linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41
  42#ifdef __KERNEL__
  43
  44struct sched_param {
  45        int sched_priority;
  46};
  47
  48#include <asm/param.h>  /* for HZ */
  49
  50#include <linux/capability.h>
  51#include <linux/threads.h>
  52#include <linux/kernel.h>
  53#include <linux/types.h>
  54#include <linux/timex.h>
  55#include <linux/jiffies.h>
  56#include <linux/rbtree.h>
  57#include <linux/thread_info.h>
  58#include <linux/cpumask.h>
  59#include <linux/errno.h>
  60#include <linux/nodemask.h>
  61#include <linux/mm_types.h>
  62
  63#include <asm/system.h>
  64#include <asm/semaphore.h>
  65#include <asm/page.h>
  66#include <asm/ptrace.h>
  67#include <asm/cputime.h>
  68
  69#include <linux/smp.h>
  70#include <linux/sem.h>
  71#include <linux/signal.h>
  72#include <linux/securebits.h>
  73#include <linux/fs_struct.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rtmutex.h>
  83
  84#include <linux/time.h>
  85#include <linux/param.h>
  86#include <linux/resource.h>
  87#include <linux/timer.h>
  88#include <linux/hrtimer.h>
  89#include <linux/task_io_accounting.h>
  90#include <linux/kobject.h>
  91#include <linux/latencytop.h>
  92
  93#include <asm/processor.h>
  94
  95struct mem_cgroup;
  96struct exec_domain;
  97struct futex_pi_state;
  98struct robust_list_head;
  99struct bio;
 100
 101/*
 102 * List of flags we want to share for kernel threads,
 103 * if only because they are not used by them anyway.
 104 */
 105#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 106
 107/*
 108 * These are the constant used to fake the fixed-point load-average
 109 * counting. Some notes:
 110 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 111 *    a load-average precision of 10 bits integer + 11 bits fractional
 112 *  - if you want to count load-averages more often, you need more
 113 *    precision, or rounding will get you. With 2-second counting freq,
 114 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 115 *    11 bit fractions.
 116 */
 117extern unsigned long avenrun[];         /* Load averages */
 118
 119#define FSHIFT          11              /* nr of bits of precision */
 120#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 121#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 122#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 123#define EXP_5           2014            /* 1/exp(5sec/5min) */
 124#define EXP_15          2037            /* 1/exp(5sec/15min) */
 125
 126#define CALC_LOAD(load,exp,n) \
 127        load *= exp; \
 128        load += n*(FIXED_1-exp); \
 129        load >>= FSHIFT;
 130
 131extern unsigned long total_forks;
 132extern int nr_threads;
 133DECLARE_PER_CPU(unsigned long, process_counts);
 134extern int nr_processes(void);
 135extern unsigned long nr_running(void);
 136extern unsigned long nr_uninterruptible(void);
 137extern unsigned long nr_active(void);
 138extern unsigned long nr_iowait(void);
 139extern unsigned long weighted_cpuload(const int cpu);
 140
 141struct seq_file;
 142struct cfs_rq;
 143struct task_group;
 144#ifdef CONFIG_SCHED_DEBUG
 145extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 146extern void proc_sched_set_task(struct task_struct *p);
 147extern void
 148print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 149#else
 150static inline void
 151proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 152{
 153}
 154static inline void proc_sched_set_task(struct task_struct *p)
 155{
 156}
 157static inline void
 158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 159{
 160}
 161#endif
 162
 163/*
 164 * Task state bitmask. NOTE! These bits are also
 165 * encoded in fs/proc/array.c: get_task_state().
 166 *
 167 * We have two separate sets of flags: task->state
 168 * is about runnability, while task->exit_state are
 169 * about the task exiting. Confusing, but this way
 170 * modifying one set can't modify the other one by
 171 * mistake.
 172 */
 173#define TASK_RUNNING            0
 174#define TASK_INTERRUPTIBLE      1
 175#define TASK_UNINTERRUPTIBLE    2
 176#define __TASK_STOPPED          4
 177#define __TASK_TRACED           8
 178/* in tsk->exit_state */
 179#define EXIT_ZOMBIE             16
 180#define EXIT_DEAD               32
 181/* in tsk->state again */
 182#define TASK_DEAD               64
 183#define TASK_WAKEKILL           128
 184
 185/* Convenience macros for the sake of set_task_state */
 186#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 187#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 188#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 189
 190/* Convenience macros for the sake of wake_up */
 191#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 192#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 193
 194/* get_task_state() */
 195#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 196                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 197                                 __TASK_TRACED)
 198
 199#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 200#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 201#define task_is_stopped_or_traced(task) \
 202                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 203#define task_contributes_to_load(task)  \
 204                                ((task->state & TASK_UNINTERRUPTIBLE) != 0)
 205
 206#define __set_task_state(tsk, state_value)              \
 207        do { (tsk)->state = (state_value); } while (0)
 208#define set_task_state(tsk, state_value)                \
 209        set_mb((tsk)->state, (state_value))
 210
 211/*
 212 * set_current_state() includes a barrier so that the write of current->state
 213 * is correctly serialised wrt the caller's subsequent test of whether to
 214 * actually sleep:
 215 *
 216 *      set_current_state(TASK_UNINTERRUPTIBLE);
 217 *      if (do_i_need_to_sleep())
 218 *              schedule();
 219 *
 220 * If the caller does not need such serialisation then use __set_current_state()
 221 */
 222#define __set_current_state(state_value)                        \
 223        do { current->state = (state_value); } while (0)
 224#define set_current_state(state_value)          \
 225        set_mb(current->state, (state_value))
 226
 227/* Task command name length */
 228#define TASK_COMM_LEN 16
 229
 230#include <linux/spinlock.h>
 231
 232/*
 233 * This serializes "schedule()" and also protects
 234 * the run-queue from deletions/modifications (but
 235 * _adding_ to the beginning of the run-queue has
 236 * a separate lock).
 237 */
 238extern rwlock_t tasklist_lock;
 239extern spinlock_t mmlist_lock;
 240
 241struct task_struct;
 242
 243extern void sched_init(void);
 244extern void sched_init_smp(void);
 245extern asmlinkage void schedule_tail(struct task_struct *prev);
 246extern void init_idle(struct task_struct *idle, int cpu);
 247extern void init_idle_bootup_task(struct task_struct *idle);
 248
 249extern cpumask_t nohz_cpu_mask;
 250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 251extern int select_nohz_load_balancer(int cpu);
 252#else
 253static inline int select_nohz_load_balancer(int cpu)
 254{
 255        return 0;
 256}
 257#endif
 258
 259extern unsigned long rt_needs_cpu(int cpu);
 260
 261/*
 262 * Only dump TASK_* tasks. (0 for all tasks)
 263 */
 264extern void show_state_filter(unsigned long state_filter);
 265
 266static inline void show_state(void)
 267{
 268        show_state_filter(0);
 269}
 270
 271extern void show_regs(struct pt_regs *);
 272
 273/*
 274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 275 * task), SP is the stack pointer of the first frame that should be shown in the back
 276 * trace (or NULL if the entire call-chain of the task should be shown).
