055                r = next_free_minor(&minor);
1056        else
1057                r = specific_minor(minor);
1058        if (r < 0)
1059                goto bad_minor;
1060
1061        init_rwsem(&md->io_lock);
1062        mutex_init(&md->suspend_lock);
1063        spin_lock_init(&md->pushback_lock);
1064        rwlock_init(&md->map_lock);
1065        atomic_set(&md->holders, 1);
1066        atomic_set(&md->open_count, 0);
1067        atomic_set(&md->event_nr, 0);
1068        atomic_set(&md->uevent_seq, 0);
1069        INIT_LIST_HEAD(&md->uevent_list);
1070        spin_lock_init(&md->uevent_lock);
1071
1072        md->queue = blk_alloc_queue(GFP_KERNEL);
1073        if (!md->queue)
1074                goto bad_queue;
1075
1076        md->queue->queuedata = md;
1077        md->queue->backing_dev_info.congested_fn = dm_any_congested;
1078        md->queue->backing_dev_info.congested_data = md;
1079        blk_queue_make_request(md->queue, dm_request);
1080        blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1081        md->queue->unplug_fn = dm_unplug_all;
1082        blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1083
1084        md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1085        if (!md->io_pool)
1086                goto bad_io_pool;
1087
1088        md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1089        if (!md->tio_pool)
1090                goto bad_tio_pool;
1091
1092        md->bs = bioset_create(16, 16);
1093        if (!md->bs)
1094                goto bad_no_bioset;
1095
1096        md->disk = alloc_disk(1);
1097        if (!md->disk)
1098                goto bad_disk;
1099
1100        atomic_set(&md->pending, 0);
1101        init_waitqueue_head(&md->wait);
1102        init_waitqueue_head(&md->eventq);
1103
1104        md->disk->major = _major;
1105        md->disk->first_minor = minor;
1106        md->disk->fops = &dm_blk_dops;
1107        md->disk->queue = md->queue;
1108        md->disk->private_data = md;
1109        sprintf(md->disk->disk_name, "dm-%d", minor);
1110        add_disk(md->disk);
1111        format_dev_t(md->name, MKDEV(_major, minor));
1112
1113        md->wq = create_singlethread_workqueue("kdmflush");
1114        if (!md->wq)
1115                goto bad_thread;
1116
1117        /* Populate the mapping, nobody knows we exist yet */
1118        spin_lock(&_minor_lock);
1119        old_md = idr_replace(&_minor_idr, md, minor);
1120        spin_unlock(&_minor_lock);
1121
1122        BUG_ON(old_md != MINOR_ALLOCED);
1123
1124        return md;
1125
1126bad_thread:
1127        put_disk(md->disk);
1128bad_disk:
1129        bioset_free(md->bs);
1130bad_no_bioset:
1131        mempool_destroy(md->tio_pool);
1132bad_tio_pool:
1133        mempool_destroy(md->io_pool);
1134bad_io_pool:
1135        blk_cleanup_queue(md->queue);
1136bad_queue:
1137        free_minor(minor);
1138bad_minor:
1139        module_put(THIS_MODULE);
1140bad_module_get:
1141        kfree(md);
1142        return NULL;
1143}
1144
1145static void unlock_fs(struct mapped_device *md);
1146
1147static void free_dev(struct mapped_device *md)
1148{
1149        int minor = md->disk->first_minor;
1150
1151        if (md->suspended_bdev) {
1152                unlock_fs(md);
1153                bdput(md->suspended_bdev);
1154        }
1155        destroy_workqueue(md->wq);
1156        mempool_destroy(md->tio_pool);
1157        mempool_destroy(md->io_pool);
1158        bioset_free(md->bs);
1159        del_gendisk(md->disk);
1160        free_minor(minor);
1161
1162        spin_lock(&_minor_lock);
1163        md->disk->private_data = NULL;
1164        spin_unlock(&_minor_lock);
1165
1166        put_disk(md->disk);
1167        blk_cleanup_queue(md->queue);
1168        module_put(THIS_MODULE);
1169        kfree(md);
1170}
1171
1172/*
1173 * Bind a table to the device.
1174 */
1175static void event_callback(void *context)
1176{
1177        unsigned long flags;
1178        LIST_HEAD(uevents);
1179        struct mapped_device *md = (struct mapped_device *) context;
1180
1181        spin_lock_irqsave(&md->uevent_lock, flags);
1182        list_splice_init(&md->uevent_list, &uevents);
1183        spin_unlock_irqrestore(&md->uevent_lock, flags);
1184
1185        dm_send_uevents(&uevents, &md->disk->dev.kobj);
1186
1187        atomic_inc(&md->event_nr);
1188        wake_up(&md->eventq);
1189}
1190
1191static void __set_size(struct mapped_device *md, sector_t size)
1192{
1193        set_capacity(md->disk, size);
1194
1195        mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1196        i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1197        mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1198}
1199
1200static int __bind(struct mapped_device *md, struct dm_table *t)
1201{
1202        struct request_queue *q = md->queue;
1203        sector_t size;
1204
1205        size = dm_table_get_size(t);
1206
1207        /*
1208         * Wipe any geometry if the size of the table changed.
1209         */
1210        if (size != get_capacity(md->disk))
1211                memset(&md->geometry, 0, sizeof(md->geometry));
1212
1213        if (md->suspended_bdev)
1214                __set_size(md, size);
1215        if (size == 0)
1216                return 0;
1217
1218        dm_table_get(t);
1219        dm_table_event_callback(t, event_callback, md);
1220
1221        write_lock(&md->map_lock);
1222        md->map = t;
1223        dm_table_set_restrictions(t, q);
1224        write_unlock(&md->map_lock);
1225
1226        return 0;
1227}
1228
1229static void __unbind(struct mapped_device *md)
1230{
1231        struct dm_table *map = md->map;
1232
1233        if (!map)
1234                return;
1235
1236        dm_table_event_callback(map, NULL, NULL);
1237        write_lock(&md->map_lock);
1238        md->map = NULL;
1239        write_unlock(&md->map_lock);
1240        dm_table_put(map);
1241}
1242
1243/*
1244 * Constructor for a new device.
1245 */
1246int dm_create(int minor, struct mapped_device **result)
1247{
1248        struct mapped_device *md;
1249
1250        md = alloc_dev(minor);
1251        if (!md)
1252                return -ENXIO;
1253
1254        *result = md;
1255        return 0;
1256}
1257
1258static struct mapped_device *dm_find_md(dev_t dev)
1259{
1260        struct mapped_device *md;
1261        unsigned minor = MINOR(dev);
1262
1263        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1264                return NULL;
1265
1266        spin_lock(&_minor_lock);
1267
1268        md = idr_find(&_minor_idr, minor);
1269        if (md && (md == MINOR_ALLOCED ||
1270                   (dm_disk(md)->first_minor != minor) ||
1271                   test_bit(DMF_FREEING, &md->flags))) {
1272                md = NULL;
1273                goto out;
1274        }
1275
1276out:
1277        spin_unlock(&_minor_lock);
1278
1279        return md;
1280}
1281
1282struct mapped_device *dm_get_md(dev_t dev)
1283{
1284        struct mapped_device *md = dm_find_md(dev);
1285
1286        if (md)
1287                dm_get(md);
1288
1289        return md;
1290}
1291
1292void *dm_get_mdptr(struct mapped_device *md)
1293{
1294        return md->interface_ptr;
1295}
1296
1297void dm_set_mdptr(struct mapped_device *md, void *ptr)
1298{
1299        md->interface_ptr = ptr;
1300}
1301
1302void dm_get(struct mapped_device *md)
1303{
1304        atomic_inc(&md->holders);
1305}
1306
1307const char *dm_device_name(struct mapped_device *md)
1308{
1309        return md->name;
1310}
1311EXPORT_SYMBOL_GPL(dm_device_name);
1312
1313void dm_put(struct mapped_device *md)
1314{
1315        struct dm_table *map;
1316
1317        BUG_ON(test_bit(DMF_FREEING, &md->flags));
1318
1319        if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1320                map = dm_get_table(md);