 277 */
 278extern void show_stack(struct task_struct *task, unsigned long *sp);
 279
 280void io_schedule(void);
 281long io_schedule_timeout(long timeout);
 282
 283extern void cpu_init (void);
 284extern void trap_init(void);
 285extern void account_process_tick(struct task_struct *task, int user);
 286extern void update_process_times(int user);
 287extern void scheduler_tick(void);
 288extern void hrtick_resched(void);
 289
 290extern void sched_show_task(struct task_struct *p);
 291
 292#ifdef CONFIG_DETECT_SOFTLOCKUP
 293extern void softlockup_tick(void);
 294extern void spawn_softlockup_task(void);
 295extern void touch_softlockup_watchdog(void);
 296extern void touch_all_softlockup_watchdogs(void);
 297extern unsigned long  softlockup_thresh;
 298extern unsigned long sysctl_hung_task_check_count;
 299extern unsigned long sysctl_hung_task_timeout_secs;
 300extern unsigned long sysctl_hung_task_warnings;
 301#else
 302static inline void softlockup_tick(void)
 303{
 304}
 305static inline void spawn_softlockup_task(void)
 306{
 307}
 308static inline void touch_softlockup_watchdog(void)
 309{
 310}
 311static inline void touch_all_softlockup_watchdogs(void)
 312{
 313}
 314#endif
 315
 316
 317/* Attach to any functions which should be ignored in wchan output. */
 318#define __sched         __attribute__((__section__(".sched.text")))
 319
 320/* Linker adds these: start and end of __sched functions */
 321extern char __sched_text_start[], __sched_text_end[];
 322
 323/* Is this address in the __sched functions? */
 324extern int in_sched_functions(unsigned long addr);
 325
 326#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 327extern signed long schedule_timeout(signed long timeout);
 328extern signed long schedule_timeout_interruptible(signed long timeout);
 329extern signed long schedule_timeout_killable(signed long timeout);
 330extern signed long schedule_timeout_uninterruptible(signed long timeout);
 331asmlinkage void schedule(void);
 332
 333struct nsproxy;
 334struct user_namespace;
 335
 336/* Maximum number of active map areas.. This is a random (large) number */
 337#define DEFAULT_MAX_MAP_COUNT   65536
 338
 339extern int sysctl_max_map_count;
 340
 341#include <linux/aio.h>
 342
 343extern unsigned long
 344arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 345                       unsigned long, unsigned long);
 346extern unsigned long
 347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 348                          unsigned long len, unsigned long pgoff,
 349                          unsigned long flags);
 350extern void arch_unmap_area(struct mm_struct *, unsigned long);
 351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 352
 353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
 354/*
 355 * The mm counters are not protected by its page_table_lock,
 356 * so must be incremented atomically.
 357 */
 358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
 359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
 360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
 361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
 362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
 363
 364#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
 365/*
 366 * The mm counters are protected by its page_table_lock,
 367 * so can be incremented directly.
 368 */
 369#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
 370#define get_mm_counter(mm, member) ((mm)->_##member)
 371#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
 372#define inc_mm_counter(mm, member) (mm)->_##member++
 373#define dec_mm_counter(mm, member) (mm)->_##member--
 374
 375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
 376
 377#define get_mm_rss(mm)                                  \
 378        (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
 379#define update_hiwater_rss(mm)  do {                    \
 380        unsigned long _rss = get_mm_rss(mm);            \
 381        if ((mm)->hiwater_rss < _rss)                   \
 382                (mm)->hiwater_rss = _rss;               \
 383} while (0)
 384#define update_hiwater_vm(mm)   do {                    \
 385        if ((mm)->hiwater_vm < (mm)->total_vm)          \
 386                (mm)->hiwater_vm = (mm)->total_vm;      \
 387} while (0)
 388
 389extern void set_dumpable(struct mm_struct *mm, int value);
 390extern int get_dumpable(struct mm_struct *mm);
 391
 392/* mm flags */
 393/* dumpable bits */
 394#define MMF_DUMPABLE      0  /* core dump is permitted */
 395#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 396#define MMF_DUMPABLE_BITS 2
 397
 398/* coredump filter bits */
 399#define MMF_DUMP_ANON_PRIVATE   2
 400#define MMF_DUMP_ANON_SHARED    3
 401#define MMF_DUMP_MAPPED_PRIVATE 4
 402#define MMF_DUMP_MAPPED_SHARED  5
 403#define MMF_DUMP_ELF_HEADERS    6
 404#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 405#define MMF_DUMP_FILTER_BITS    5
 406#define MMF_DUMP_FILTER_MASK \
 407        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 408#define MMF_DUMP_FILTER_DEFAULT \
 409        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
 410
 411struct sighand_struct {
 412        atomic_t                count;
 413        struct k_sigaction      action[_NSIG];
 414        spinlock_t              siglock;
 415        wait_queue_head_t       signalfd_wqh;
 416};
 417
 418struct pacct_struct {
 419        int                     ac_flag;
 420        long                    ac_exitcode;
 421        unsigned long           ac_mem;
 422        cputime_t               ac_utime, ac_stime;
 423        unsigned long           ac_minflt, ac_majflt;
 424};
 425
 426/*
 427 * NOTE! "signal_struct" does not have it's own
 428 * locking, because a shared signal_struct always
 429 * implies a shared sighand_struct, so locking
 430 * sighand_struct is always a proper superset of
 431 * the locking of signal_struct.
 432 */
 433struct signal_struct {
 434        atomic_t                count;
 435        atomic_t                live;
 436
 437        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 438
 439        /* current thread group signal load-balancing target: */
 440        struct task_struct      *curr_target;
 441
 442        /* shared signal handling: */
 443        struct sigpending       shared_pending;
 444
 445        /* thread group exit support */
 446        int                     group_exit_code;
 447        /* overloaded:
 448         * - notify group_exit_task when ->count is equal to notify_count
 449         * - everyone except group_exit_task is stopped during signal delivery
 450         *   of fatal signals, group_exit_task processes the signal.
 451         */
 452        struct task_struct      *group_exit_task;
 453        int                     notify_count;
 454
 455        /* thread group stop support, overloads group_exit_code too */
 456        int                     group_stop_count;
 457        unsigned int            flags; /* see SIGNAL_* flags below */
 458
 459        /* POSIX.1b Interval Timers */
 460        struct list_head posix_timers;
 461
 462        /* ITIMER_REAL timer for the process */
 463        struct hrtimer real_timer;
 464        struct pid *leader_pid;
 465        ktime_t it_real_incr;
 466
 467        /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
 468        cputime_t it_prof_expires, it_virt_expires;
 469        cputime_t it_prof_incr, it_virt_incr;
 470
 471        /* job control IDs */
 472
 473        /*
 474         * pgrp and session fields are deprecated.
 475         * use the task_session_Xnr and task_pgrp_Xnr routines below
 476         */
 477
 478        union {
 479                pid_t pgrp __deprecated;
 480                pid_t __pgrp;
 481        };
 482
 483        struct pid *tty_old_pgrp;
 484
 485        union {
 486                pid_t session __deprecated;
 487                pid_t __session;
 488        };
 489
 490        /* boolean value for session group leader */
 491        int leader;
 492
 493        struct tty_struct *tty; /* NULL if no tty */
 494
 495        /*
 496         * Cumulative resource counters for dead threads in the group,
 497         * and for reaped dead child processes forked by this group.
 498         * Live threads maintain their own counters and add to these
 499         * in __exit_signal, except for the group leader.
 500         */
 501        cputime_t utime, stime, cutime, cstime;
 502        cputime_t gtime;
 503        cputime_t cgtime;
 504        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 505        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 506        unsigned long inblock, oublock, cinblock, coublock;
 507
 508        /*
 509         * Cumulative ns of scheduled CPU time for dead threads in the
 510         * group, not including a zombie group leader.  (This only differs
 511         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 512         * other than jiffies.)
 513         */
 514        unsigned long long sum_sched_runtime;
 515
 516        /*
 517         * We don't bother to synchronize most readers of this at all,
 518         * because there is no reader checking a limit that actually needs
 519         * to get both rlim_cur and rlim_max atomically, and either one
 520         * alone is a single word that can safely be read normally.
 521         * getrlimit/setrlimit use task_lock(current->group_leader) to
 522         * protect this instead of the siglock, because they really
 523         * have no need to disable irqs.
 524         */
 525        struct rlimit rlim[RLIM_NLIMITS];
 526
 527        struct list_head cpu_timers[3];
 528
 529        /* keep the process-shared keyrings here so that they do the right
 530         * thing in threads created with CLONE_THREAD */
 531#ifdef CONFIG_KEYS
 532        struct key *session_keyring;    /* keyring inherited over fork */
 533        struct key *process_keyring;    /* keyring private to this process */
 534#endif
 535#ifdef CONFIG_BSD_PROCESS_ACCT
 536        struct pacct_struct pacct;      /* per-process accounting information */
 537#endif
 538#ifdef CONFIG_TASKSTATS
 539        struct taskstats *stats;
 540#endif
 541#ifdef CONFIG_AUDIT
 542        unsigned audit_tty;
 543        struct tty_audit_buf *tty_audit_buf;
 544#endif
 545};
 546
 547/* Context switch must be unlocked if interrupts are to be enabled */
 548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 549# define __ARCH_WANT_UNLOCKED_CTXSW
 550#endif
 551
 552/*
 553 * Bits in flags field of signal_struct.
 554 */
 555#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 556#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 557#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 558#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 559
 560/* If true, all threads except ->group_exit_task have pending SIGKILL */
 561static inline int signal_group_exit(const struct signal_struct *sig)
 562{
 563        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 564                (sig->group_exit_task != NULL);
 565}
 566
 567/*
 568 * Some day this will be a full-fledged user tracking system..
 569 */
 570struct user_struct {
 571        atomic_t __count;       /* reference count */
 572        atomic_t processes;     /* How many processes does this user have? */
 573        atomic_t files;         /* How many open files does this user have? */
 574        atomic_t sigpending;    /* How many pending signals does this user have? */
 575#ifdef CONFIG_INOTIFY_USER
 576        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 577        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 578#endif
 579#ifdef CONFIG_POSIX_MQUEUE
 580        /* protected by mq_lock */
 581        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 582#endif
 583        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 584
 585#ifdef CONFIG_KEYS
 586        struct key *uid_keyring;        /* UID specific keyring */
 587        struct key *session_keyring;    /* UID's default session keyring */
 588#endif
 589
 590        /* Hash table maintenance information */
 591        struct hlist_node uidhash_node;
 592        uid_t uid;
 593
 594#ifdef CONFIG_USER_SCHED
 595        struct task_group *tg;
 596#ifdef CONFIG_SYSFS
 597        struct kobject kobj;
 598        struct work_struct work;
 599#endif
 600#endif
 601};
 602
 603extern int uids_sysfs_init(void);
 604
 605extern struct user_struct *find_user(uid_t);
 606
 607extern struct user_struct root_user;
 608#define INIT_USER (&root_user)
 609
 610struct backing_dev_info;
 611struct reclaim_state;
 612
 613#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 614struct sched_info {
 615        /* cumulative counters */
 616        unsigned long pcount;         /* # of times run on this cpu */
 617        unsigned long long cpu_time,  /* time spent on the cpu */
 618                           run_delay; /* time spent waiting on a runqueue */
 619
 620        /* timestamps */
 621        unsigned long long last_arrival,/* when we last ran on a cpu */
 622                           last_queued; /* when we were last queued to run */
 623#ifdef CONFIG_SCHEDSTATS
 624        /* BKL stats */
 625        unsigned int bkl_count;
 626#endif
 627};
 628#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 629
 630#ifdef CONFIG_SCHEDSTATS
 631extern const struct file_operations proc_schedstat_operations;
 632#endif /* CONFIG_SCHEDSTATS */
 633
 634#ifdef CONFIG_TASK_DELAY_ACCT
 635struct task_delay_info {
 636        spinlock_t      lock;
 637        unsigned int    flags;  /* Private per-task flags */
 638
 639        /* For each stat XXX, add following, aligned appropriately
 640         *
 641         * struct timespec XXX_start, XXX_end;
 642         * u64 XXX_delay;
 643         * u32 XXX_count;
 644         *
 645         * Atomicity of updates to XXX_delay, XXX_count protected by
 646         * single lock above (split into XXX_lock if contention is an issue).
 647         */
 648
 649        /*
 650         * XXX_count is incremented on every XXX operation, the delay
 651         * associated with the operation is added to XXX_delay.
 652         * XXX_delay contains the accumulated delay time in nanoseconds.
 653         */
 654        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 655        u64 blkio_delay;        /* wait for sync block io completion */
 656        u64 swapin_delay;       /* wait for swapin block io completion */
 657        u32 blkio_count;        /* total count of the number of sync block */
 658                                /* io operations performed */
 659        u32 swapin_count;       /* total count of the number of swapin block */
 660                                /* io operations performed */
 661};
 662#endif  /* CONFIG_TASK_DELAY_ACCT */
 663
 664static inline int sched_info_on(void)
 665{
 666#ifdef CONFIG_SCHEDSTATS
 667        return 1;
 668#elif defined(CONFIG_TASK_DELAY_ACCT)
 669        extern int delayacct_on;
 670        return delayacct_on;
 671#else
 672        return 0;
 673#endif
 674}
 675
 676enum cpu_idle_type {
 677        CPU_IDLE,
 678        CPU_NOT_IDLE,
 679        CPU_NEWLY_IDLE,
 680        CPU_MAX_IDLE_TYPES
 681};
 682
 683/*
 684 * sched-domains (multiprocessor balancing) declarations:
 685 */
 686
 687/*
 688 * Increase resolution of nice-level calculations:
 689 */
 690#define SCHED_LOAD_SHIFT        10
 691#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 692
 693#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 694
 695#ifdef CONFIG_SMP
 696#define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
 697#define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
 698#define SD_BALANCE_EXEC         4       /* Balance on exec */
 699#define SD_BALANCE_FORK         8       /* Balance on fork, clone */
 700#define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
 701#define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
 702#define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
 703#define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
 704#define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
 705#define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
 706#define SD_SERIALIZE            1024    /* Only a single load balancing instance */
 707
 708#define BALANCE_FOR_MC_POWER    \
 709        (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
 710
 711#define BALANCE_FOR_PKG_POWER   \
 712        ((sched_mc_power_savings || sched_smt_power_savings) ?  \
 713         SD_POWERSAVINGS_BALANCE : 0)
 714
 715#define test_sd_parent(sd, flag)        ((sd->parent &&         \
 716                                         (sd->parent->flags & flag)) ? 1 : 0)
 717
 718
 719struct sched_group {
 720        struct sched_group *next;       /* Must be a circular list */
 721        cpumask_t cpumask;
 722
 723        /*
 724         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 725         * single CPU. This is read only (except for setup, hotplug CPU).
 726         * Note : Never change cpu_power without recompute its reciprocal
 727         */
 728        unsigned int __cpu_power;
 729        /*
 730         * reciprocal value of cpu_power to avoid expensive divides
 731         * (see include/linux/reciprocal_div.h)
 732         */
 733        u32 reciprocal_cpu_power;
 734};
 735
 736struct sched_domain {
 737        /* These fields must be setup */
 738        struct sched_domain *parent;    /* top domain must be null terminated */
 739        struct sched_domain *child;     /* bottom domain must be null terminated */
 740        struct sched_group *groups;     /* the balancing groups of the domain */
 741        cpumask_t span;                 /* span of all CPUs in this domain */
 742        unsigned long min_interval;     /* Minimum balance interval ms */
 743        unsigned long max_interval;     /* Maximum balance interval ms */
 744        unsigned int busy_factor;       /* less balancing by factor if busy */
 745        unsigned int imbalance_pct;     /* No balance until over watermark */
 746        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 747        unsigned int busy_idx;
 748        unsigned int idle_idx;
 749        unsigned int newidle_idx;
 750        unsigned int wake_idx;
 751        unsigned int forkexec_idx;
 752        int flags;                      /* See SD_* */
 753
 754        /* Runtime fields. */
 755        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 756        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 757        unsigned int nr_balance_failed; /* initialise to 0 */
 758
 759#ifdef CONFIG_SCHEDSTATS
 760        /* load_balance() stats */
 761        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 762        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 763        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 764        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 765        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 766        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 767        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 768        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 769
 770        /* Active load balancing */
 771        unsigned int alb_count;
 772        unsigned int alb_failed;
 773        unsigned int alb_pushed;
 774
 775        /* SD_BALANCE_EXEC stats */
 776        unsigned int sbe_count;
 777        unsigned int sbe_balanced;
 778        unsigned int sbe_pushed;
 779
 780        /* SD_BALANCE_FORK stats */
 781        unsigned int sbf_count;
 782        unsigned int sbf_balanced;
 783        unsigned int sbf_pushed;
 784
 785        /* try_to_wake_up() stats */
 786        unsigned int ttwu_wake_remote;
 787        unsigned int ttwu_move_affine;
 788        unsigned int ttwu_move_balance;
 789#endif
 790};
 791
 792extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
 793extern int arch_reinit_sched_domains(void);
 794
 795#endif  /* CONFIG_SMP */
 796
 797/*
 798 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
 799 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
 800 * task of nice 0 or enough lower priority tasks to bring up the
 801 * weighted_cpuload
 802 */
 803static inline int above_background_load(void)
 804{
 805        unsigned long cpu;
 806
 807        for_each_online_cpu(cpu) {
 808                if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
 809                        return 1;
 810        }
 811        return 0;
 812}
 813
 814struct io_context;                      /* See blkdev.h */
 815#define NGROUPS_SMALL           32
 816#define NGROUPS_PER_BLOCK       ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
 817struct group_info {
 818        int ngroups;
 819        atomic_t usage;
 820        gid_t small_block[NGROUPS_SMALL];
 821        int nblocks;
 822        gid_t *blocks[0];
 823};
 824
 825/*
 826 * get_group_info() must be called with the owning task locked (via task_lock())
 827 * when task != current.  The reason being that the vast majority of callers are
 828 * looking at current->group_info, which can not be changed except by the
 829 * current task.  Changing current->group_info requires the task lock, too.