1321                idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1322                set_bit(DMF_FREEING, &md->flags);
1323                spin_unlock(&_minor_lock);
1324                if (!dm_suspended(md)) {
1325                        dm_table_presuspend_targets(map);
1326                        dm_table_postsuspend_targets(map);
1327                }
1328                __unbind(md);
1329                dm_table_put(map);
1330                free_dev(md);
1331        }
1332}
1333EXPORT_SYMBOL_GPL(dm_put);
1334
1335static int dm_wait_for_completion(struct mapped_device *md)
1336{
1337        int r = 0;
1338
1339        while (1) {
1340                set_current_state(TASK_INTERRUPTIBLE);
1341
1342                smp_mb();
1343                if (!atomic_read(&md->pending))
1344                        break;
1345
1346                if (signal_pending(current)) {
1347                        r = -EINTR;
1348                        break;
1349                }
1350
1351                io_schedule();
1352        }
1353        set_current_state(TASK_RUNNING);
1354
1355        return r;
1356}
1357
1358/*
1359 * Process the deferred bios
1360 */
1361static void __flush_deferred_io(struct mapped_device *md)
1362{
1363        struct bio *c;
1364
1365        while ((c = bio_list_pop(&md->deferred))) {
1366                if (__split_bio(md, c))
1367                        bio_io_error(c);
1368        }
1369
1370        clear_bit(DMF_BLOCK_IO, &md->flags);
1371}
1372
1373static void __merge_pushback_list(struct mapped_device *md)
1374{
1375        unsigned long flags;
1376
1377        spin_lock_irqsave(&md->pushback_lock, flags);
1378        clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1379        bio_list_merge_head(&md->deferred, &md->pushback);
1380        bio_list_init(&md->pushback);
1381        spin_unlock_irqrestore(&md->pushback_lock, flags);
1382}
1383
1384static void dm_wq_work(struct work_struct *work)
1385{
1386        struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1387        struct mapped_device *md = req->md;
1388
1389        down_write(&md->io_lock);
1390        switch (req->type) {
1391        case DM_WQ_FLUSH_ALL:
1392                __merge_pushback_list(md);
1393                /* pass through */
1394        case DM_WQ_FLUSH_DEFERRED:
1395                __flush_deferred_io(md);
1396                break;
1397        default:
1398                DMERR("dm_wq_work: unrecognised work type %d", req->type);
1399                BUG();
1400        }
1401        up_write(&md->io_lock);
1402}
1403
1404static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1405                        struct dm_wq_req *req)
1406{
1407        req->type = type;
1408        req->md = md;
1409        req->context = context;
1410        INIT_WORK(&req->work, dm_wq_work);
1411        queue_work(md->wq, &req->work);
1412}
1413
1414static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1415{
1416        struct dm_wq_req req;
1417
1418        dm_wq_queue(md, type, context, &req);
1419        flush_workqueue(md->wq);
1420}
1421
1422/*
1423 * Swap in a new table (destroying old one).
1424 */
1425int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1426{
1427        int r = -EINVAL;
1428
1429        mutex_lock(&md->suspend_lock);
1430
1431        /* device must be suspended */
1432        if (!dm_suspended(md))
1433                goto out;
1434
1435        /* without bdev, the device size cannot be changed */
1436        if (!md->suspended_bdev)
1437                if (get_capacity(md->disk) != dm_table_get_size(table))
1438                        goto out;
1439
1440        __unbind(md);
1441        r = __bind(md, table);
1442
1443out:
1444        mutex_unlock(&md->suspend_lock);
1445        return r;
1446}
1447
1448/*
1449 * Functions to lock and unlock any filesystem running on the
1450 * device.