 830 */
 831#define get_group_info(group_info) do { \
 832        atomic_inc(&(group_info)->usage); \
 833} while (0)
 834
 835#define put_group_info(group_info) do { \
 836        if (atomic_dec_and_test(&(group_info)->usage)) \
 837                groups_free(group_info); \
 838} while (0)
 839
 840extern struct group_info *groups_alloc(int gidsetsize);
 841extern void groups_free(struct group_info *group_info);
 842extern int set_current_groups(struct group_info *group_info);
 843extern int groups_search(struct group_info *group_info, gid_t grp);
 844/* access the groups "array" with this macro */
 845#define GROUP_AT(gi, i) \
 846    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
 847
 848#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 849extern void prefetch_stack(struct task_struct *t);
 850#else
 851static inline void prefetch_stack(struct task_struct *t) { }
 852#endif
 853
 854struct audit_context;           /* See audit.c */
 855struct mempolicy;
 856struct pipe_inode_info;
 857struct uts_namespace;
 858
 859struct rq;
 860struct sched_domain;
 861
 862struct sched_class {
 863        const struct sched_class *next;
 864
 865        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
 866        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
 867        void (*yield_task) (struct rq *rq);
 868        int  (*select_task_rq)(struct task_struct *p, int sync);
 869
 870        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
 871
 872        struct task_struct * (*pick_next_task) (struct rq *rq);
 873        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 874
 875#ifdef CONFIG_SMP
 876        unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
 877                        struct rq *busiest, unsigned long max_load_move,
 878                        struct sched_domain *sd, enum cpu_idle_type idle,
 879                        int *all_pinned, int *this_best_prio);
 880
 881        int (*move_one_task) (struct rq *this_rq, int this_cpu,
 882                              struct rq *busiest, struct sched_domain *sd,
 883                              enum cpu_idle_type idle);
 884        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 885        void (*post_schedule) (struct rq *this_rq);
 886        void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
 887#endif
 888
 889        void (*set_curr_task) (struct rq *rq);
 890        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
 891        void (*task_new) (struct rq *rq, struct task_struct *p);
 892        void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
 893
 894        void (*join_domain)(struct rq *rq);
 895        void (*leave_domain)(struct rq *rq);
 896
 897        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
 898                               int running);
 899        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
 900                             int running);
 901        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 902                             int oldprio, int running);
 903
 904#ifdef CONFIG_FAIR_GROUP_SCHED
 905        void (*moved_group) (struct task_struct *p);
 906#endif
 907};
 908
 909struct load_weight {
 910        unsigned long weight, inv_weight;
 911};
 912
 913/*
 914 * CFS stats for a schedulable entity (task, task-group etc)
 915 *
 916 * Current field usage histogram:
 917 *
 918 *     4 se->block_start
 919 *     4 se->run_node
 920 *     4 se->sleep_start
 921 *     6 se->load.weight
 922 */
 923struct sched_entity {
 924        struct load_weight      load;           /* for load-balancing */
 925        struct rb_node          run_node;
 926        unsigned int            on_rq;
 927
 928        u64                     exec_start;
 929        u64                     sum_exec_runtime;
 930        u64                     vruntime;
 931        u64                     prev_sum_exec_runtime;
 932
 933        u64                     last_wakeup;
 934        u64                     avg_overlap;
 935
 936#ifdef CONFIG_SCHEDSTATS
 937        u64                     wait_start;
 938        u64                     wait_max;
 939        u64                     wait_count;
 940        u64                     wait_sum;
 941
 942        u64                     sleep_start;
 943        u64                     sleep_max;
 944        s64                     sum_sleep_runtime;
 945
 946        u64                     block_start;
 947        u64                     block_max;
 948        u64                     exec_max;
 949        u64                     slice_max;
 950
 951        u64                     nr_migrations;
 952        u64                     nr_migrations_cold;
 953        u64                     nr_failed_migrations_affine;
 954        u64                     nr_failed_migrations_running;
 955        u64                     nr_failed_migrations_hot;
 956        u64                     nr_forced_migrations;
 957        u64                     nr_forced2_migrations;
 958
 959        u64                     nr_wakeups;
 960        u64                     nr_wakeups_sync;
 961        u64                     nr_wakeups_migrate;
 962        u64                     nr_wakeups_local;
 963        u64                     nr_wakeups_remote;
 964        u64                     nr_wakeups_affine;
 965        u64                     nr_wakeups_affine_attempts;
 966        u64                     nr_wakeups_passive;
 967        u64                     nr_wakeups_idle;
 968#endif
 969
 970#ifdef CONFIG_FAIR_GROUP_SCHED
 971        struct sched_entity     *parent;
 972        /* rq on which this entity is (to be) queued: */
 973        struct cfs_rq           *cfs_rq;
 974        /* rq "owned" by this entity/group: */
 975        struct cfs_rq           *my_q;
 976#endif
 977};
 978
 979struct sched_rt_entity {
 980        struct list_head run_list;
 981        unsigned int time_slice;
 982        unsigned long timeout;
 983        int nr_cpus_allowed;
 984
 985#ifdef CONFIG_RT_GROUP_SCHED
 986        struct sched_rt_entity  *parent;
 987        /* rq on which this entity is (to be) queued: */
 988        struct rt_rq            *rt_rq;
 989        /* rq "owned" by this entity/group: */
 990        struct rt_rq            *my_q;
 991#endif
 992};
 993
 994struct task_struct {
 995        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
 996        void *stack;
 997        atomic_t usage;
 998        unsigned int flags;     /* per process flags, defined below */
 999        unsigned int ptrace;
1000
1001        int lock_depth;         /* BKL lock depth */
1002
1003#ifdef CONFIG_SMP
1004#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1005        int oncpu;
1006#endif
1007#endif
1008
1009        int prio, static_prio, normal_prio;
1010        const struct sched_class *sched_class;
1011        struct sched_entity se;
1012        struct sched_rt_entity rt;
1013
1014#ifdef CONFIG_PREEMPT_NOTIFIERS
1015        /* list of struct preempt_notifier: */
1016        struct hlist_head preempt_notifiers;
1017#endif
1018
1019        /*
1020         * fpu_counter contains the number of consecutive context switches
1021         * that the FPU is used. If this is over a threshold, the lazy fpu
1022         * saving becomes unlazy to save the trap. This is an unsigned char
1023         * so that after 256 times the counter wraps and the behavior turns
1024         * lazy again; this to deal with bursty apps that only use FPU for
1025         * a short time
1026         */
1027        unsigned char fpu_counter;
1028        s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1029#ifdef CONFIG_BLK_DEV_IO_TRACE
1030        unsigned int btrace_seq;
1031#endif
1032
1033        unsigned int policy;
1034        cpumask_t cpus_allowed;
1035
1036#ifdef CONFIG_PREEMPT_RCU
1037        int rcu_read_lock_nesting;
1038        int rcu_flipctr_idx;
1039#endif /* #ifdef CONFIG_PREEMPT_RCU */
1040
1041#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1042        struct sched_info sched_info;
1043#endif
1044
1045        struct list_head tasks;
1046        /*
1047         * ptrace_list/ptrace_children forms the list of my children
1048         * that were stolen by a ptracer.