1451 */
1452static int lock_fs(struct mapped_device *md)
1453{
1454        int r;
1455
1456        WARN_ON(md->frozen_sb);
1457
1458        md->frozen_sb = freeze_bdev(md->suspended_bdev);
1459        if (IS_ERR(md->frozen_sb)) {
1460                r = PTR_ERR(md->frozen_sb);
1461                md->frozen_sb = NULL;
1462                return r;
1463        }
1464
1465        set_bit(DMF_FROZEN, &md->flags);
1466
1467        /* don't bdput right now, we don't want the bdev
1468         * to go away while it is locked.
1469         */
1470        return 0;
1471}
1472
1473static void unlock_fs(struct mapped_device *md)
1474{
1475        if (!test_bit(DMF_FROZEN, &md->flags))
1476                return;
1477
1478        thaw_bdev(md->suspended_bdev, md->frozen_sb);
1479        md->frozen_sb = NULL;
1480        clear_bit(DMF_FROZEN, &md->flags);
1481}
1482
1483/*
1484 * We need to be able to change a mapping table under a mounted
1485 * filesystem.  For example we might want to move some data in
1486 * the background.  Before the table can be swapped with
1487 * dm_bind_table, dm_suspend must be called to flush any in
1488 * flight bios and ensure that any further io gets deferred.
1489 */
1490int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1491{
1492        struct dm_table *map = NULL;
1493        DECLARE_WAITQUEUE(wait, current);
1494        int r = 0;
1495        int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1496        int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1497
1498        mutex_lock(&md->suspend_lock);
1499
1500        if (dm_suspended(md)) {
1501                r = -EINVAL;
1502                goto out_unlock;
1503        }
1504
1505        map = dm_get_table(md);
1506
1507        /*
1508         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1509         * This flag is cleared before dm_suspend returns.
1510         */
1511        if (noflush)
1512                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1513
1514        /* This does not get reverted if there's an error later. */
1515        dm_table_presuspend_targets(map);
1516
1517        /* bdget() can stall if the pending I/Os are not flushed */
1518        if (!noflush) {
1519                md->suspended_bdev = bdget_disk(md->disk, 0);
1520                if (!md->suspended_bdev) {
1521                        DMWARN("bdget failed in dm_suspend");
1522                        r = -ENOMEM;
1523                        goto flush_and_out;
1524                }
1525
1526                /*
1527                 * Flush I/O to the device. noflush supersedes do_lockfs,
1528                 * because lock_fs() needs to flush I/Os.
1529                 */
1530                if (do_lockfs) {
1531                        r = lock_fs(md);
1532                        if (r)
1533                                goto out;
1534                }
1535        }
1536
1537        /*
1538         * First we set the BLOCK_IO flag so no more ios will be mapped.
1539         */
1540        down_write(&md->io_lock);
1541        set_bit(DMF_BLOCK_IO, &md->flags);
1542
1543        add_wait_queue(&md->wait, &wait);
1544        up_write(&md->io_lock);
1545
1546        /* unplug */
1547        if (map)
1548                dm_table_unplug_all(map);
1549
1550        /*
1551         * Wait for the already-mapped ios to complete.
1552         */
1553        r = dm_wait_for_completion(md);
1554
1555        down_write(&md->io_lock);
1556        remove_wait_queue(&md->wait, &wait);
1557
1558        if (noflush)
1559                __merge_pushback_list(md);
1560        up_write(&md->io_lock);
1561
1562        /* were we interrupted ? */
1563        if (r < 0) {
1564                dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1565
1566                unlock_fs(md);
1567                goto out; /* pushback list is already flushed, so skip flush */
1568        }
1569
1570        dm_table_postsuspend_targets(map);
1571
1572        set_bit(DMF_SUSPENDED, &md->flags);
1573
1574flush_and_out:
1575        if (r && noflush)
1576                /*
1577                 * Because there may be already I/Os in the pushback list,
1578                 * flush them before return.