1049         */
1050        struct list_head ptrace_children;
1051        struct list_head ptrace_list;
1052
1053        struct mm_struct *mm, *active_mm;
1054
1055/* task state */
1056        struct linux_binfmt *binfmt;
1057        int exit_state;
1058        int exit_code, exit_signal;
1059        int pdeath_signal;  /*  The signal sent when the parent dies  */
1060        /* ??? */
1061        unsigned int personality;
1062        unsigned did_exec:1;
1063        pid_t pid;
1064        pid_t tgid;
1065
1066#ifdef CONFIG_CC_STACKPROTECTOR
1067        /* Canary value for the -fstack-protector gcc feature */
1068        unsigned long stack_canary;
1069#endif
1070        /* 
1071         * pointers to (original) parent process, youngest child, younger sibling,
1072         * older sibling, respectively.  (p->father can be replaced with 
1073         * p->parent->pid)
1074         */
1075        struct task_struct *real_parent; /* real parent process (when being debugged) */
1076        struct task_struct *parent;     /* parent process */
1077        /*
1078         * children/sibling forms the list of my children plus the
1079         * tasks I'm ptracing.
1080         */
1081        struct list_head children;      /* list of my children */
1082        struct list_head sibling;       /* linkage in my parent's children list */
1083        struct task_struct *group_leader;       /* threadgroup leader */
1084
1085        /* PID/PID hash table linkage. */
1086        struct pid_link pids[PIDTYPE_MAX];
1087        struct list_head thread_group;
1088
1089        struct completion *vfork_done;          /* for vfork() */
1090        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1091        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1092
1093        unsigned int rt_priority;
1094        cputime_t utime, stime, utimescaled, stimescaled;
1095        cputime_t gtime;
1096        cputime_t prev_utime, prev_stime;
1097        unsigned long nvcsw, nivcsw; /* context switch counts */
1098        struct timespec start_time;             /* monotonic time */
1099        struct timespec real_start_time;        /* boot based time */
1100/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1101        unsigned long min_flt, maj_flt;
1102
1103        cputime_t it_prof_expires, it_virt_expires;
1104        unsigned long long it_sched_expires;
1105        struct list_head cpu_timers[3];
1106
1107/* process credentials */
1108        uid_t uid,euid,suid,fsuid;
1109        gid_t gid,egid,sgid,fsgid;
1110        struct group_info *group_info;
1111        kernel_cap_t   cap_effective, cap_inheritable, cap_permitted, cap_bset;
1112        unsigned keep_capabilities:1;
1113        struct user_struct *user;
1114#ifdef CONFIG_KEYS
1115        struct key *request_key_auth;   /* assumed request_key authority */
1116        struct key *thread_keyring;     /* keyring private to this thread */
1117        unsigned char jit_keyring;      /* default keyring to attach requested keys to */
1118#endif
1119        char comm[TASK_COMM_LEN]; /* executable name excluding path
1120                                     - access with [gs]et_task_comm (which lock
1121                                       it with task_lock())
1122                                     - initialized normally by flush_old_exec */
1123/* file system info */
1124        int link_count, total_link_count;
1125#ifdef CONFIG_SYSVIPC
1126/* ipc stuff */
1127        struct sysv_sem sysvsem;
1128#endif
1129#ifdef CONFIG_DETECT_SOFTLOCKUP
1130/* hung task detection */
1131        unsigned long last_switch_timestamp;
1132        unsigned long last_switch_count;
1133#endif
1134/* CPU-specific state of this task */
1135        struct thread_struct thread;
1136/* filesystem information */
1137        struct fs_struct *fs;
1138/* open file information */
1139        struct files_struct *files;
1140/* namespaces */
1141        struct nsproxy *nsproxy;
1142/* signal handlers */
1143        struct signal_struct *signal;
1144        struct sighand_struct *sighand;
1145
1146        sigset_t blocked, real_blocked;
1147        sigset_t saved_sigmask;         /* To be restored with TIF_RESTORE_SIGMASK */
1148        struct sigpending pending;
1149
1150        unsigned long sas_ss_sp;
1151        size_t sas_ss_size;
1152        int (*notifier)(void *priv);
1153        void *notifier_data;
1154        sigset_t *notifier_mask;
1155#ifdef CONFIG_SECURITY
1156        void *security;
1157#endif
1158        struct audit_context *audit_context;
1159#ifdef CONFIG_AUDITSYSCALL
1160        uid_t loginuid;
1161        unsigned int sessionid;
1162#endif
1163        seccomp_t seccomp;
1164
1165/* Thread group tracking */
1166        u32 parent_exec_id;
1167        u32 self_exec_id;
1168/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1169        spinlock_t alloc_lock;
1170
1171        /* Protection of the PI data structures: */
1172        spinlock_t pi_lock;
1173
1174#ifdef CONFIG_RT_MUTEXES
1175        /* PI waiters blocked on a rt_mutex held by this task */
1176        struct plist_head pi_waiters;
1177        /* Deadlock detection and priority inheritance handling */
1178        struct rt_mutex_waiter *pi_blocked_on;
1179#endif
1180
1181#ifdef CONFIG_DEBUG_MUTEXES
1182        /* mutex deadlock detection */
1183        struct mutex_waiter *blocked_on;
1184#endif
1185#ifdef CONFIG_TRACE_IRQFLAGS
1186        unsigned int irq_events;
1187        int hardirqs_enabled;
1188        unsigned long hardirq_enable_ip;
1189        unsigned int hardirq_enable_event;
1190        unsigned long hardirq_disable_ip;
1191        unsigned int hardirq_disable_event;
1192        int softirqs_enabled;
1193        unsigned long softirq_disable_ip;
1194        unsigned int softirq_disable_event;
1195        unsigned long softirq_enable_ip;
1196        unsigned int softirq_enable_event;
1197        int hardirq_context;
1198        int softirq_context;
1199#endif
1200#ifdef CONFIG_LOCKDEP
1201# define MAX_LOCK_DEPTH 48UL
1202        u64 curr_chain_key;
1203        int lockdep_depth;
1204        struct held_lock held_locks[MAX_LOCK_DEPTH];
1205        unsigned int lockdep_recursion;
1206#endif
1207
1208/* journalling filesystem info */
1209        void *journal_info;
1210
1211/* stacked block device info */
1212        struct bio *bio_list, **bio_tail;
1213
1214/* VM state */
1215        struct reclaim_state *reclaim_state;
1216
1217        struct backing_dev_info *backing_dev_info;
1218
1219        struct io_context *io_context;
1220
1221        unsigned long ptrace_message;
1222        siginfo_t *last_siginfo; /* For ptrace use.  */
1223#ifdef CONFIG_TASK_XACCT
1224/* i/o counters(bytes read/written, #syscalls */
1225        u64 rchar, wchar, syscr, syscw;
1226#endif
1227        struct task_io_accounting ioac;
1228#if defined(CONFIG_TASK_XACCT)
1229        u64 acct_rss_mem1;      /* accumulated rss usage */
1230        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1231        cputime_t acct_stimexpd;/* stime since last update */
1232#endif
1233#ifdef CONFIG_NUMA
1234        struct mempolicy *mempolicy;
1235        short il_next;
1236#endif
1237#ifdef CONFIG_CPUSETS
1238        nodemask_t mems_allowed;
1239        int cpuset_mems_generation;
1240        int cpuset_mem_spread_rotor;
1241#endif
1242#ifdef CONFIG_CGROUPS
1243        /* Control Group info protected by css_set_lock */
1244        struct css_set *cgroups;
1245        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1246        struct list_head cg_list;
1247#endif
1248#ifdef CONFIG_FUTEX
1249        struct robust_list_head __user *robust_list;
1250#ifdef CONFIG_COMPAT
1251        struct compat_robust_list_head __user *compat_robust_list;
1252#endif
1253        struct list_head pi_state_list;
1254        struct futex_pi_state *pi_state_cache;
1255#endif
1256        atomic_t fs_excl;       /* holding fs exclusive resources */
1257        struct rcu_head rcu;
1258
1259        /*
1260         * cache last used pipe for splice
1261         */
1262        struct pipe_inode_info *splice_pipe;
1263#ifdef  CONFIG_TASK_DELAY_ACCT
1264        struct task_delay_info *delays;
1265#endif
1266#ifdef CONFIG_FAULT_INJECTION
1267        int make_it_fail;
1268#endif
1269        struct prop_local_single dirties;
1270#ifdef CONFIG_LATENCYTOP
1271        int latency_record_count;
1272        struct latency_record latency_record[LT_SAVECOUNT];
1273#endif
1274};
1275
1276/*
1277 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1278 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1279 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1280 * values are inverted: lower p->prio value means higher priority.