1579                 */
1580                dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1581
1582out:
1583        if (r && md->suspended_bdev) {
1584                bdput(md->suspended_bdev);
1585                md->suspended_bdev = NULL;
1586        }
1587
1588        dm_table_put(map);
1589
1590out_unlock:
1591        mutex_unlock(&md->suspend_lock);
1592        return r;
1593}
1594
1595int dm_resume(struct mapped_device *md)
1596{
1597        int r = -EINVAL;
1598        struct dm_table *map = NULL;
1599
1600        mutex_lock(&md->suspend_lock);
1601        if (!dm_suspended(md))
1602                goto out;
1603
1604        map = dm_get_table(md);
1605        if (!map || !dm_table_get_size(map))
1606                goto out;
1607
1608        r = dm_table_resume_targets(map);
1609        if (r)
1610                goto out;
1611
1612        dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1613
1614        unlock_fs(md);
1615
1616        if (md->suspended_bdev) {
1617                bdput(md->suspended_bdev);
1618                md->suspended_bdev = NULL;
1619        }
1620
1621        clear_bit(DMF_SUSPENDED, &md->flags);
1622
1623        dm_table_unplug_all(map);
1624
1625        dm_kobject_uevent(md);
1626
1627        r = 0;
1628
1629out:
1630        dm_table_put(map);
1631        mutex_unlock(&md->suspend_lock);
1632
1633        return r;
1634}
1635
1636/*-----------------------------------------------------------------
1637 * Event notification.
1638 *---------------------------------------------------------------*/
1639void dm_kobject_uevent(struct mapped_device *md)
1640{
1641        kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1642}
1643
1644uint32_t dm_next_uevent_seq(struct mapped_device *md)
1645{
1646        return atomic_add_return(1, &md->uevent_seq);
1647}
1648
1649uint32_t dm_get_event_nr(struct mapped_device *md)
1650{
1651        return atomic_read(&md->event_nr);
1652}
1653
1654int dm_wait_event(struct mapped_device *md, int event_nr)
1655{
1656        return wait_event_interruptible(md->eventq,
1657                        (event_nr != atomic_read(&md->event_nr)));
1658}
1659
1660void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1661{
1662        unsigned long flags;
1663
1664        spin_lock_irqsave(&md->uevent_lock, flags);
1665        list_add(elist, &md->uevent_list);
1666        spin_unlock_irqrestore(&md->uevent_lock, flags);
1667}
1668
1669/*
1670 * The gendisk is only valid as long as you have a reference
1671 * count on 'md'.
1672 */
1673struct gendisk *dm_disk(struct mapped_device *md)
1674{
1675        return md->disk;
1676}
1677
1678int dm_suspended(struct mapped_device *md)
1679{
1680        return test_bit(DMF_SUSPENDED, &md->flags);
1681}
1682
1683int dm_noflush_suspending(struct dm_target *ti)
1684{
1685        struct mapped_device *md = dm_table_get_md(ti->table);
1686        int r = __noflush_suspending(md);
1687
1688        dm_put(md);
1689
1690        return r;
1691}
1692EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1693
1694static struct block_device_operations dm_blk_dops = {
1695        .open = dm_blk_open,
1696        .release = dm_blk_close,
1697        .ioctl = dm_blk_ioctl,
1698        .getgeo = dm_blk_getgeo,
1699        .owner = THIS_MODULE
1700};
1701
1702EXPORT_SYMBOL(dm_get_mapinfo);
1703
1704/*
1705 * module hooks
1706 */
1707module_init(dm_init);
1708module_exit(dm_exit);
1709
1710module_param(major, uint, 0);
1711MODULE_PARM_DESC(major, "The major number of the device mapper");
1712MODULE_DESCRIPTION(DM_NAME " driver");
1713MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1714MODULE_LICENSE("GPL");
1715