1281 *
1282 * The MAX_USER_RT_PRIO value allows the actual maximum
1283 * RT priority to be separate from the value exported to
1284 * user-space.  This allows kernel threads to set their
1285 * priority to a value higher than any user task. Note:
1286 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1287 */
1288
1289#define MAX_USER_RT_PRIO        100
1290#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1291
1292#define MAX_PRIO                (MAX_RT_PRIO + 40)
1293#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1294
1295static inline int rt_prio(int prio)
1296{
1297        if (unlikely(prio < MAX_RT_PRIO))
1298                return 1;
1299        return 0;
1300}
1301
1302static inline int rt_task(struct task_struct *p)
1303{
1304        return rt_prio(p->prio);
1305}
1306
1307static inline void set_task_session(struct task_struct *tsk, pid_t session)
1308{
1309        tsk->signal->__session = session;
1310}
1311
1312static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1313{
1314        tsk->signal->__pgrp = pgrp;
1315}
1316
1317static inline struct pid *task_pid(struct task_struct *task)
1318{
1319        return task->pids[PIDTYPE_PID].pid;
1320}
1321
1322static inline struct pid *task_tgid(struct task_struct *task)
1323{
1324        return task->group_leader->pids[PIDTYPE_PID].pid;
1325}
1326
1327static inline struct pid *task_pgrp(struct task_struct *task)
1328{
1329        return task->group_leader->pids[PIDTYPE_PGID].pid;
1330}
1331
1332static inline struct pid *task_session(struct task_struct *task)
1333{
1334        return task->group_leader->pids[PIDTYPE_SID].pid;
1335}
1336
1337struct pid_namespace;
1338
1339/*
1340 * the helpers to get the task's different pids as they are seen
1341 * from various namespaces
1342 *
1343 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1344 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1345 *                     current.
1346 * task_xid_nr_ns()  : id seen from the ns specified;
1347 *
1348 * set_task_vxid()   : assigns a virtual id to a task;
1349 *
1350 * see also pid_nr() etc in include/linux/pid.h
1351 */
1352
1353static inline pid_t task_pid_nr(struct task_struct *tsk)
1354{
1355        return tsk->pid;
1356}
1357
1358pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1359
1360static inline pid_t task_pid_vnr(struct task_struct *tsk)
1361{
1362        return pid_vnr(task_pid(tsk));
1363}
1364
1365
1366static inline pid_t task_tgid_nr(struct task_struct *tsk)
1367{
1368        return tsk->tgid;
1369}
1370
1371pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1372
1373static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1374{
1375        return pid_vnr(task_tgid(tsk));
1376}
1377
1378
1379static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1380{
1381        return tsk->signal->__pgrp;
1382}
1383
1384pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1385
1386static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1387{
1388        return pid_vnr(task_pgrp(tsk));
1389}
1390
1391
1392static inline pid_t task_session_nr(struct task_struct *tsk)
1393{
1394        return tsk->signal->__session;
1395}
1396
1397pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1398
1399static inline pid_t task_session_vnr(struct task_struct *tsk)
1400{
1401        return pid_vnr(task_session(tsk));
1402}
1403
1404
1405/**
1406 * pid_alive - check that a task structure is not stale
1407 * @p: Task structure to be checked.
1408 *
1409 * Test if a process is not yet dead (at most zombie state)
1410 * If pid_alive fails, then pointers within the task structure
1411 * can be stale and must not be dereferenced.
1412 */
1413static inline int pid_alive(struct task_struct *p)
1414{
1415        return p->pids[PIDTYPE_PID].pid != NULL;
1416}
1417
1418/**
1419 * is_global_init - check if a task structure is init
1420 * @tsk: Task structure to be checked.
1421 *
1422 * Check if a task structure is the first user space task the kernel created.
1423 */
1424static inline int is_global_init(struct task_struct *tsk)
1425{
1426        return tsk->pid == 1;
1427}
1428
1429/*
1430 * is_container_init:
1431 * check whether in the task is init in its own pid namespace.
1432 */
1433extern int is_container_init(struct task_struct *tsk);
1434
1435extern struct pid *cad_pid;
1436
1437extern void free_task(struct task_struct *tsk);
1438#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1439
1440extern void __put_task_struct(struct task_struct *t);
1441
1442static inline void put_task_struct(struct task_struct *t)
1443{
1444        if (atomic_dec_and_test(&t->usage))
1445                __put_task_struct(t);
1446}
1447
1448/*
1449 * Per process flags
1450 */
1451#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1452                                        /* Not implemented yet, only for 486*/
1453#define PF_STARTING     0x00000002      /* being created */
1454#define PF_EXITING      0x00000004      /* getting shut down */
1455#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1456#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1457#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1458#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1459#define PF_DUMPCORE     0x00000200      /* dumped core */
1460#define PF_SIGNALED     0x00000400      /* killed by a signal */
1461#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1462#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1463#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1464#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1465#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1466#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1467#define PF_KSWAPD       0x00040000      /* I am kswapd */
1468#define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1469#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1470#define PF_BORROWED_MM  0x00200000      /* I am a kthread doing use_mm */
1471#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1472#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1473#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1474#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1475#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1476#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1477#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1478
1479/*
1480 * Only the _current_ task can read/write to tsk->flags, but other
1481 * tasks can access tsk->flags in readonly mode for example
1482 * with tsk_used_math (like during threaded core dumping).
1483 * There is however an exception to this rule during ptrace
1484 * or during fork: the ptracer task is allowed to write to the
1485 * child->flags of its traced child (same goes for fork, the parent
1486 * can write to the child->flags), because we're guaranteed the
1487 * child is not running and in turn not changing child->flags
1488 * at the same time the parent does it.
1489 */
1490#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1491#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1492#define clear_used_math() clear_stopped_child_used_math(current)
1493#define set_used_math() set_stopped_child_used_math(current)
1494#define conditional_stopped_child_used_math(condition, child) \
1495        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1496#define conditional_used_math(condition) \
1497        conditional_stopped_child_used_math(condition, current)
1498#define copy_to_stopped_child_used_math(child) \
1499        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1500/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1501#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1502#define used_math() tsk_used_math(current)
1503
1504#ifdef CONFIG_SMP
1505extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1506#else
1507static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1508{
1509        if (!cpu_isset(0, new_mask))
1510                return -EINVAL;
1511        return 0;
1512}
1513#endif
1514
1515extern unsigned long long sched_clock(void);
1516
1517/*
1518 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1519 * clock constructed from sched_clock():
1520 */
1521extern unsigned long long cpu_clock(int cpu);
1522
1523extern unsigned long long
1524task_sched_runtime(struct task_struct *task);
1525
1526/* sched_exec is called by processes performing an exec */
1527#ifdef CONFIG_SMP
1528extern void sched_exec(void);
1529#else
1530#define sched_exec()   {}
1531#endif
1532
1533extern void sched_clock_idle_sleep_event(void);
1534extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1535
1536#ifdef CONFIG_HOTPLUG_CPU
1537extern void idle_task_exit(void);
1538#else
1539static inline void idle_task_exit(void) {}
1540#endif
1541
1542extern void sched_idle_next(void);
1543
1544#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1545extern void wake_up_idle_cpu(int cpu);
1546#else
1547static inline void wake_up_idle_cpu(int cpu) { }
1548#endif
1549
1550#ifdef CONFIG_SCHED_DEBUG
1551extern unsigned int sysctl_sched_latency;
1552extern unsigned int sysctl_sched_min_granularity;
1553extern unsigned int sysctl_sched_wakeup_granularity;
1554extern unsigned int sysctl_sched_batch_wakeup_granularity;
1555extern unsigned int sysctl_sched_child_runs_first;
1556extern unsigned int sysctl_sched_features;
1557extern unsigned int sysctl_sched_migration_cost;
1558extern unsigned int sysctl_sched_nr_migrate;
1559
1560int sched_nr_latency_handler(struct ctl_table *table, int write,
1561                struct file *file, void __user *buffer, size_t *length,
1562                loff_t *ppos);
1563#endif
1564extern unsigned int sysctl_sched_rt_period;
1565extern int sysctl_sched_rt_runtime;
1566
1567extern unsigned int sysctl_sched_compat_yield;
1568
1569#ifdef CONFIG_RT_MUTEXES
1570extern int rt_mutex_getprio(struct task_struct *p);
1571extern void rt_mutex_setprio(struct task_struct *p, int prio);
1572extern void rt_mutex_adjust_pi(struct task_struct *p);
1573#else
1574static inline int rt_mutex_getprio(struct task_struct *p)
1575{
1576        return p->normal_prio;
1577}
1578# define rt_mutex_adjust_pi(p)          do { } while (0)
1579#endif
1580
1581extern void set_user_nice(struct task_struct *p, long nice);
1582extern int task_prio(const struct task_struct *p);
1583extern int task_nice(const struct task_struct *p);
1584extern int can_nice(const struct task_struct *p, const int nice);
1585extern int task_curr(const struct task_struct *p);
1586extern int idle_cpu(int cpu);
1587extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1588extern struct task_struct *idle_task(int cpu);
1589extern struct task_struct *curr_task(int cpu);
1590extern void set_curr_task(int cpu, struct task_struct *p);
1591
1592void yield(void);
1593
1594/*
1595 * The default (Linux) execution domain.
1596 */
1597extern struct exec_domain       default_exec_domain;
1598
1599union thread_union {
1600        struct thread_info thread_info;
1601        unsigned long stack[THREAD_SIZE/sizeof(long)];
1602};
1603
1604#ifndef __HAVE_ARCH_KSTACK_END
1605static inline int kstack_end(void *addr)
1606{
1607        /* Reliable end of stack detection:
1608         * Some APM bios versions misalign the stack
1609         */
1610        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1611}
1612#endif
1613
1614extern union thread_union init_thread_union;
1615extern struct task_struct init_task;
1616
1617extern struct   mm_struct init_mm;
1618
1619extern struct pid_namespace init_pid_ns;
1620
1621/*
1622 * find a task by one of its numerical ids
1623 *
1624 * find_task_by_pid_type_ns():
1625 *      it is the most generic call - it finds a task by all id,
1626 *      type and namespace specified
1627 * find_task_by_pid_ns():
1628 *      finds a task by its pid in the specified namespace
1629 * find_task_by_vpid():
1630 *      finds a task by its virtual pid
1631 * find_task_by_pid():
1632 *      finds a task by its global pid
1633 *
1634 * see also find_pid() etc in include/linux/pid.h
1635 */
1636
1637extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1638                struct pid_namespace *ns);
1639
1640extern struct task_struct *find_task_by_pid(pid_t nr);
1641extern struct task_struct *find_task_by_vpid(pid_t nr);
1642extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1643                struct pid_namespace *ns);
1644
1645extern void __set_special_pids(struct pid *pid);
1646
1647/* per-UID process charging. */
1648extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1649static inline struct user_struct *get_uid(struct user_struct *u)
1650{
1651        atomic_inc(&u->__count);
1652        return u;
1653}
1654extern void free_uid(struct user_struct *);
1655extern void switch_uid(struct user_struct *);
1656extern void release_uids(struct user_namespace *ns);
1657
1658#include <asm/current.h>
1659
1660extern void do_timer(unsigned long ticks);
1661
1662extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1663extern int wake_up_process(struct task_struct *tsk);
1664extern void wake_up_new_task(struct task_struct *tsk,
1665                                unsigned long clone_flags);
1666#ifdef CONFIG_SMP
1667 extern void kick_process(struct task_struct *tsk);
1668#else
1669 static inline void kick_process(struct task_struct *tsk) { }
1670#endif
1671extern void sched_fork(struct task_struct *p, int clone_flags);
1672extern void sched_dead(struct task_struct *p);
1673
1674extern int in_group_p(gid_t);
1675extern int in_egroup_p(gid_t);
1676
1677extern void proc_caches_init(void);
1678extern void flush_signals(struct task_struct *);
1679extern void ignore_signals(struct task_struct *);
1680extern void flush_signal_handlers(struct task_struct *, int force_default);
1681extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1682
1683static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1684{
1685        unsigned long flags;
1686        int ret;
1687
1688        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1689        ret = dequeue_signal(tsk, mask, info);
1690        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1691
1692        return ret;
1693}       
1694
1695extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1696                              sigset_t *mask);
1697extern void unblock_all_signals(void);
1698extern void release_task(struct task_struct * p);
1699extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1700extern int force_sigsegv(int, struct task_struct *);
1701extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1702extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1703extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1704extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1705extern int kill_pgrp(struct pid *pid, int sig, int priv);
1706extern int kill_pid(struct pid *pid, int sig, int priv);
1707extern int kill_proc_info(int, struct siginfo *, pid_t);
1708extern void do_notify_parent(struct task_struct *, int);
1709extern void force_sig(int, struct task_struct *);
1710extern void force_sig_specific(int, struct task_struct *);
1711extern int send_sig(int, struct task_struct *, int);
1712extern void zap_other_threads(struct task_struct *p);
1713extern int kill_proc(pid_t, int, int);
1714extern struct sigqueue *sigqueue_alloc(void);
1715extern void sigqueue_free(struct sigqueue *);
1716extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1717extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1718extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1719extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1720
1721static inline int kill_cad_pid(int sig, int priv)
1722{
1723        return kill_pid(cad_pid, sig, priv);
1724}
1725
1726/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1727#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1728#define SEND_SIG_PRIV   ((struct siginfo *) 1)
1729#define SEND_SIG_FORCED ((struct siginfo *) 2)
1730
1731static inline int is_si_special(const struct siginfo *info)
1732{
1733        return info <= SEND_SIG_FORCED;
1734}
1735
1736/* True if we are on the alternate signal stack.  */
1737
1738static inline int on_sig_stack(unsigned long sp)
1739{
1740        return (sp - current->sas_ss_sp < current->sas_ss_size);
1741}
1742
1743static inline int sas_ss_flags(unsigned long sp)
1744{
1745        return (current->sas_ss_size == 0 ? SS_DISABLE
1746                : on_sig_stack(sp) ? SS_ONSTACK : 0);
1747}
1748
1749/*
1750 * Routines for handling mm_structs
1751 */
1752extern struct mm_struct * mm_alloc(void);
1753
1754/* mmdrop drops the mm and the page tables */
1755extern void __mmdrop(struct mm_struct *);
1756static inline void mmdrop(struct mm_struct * mm)
1757{
1758        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1759                __mmdrop(mm);
1760}
1761
1762/* mmput gets rid of the mappings and all user-space */
1763extern void mmput(struct mm_struct *);
1764/* Grab a reference to a task's mm, if it is not already going away */
1765extern struct mm_struct *get_task_mm(struct task_struct *task);
1766/* Remove the current tasks stale references to the old mm_struct */
1767extern void mm_release(struct task_struct *, struct mm_struct *);
1768
1769extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1770extern void flush_thread(void);
1771extern void exit_thread(void);
1772
1773extern void exit_files(struct task_struct *);
1774extern void __cleanup_signal(struct signal_struct *);
1775extern void __cleanup_sighand(struct sighand_struct *);
1776extern void exit_itimers(struct signal_struct *);
1777
1778extern NORET_TYPE void do_group_exit(int);
1779
1780extern void daemonize(const char *, ...);
1781extern int allow_signal(int);
1782extern int disallow_signal(int);
1783
1784extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1785extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1786struct task_struct *fork_idle(int);
1787
1788extern void set_task_comm(struct task_struct *tsk, char *from);
1789extern char *get_task_comm(char *to, struct task_struct *tsk);
1790
1791#ifdef CONFIG_SMP
1792extern void wait_task_inactive(struct task_struct * p);
1793#else
1794#define wait_task_inactive(p)   do { } while (0)
1795#endif
1796
1797#define remove_parent(p)        list_del_init(&(p)->sibling)
1798#define add_parent(p)           list_add_tail(&(p)->sibling,&(p)->parent->children)
1799
1800#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1801
1802#define for_each_process(p) \
1803        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1804
1805/*
1806 * Careful: do_each_thread/while_each_thread is a double loop so
1807 *          'break' will not work as expected - use goto instead.
1808 */
1809#define do_each_thread(g, t) \
1810        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1811
1812#define while_each_thread(g, t) \
1813        while ((t = next_thread(t)) != g)
1814
1815/* de_thread depends on thread_group_leader not being a pid based check */
1816#define thread_group_leader(p)  (p == p->group_leader)
1817
1818/* Do to the insanities of de_thread it is possible for a process
1819 * to have the pid of the thread group leader without actually being
1820 * the thread group leader.  For iteration through the pids in proc
1821 * all we care about is that we have a task with the appropriate
1822 * pid, we don't actually care if we have the right task.
1823 */
1824static inline int has_group_leader_pid(struct task_struct *p)
1825{
1826        return p->pid == p->tgid;
1827}
1828
1829static inline
1830int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1831{
1832        return p1->tgid == p2->tgid;
1833}
1834
1835static inline struct task_struct *next_thread(const struct task_struct *p)
1836{
1837        return list_entry(rcu_dereference(p->thread_group.next),
1838                          struct task_struct, thread_group);
1839}
1840
1841static inline int thread_group_empty(struct task_struct *p)
1842{
1843        return list_empty(&p->thread_group);
1844}
1845
1846#define delay_group_leader(p) \
1847                (thread_group_leader(p) && !thread_group_empty(p))
1848
1849/*
1850 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1851 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1852 * pins the final release of task.io_context.  Also protects ->cpuset and
1853 * ->cgroup.subsys[].
1854 *
1855 * Nests both inside and outside of read_lock(&tasklist_lock).
1856 * It must not be nested with write_lock_irq(&tasklist_lock),
1857 * neither inside nor outside.
1858 */
1859static inline void task_lock(struct task_struct *p)
1860{
1861        spin_lock(&p->alloc_lock);
1862}
1863
1864static inline void task_unlock(struct task_struct *p)
1865{
1866        spin_unlock(&p->alloc_lock);
1867}
1868
1869extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1870                                                        unsigned long *flags);
1871
1872static inline void unlock_task_sighand(struct task_struct *tsk,
1873                                                unsigned long *flags)
1874{
1875        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1876}
1877
1878#ifndef __HAVE_THREAD_FUNCTIONS
1879
1880#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
1881#define task_stack_page(task)   ((task)->stack)
1882
1883static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1884{
1885        *task_thread_info(p) = *task_thread_info(org);
1886        task_thread_info(p)->task = p;
1887}
1888
1889static inline unsigned long *end_of_stack(struct task_struct *p)
1890{
1891        return (unsigned long *)(task_thread_info(p) + 1);
1892}
1893
1894#endif
1895
1896/* set thread flags in other task's structures
1897 * - see asm/thread_info.h for TIF_xxxx flags available
1898 */
1899static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1900{
1901        set_ti_thread_flag(task_thread_info(tsk), flag);
1902}
1903
1904static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1905{
1906        clear_ti_thread_flag(task_thread_info(tsk), flag);
1907}
1908
1909static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1910{
1911        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1912}
1913
1914static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1915{
1916        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1917}
1918
1919static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1920{
1921        return test_ti_thread_flag(task_thread_info(tsk), flag);
1922}
1923
1924static inline void set_tsk_need_resched(struct task_struct *tsk)
1925{
1926        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1927}
1928
1929static inline void clear_tsk_need_resched(struct task_struct *tsk)
1930{
1931        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1932}
1933
1934static inline int signal_pending(struct task_struct *p)
1935{
1936        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1937}
1938
1939extern int __fatal_signal_pending(struct task_struct *p);
1940
1941static inline int fatal_signal_pending(struct task_struct *p)
1942{
1943        return signal_pending(p) && __fatal_signal_pending(p);
1944}
1945
1946static inline int need_resched(void)
1947{
1948        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1949}
1950
1951/*
1952 * cond_resched() and cond_resched_lock(): latency reduction via
1953 * explicit rescheduling in places that are safe. The return
1954 * value indicates whether a reschedule was done in fact.
1955 * cond_resched_lock() will drop the spinlock before scheduling,
1956 * cond_resched_softirq() will enable bhs before scheduling.
1957 */
1958#ifdef CONFIG_PREEMPT
1959static inline int cond_resched(void)
1960{
1961        return 0;
1962}
1963#else
1964extern int _cond_resched(void);
1965static inline int cond_resched(void)
1966{
1967        return _cond_resched();
1968}
1969#endif
1970extern int cond_resched_lock(spinlock_t * lock);
1971extern int cond_resched_softirq(void);
1972
1973/*
1974 * Does a critical section need to be broken due to another
1975 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1976 * but a general need for low latency)
1977 */
1978static inline int spin_needbreak(spinlock_t *lock)
1979{
1980#ifdef CONFIG_PREEMPT
1981        return spin_is_contended(lock);
1982#else
1983        return 0;
1984#endif
1985}
1986
1987/*
1988 * Reevaluate whether the task has signals pending delivery.
1989 * Wake the task if so.
1990 * This is required every time the blocked sigset_t changes.
1991 * callers must hold sighand->siglock.
1992 */
1993extern void recalc_sigpending_and_wake(struct task_struct *t);
1994extern void recalc_sigpending(void);
1995
1996extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1997
1998/*
1999 * Wrappers for p->thread_info->cpu access. No-op on UP.
2000 */
2001#ifdef CONFIG_SMP
2002
2003static inline unsigned int task_cpu(const struct task_struct *p)
2004{
2005        return task_thread_info(p)->cpu;
2006}
2007
2008extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2009
2010#else
2011
2012static inline unsigned int task_cpu(const struct task_struct *p)
2013{
2014        return 0;
2015}
2016
2017static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2018{
2019}
2020
2021#endif /* CONFIG_SMP */
2022
2023#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2024extern void arch_pick_mmap_layout(struct mm_struct *mm);
2025#else
2026static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2027{
2028        mm->mmap_base = TASK_UNMAPPED_BASE;
2029        mm->get_unmapped_area = arch_get_unmapped_area;
2030        mm->unmap_area = arch_unmap_area;
2031}
2032#endif
2033
2034extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
2035extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2036
2037extern int sched_mc_power_savings, sched_smt_power_savings;
2038
2039extern void normalize_rt_tasks(void);
2040
2041#ifdef CONFIG_GROUP_SCHED
2042
2043extern struct task_group init_task_group;
2044
2045extern struct task_group *sched_create_group(void);
2046extern void sched_destroy_group(struct task_group *tg);
2047extern void sched_move_task(struct task_struct *tsk);
2048#ifdef CONFIG_FAIR_GROUP_SCHED
2049extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2050extern unsigned long sched_group_shares(struct task_group *tg);
2051#endif
2052#ifdef CONFIG_RT_GROUP_SCHED
2053extern int sched_group_set_rt_runtime(struct task_group *tg,
2054                                      long rt_runtime_us);
2055extern long sched_group_rt_runtime(struct task_group *tg);
2056#endif
2057#endif
2058
2059#ifdef CONFIG_TASK_XACCT
2060static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2061{
2062        tsk->rchar += amt;
2063}
2064
2065static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2066{
2067        tsk->wchar += amt;
2068}
2069
2070static inline void inc_syscr(struct task_struct *tsk)
2071{
2072        tsk->syscr++;
2073}
2074
2075static inline void inc_syscw(struct task_struct *tsk)
2076{
2077        tsk->syscw++;
2078}
2079#else
2080static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2081{
2082}
2083
2084static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2085{
2086}
2087
2088static inline void inc_syscr(struct task_struct *tsk)
2089{
2090}
2091
2092static inline void inc_syscw(struct task_struct *tsk)
2093{
2094}
2095#endif
2096
2097#ifdef CONFIG_SMP
2098void migration_init(void);
2099#else
2100static inline void migration_init(void)
2101{
2102}
2103#endif
2104
2105#ifndef TASK_SIZE_OF
2106#define TASK_SIZE_OF(tsk)       TASK_SIZE
2107#endif
2108
2109#endif /* __KERNEL__ */
2110
2111#endif
2112
lxr.linux.no kindly hosted by Redpill Linpro AS, provider of Linux consulting and operations services since 1995.